1 /*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83 * For btree insert:
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 * For btree remove:
87 * 2 for shadow spine +
88 * 4 for rebalance 3 child node
89 */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96 * Little endian on-disk superblock and device details.
97 */
98 struct thin_disk_superblock {
99 __le32 csum; /* Checksum of superblock except for this field. */
100 __le32 flags;
101 __le64 blocknr; /* This block number, dm_block_t. */
102
103 __u8 uuid[16];
104 __le64 magic;
105 __le32 version;
106 __le32 time;
107
108 __le64 trans_id;
109
110 /*
111 * Root held by userspace transactions.
112 */
113 __le64 held_root;
114
115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118 /*
119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 */
121 __le64 data_mapping_root;
122
123 /*
124 * Device detail root mapping dev_id -> device_details
125 */
126 __le64 device_details_root;
127
128 __le32 data_block_size; /* In 512-byte sectors. */
129
130 __le32 metadata_block_size; /* In 512-byte sectors. */
131 __le64 metadata_nr_blocks;
132
133 __le32 compat_flags;
134 __le32 compat_ro_flags;
135 __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139 __le64 mapped_blocks;
140 __le64 transaction_id; /* When created. */
141 __le32 creation_time;
142 __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146 struct hlist_node hash;
147
148 struct block_device *bdev;
149 struct dm_block_manager *bm;
150 struct dm_space_map *metadata_sm;
151 struct dm_space_map *data_sm;
152 struct dm_transaction_manager *tm;
153 struct dm_transaction_manager *nb_tm;
154
155 /*
156 * Two-level btree.
157 * First level holds thin_dev_t.
158 * Second level holds mappings.
159 */
160 struct dm_btree_info info;
161
162 /*
163 * Non-blocking version of the above.
164 */
165 struct dm_btree_info nb_info;
166
167 /*
168 * Just the top level for deleting whole devices.
169 */
170 struct dm_btree_info tl_info;
171
172 /*
173 * Just the bottom level for creating new devices.
174 */
175 struct dm_btree_info bl_info;
176
177 /*
178 * Describes the device details btree.
179 */
180 struct dm_btree_info details_info;
181
182 struct rw_semaphore root_lock;
183 uint32_t time;
184 dm_block_t root;
185 dm_block_t details_root;
186 struct list_head thin_devices;
187 uint64_t trans_id;
188 unsigned long flags;
189 sector_t data_block_size;
190
191 /*
192 * Pre-commit callback.
193 *
194 * This allows the thin provisioning target to run a callback before
195 * the metadata are committed.
196 */
197 dm_pool_pre_commit_fn pre_commit_fn;
198 void *pre_commit_context;
199
200 /*
201 * We reserve a section of the metadata for commit overhead.
202 * All reported space does *not* include this.
203 */
204 dm_block_t metadata_reserve;
205
206 /*
207 * Set if a transaction has to be aborted but the attempt to roll back
208 * to the previous (good) transaction failed. The only pool metadata
209 * operation possible in this state is the closing of the device.
210 */
211 bool fail_io:1;
212
213 /*
214 * Set once a thin-pool has been accessed through one of the interfaces
215 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 * thin-pool message, metadata snapshots, etc).
217 */
218 bool in_service:1;
219
220 /*
221 * Reading the space map roots can fail, so we read it into these
222 * buffers before the superblock is locked and updated.
223 */
224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227
228 struct dm_thin_device {
229 struct list_head list;
230 struct dm_pool_metadata *pmd;
231 dm_thin_id id;
232
233 int open_count;
234 bool changed:1;
235 bool aborted_with_changes:1;
236 uint64_t mapped_blocks;
237 uint64_t transaction_id;
238 uint32_t creation_time;
239 uint32_t snapshotted_time;
240 };
241
242 /*----------------------------------------------------------------
243 * superblock validator
244 *--------------------------------------------------------------*/
245
246 #define SUPERBLOCK_CSUM_XOR 160774
247
sb_prepare_for_write(struct dm_block_validator * v,struct dm_block * b,size_t block_size)248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 struct dm_block *b,
250 size_t block_size)
251 {
252 struct thin_disk_superblock *disk_super = dm_block_data(b);
253
254 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 block_size - sizeof(__le32),
257 SUPERBLOCK_CSUM_XOR));
258 }
259
sb_check(struct dm_block_validator * v,struct dm_block * b,size_t block_size)260 static int sb_check(struct dm_block_validator *v,
261 struct dm_block *b,
262 size_t block_size)
263 {
264 struct thin_disk_superblock *disk_super = dm_block_data(b);
265 __le32 csum_le;
266
267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 DMERR("sb_check failed: blocknr %llu: "
269 "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 (unsigned long long)dm_block_location(b));
271 return -ENOTBLK;
272 }
273
274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 DMERR("sb_check failed: magic %llu: "
276 "wanted %llu", le64_to_cpu(disk_super->magic),
277 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 return -EILSEQ;
279 }
280
281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 block_size - sizeof(__le32),
283 SUPERBLOCK_CSUM_XOR));
284 if (csum_le != disk_super->csum) {
285 DMERR("sb_check failed: csum %u: wanted %u",
286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 return -EILSEQ;
288 }
289
290 return 0;
291 }
292
293 static struct dm_block_validator sb_validator = {
294 .name = "superblock",
295 .prepare_for_write = sb_prepare_for_write,
296 .check = sb_check
297 };
298
299 /*----------------------------------------------------------------
300 * Methods for the btree value types
301 *--------------------------------------------------------------*/
302
pack_block_time(dm_block_t b,uint32_t t)303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 return (b << 24) | t;
306 }
307
unpack_block_time(uint64_t v,dm_block_t * b,uint32_t * t)308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 *b = v >> 24;
311 *t = v & ((1 << 24) - 1);
312 }
313
data_block_inc(void * context,const void * value_le)314 static void data_block_inc(void *context, const void *value_le)
315 {
316 struct dm_space_map *sm = context;
317 __le64 v_le;
318 uint64_t b;
319 uint32_t t;
320
321 memcpy(&v_le, value_le, sizeof(v_le));
322 unpack_block_time(le64_to_cpu(v_le), &b, &t);
323 dm_sm_inc_block(sm, b);
324 }
325
data_block_dec(void * context,const void * value_le)326 static void data_block_dec(void *context, const void *value_le)
327 {
328 struct dm_space_map *sm = context;
329 __le64 v_le;
330 uint64_t b;
331 uint32_t t;
332
333 memcpy(&v_le, value_le, sizeof(v_le));
334 unpack_block_time(le64_to_cpu(v_le), &b, &t);
335 dm_sm_dec_block(sm, b);
336 }
337
data_block_equal(void * context,const void * value1_le,const void * value2_le)338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339 {
340 __le64 v1_le, v2_le;
341 uint64_t b1, b2;
342 uint32_t t;
343
344 memcpy(&v1_le, value1_le, sizeof(v1_le));
345 memcpy(&v2_le, value2_le, sizeof(v2_le));
346 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348
349 return b1 == b2;
350 }
351
subtree_inc(void * context,const void * value)352 static void subtree_inc(void *context, const void *value)
353 {
354 struct dm_btree_info *info = context;
355 __le64 root_le;
356 uint64_t root;
357
358 memcpy(&root_le, value, sizeof(root_le));
359 root = le64_to_cpu(root_le);
360 dm_tm_inc(info->tm, root);
361 }
362
subtree_dec(void * context,const void * value)363 static void subtree_dec(void *context, const void *value)
364 {
365 struct dm_btree_info *info = context;
366 __le64 root_le;
367 uint64_t root;
368
369 memcpy(&root_le, value, sizeof(root_le));
370 root = le64_to_cpu(root_le);
371 if (dm_btree_del(info, root))
372 DMERR("btree delete failed");
373 }
374
subtree_equal(void * context,const void * value1_le,const void * value2_le)375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376 {
377 __le64 v1_le, v2_le;
378 memcpy(&v1_le, value1_le, sizeof(v1_le));
379 memcpy(&v2_le, value2_le, sizeof(v2_le));
380
381 return v1_le == v2_le;
382 }
383
384 /*----------------------------------------------------------------*/
385
386 /*
387 * Variant that is used for in-core only changes or code that
388 * shouldn't put the pool in service on its own (e.g. commit).
389 */
__pmd_write_lock(struct dm_pool_metadata * pmd)390 static inline void __pmd_write_lock(struct dm_pool_metadata *pmd)
391 __acquires(pmd->root_lock)
392 {
393 down_write(&pmd->root_lock);
394 }
395 #define pmd_write_lock_in_core(pmd) __pmd_write_lock((pmd))
396
pmd_write_lock(struct dm_pool_metadata * pmd)397 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
398 {
399 __pmd_write_lock(pmd);
400 if (unlikely(!pmd->in_service))
401 pmd->in_service = true;
402 }
403
pmd_write_unlock(struct dm_pool_metadata * pmd)404 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
405 __releases(pmd->root_lock)
406 {
407 up_write(&pmd->root_lock);
408 }
409
410 /*----------------------------------------------------------------*/
411
superblock_lock_zero(struct dm_pool_metadata * pmd,struct dm_block ** sblock)412 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
413 struct dm_block **sblock)
414 {
415 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
416 &sb_validator, sblock);
417 }
418
superblock_lock(struct dm_pool_metadata * pmd,struct dm_block ** sblock)419 static int superblock_lock(struct dm_pool_metadata *pmd,
420 struct dm_block **sblock)
421 {
422 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
423 &sb_validator, sblock);
424 }
425
__superblock_all_zeroes(struct dm_block_manager * bm,int * result)426 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
427 {
428 int r;
429 unsigned i;
430 struct dm_block *b;
431 __le64 *data_le, zero = cpu_to_le64(0);
432 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
433
434 /*
435 * We can't use a validator here - it may be all zeroes.
436 */
437 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
438 if (r)
439 return r;
440
441 data_le = dm_block_data(b);
442 *result = 1;
443 for (i = 0; i < block_size; i++) {
444 if (data_le[i] != zero) {
445 *result = 0;
446 break;
447 }
448 }
449
450 dm_bm_unlock(b);
451
452 return 0;
453 }
454
__setup_btree_details(struct dm_pool_metadata * pmd)455 static void __setup_btree_details(struct dm_pool_metadata *pmd)
456 {
457 pmd->info.tm = pmd->tm;
458 pmd->info.levels = 2;
459 pmd->info.value_type.context = pmd->data_sm;
460 pmd->info.value_type.size = sizeof(__le64);
461 pmd->info.value_type.inc = data_block_inc;
462 pmd->info.value_type.dec = data_block_dec;
463 pmd->info.value_type.equal = data_block_equal;
464
465 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
466 pmd->nb_info.tm = pmd->nb_tm;
467
468 pmd->tl_info.tm = pmd->tm;
469 pmd->tl_info.levels = 1;
470 pmd->tl_info.value_type.context = &pmd->bl_info;
471 pmd->tl_info.value_type.size = sizeof(__le64);
472 pmd->tl_info.value_type.inc = subtree_inc;
473 pmd->tl_info.value_type.dec = subtree_dec;
474 pmd->tl_info.value_type.equal = subtree_equal;
475
476 pmd->bl_info.tm = pmd->tm;
477 pmd->bl_info.levels = 1;
478 pmd->bl_info.value_type.context = pmd->data_sm;
479 pmd->bl_info.value_type.size = sizeof(__le64);
480 pmd->bl_info.value_type.inc = data_block_inc;
481 pmd->bl_info.value_type.dec = data_block_dec;
482 pmd->bl_info.value_type.equal = data_block_equal;
483
484 pmd->details_info.tm = pmd->tm;
485 pmd->details_info.levels = 1;
486 pmd->details_info.value_type.context = NULL;
487 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
488 pmd->details_info.value_type.inc = NULL;
489 pmd->details_info.value_type.dec = NULL;
490 pmd->details_info.value_type.equal = NULL;
491 }
492
save_sm_roots(struct dm_pool_metadata * pmd)493 static int save_sm_roots(struct dm_pool_metadata *pmd)
494 {
495 int r;
496 size_t len;
497
498 r = dm_sm_root_size(pmd->metadata_sm, &len);
499 if (r < 0)
500 return r;
501
502 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
503 if (r < 0)
504 return r;
505
506 r = dm_sm_root_size(pmd->data_sm, &len);
507 if (r < 0)
508 return r;
509
510 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
511 }
512
copy_sm_roots(struct dm_pool_metadata * pmd,struct thin_disk_superblock * disk)513 static void copy_sm_roots(struct dm_pool_metadata *pmd,
514 struct thin_disk_superblock *disk)
515 {
516 memcpy(&disk->metadata_space_map_root,
517 &pmd->metadata_space_map_root,
518 sizeof(pmd->metadata_space_map_root));
519
520 memcpy(&disk->data_space_map_root,
521 &pmd->data_space_map_root,
522 sizeof(pmd->data_space_map_root));
523 }
524
__write_initial_superblock(struct dm_pool_metadata * pmd)525 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
526 {
527 int r;
528 struct dm_block *sblock;
529 struct thin_disk_superblock *disk_super;
530 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
531
532 if (bdev_size > THIN_METADATA_MAX_SECTORS)
533 bdev_size = THIN_METADATA_MAX_SECTORS;
534
535 r = dm_sm_commit(pmd->data_sm);
536 if (r < 0)
537 return r;
538
539 r = dm_tm_pre_commit(pmd->tm);
540 if (r < 0)
541 return r;
542
543 r = save_sm_roots(pmd);
544 if (r < 0)
545 return r;
546
547 r = superblock_lock_zero(pmd, &sblock);
548 if (r)
549 return r;
550
551 disk_super = dm_block_data(sblock);
552 disk_super->flags = 0;
553 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
554 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
555 disk_super->version = cpu_to_le32(THIN_VERSION);
556 disk_super->time = 0;
557 disk_super->trans_id = 0;
558 disk_super->held_root = 0;
559
560 copy_sm_roots(pmd, disk_super);
561
562 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
563 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
564 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
565 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
566 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
567
568 return dm_tm_commit(pmd->tm, sblock);
569 }
570
__format_metadata(struct dm_pool_metadata * pmd)571 static int __format_metadata(struct dm_pool_metadata *pmd)
572 {
573 int r;
574
575 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
576 &pmd->tm, &pmd->metadata_sm);
577 if (r < 0) {
578 DMERR("tm_create_with_sm failed");
579 return r;
580 }
581
582 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
583 if (IS_ERR(pmd->data_sm)) {
584 DMERR("sm_disk_create failed");
585 r = PTR_ERR(pmd->data_sm);
586 goto bad_cleanup_tm;
587 }
588
589 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
590 if (!pmd->nb_tm) {
591 DMERR("could not create non-blocking clone tm");
592 r = -ENOMEM;
593 goto bad_cleanup_data_sm;
594 }
595
596 __setup_btree_details(pmd);
597
598 r = dm_btree_empty(&pmd->info, &pmd->root);
599 if (r < 0)
600 goto bad_cleanup_nb_tm;
601
602 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
603 if (r < 0) {
604 DMERR("couldn't create devices root");
605 goto bad_cleanup_nb_tm;
606 }
607
608 r = __write_initial_superblock(pmd);
609 if (r)
610 goto bad_cleanup_nb_tm;
611
612 return 0;
613
614 bad_cleanup_nb_tm:
615 dm_tm_destroy(pmd->nb_tm);
616 bad_cleanup_data_sm:
617 dm_sm_destroy(pmd->data_sm);
618 bad_cleanup_tm:
619 dm_tm_destroy(pmd->tm);
620 dm_sm_destroy(pmd->metadata_sm);
621
622 return r;
623 }
624
__check_incompat_features(struct thin_disk_superblock * disk_super,struct dm_pool_metadata * pmd)625 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
626 struct dm_pool_metadata *pmd)
627 {
628 uint32_t features;
629
630 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
631 if (features) {
632 DMERR("could not access metadata due to unsupported optional features (%lx).",
633 (unsigned long)features);
634 return -EINVAL;
635 }
636
637 /*
638 * Check for read-only metadata to skip the following RDWR checks.
639 */
640 if (get_disk_ro(pmd->bdev->bd_disk))
641 return 0;
642
643 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
644 if (features) {
645 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
646 (unsigned long)features);
647 return -EINVAL;
648 }
649
650 return 0;
651 }
652
__open_metadata(struct dm_pool_metadata * pmd)653 static int __open_metadata(struct dm_pool_metadata *pmd)
654 {
655 int r;
656 struct dm_block *sblock;
657 struct thin_disk_superblock *disk_super;
658
659 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
660 &sb_validator, &sblock);
661 if (r < 0) {
662 DMERR("couldn't read superblock");
663 return r;
664 }
665
666 disk_super = dm_block_data(sblock);
667
668 /* Verify the data block size hasn't changed */
669 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
670 DMERR("changing the data block size (from %u to %llu) is not supported",
671 le32_to_cpu(disk_super->data_block_size),
672 (unsigned long long)pmd->data_block_size);
673 r = -EINVAL;
674 goto bad_unlock_sblock;
675 }
676
677 r = __check_incompat_features(disk_super, pmd);
678 if (r < 0)
679 goto bad_unlock_sblock;
680
681 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
682 disk_super->metadata_space_map_root,
683 sizeof(disk_super->metadata_space_map_root),
684 &pmd->tm, &pmd->metadata_sm);
685 if (r < 0) {
686 DMERR("tm_open_with_sm failed");
687 goto bad_unlock_sblock;
688 }
689
690 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
691 sizeof(disk_super->data_space_map_root));
692 if (IS_ERR(pmd->data_sm)) {
693 DMERR("sm_disk_open failed");
694 r = PTR_ERR(pmd->data_sm);
695 goto bad_cleanup_tm;
696 }
697
698 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
699 if (!pmd->nb_tm) {
700 DMERR("could not create non-blocking clone tm");
701 r = -ENOMEM;
702 goto bad_cleanup_data_sm;
703 }
704
705 __setup_btree_details(pmd);
706 dm_bm_unlock(sblock);
707
708 return 0;
709
710 bad_cleanup_data_sm:
711 dm_sm_destroy(pmd->data_sm);
712 bad_cleanup_tm:
713 dm_tm_destroy(pmd->tm);
714 dm_sm_destroy(pmd->metadata_sm);
715 bad_unlock_sblock:
716 dm_bm_unlock(sblock);
717
718 return r;
719 }
720
__open_or_format_metadata(struct dm_pool_metadata * pmd,bool format_device)721 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
722 {
723 int r, unformatted;
724
725 r = __superblock_all_zeroes(pmd->bm, &unformatted);
726 if (r)
727 return r;
728
729 if (unformatted)
730 return format_device ? __format_metadata(pmd) : -EPERM;
731
732 return __open_metadata(pmd);
733 }
734
__create_persistent_data_objects(struct dm_pool_metadata * pmd,bool format_device)735 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
736 {
737 int r;
738
739 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
740 THIN_MAX_CONCURRENT_LOCKS);
741 if (IS_ERR(pmd->bm)) {
742 DMERR("could not create block manager");
743 return PTR_ERR(pmd->bm);
744 }
745
746 r = __open_or_format_metadata(pmd, format_device);
747 if (r)
748 dm_block_manager_destroy(pmd->bm);
749
750 return r;
751 }
752
__destroy_persistent_data_objects(struct dm_pool_metadata * pmd)753 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
754 {
755 dm_sm_destroy(pmd->data_sm);
756 dm_sm_destroy(pmd->metadata_sm);
757 dm_tm_destroy(pmd->nb_tm);
758 dm_tm_destroy(pmd->tm);
759 dm_block_manager_destroy(pmd->bm);
760 }
761
__begin_transaction(struct dm_pool_metadata * pmd)762 static int __begin_transaction(struct dm_pool_metadata *pmd)
763 {
764 int r;
765 struct thin_disk_superblock *disk_super;
766 struct dm_block *sblock;
767
768 /*
769 * We re-read the superblock every time. Shouldn't need to do this
770 * really.
771 */
772 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
773 &sb_validator, &sblock);
774 if (r)
775 return r;
776
777 disk_super = dm_block_data(sblock);
778 pmd->time = le32_to_cpu(disk_super->time);
779 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
780 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
781 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
782 pmd->flags = le32_to_cpu(disk_super->flags);
783 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
784
785 dm_bm_unlock(sblock);
786 return 0;
787 }
788
__write_changed_details(struct dm_pool_metadata * pmd)789 static int __write_changed_details(struct dm_pool_metadata *pmd)
790 {
791 int r;
792 struct dm_thin_device *td, *tmp;
793 struct disk_device_details details;
794 uint64_t key;
795
796 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
797 if (!td->changed)
798 continue;
799
800 key = td->id;
801
802 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
803 details.transaction_id = cpu_to_le64(td->transaction_id);
804 details.creation_time = cpu_to_le32(td->creation_time);
805 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
806 __dm_bless_for_disk(&details);
807
808 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
809 &key, &details, &pmd->details_root);
810 if (r)
811 return r;
812
813 if (td->open_count)
814 td->changed = 0;
815 else {
816 list_del(&td->list);
817 kfree(td);
818 }
819 }
820
821 return 0;
822 }
823
__commit_transaction(struct dm_pool_metadata * pmd)824 static int __commit_transaction(struct dm_pool_metadata *pmd)
825 {
826 int r;
827 struct thin_disk_superblock *disk_super;
828 struct dm_block *sblock;
829
830 /*
831 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
832 */
833 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
834
835 if (unlikely(!pmd->in_service))
836 return 0;
837
838 if (pmd->pre_commit_fn) {
839 r = pmd->pre_commit_fn(pmd->pre_commit_context);
840 if (r < 0) {
841 DMERR("pre-commit callback failed");
842 return r;
843 }
844 }
845
846 r = __write_changed_details(pmd);
847 if (r < 0)
848 return r;
849
850 r = dm_sm_commit(pmd->data_sm);
851 if (r < 0)
852 return r;
853
854 r = dm_tm_pre_commit(pmd->tm);
855 if (r < 0)
856 return r;
857
858 r = save_sm_roots(pmd);
859 if (r < 0)
860 return r;
861
862 r = superblock_lock(pmd, &sblock);
863 if (r)
864 return r;
865
866 disk_super = dm_block_data(sblock);
867 disk_super->time = cpu_to_le32(pmd->time);
868 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
869 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
870 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
871 disk_super->flags = cpu_to_le32(pmd->flags);
872
873 copy_sm_roots(pmd, disk_super);
874
875 return dm_tm_commit(pmd->tm, sblock);
876 }
877
__set_metadata_reserve(struct dm_pool_metadata * pmd)878 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
879 {
880 int r;
881 dm_block_t total;
882 dm_block_t max_blocks = 4096; /* 16M */
883
884 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
885 if (r) {
886 DMERR("could not get size of metadata device");
887 pmd->metadata_reserve = max_blocks;
888 } else
889 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
890 }
891
dm_pool_metadata_open(struct block_device * bdev,sector_t data_block_size,bool format_device)892 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
893 sector_t data_block_size,
894 bool format_device)
895 {
896 int r;
897 struct dm_pool_metadata *pmd;
898
899 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
900 if (!pmd) {
901 DMERR("could not allocate metadata struct");
902 return ERR_PTR(-ENOMEM);
903 }
904
905 init_rwsem(&pmd->root_lock);
906 pmd->time = 0;
907 INIT_LIST_HEAD(&pmd->thin_devices);
908 pmd->fail_io = false;
909 pmd->in_service = false;
910 pmd->bdev = bdev;
911 pmd->data_block_size = data_block_size;
912 pmd->pre_commit_fn = NULL;
913 pmd->pre_commit_context = NULL;
914
915 r = __create_persistent_data_objects(pmd, format_device);
916 if (r) {
917 kfree(pmd);
918 return ERR_PTR(r);
919 }
920
921 r = __begin_transaction(pmd);
922 if (r < 0) {
923 if (dm_pool_metadata_close(pmd) < 0)
924 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
925 return ERR_PTR(r);
926 }
927
928 __set_metadata_reserve(pmd);
929
930 return pmd;
931 }
932
dm_pool_metadata_close(struct dm_pool_metadata * pmd)933 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
934 {
935 int r;
936 unsigned open_devices = 0;
937 struct dm_thin_device *td, *tmp;
938
939 down_read(&pmd->root_lock);
940 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
941 if (td->open_count)
942 open_devices++;
943 else {
944 list_del(&td->list);
945 kfree(td);
946 }
947 }
948 up_read(&pmd->root_lock);
949
950 if (open_devices) {
951 DMERR("attempt to close pmd when %u device(s) are still open",
952 open_devices);
953 return -EBUSY;
954 }
955
956 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
957 r = __commit_transaction(pmd);
958 if (r < 0)
959 DMWARN("%s: __commit_transaction() failed, error = %d",
960 __func__, r);
961 }
962 if (!pmd->fail_io)
963 __destroy_persistent_data_objects(pmd);
964
965 kfree(pmd);
966 return 0;
967 }
968
969 /*
970 * __open_device: Returns @td corresponding to device with id @dev,
971 * creating it if @create is set and incrementing @td->open_count.
972 * On failure, @td is undefined.
973 */
__open_device(struct dm_pool_metadata * pmd,dm_thin_id dev,int create,struct dm_thin_device ** td)974 static int __open_device(struct dm_pool_metadata *pmd,
975 dm_thin_id dev, int create,
976 struct dm_thin_device **td)
977 {
978 int r, changed = 0;
979 struct dm_thin_device *td2;
980 uint64_t key = dev;
981 struct disk_device_details details_le;
982
983 /*
984 * If the device is already open, return it.
985 */
986 list_for_each_entry(td2, &pmd->thin_devices, list)
987 if (td2->id == dev) {
988 /*
989 * May not create an already-open device.
990 */
991 if (create)
992 return -EEXIST;
993
994 td2->open_count++;
995 *td = td2;
996 return 0;
997 }
998
999 /*
1000 * Check the device exists.
1001 */
1002 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1003 &key, &details_le);
1004 if (r) {
1005 if (r != -ENODATA || !create)
1006 return r;
1007
1008 /*
1009 * Create new device.
1010 */
1011 changed = 1;
1012 details_le.mapped_blocks = 0;
1013 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1014 details_le.creation_time = cpu_to_le32(pmd->time);
1015 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1016 }
1017
1018 *td = kmalloc(sizeof(**td), GFP_NOIO);
1019 if (!*td)
1020 return -ENOMEM;
1021
1022 (*td)->pmd = pmd;
1023 (*td)->id = dev;
1024 (*td)->open_count = 1;
1025 (*td)->changed = changed;
1026 (*td)->aborted_with_changes = false;
1027 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1028 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1029 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1030 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1031
1032 list_add(&(*td)->list, &pmd->thin_devices);
1033
1034 return 0;
1035 }
1036
__close_device(struct dm_thin_device * td)1037 static void __close_device(struct dm_thin_device *td)
1038 {
1039 --td->open_count;
1040 }
1041
__create_thin(struct dm_pool_metadata * pmd,dm_thin_id dev)1042 static int __create_thin(struct dm_pool_metadata *pmd,
1043 dm_thin_id dev)
1044 {
1045 int r;
1046 dm_block_t dev_root;
1047 uint64_t key = dev;
1048 struct disk_device_details details_le;
1049 struct dm_thin_device *td;
1050 __le64 value;
1051
1052 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1053 &key, &details_le);
1054 if (!r)
1055 return -EEXIST;
1056
1057 /*
1058 * Create an empty btree for the mappings.
1059 */
1060 r = dm_btree_empty(&pmd->bl_info, &dev_root);
1061 if (r)
1062 return r;
1063
1064 /*
1065 * Insert it into the main mapping tree.
1066 */
1067 value = cpu_to_le64(dev_root);
1068 __dm_bless_for_disk(&value);
1069 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1070 if (r) {
1071 dm_btree_del(&pmd->bl_info, dev_root);
1072 return r;
1073 }
1074
1075 r = __open_device(pmd, dev, 1, &td);
1076 if (r) {
1077 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1078 dm_btree_del(&pmd->bl_info, dev_root);
1079 return r;
1080 }
1081 __close_device(td);
1082
1083 return r;
1084 }
1085
dm_pool_create_thin(struct dm_pool_metadata * pmd,dm_thin_id dev)1086 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1087 {
1088 int r = -EINVAL;
1089
1090 pmd_write_lock(pmd);
1091 if (!pmd->fail_io)
1092 r = __create_thin(pmd, dev);
1093 pmd_write_unlock(pmd);
1094
1095 return r;
1096 }
1097
__set_snapshot_details(struct dm_pool_metadata * pmd,struct dm_thin_device * snap,dm_thin_id origin,uint32_t time)1098 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1099 struct dm_thin_device *snap,
1100 dm_thin_id origin, uint32_t time)
1101 {
1102 int r;
1103 struct dm_thin_device *td;
1104
1105 r = __open_device(pmd, origin, 0, &td);
1106 if (r)
1107 return r;
1108
1109 td->changed = 1;
1110 td->snapshotted_time = time;
1111
1112 snap->mapped_blocks = td->mapped_blocks;
1113 snap->snapshotted_time = time;
1114 __close_device(td);
1115
1116 return 0;
1117 }
1118
__create_snap(struct dm_pool_metadata * pmd,dm_thin_id dev,dm_thin_id origin)1119 static int __create_snap(struct dm_pool_metadata *pmd,
1120 dm_thin_id dev, dm_thin_id origin)
1121 {
1122 int r;
1123 dm_block_t origin_root;
1124 uint64_t key = origin, dev_key = dev;
1125 struct dm_thin_device *td;
1126 struct disk_device_details details_le;
1127 __le64 value;
1128
1129 /* check this device is unused */
1130 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1131 &dev_key, &details_le);
1132 if (!r)
1133 return -EEXIST;
1134
1135 /* find the mapping tree for the origin */
1136 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1137 if (r)
1138 return r;
1139 origin_root = le64_to_cpu(value);
1140
1141 /* clone the origin, an inc will do */
1142 dm_tm_inc(pmd->tm, origin_root);
1143
1144 /* insert into the main mapping tree */
1145 value = cpu_to_le64(origin_root);
1146 __dm_bless_for_disk(&value);
1147 key = dev;
1148 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1149 if (r) {
1150 dm_tm_dec(pmd->tm, origin_root);
1151 return r;
1152 }
1153
1154 pmd->time++;
1155
1156 r = __open_device(pmd, dev, 1, &td);
1157 if (r)
1158 goto bad;
1159
1160 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1161 __close_device(td);
1162
1163 if (r)
1164 goto bad;
1165
1166 return 0;
1167
1168 bad:
1169 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1170 dm_btree_remove(&pmd->details_info, pmd->details_root,
1171 &key, &pmd->details_root);
1172 return r;
1173 }
1174
dm_pool_create_snap(struct dm_pool_metadata * pmd,dm_thin_id dev,dm_thin_id origin)1175 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1176 dm_thin_id dev,
1177 dm_thin_id origin)
1178 {
1179 int r = -EINVAL;
1180
1181 pmd_write_lock(pmd);
1182 if (!pmd->fail_io)
1183 r = __create_snap(pmd, dev, origin);
1184 pmd_write_unlock(pmd);
1185
1186 return r;
1187 }
1188
__delete_device(struct dm_pool_metadata * pmd,dm_thin_id dev)1189 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1190 {
1191 int r;
1192 uint64_t key = dev;
1193 struct dm_thin_device *td;
1194
1195 /* TODO: failure should mark the transaction invalid */
1196 r = __open_device(pmd, dev, 0, &td);
1197 if (r)
1198 return r;
1199
1200 if (td->open_count > 1) {
1201 __close_device(td);
1202 return -EBUSY;
1203 }
1204
1205 list_del(&td->list);
1206 kfree(td);
1207 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1208 &key, &pmd->details_root);
1209 if (r)
1210 return r;
1211
1212 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1213 if (r)
1214 return r;
1215
1216 return 0;
1217 }
1218
dm_pool_delete_thin_device(struct dm_pool_metadata * pmd,dm_thin_id dev)1219 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1220 dm_thin_id dev)
1221 {
1222 int r = -EINVAL;
1223
1224 pmd_write_lock(pmd);
1225 if (!pmd->fail_io)
1226 r = __delete_device(pmd, dev);
1227 pmd_write_unlock(pmd);
1228
1229 return r;
1230 }
1231
dm_pool_set_metadata_transaction_id(struct dm_pool_metadata * pmd,uint64_t current_id,uint64_t new_id)1232 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1233 uint64_t current_id,
1234 uint64_t new_id)
1235 {
1236 int r = -EINVAL;
1237
1238 pmd_write_lock(pmd);
1239
1240 if (pmd->fail_io)
1241 goto out;
1242
1243 if (pmd->trans_id != current_id) {
1244 DMERR("mismatched transaction id");
1245 goto out;
1246 }
1247
1248 pmd->trans_id = new_id;
1249 r = 0;
1250
1251 out:
1252 pmd_write_unlock(pmd);
1253
1254 return r;
1255 }
1256
dm_pool_get_metadata_transaction_id(struct dm_pool_metadata * pmd,uint64_t * result)1257 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1258 uint64_t *result)
1259 {
1260 int r = -EINVAL;
1261
1262 down_read(&pmd->root_lock);
1263 if (!pmd->fail_io) {
1264 *result = pmd->trans_id;
1265 r = 0;
1266 }
1267 up_read(&pmd->root_lock);
1268
1269 return r;
1270 }
1271
__reserve_metadata_snap(struct dm_pool_metadata * pmd)1272 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1273 {
1274 int r, inc;
1275 struct thin_disk_superblock *disk_super;
1276 struct dm_block *copy, *sblock;
1277 dm_block_t held_root;
1278
1279 /*
1280 * We commit to ensure the btree roots which we increment in a
1281 * moment are up to date.
1282 */
1283 r = __commit_transaction(pmd);
1284 if (r < 0) {
1285 DMWARN("%s: __commit_transaction() failed, error = %d",
1286 __func__, r);
1287 return r;
1288 }
1289
1290 /*
1291 * Copy the superblock.
1292 */
1293 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1294 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1295 &sb_validator, ©, &inc);
1296 if (r)
1297 return r;
1298
1299 BUG_ON(!inc);
1300
1301 held_root = dm_block_location(copy);
1302 disk_super = dm_block_data(copy);
1303
1304 if (le64_to_cpu(disk_super->held_root)) {
1305 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1306
1307 dm_tm_dec(pmd->tm, held_root);
1308 dm_tm_unlock(pmd->tm, copy);
1309 return -EBUSY;
1310 }
1311
1312 /*
1313 * Wipe the spacemap since we're not publishing this.
1314 */
1315 memset(&disk_super->data_space_map_root, 0,
1316 sizeof(disk_super->data_space_map_root));
1317 memset(&disk_super->metadata_space_map_root, 0,
1318 sizeof(disk_super->metadata_space_map_root));
1319
1320 /*
1321 * Increment the data structures that need to be preserved.
1322 */
1323 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1324 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1325 dm_tm_unlock(pmd->tm, copy);
1326
1327 /*
1328 * Write the held root into the superblock.
1329 */
1330 r = superblock_lock(pmd, &sblock);
1331 if (r) {
1332 dm_tm_dec(pmd->tm, held_root);
1333 return r;
1334 }
1335
1336 disk_super = dm_block_data(sblock);
1337 disk_super->held_root = cpu_to_le64(held_root);
1338 dm_bm_unlock(sblock);
1339 return 0;
1340 }
1341
dm_pool_reserve_metadata_snap(struct dm_pool_metadata * pmd)1342 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1343 {
1344 int r = -EINVAL;
1345
1346 pmd_write_lock(pmd);
1347 if (!pmd->fail_io)
1348 r = __reserve_metadata_snap(pmd);
1349 pmd_write_unlock(pmd);
1350
1351 return r;
1352 }
1353
__release_metadata_snap(struct dm_pool_metadata * pmd)1354 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1355 {
1356 int r;
1357 struct thin_disk_superblock *disk_super;
1358 struct dm_block *sblock, *copy;
1359 dm_block_t held_root;
1360
1361 r = superblock_lock(pmd, &sblock);
1362 if (r)
1363 return r;
1364
1365 disk_super = dm_block_data(sblock);
1366 held_root = le64_to_cpu(disk_super->held_root);
1367 disk_super->held_root = cpu_to_le64(0);
1368
1369 dm_bm_unlock(sblock);
1370
1371 if (!held_root) {
1372 DMWARN("No pool metadata snapshot found: nothing to release.");
1373 return -EINVAL;
1374 }
1375
1376 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©);
1377 if (r)
1378 return r;
1379
1380 disk_super = dm_block_data(copy);
1381 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1382 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1383 dm_sm_dec_block(pmd->metadata_sm, held_root);
1384
1385 dm_tm_unlock(pmd->tm, copy);
1386
1387 return 0;
1388 }
1389
dm_pool_release_metadata_snap(struct dm_pool_metadata * pmd)1390 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1391 {
1392 int r = -EINVAL;
1393
1394 pmd_write_lock(pmd);
1395 if (!pmd->fail_io)
1396 r = __release_metadata_snap(pmd);
1397 pmd_write_unlock(pmd);
1398
1399 return r;
1400 }
1401
__get_metadata_snap(struct dm_pool_metadata * pmd,dm_block_t * result)1402 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1403 dm_block_t *result)
1404 {
1405 int r;
1406 struct thin_disk_superblock *disk_super;
1407 struct dm_block *sblock;
1408
1409 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1410 &sb_validator, &sblock);
1411 if (r)
1412 return r;
1413
1414 disk_super = dm_block_data(sblock);
1415 *result = le64_to_cpu(disk_super->held_root);
1416
1417 dm_bm_unlock(sblock);
1418
1419 return 0;
1420 }
1421
dm_pool_get_metadata_snap(struct dm_pool_metadata * pmd,dm_block_t * result)1422 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1423 dm_block_t *result)
1424 {
1425 int r = -EINVAL;
1426
1427 down_read(&pmd->root_lock);
1428 if (!pmd->fail_io)
1429 r = __get_metadata_snap(pmd, result);
1430 up_read(&pmd->root_lock);
1431
1432 return r;
1433 }
1434
dm_pool_open_thin_device(struct dm_pool_metadata * pmd,dm_thin_id dev,struct dm_thin_device ** td)1435 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1436 struct dm_thin_device **td)
1437 {
1438 int r = -EINVAL;
1439
1440 pmd_write_lock_in_core(pmd);
1441 if (!pmd->fail_io)
1442 r = __open_device(pmd, dev, 0, td);
1443 pmd_write_unlock(pmd);
1444
1445 return r;
1446 }
1447
dm_pool_close_thin_device(struct dm_thin_device * td)1448 int dm_pool_close_thin_device(struct dm_thin_device *td)
1449 {
1450 pmd_write_lock_in_core(td->pmd);
1451 __close_device(td);
1452 pmd_write_unlock(td->pmd);
1453
1454 return 0;
1455 }
1456
dm_thin_dev_id(struct dm_thin_device * td)1457 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1458 {
1459 return td->id;
1460 }
1461
1462 /*
1463 * Check whether @time (of block creation) is older than @td's last snapshot.
1464 * If so then the associated block is shared with the last snapshot device.
1465 * Any block on a device created *after* the device last got snapshotted is
1466 * necessarily not shared.
1467 */
__snapshotted_since(struct dm_thin_device * td,uint32_t time)1468 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1469 {
1470 return td->snapshotted_time > time;
1471 }
1472
unpack_lookup_result(struct dm_thin_device * td,__le64 value,struct dm_thin_lookup_result * result)1473 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1474 struct dm_thin_lookup_result *result)
1475 {
1476 uint64_t block_time = 0;
1477 dm_block_t exception_block;
1478 uint32_t exception_time;
1479
1480 block_time = le64_to_cpu(value);
1481 unpack_block_time(block_time, &exception_block, &exception_time);
1482 result->block = exception_block;
1483 result->shared = __snapshotted_since(td, exception_time);
1484 }
1485
__find_block(struct dm_thin_device * td,dm_block_t block,int can_issue_io,struct dm_thin_lookup_result * result)1486 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1487 int can_issue_io, struct dm_thin_lookup_result *result)
1488 {
1489 int r;
1490 __le64 value;
1491 struct dm_pool_metadata *pmd = td->pmd;
1492 dm_block_t keys[2] = { td->id, block };
1493 struct dm_btree_info *info;
1494
1495 if (can_issue_io) {
1496 info = &pmd->info;
1497 } else
1498 info = &pmd->nb_info;
1499
1500 r = dm_btree_lookup(info, pmd->root, keys, &value);
1501 if (!r)
1502 unpack_lookup_result(td, value, result);
1503
1504 return r;
1505 }
1506
dm_thin_find_block(struct dm_thin_device * td,dm_block_t block,int can_issue_io,struct dm_thin_lookup_result * result)1507 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1508 int can_issue_io, struct dm_thin_lookup_result *result)
1509 {
1510 int r;
1511 struct dm_pool_metadata *pmd = td->pmd;
1512
1513 down_read(&pmd->root_lock);
1514 if (pmd->fail_io) {
1515 up_read(&pmd->root_lock);
1516 return -EINVAL;
1517 }
1518
1519 r = __find_block(td, block, can_issue_io, result);
1520
1521 up_read(&pmd->root_lock);
1522 return r;
1523 }
1524
__find_next_mapped_block(struct dm_thin_device * td,dm_block_t block,dm_block_t * vblock,struct dm_thin_lookup_result * result)1525 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1526 dm_block_t *vblock,
1527 struct dm_thin_lookup_result *result)
1528 {
1529 int r;
1530 __le64 value;
1531 struct dm_pool_metadata *pmd = td->pmd;
1532 dm_block_t keys[2] = { td->id, block };
1533
1534 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1535 if (!r)
1536 unpack_lookup_result(td, value, result);
1537
1538 return r;
1539 }
1540
__find_mapped_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end,dm_block_t * thin_begin,dm_block_t * thin_end,dm_block_t * pool_begin,bool * maybe_shared)1541 static int __find_mapped_range(struct dm_thin_device *td,
1542 dm_block_t begin, dm_block_t end,
1543 dm_block_t *thin_begin, dm_block_t *thin_end,
1544 dm_block_t *pool_begin, bool *maybe_shared)
1545 {
1546 int r;
1547 dm_block_t pool_end;
1548 struct dm_thin_lookup_result lookup;
1549
1550 if (end < begin)
1551 return -ENODATA;
1552
1553 r = __find_next_mapped_block(td, begin, &begin, &lookup);
1554 if (r)
1555 return r;
1556
1557 if (begin >= end)
1558 return -ENODATA;
1559
1560 *thin_begin = begin;
1561 *pool_begin = lookup.block;
1562 *maybe_shared = lookup.shared;
1563
1564 begin++;
1565 pool_end = *pool_begin + 1;
1566 while (begin != end) {
1567 r = __find_block(td, begin, true, &lookup);
1568 if (r) {
1569 if (r == -ENODATA)
1570 break;
1571 else
1572 return r;
1573 }
1574
1575 if ((lookup.block != pool_end) ||
1576 (lookup.shared != *maybe_shared))
1577 break;
1578
1579 pool_end++;
1580 begin++;
1581 }
1582
1583 *thin_end = begin;
1584 return 0;
1585 }
1586
dm_thin_find_mapped_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end,dm_block_t * thin_begin,dm_block_t * thin_end,dm_block_t * pool_begin,bool * maybe_shared)1587 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1588 dm_block_t begin, dm_block_t end,
1589 dm_block_t *thin_begin, dm_block_t *thin_end,
1590 dm_block_t *pool_begin, bool *maybe_shared)
1591 {
1592 int r = -EINVAL;
1593 struct dm_pool_metadata *pmd = td->pmd;
1594
1595 down_read(&pmd->root_lock);
1596 if (!pmd->fail_io) {
1597 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1598 pool_begin, maybe_shared);
1599 }
1600 up_read(&pmd->root_lock);
1601
1602 return r;
1603 }
1604
__insert(struct dm_thin_device * td,dm_block_t block,dm_block_t data_block)1605 static int __insert(struct dm_thin_device *td, dm_block_t block,
1606 dm_block_t data_block)
1607 {
1608 int r, inserted;
1609 __le64 value;
1610 struct dm_pool_metadata *pmd = td->pmd;
1611 dm_block_t keys[2] = { td->id, block };
1612
1613 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1614 __dm_bless_for_disk(&value);
1615
1616 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1617 &pmd->root, &inserted);
1618 if (r)
1619 return r;
1620
1621 td->changed = 1;
1622 if (inserted)
1623 td->mapped_blocks++;
1624
1625 return 0;
1626 }
1627
dm_thin_insert_block(struct dm_thin_device * td,dm_block_t block,dm_block_t data_block)1628 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1629 dm_block_t data_block)
1630 {
1631 int r = -EINVAL;
1632
1633 pmd_write_lock(td->pmd);
1634 if (!td->pmd->fail_io)
1635 r = __insert(td, block, data_block);
1636 pmd_write_unlock(td->pmd);
1637
1638 return r;
1639 }
1640
__remove(struct dm_thin_device * td,dm_block_t block)1641 static int __remove(struct dm_thin_device *td, dm_block_t block)
1642 {
1643 int r;
1644 struct dm_pool_metadata *pmd = td->pmd;
1645 dm_block_t keys[2] = { td->id, block };
1646
1647 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1648 if (r)
1649 return r;
1650
1651 td->mapped_blocks--;
1652 td->changed = 1;
1653
1654 return 0;
1655 }
1656
__remove_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end)1657 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1658 {
1659 int r;
1660 unsigned count, total_count = 0;
1661 struct dm_pool_metadata *pmd = td->pmd;
1662 dm_block_t keys[1] = { td->id };
1663 __le64 value;
1664 dm_block_t mapping_root;
1665
1666 /*
1667 * Find the mapping tree
1668 */
1669 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1670 if (r)
1671 return r;
1672
1673 /*
1674 * Remove from the mapping tree, taking care to inc the
1675 * ref count so it doesn't get deleted.
1676 */
1677 mapping_root = le64_to_cpu(value);
1678 dm_tm_inc(pmd->tm, mapping_root);
1679 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1680 if (r)
1681 return r;
1682
1683 /*
1684 * Remove leaves stops at the first unmapped entry, so we have to
1685 * loop round finding mapped ranges.
1686 */
1687 while (begin < end) {
1688 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1689 if (r == -ENODATA)
1690 break;
1691
1692 if (r)
1693 return r;
1694
1695 if (begin >= end)
1696 break;
1697
1698 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1699 if (r)
1700 return r;
1701
1702 total_count += count;
1703 }
1704
1705 td->mapped_blocks -= total_count;
1706 td->changed = 1;
1707
1708 /*
1709 * Reinsert the mapping tree.
1710 */
1711 value = cpu_to_le64(mapping_root);
1712 __dm_bless_for_disk(&value);
1713 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1714 }
1715
dm_thin_remove_block(struct dm_thin_device * td,dm_block_t block)1716 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1717 {
1718 int r = -EINVAL;
1719
1720 pmd_write_lock(td->pmd);
1721 if (!td->pmd->fail_io)
1722 r = __remove(td, block);
1723 pmd_write_unlock(td->pmd);
1724
1725 return r;
1726 }
1727
dm_thin_remove_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end)1728 int dm_thin_remove_range(struct dm_thin_device *td,
1729 dm_block_t begin, dm_block_t end)
1730 {
1731 int r = -EINVAL;
1732
1733 pmd_write_lock(td->pmd);
1734 if (!td->pmd->fail_io)
1735 r = __remove_range(td, begin, end);
1736 pmd_write_unlock(td->pmd);
1737
1738 return r;
1739 }
1740
dm_pool_block_is_shared(struct dm_pool_metadata * pmd,dm_block_t b,bool * result)1741 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1742 {
1743 int r;
1744 uint32_t ref_count;
1745
1746 down_read(&pmd->root_lock);
1747 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1748 if (!r)
1749 *result = (ref_count > 1);
1750 up_read(&pmd->root_lock);
1751
1752 return r;
1753 }
1754
dm_pool_inc_data_range(struct dm_pool_metadata * pmd,dm_block_t b,dm_block_t e)1755 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1756 {
1757 int r = 0;
1758
1759 pmd_write_lock(pmd);
1760 for (; b != e; b++) {
1761 r = dm_sm_inc_block(pmd->data_sm, b);
1762 if (r)
1763 break;
1764 }
1765 pmd_write_unlock(pmd);
1766
1767 return r;
1768 }
1769
dm_pool_dec_data_range(struct dm_pool_metadata * pmd,dm_block_t b,dm_block_t e)1770 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1771 {
1772 int r = 0;
1773
1774 pmd_write_lock(pmd);
1775 for (; b != e; b++) {
1776 r = dm_sm_dec_block(pmd->data_sm, b);
1777 if (r)
1778 break;
1779 }
1780 pmd_write_unlock(pmd);
1781
1782 return r;
1783 }
1784
dm_thin_changed_this_transaction(struct dm_thin_device * td)1785 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1786 {
1787 int r;
1788
1789 down_read(&td->pmd->root_lock);
1790 r = td->changed;
1791 up_read(&td->pmd->root_lock);
1792
1793 return r;
1794 }
1795
dm_pool_changed_this_transaction(struct dm_pool_metadata * pmd)1796 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1797 {
1798 bool r = false;
1799 struct dm_thin_device *td, *tmp;
1800
1801 down_read(&pmd->root_lock);
1802 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1803 if (td->changed) {
1804 r = td->changed;
1805 break;
1806 }
1807 }
1808 up_read(&pmd->root_lock);
1809
1810 return r;
1811 }
1812
dm_thin_aborted_changes(struct dm_thin_device * td)1813 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1814 {
1815 bool r;
1816
1817 down_read(&td->pmd->root_lock);
1818 r = td->aborted_with_changes;
1819 up_read(&td->pmd->root_lock);
1820
1821 return r;
1822 }
1823
dm_pool_alloc_data_block(struct dm_pool_metadata * pmd,dm_block_t * result)1824 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1825 {
1826 int r = -EINVAL;
1827
1828 pmd_write_lock(pmd);
1829 if (!pmd->fail_io)
1830 r = dm_sm_new_block(pmd->data_sm, result);
1831 pmd_write_unlock(pmd);
1832
1833 return r;
1834 }
1835
dm_pool_commit_metadata(struct dm_pool_metadata * pmd)1836 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1837 {
1838 int r = -EINVAL;
1839
1840 /*
1841 * Care is taken to not have commit be what
1842 * triggers putting the thin-pool in-service.
1843 */
1844 __pmd_write_lock(pmd);
1845 if (pmd->fail_io)
1846 goto out;
1847
1848 r = __commit_transaction(pmd);
1849 if (r < 0)
1850 goto out;
1851
1852 /*
1853 * Open the next transaction.
1854 */
1855 r = __begin_transaction(pmd);
1856 out:
1857 pmd_write_unlock(pmd);
1858 return r;
1859 }
1860
__set_abort_with_changes_flags(struct dm_pool_metadata * pmd)1861 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1862 {
1863 struct dm_thin_device *td;
1864
1865 list_for_each_entry(td, &pmd->thin_devices, list)
1866 td->aborted_with_changes = td->changed;
1867 }
1868
dm_pool_abort_metadata(struct dm_pool_metadata * pmd)1869 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1870 {
1871 int r = -EINVAL;
1872
1873 pmd_write_lock(pmd);
1874 if (pmd->fail_io)
1875 goto out;
1876
1877 __set_abort_with_changes_flags(pmd);
1878 __destroy_persistent_data_objects(pmd);
1879 r = __create_persistent_data_objects(pmd, false);
1880 if (r)
1881 pmd->fail_io = true;
1882
1883 out:
1884 pmd_write_unlock(pmd);
1885
1886 return r;
1887 }
1888
dm_pool_get_free_block_count(struct dm_pool_metadata * pmd,dm_block_t * result)1889 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1890 {
1891 int r = -EINVAL;
1892
1893 down_read(&pmd->root_lock);
1894 if (!pmd->fail_io)
1895 r = dm_sm_get_nr_free(pmd->data_sm, result);
1896 up_read(&pmd->root_lock);
1897
1898 return r;
1899 }
1900
dm_pool_get_free_metadata_block_count(struct dm_pool_metadata * pmd,dm_block_t * result)1901 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1902 dm_block_t *result)
1903 {
1904 int r = -EINVAL;
1905
1906 down_read(&pmd->root_lock);
1907 if (!pmd->fail_io)
1908 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1909
1910 if (!r) {
1911 if (*result < pmd->metadata_reserve)
1912 *result = 0;
1913 else
1914 *result -= pmd->metadata_reserve;
1915 }
1916 up_read(&pmd->root_lock);
1917
1918 return r;
1919 }
1920
dm_pool_get_metadata_dev_size(struct dm_pool_metadata * pmd,dm_block_t * result)1921 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1922 dm_block_t *result)
1923 {
1924 int r = -EINVAL;
1925
1926 down_read(&pmd->root_lock);
1927 if (!pmd->fail_io)
1928 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1929 up_read(&pmd->root_lock);
1930
1931 return r;
1932 }
1933
dm_pool_get_data_dev_size(struct dm_pool_metadata * pmd,dm_block_t * result)1934 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1935 {
1936 int r = -EINVAL;
1937
1938 down_read(&pmd->root_lock);
1939 if (!pmd->fail_io)
1940 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1941 up_read(&pmd->root_lock);
1942
1943 return r;
1944 }
1945
dm_thin_get_mapped_count(struct dm_thin_device * td,dm_block_t * result)1946 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1947 {
1948 int r = -EINVAL;
1949 struct dm_pool_metadata *pmd = td->pmd;
1950
1951 down_read(&pmd->root_lock);
1952 if (!pmd->fail_io) {
1953 *result = td->mapped_blocks;
1954 r = 0;
1955 }
1956 up_read(&pmd->root_lock);
1957
1958 return r;
1959 }
1960
__highest_block(struct dm_thin_device * td,dm_block_t * result)1961 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1962 {
1963 int r;
1964 __le64 value_le;
1965 dm_block_t thin_root;
1966 struct dm_pool_metadata *pmd = td->pmd;
1967
1968 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1969 if (r)
1970 return r;
1971
1972 thin_root = le64_to_cpu(value_le);
1973
1974 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1975 }
1976
dm_thin_get_highest_mapped_block(struct dm_thin_device * td,dm_block_t * result)1977 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1978 dm_block_t *result)
1979 {
1980 int r = -EINVAL;
1981 struct dm_pool_metadata *pmd = td->pmd;
1982
1983 down_read(&pmd->root_lock);
1984 if (!pmd->fail_io)
1985 r = __highest_block(td, result);
1986 up_read(&pmd->root_lock);
1987
1988 return r;
1989 }
1990
__resize_space_map(struct dm_space_map * sm,dm_block_t new_count)1991 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1992 {
1993 int r;
1994 dm_block_t old_count;
1995
1996 r = dm_sm_get_nr_blocks(sm, &old_count);
1997 if (r)
1998 return r;
1999
2000 if (new_count == old_count)
2001 return 0;
2002
2003 if (new_count < old_count) {
2004 DMERR("cannot reduce size of space map");
2005 return -EINVAL;
2006 }
2007
2008 return dm_sm_extend(sm, new_count - old_count);
2009 }
2010
dm_pool_resize_data_dev(struct dm_pool_metadata * pmd,dm_block_t new_count)2011 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2012 {
2013 int r = -EINVAL;
2014
2015 pmd_write_lock(pmd);
2016 if (!pmd->fail_io)
2017 r = __resize_space_map(pmd->data_sm, new_count);
2018 pmd_write_unlock(pmd);
2019
2020 return r;
2021 }
2022
dm_pool_resize_metadata_dev(struct dm_pool_metadata * pmd,dm_block_t new_count)2023 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2024 {
2025 int r = -EINVAL;
2026
2027 pmd_write_lock(pmd);
2028 if (!pmd->fail_io) {
2029 r = __resize_space_map(pmd->metadata_sm, new_count);
2030 if (!r)
2031 __set_metadata_reserve(pmd);
2032 }
2033 pmd_write_unlock(pmd);
2034
2035 return r;
2036 }
2037
dm_pool_metadata_read_only(struct dm_pool_metadata * pmd)2038 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2039 {
2040 pmd_write_lock_in_core(pmd);
2041 dm_bm_set_read_only(pmd->bm);
2042 pmd_write_unlock(pmd);
2043 }
2044
dm_pool_metadata_read_write(struct dm_pool_metadata * pmd)2045 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2046 {
2047 pmd_write_lock_in_core(pmd);
2048 dm_bm_set_read_write(pmd->bm);
2049 pmd_write_unlock(pmd);
2050 }
2051
dm_pool_register_metadata_threshold(struct dm_pool_metadata * pmd,dm_block_t threshold,dm_sm_threshold_fn fn,void * context)2052 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2053 dm_block_t threshold,
2054 dm_sm_threshold_fn fn,
2055 void *context)
2056 {
2057 int r;
2058
2059 pmd_write_lock_in_core(pmd);
2060 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2061 pmd_write_unlock(pmd);
2062
2063 return r;
2064 }
2065
dm_pool_register_pre_commit_callback(struct dm_pool_metadata * pmd,dm_pool_pre_commit_fn fn,void * context)2066 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2067 dm_pool_pre_commit_fn fn,
2068 void *context)
2069 {
2070 pmd_write_lock_in_core(pmd);
2071 pmd->pre_commit_fn = fn;
2072 pmd->pre_commit_context = context;
2073 pmd_write_unlock(pmd);
2074 }
2075
dm_pool_metadata_set_needs_check(struct dm_pool_metadata * pmd)2076 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2077 {
2078 int r = -EINVAL;
2079 struct dm_block *sblock;
2080 struct thin_disk_superblock *disk_super;
2081
2082 pmd_write_lock(pmd);
2083 if (pmd->fail_io)
2084 goto out;
2085
2086 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2087
2088 r = superblock_lock(pmd, &sblock);
2089 if (r) {
2090 DMERR("couldn't lock superblock");
2091 goto out;
2092 }
2093
2094 disk_super = dm_block_data(sblock);
2095 disk_super->flags = cpu_to_le32(pmd->flags);
2096
2097 dm_bm_unlock(sblock);
2098 out:
2099 pmd_write_unlock(pmd);
2100 return r;
2101 }
2102
dm_pool_metadata_needs_check(struct dm_pool_metadata * pmd)2103 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2104 {
2105 bool needs_check;
2106
2107 down_read(&pmd->root_lock);
2108 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2109 up_read(&pmd->root_lock);
2110
2111 return needs_check;
2112 }
2113
dm_pool_issue_prefetches(struct dm_pool_metadata * pmd)2114 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2115 {
2116 down_read(&pmd->root_lock);
2117 if (!pmd->fail_io)
2118 dm_tm_issue_prefetches(pmd->tm);
2119 up_read(&pmd->root_lock);
2120 }
2121