1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 #include <linux/bio.h>
25 #include <linux/keyslot-manager.h>
26
27 #define DM_MSG_PREFIX "table"
28
29 #define MAX_DEPTH 16
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 struct dm_table {
35 struct mapped_device *md;
36 enum dm_queue_mode type;
37
38 /* btree table */
39 unsigned int depth;
40 unsigned int counts[MAX_DEPTH]; /* in nodes */
41 sector_t *index[MAX_DEPTH];
42
43 unsigned int num_targets;
44 unsigned int num_allocated;
45 sector_t *highs;
46 struct dm_target *targets;
47
48 struct target_type *immutable_target_type;
49
50 bool integrity_supported:1;
51 bool singleton:1;
52 unsigned integrity_added:1;
53
54 /*
55 * Indicates the rw permissions for the new logical
56 * device. This should be a combination of FMODE_READ
57 * and FMODE_WRITE.
58 */
59 fmode_t mode;
60
61 /* a list of devices used by this table */
62 struct list_head devices;
63
64 /* events get handed up using this callback */
65 void (*event_fn)(void *);
66 void *event_context;
67
68 struct dm_md_mempools *mempools;
69
70 struct list_head target_callbacks;
71 };
72
73 /*
74 * Similar to ceiling(log_size(n))
75 */
int_log(unsigned int n,unsigned int base)76 static unsigned int int_log(unsigned int n, unsigned int base)
77 {
78 int result = 0;
79
80 while (n > 1) {
81 n = dm_div_up(n, base);
82 result++;
83 }
84
85 return result;
86 }
87
88 /*
89 * Calculate the index of the child node of the n'th node k'th key.
90 */
get_child(unsigned int n,unsigned int k)91 static inline unsigned int get_child(unsigned int n, unsigned int k)
92 {
93 return (n * CHILDREN_PER_NODE) + k;
94 }
95
96 /*
97 * Return the n'th node of level l from table t.
98 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)99 static inline sector_t *get_node(struct dm_table *t,
100 unsigned int l, unsigned int n)
101 {
102 return t->index[l] + (n * KEYS_PER_NODE);
103 }
104
105 /*
106 * Return the highest key that you could lookup from the n'th
107 * node on level l of the btree.
108 */
high(struct dm_table * t,unsigned int l,unsigned int n)109 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
110 {
111 for (; l < t->depth - 1; l++)
112 n = get_child(n, CHILDREN_PER_NODE - 1);
113
114 if (n >= t->counts[l])
115 return (sector_t) - 1;
116
117 return get_node(t, l, n)[KEYS_PER_NODE - 1];
118 }
119
120 /*
121 * Fills in a level of the btree based on the highs of the level
122 * below it.
123 */
setup_btree_index(unsigned int l,struct dm_table * t)124 static int setup_btree_index(unsigned int l, struct dm_table *t)
125 {
126 unsigned int n, k;
127 sector_t *node;
128
129 for (n = 0U; n < t->counts[l]; n++) {
130 node = get_node(t, l, n);
131
132 for (k = 0U; k < KEYS_PER_NODE; k++)
133 node[k] = high(t, l + 1, get_child(n, k));
134 }
135
136 return 0;
137 }
138
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)139 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
140 {
141 unsigned long size;
142 void *addr;
143
144 /*
145 * Check that we're not going to overflow.
146 */
147 if (nmemb > (ULONG_MAX / elem_size))
148 return NULL;
149
150 size = nmemb * elem_size;
151 addr = vzalloc(size);
152
153 return addr;
154 }
155 EXPORT_SYMBOL(dm_vcalloc);
156
157 /*
158 * highs, and targets are managed as dynamic arrays during a
159 * table load.
160 */
alloc_targets(struct dm_table * t,unsigned int num)161 static int alloc_targets(struct dm_table *t, unsigned int num)
162 {
163 sector_t *n_highs;
164 struct dm_target *n_targets;
165
166 /*
167 * Allocate both the target array and offset array at once.
168 */
169 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
170 sizeof(sector_t));
171 if (!n_highs)
172 return -ENOMEM;
173
174 n_targets = (struct dm_target *) (n_highs + num);
175
176 memset(n_highs, -1, sizeof(*n_highs) * num);
177 vfree(t->highs);
178
179 t->num_allocated = num;
180 t->highs = n_highs;
181 t->targets = n_targets;
182
183 return 0;
184 }
185
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)186 int dm_table_create(struct dm_table **result, fmode_t mode,
187 unsigned num_targets, struct mapped_device *md)
188 {
189 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
190
191 if (!t)
192 return -ENOMEM;
193
194 INIT_LIST_HEAD(&t->devices);
195 INIT_LIST_HEAD(&t->target_callbacks);
196
197 if (!num_targets)
198 num_targets = KEYS_PER_NODE;
199
200 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
201
202 if (!num_targets) {
203 kfree(t);
204 return -ENOMEM;
205 }
206
207 if (alloc_targets(t, num_targets)) {
208 kfree(t);
209 return -ENOMEM;
210 }
211
212 t->type = DM_TYPE_NONE;
213 t->mode = mode;
214 t->md = md;
215 *result = t;
216 return 0;
217 }
218
free_devices(struct list_head * devices,struct mapped_device * md)219 static void free_devices(struct list_head *devices, struct mapped_device *md)
220 {
221 struct list_head *tmp, *next;
222
223 list_for_each_safe(tmp, next, devices) {
224 struct dm_dev_internal *dd =
225 list_entry(tmp, struct dm_dev_internal, list);
226 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
227 dm_device_name(md), dd->dm_dev->name);
228 dm_put_table_device(md, dd->dm_dev);
229 kfree(dd);
230 }
231 }
232
dm_table_destroy(struct dm_table * t)233 void dm_table_destroy(struct dm_table *t)
234 {
235 unsigned int i;
236
237 if (!t)
238 return;
239
240 /* free the indexes */
241 if (t->depth >= 2)
242 vfree(t->index[t->depth - 2]);
243
244 /* free the targets */
245 for (i = 0; i < t->num_targets; i++) {
246 struct dm_target *tgt = t->targets + i;
247
248 if (tgt->type->dtr)
249 tgt->type->dtr(tgt);
250
251 dm_put_target_type(tgt->type);
252 }
253
254 vfree(t->highs);
255
256 /* free the device list */
257 free_devices(&t->devices, t->md);
258
259 dm_free_md_mempools(t->mempools);
260
261 kfree(t);
262 }
263
264 /*
265 * See if we've already got a device in the list.
266 */
find_device(struct list_head * l,dev_t dev)267 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
268 {
269 struct dm_dev_internal *dd;
270
271 list_for_each_entry (dd, l, list)
272 if (dd->dm_dev->bdev->bd_dev == dev)
273 return dd;
274
275 return NULL;
276 }
277
278 /*
279 * If possible, this checks an area of a destination device is invalid.
280 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)281 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
282 sector_t start, sector_t len, void *data)
283 {
284 struct request_queue *q;
285 struct queue_limits *limits = data;
286 struct block_device *bdev = dev->bdev;
287 sector_t dev_size =
288 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
289 unsigned short logical_block_size_sectors =
290 limits->logical_block_size >> SECTOR_SHIFT;
291 char b[BDEVNAME_SIZE];
292
293 /*
294 * Some devices exist without request functions,
295 * such as loop devices not yet bound to backing files.
296 * Forbid the use of such devices.
297 */
298 q = bdev_get_queue(bdev);
299 if (!q || !q->make_request_fn) {
300 DMWARN("%s: %s is not yet initialised: "
301 "start=%llu, len=%llu, dev_size=%llu",
302 dm_device_name(ti->table->md), bdevname(bdev, b),
303 (unsigned long long)start,
304 (unsigned long long)len,
305 (unsigned long long)dev_size);
306 return 1;
307 }
308
309 if (!dev_size)
310 return 0;
311
312 if ((start >= dev_size) || (start + len > dev_size)) {
313 DMWARN("%s: %s too small for target: "
314 "start=%llu, len=%llu, dev_size=%llu",
315 dm_device_name(ti->table->md), bdevname(bdev, b),
316 (unsigned long long)start,
317 (unsigned long long)len,
318 (unsigned long long)dev_size);
319 return 1;
320 }
321
322 /*
323 * If the target is mapped to zoned block device(s), check
324 * that the zones are not partially mapped.
325 */
326 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
327 unsigned int zone_sectors = bdev_zone_sectors(bdev);
328
329 if (start & (zone_sectors - 1)) {
330 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
331 dm_device_name(ti->table->md),
332 (unsigned long long)start,
333 zone_sectors, bdevname(bdev, b));
334 return 1;
335 }
336
337 /*
338 * Note: The last zone of a zoned block device may be smaller
339 * than other zones. So for a target mapping the end of a
340 * zoned block device with such a zone, len would not be zone
341 * aligned. We do not allow such last smaller zone to be part
342 * of the mapping here to ensure that mappings with multiple
343 * devices do not end up with a smaller zone in the middle of
344 * the sector range.
345 */
346 if (len & (zone_sectors - 1)) {
347 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
348 dm_device_name(ti->table->md),
349 (unsigned long long)len,
350 zone_sectors, bdevname(bdev, b));
351 return 1;
352 }
353 }
354
355 if (logical_block_size_sectors <= 1)
356 return 0;
357
358 if (start & (logical_block_size_sectors - 1)) {
359 DMWARN("%s: start=%llu not aligned to h/w "
360 "logical block size %u of %s",
361 dm_device_name(ti->table->md),
362 (unsigned long long)start,
363 limits->logical_block_size, bdevname(bdev, b));
364 return 1;
365 }
366
367 if (len & (logical_block_size_sectors - 1)) {
368 DMWARN("%s: len=%llu not aligned to h/w "
369 "logical block size %u of %s",
370 dm_device_name(ti->table->md),
371 (unsigned long long)len,
372 limits->logical_block_size, bdevname(bdev, b));
373 return 1;
374 }
375
376 return 0;
377 }
378
379 /*
380 * This upgrades the mode on an already open dm_dev, being
381 * careful to leave things as they were if we fail to reopen the
382 * device and not to touch the existing bdev field in case
383 * it is accessed concurrently inside dm_table_any_congested().
384 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)385 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
386 struct mapped_device *md)
387 {
388 int r;
389 struct dm_dev *old_dev, *new_dev;
390
391 old_dev = dd->dm_dev;
392
393 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
394 dd->dm_dev->mode | new_mode, &new_dev);
395 if (r)
396 return r;
397
398 dd->dm_dev = new_dev;
399 dm_put_table_device(md, old_dev);
400
401 return 0;
402 }
403
404 /*
405 * Convert the path to a device
406 */
dm_get_dev_t(const char * path)407 dev_t dm_get_dev_t(const char *path)
408 {
409 dev_t dev;
410 struct block_device *bdev;
411
412 bdev = lookup_bdev(path);
413 if (IS_ERR(bdev))
414 dev = name_to_dev_t(path);
415 else {
416 dev = bdev->bd_dev;
417 bdput(bdev);
418 }
419
420 return dev;
421 }
422 EXPORT_SYMBOL_GPL(dm_get_dev_t);
423
424 /*
425 * Add a device to the list, or just increment the usage count if
426 * it's already present.
427 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)428 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
429 struct dm_dev **result)
430 {
431 int r;
432 dev_t dev;
433 struct dm_dev_internal *dd;
434 struct dm_table *t = ti->table;
435
436 BUG_ON(!t);
437
438 dev = dm_get_dev_t(path);
439 if (!dev)
440 return -ENODEV;
441
442 dd = find_device(&t->devices, dev);
443 if (!dd) {
444 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
445 if (!dd)
446 return -ENOMEM;
447
448 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
449 kfree(dd);
450 return r;
451 }
452
453 refcount_set(&dd->count, 1);
454 list_add(&dd->list, &t->devices);
455 goto out;
456
457 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
458 r = upgrade_mode(dd, mode, t->md);
459 if (r)
460 return r;
461 }
462 refcount_inc(&dd->count);
463 out:
464 *result = dd->dm_dev;
465 return 0;
466 }
467 EXPORT_SYMBOL(dm_get_device);
468
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)469 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
470 sector_t start, sector_t len, void *data)
471 {
472 struct queue_limits *limits = data;
473 struct block_device *bdev = dev->bdev;
474 struct request_queue *q = bdev_get_queue(bdev);
475 char b[BDEVNAME_SIZE];
476
477 if (unlikely(!q)) {
478 DMWARN("%s: Cannot set limits for nonexistent device %s",
479 dm_device_name(ti->table->md), bdevname(bdev, b));
480 return 0;
481 }
482
483 if (bdev_stack_limits(limits, bdev, start) < 0)
484 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
485 "physical_block_size=%u, logical_block_size=%u, "
486 "alignment_offset=%u, start=%llu",
487 dm_device_name(ti->table->md), bdevname(bdev, b),
488 q->limits.physical_block_size,
489 q->limits.logical_block_size,
490 q->limits.alignment_offset,
491 (unsigned long long) start << SECTOR_SHIFT);
492
493 limits->zoned = blk_queue_zoned_model(q);
494
495 return 0;
496 }
497
498 /*
499 * Decrement a device's use count and remove it if necessary.
500 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)501 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
502 {
503 int found = 0;
504 struct list_head *devices = &ti->table->devices;
505 struct dm_dev_internal *dd;
506
507 list_for_each_entry(dd, devices, list) {
508 if (dd->dm_dev == d) {
509 found = 1;
510 break;
511 }
512 }
513 if (!found) {
514 DMWARN("%s: device %s not in table devices list",
515 dm_device_name(ti->table->md), d->name);
516 return;
517 }
518 if (refcount_dec_and_test(&dd->count)) {
519 dm_put_table_device(ti->table->md, d);
520 list_del(&dd->list);
521 kfree(dd);
522 }
523 }
524 EXPORT_SYMBOL(dm_put_device);
525
526 /*
527 * Checks to see if the target joins onto the end of the table.
528 */
adjoin(struct dm_table * table,struct dm_target * ti)529 static int adjoin(struct dm_table *table, struct dm_target *ti)
530 {
531 struct dm_target *prev;
532
533 if (!table->num_targets)
534 return !ti->begin;
535
536 prev = &table->targets[table->num_targets - 1];
537 return (ti->begin == (prev->begin + prev->len));
538 }
539
540 /*
541 * Used to dynamically allocate the arg array.
542 *
543 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
544 * process messages even if some device is suspended. These messages have a
545 * small fixed number of arguments.
546 *
547 * On the other hand, dm-switch needs to process bulk data using messages and
548 * excessive use of GFP_NOIO could cause trouble.
549 */
realloc_argv(unsigned * size,char ** old_argv)550 static char **realloc_argv(unsigned *size, char **old_argv)
551 {
552 char **argv;
553 unsigned new_size;
554 gfp_t gfp;
555
556 if (*size) {
557 new_size = *size * 2;
558 gfp = GFP_KERNEL;
559 } else {
560 new_size = 8;
561 gfp = GFP_NOIO;
562 }
563 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
564 if (argv && old_argv) {
565 memcpy(argv, old_argv, *size * sizeof(*argv));
566 *size = new_size;
567 }
568
569 kfree(old_argv);
570 return argv;
571 }
572
573 /*
574 * Destructively splits up the argument list to pass to ctr.
575 */
dm_split_args(int * argc,char *** argvp,char * input)576 int dm_split_args(int *argc, char ***argvp, char *input)
577 {
578 char *start, *end = input, *out, **argv = NULL;
579 unsigned array_size = 0;
580
581 *argc = 0;
582
583 if (!input) {
584 *argvp = NULL;
585 return 0;
586 }
587
588 argv = realloc_argv(&array_size, argv);
589 if (!argv)
590 return -ENOMEM;
591
592 while (1) {
593 /* Skip whitespace */
594 start = skip_spaces(end);
595
596 if (!*start)
597 break; /* success, we hit the end */
598
599 /* 'out' is used to remove any back-quotes */
600 end = out = start;
601 while (*end) {
602 /* Everything apart from '\0' can be quoted */
603 if (*end == '\\' && *(end + 1)) {
604 *out++ = *(end + 1);
605 end += 2;
606 continue;
607 }
608
609 if (isspace(*end))
610 break; /* end of token */
611
612 *out++ = *end++;
613 }
614
615 /* have we already filled the array ? */
616 if ((*argc + 1) > array_size) {
617 argv = realloc_argv(&array_size, argv);
618 if (!argv)
619 return -ENOMEM;
620 }
621
622 /* we know this is whitespace */
623 if (*end)
624 end++;
625
626 /* terminate the string and put it in the array */
627 *out = '\0';
628 argv[*argc] = start;
629 (*argc)++;
630 }
631
632 *argvp = argv;
633 return 0;
634 }
635
636 /*
637 * Impose necessary and sufficient conditions on a devices's table such
638 * that any incoming bio which respects its logical_block_size can be
639 * processed successfully. If it falls across the boundary between
640 * two or more targets, the size of each piece it gets split into must
641 * be compatible with the logical_block_size of the target processing it.
642 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)643 static int validate_hardware_logical_block_alignment(struct dm_table *table,
644 struct queue_limits *limits)
645 {
646 /*
647 * This function uses arithmetic modulo the logical_block_size
648 * (in units of 512-byte sectors).
649 */
650 unsigned short device_logical_block_size_sects =
651 limits->logical_block_size >> SECTOR_SHIFT;
652
653 /*
654 * Offset of the start of the next table entry, mod logical_block_size.
655 */
656 unsigned short next_target_start = 0;
657
658 /*
659 * Given an aligned bio that extends beyond the end of a
660 * target, how many sectors must the next target handle?
661 */
662 unsigned short remaining = 0;
663
664 struct dm_target *uninitialized_var(ti);
665 struct queue_limits ti_limits;
666 unsigned i;
667
668 /*
669 * Check each entry in the table in turn.
670 */
671 for (i = 0; i < dm_table_get_num_targets(table); i++) {
672 ti = dm_table_get_target(table, i);
673
674 blk_set_stacking_limits(&ti_limits);
675
676 /* combine all target devices' limits */
677 if (ti->type->iterate_devices)
678 ti->type->iterate_devices(ti, dm_set_device_limits,
679 &ti_limits);
680
681 /*
682 * If the remaining sectors fall entirely within this
683 * table entry are they compatible with its logical_block_size?
684 */
685 if (remaining < ti->len &&
686 remaining & ((ti_limits.logical_block_size >>
687 SECTOR_SHIFT) - 1))
688 break; /* Error */
689
690 next_target_start =
691 (unsigned short) ((next_target_start + ti->len) &
692 (device_logical_block_size_sects - 1));
693 remaining = next_target_start ?
694 device_logical_block_size_sects - next_target_start : 0;
695 }
696
697 if (remaining) {
698 DMWARN("%s: table line %u (start sect %llu len %llu) "
699 "not aligned to h/w logical block size %u",
700 dm_device_name(table->md), i,
701 (unsigned long long) ti->begin,
702 (unsigned long long) ti->len,
703 limits->logical_block_size);
704 return -EINVAL;
705 }
706
707 return 0;
708 }
709
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)710 int dm_table_add_target(struct dm_table *t, const char *type,
711 sector_t start, sector_t len, char *params)
712 {
713 int r = -EINVAL, argc;
714 char **argv;
715 struct dm_target *tgt;
716
717 if (t->singleton) {
718 DMERR("%s: target type %s must appear alone in table",
719 dm_device_name(t->md), t->targets->type->name);
720 return -EINVAL;
721 }
722
723 BUG_ON(t->num_targets >= t->num_allocated);
724
725 tgt = t->targets + t->num_targets;
726 memset(tgt, 0, sizeof(*tgt));
727
728 if (!len) {
729 DMERR("%s: zero-length target", dm_device_name(t->md));
730 return -EINVAL;
731 }
732
733 tgt->type = dm_get_target_type(type);
734 if (!tgt->type) {
735 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
736 return -EINVAL;
737 }
738
739 if (dm_target_needs_singleton(tgt->type)) {
740 if (t->num_targets) {
741 tgt->error = "singleton target type must appear alone in table";
742 goto bad;
743 }
744 t->singleton = true;
745 }
746
747 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
748 tgt->error = "target type may not be included in a read-only table";
749 goto bad;
750 }
751
752 if (t->immutable_target_type) {
753 if (t->immutable_target_type != tgt->type) {
754 tgt->error = "immutable target type cannot be mixed with other target types";
755 goto bad;
756 }
757 } else if (dm_target_is_immutable(tgt->type)) {
758 if (t->num_targets) {
759 tgt->error = "immutable target type cannot be mixed with other target types";
760 goto bad;
761 }
762 t->immutable_target_type = tgt->type;
763 }
764
765 if (dm_target_has_integrity(tgt->type))
766 t->integrity_added = 1;
767
768 tgt->table = t;
769 tgt->begin = start;
770 tgt->len = len;
771 tgt->error = "Unknown error";
772
773 /*
774 * Does this target adjoin the previous one ?
775 */
776 if (!adjoin(t, tgt)) {
777 tgt->error = "Gap in table";
778 goto bad;
779 }
780
781 r = dm_split_args(&argc, &argv, params);
782 if (r) {
783 tgt->error = "couldn't split parameters (insufficient memory)";
784 goto bad;
785 }
786
787 r = tgt->type->ctr(tgt, argc, argv);
788 kfree(argv);
789 if (r)
790 goto bad;
791
792 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
793
794 if (!tgt->num_discard_bios && tgt->discards_supported)
795 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
796 dm_device_name(t->md), type);
797
798 return 0;
799
800 bad:
801 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
802 dm_put_target_type(tgt->type);
803 return r;
804 }
805
806 /*
807 * Target argument parsing helpers.
808 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)809 static int validate_next_arg(const struct dm_arg *arg,
810 struct dm_arg_set *arg_set,
811 unsigned *value, char **error, unsigned grouped)
812 {
813 const char *arg_str = dm_shift_arg(arg_set);
814 char dummy;
815
816 if (!arg_str ||
817 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
818 (*value < arg->min) ||
819 (*value > arg->max) ||
820 (grouped && arg_set->argc < *value)) {
821 *error = arg->error;
822 return -EINVAL;
823 }
824
825 return 0;
826 }
827
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)828 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
829 unsigned *value, char **error)
830 {
831 return validate_next_arg(arg, arg_set, value, error, 0);
832 }
833 EXPORT_SYMBOL(dm_read_arg);
834
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)835 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
836 unsigned *value, char **error)
837 {
838 return validate_next_arg(arg, arg_set, value, error, 1);
839 }
840 EXPORT_SYMBOL(dm_read_arg_group);
841
dm_shift_arg(struct dm_arg_set * as)842 const char *dm_shift_arg(struct dm_arg_set *as)
843 {
844 char *r;
845
846 if (as->argc) {
847 as->argc--;
848 r = *as->argv;
849 as->argv++;
850 return r;
851 }
852
853 return NULL;
854 }
855 EXPORT_SYMBOL(dm_shift_arg);
856
dm_consume_args(struct dm_arg_set * as,unsigned num_args)857 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
858 {
859 BUG_ON(as->argc < num_args);
860 as->argc -= num_args;
861 as->argv += num_args;
862 }
863 EXPORT_SYMBOL(dm_consume_args);
864
__table_type_bio_based(enum dm_queue_mode table_type)865 static bool __table_type_bio_based(enum dm_queue_mode table_type)
866 {
867 return (table_type == DM_TYPE_BIO_BASED ||
868 table_type == DM_TYPE_DAX_BIO_BASED ||
869 table_type == DM_TYPE_NVME_BIO_BASED);
870 }
871
__table_type_request_based(enum dm_queue_mode table_type)872 static bool __table_type_request_based(enum dm_queue_mode table_type)
873 {
874 return table_type == DM_TYPE_REQUEST_BASED;
875 }
876
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)877 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
878 {
879 t->type = type;
880 }
881 EXPORT_SYMBOL_GPL(dm_table_set_type);
882
883 /* validate the dax capability of the target device span */
device_supports_dax(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)884 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
885 sector_t start, sector_t len, void *data)
886 {
887 int blocksize = *(int *) data;
888
889 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
890 start, len);
891 }
892
893 /* Check devices support synchronous DAX */
device_dax_synchronous(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)894 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
895 sector_t start, sector_t len, void *data)
896 {
897 return dev->dax_dev && dax_synchronous(dev->dax_dev);
898 }
899
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)900 bool dm_table_supports_dax(struct dm_table *t,
901 iterate_devices_callout_fn iterate_fn, int *blocksize)
902 {
903 struct dm_target *ti;
904 unsigned i;
905
906 /* Ensure that all targets support DAX. */
907 for (i = 0; i < dm_table_get_num_targets(t); i++) {
908 ti = dm_table_get_target(t, i);
909
910 if (!ti->type->direct_access)
911 return false;
912
913 if (!ti->type->iterate_devices ||
914 !ti->type->iterate_devices(ti, iterate_fn, blocksize))
915 return false;
916 }
917
918 return true;
919 }
920
921 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
922
923 struct verify_rq_based_data {
924 unsigned sq_count;
925 unsigned mq_count;
926 };
927
device_is_rq_based(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)928 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
929 sector_t start, sector_t len, void *data)
930 {
931 struct request_queue *q = bdev_get_queue(dev->bdev);
932 struct verify_rq_based_data *v = data;
933
934 if (queue_is_mq(q))
935 v->mq_count++;
936 else
937 v->sq_count++;
938
939 return queue_is_mq(q);
940 }
941
dm_table_determine_type(struct dm_table * t)942 static int dm_table_determine_type(struct dm_table *t)
943 {
944 unsigned i;
945 unsigned bio_based = 0, request_based = 0, hybrid = 0;
946 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
947 struct dm_target *tgt;
948 struct list_head *devices = dm_table_get_devices(t);
949 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
950 int page_size = PAGE_SIZE;
951
952 if (t->type != DM_TYPE_NONE) {
953 /* target already set the table's type */
954 if (t->type == DM_TYPE_BIO_BASED) {
955 /* possibly upgrade to a variant of bio-based */
956 goto verify_bio_based;
957 }
958 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
959 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
960 goto verify_rq_based;
961 }
962
963 for (i = 0; i < t->num_targets; i++) {
964 tgt = t->targets + i;
965 if (dm_target_hybrid(tgt))
966 hybrid = 1;
967 else if (dm_target_request_based(tgt))
968 request_based = 1;
969 else
970 bio_based = 1;
971
972 if (bio_based && request_based) {
973 DMERR("Inconsistent table: different target types"
974 " can't be mixed up");
975 return -EINVAL;
976 }
977 }
978
979 if (hybrid && !bio_based && !request_based) {
980 /*
981 * The targets can work either way.
982 * Determine the type from the live device.
983 * Default to bio-based if device is new.
984 */
985 if (__table_type_request_based(live_md_type))
986 request_based = 1;
987 else
988 bio_based = 1;
989 }
990
991 if (bio_based) {
992 verify_bio_based:
993 /* We must use this table as bio-based */
994 t->type = DM_TYPE_BIO_BASED;
995 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
996 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
997 t->type = DM_TYPE_DAX_BIO_BASED;
998 } else {
999 /* Check if upgrading to NVMe bio-based is valid or required */
1000 tgt = dm_table_get_immutable_target(t);
1001 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
1002 t->type = DM_TYPE_NVME_BIO_BASED;
1003 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
1004 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
1005 t->type = DM_TYPE_NVME_BIO_BASED;
1006 }
1007 }
1008 return 0;
1009 }
1010
1011 BUG_ON(!request_based); /* No targets in this table */
1012
1013 t->type = DM_TYPE_REQUEST_BASED;
1014
1015 verify_rq_based:
1016 /*
1017 * Request-based dm supports only tables that have a single target now.
1018 * To support multiple targets, request splitting support is needed,
1019 * and that needs lots of changes in the block-layer.
1020 * (e.g. request completion process for partial completion.)
1021 */
1022 if (t->num_targets > 1) {
1023 DMERR("%s DM doesn't support multiple targets",
1024 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1025 return -EINVAL;
1026 }
1027
1028 if (list_empty(devices)) {
1029 int srcu_idx;
1030 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1031
1032 /* inherit live table's type */
1033 if (live_table)
1034 t->type = live_table->type;
1035 dm_put_live_table(t->md, srcu_idx);
1036 return 0;
1037 }
1038
1039 tgt = dm_table_get_immutable_target(t);
1040 if (!tgt) {
1041 DMERR("table load rejected: immutable target is required");
1042 return -EINVAL;
1043 } else if (tgt->max_io_len) {
1044 DMERR("table load rejected: immutable target that splits IO is not supported");
1045 return -EINVAL;
1046 }
1047
1048 /* Non-request-stackable devices can't be used for request-based dm */
1049 if (!tgt->type->iterate_devices ||
1050 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1051 DMERR("table load rejected: including non-request-stackable devices");
1052 return -EINVAL;
1053 }
1054 if (v.sq_count > 0) {
1055 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1056 return -EINVAL;
1057 }
1058
1059 return 0;
1060 }
1061
dm_table_get_type(struct dm_table * t)1062 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1063 {
1064 return t->type;
1065 }
1066
dm_table_get_immutable_target_type(struct dm_table * t)1067 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1068 {
1069 return t->immutable_target_type;
1070 }
1071
dm_table_get_immutable_target(struct dm_table * t)1072 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1073 {
1074 /* Immutable target is implicitly a singleton */
1075 if (t->num_targets > 1 ||
1076 !dm_target_is_immutable(t->targets[0].type))
1077 return NULL;
1078
1079 return t->targets;
1080 }
1081
dm_table_get_wildcard_target(struct dm_table * t)1082 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1083 {
1084 struct dm_target *ti;
1085 unsigned i;
1086
1087 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1088 ti = dm_table_get_target(t, i);
1089 if (dm_target_is_wildcard(ti->type))
1090 return ti;
1091 }
1092
1093 return NULL;
1094 }
1095
dm_table_bio_based(struct dm_table * t)1096 bool dm_table_bio_based(struct dm_table *t)
1097 {
1098 return __table_type_bio_based(dm_table_get_type(t));
1099 }
1100
dm_table_request_based(struct dm_table * t)1101 bool dm_table_request_based(struct dm_table *t)
1102 {
1103 return __table_type_request_based(dm_table_get_type(t));
1104 }
1105
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1106 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1107 {
1108 enum dm_queue_mode type = dm_table_get_type(t);
1109 unsigned per_io_data_size = 0;
1110 unsigned min_pool_size = 0;
1111 struct dm_target *ti;
1112 unsigned i;
1113
1114 if (unlikely(type == DM_TYPE_NONE)) {
1115 DMWARN("no table type is set, can't allocate mempools");
1116 return -EINVAL;
1117 }
1118
1119 if (__table_type_bio_based(type))
1120 for (i = 0; i < t->num_targets; i++) {
1121 ti = t->targets + i;
1122 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1123 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1124 }
1125
1126 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1127 per_io_data_size, min_pool_size);
1128 if (!t->mempools)
1129 return -ENOMEM;
1130
1131 return 0;
1132 }
1133
dm_table_free_md_mempools(struct dm_table * t)1134 void dm_table_free_md_mempools(struct dm_table *t)
1135 {
1136 dm_free_md_mempools(t->mempools);
1137 t->mempools = NULL;
1138 }
1139
dm_table_get_md_mempools(struct dm_table * t)1140 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1141 {
1142 return t->mempools;
1143 }
1144
setup_indexes(struct dm_table * t)1145 static int setup_indexes(struct dm_table *t)
1146 {
1147 int i;
1148 unsigned int total = 0;
1149 sector_t *indexes;
1150
1151 /* allocate the space for *all* the indexes */
1152 for (i = t->depth - 2; i >= 0; i--) {
1153 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1154 total += t->counts[i];
1155 }
1156
1157 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1158 if (!indexes)
1159 return -ENOMEM;
1160
1161 /* set up internal nodes, bottom-up */
1162 for (i = t->depth - 2; i >= 0; i--) {
1163 t->index[i] = indexes;
1164 indexes += (KEYS_PER_NODE * t->counts[i]);
1165 setup_btree_index(i, t);
1166 }
1167
1168 return 0;
1169 }
1170
1171 /*
1172 * Builds the btree to index the map.
1173 */
dm_table_build_index(struct dm_table * t)1174 static int dm_table_build_index(struct dm_table *t)
1175 {
1176 int r = 0;
1177 unsigned int leaf_nodes;
1178
1179 /* how many indexes will the btree have ? */
1180 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1181 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1182
1183 /* leaf layer has already been set up */
1184 t->counts[t->depth - 1] = leaf_nodes;
1185 t->index[t->depth - 1] = t->highs;
1186
1187 if (t->depth >= 2)
1188 r = setup_indexes(t);
1189
1190 return r;
1191 }
1192
integrity_profile_exists(struct gendisk * disk)1193 static bool integrity_profile_exists(struct gendisk *disk)
1194 {
1195 return !!blk_get_integrity(disk);
1196 }
1197
1198 /*
1199 * Get a disk whose integrity profile reflects the table's profile.
1200 * Returns NULL if integrity support was inconsistent or unavailable.
1201 */
dm_table_get_integrity_disk(struct dm_table * t)1202 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1203 {
1204 struct list_head *devices = dm_table_get_devices(t);
1205 struct dm_dev_internal *dd = NULL;
1206 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1207 unsigned i;
1208
1209 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1210 struct dm_target *ti = dm_table_get_target(t, i);
1211 if (!dm_target_passes_integrity(ti->type))
1212 goto no_integrity;
1213 }
1214
1215 list_for_each_entry(dd, devices, list) {
1216 template_disk = dd->dm_dev->bdev->bd_disk;
1217 if (!integrity_profile_exists(template_disk))
1218 goto no_integrity;
1219 else if (prev_disk &&
1220 blk_integrity_compare(prev_disk, template_disk) < 0)
1221 goto no_integrity;
1222 prev_disk = template_disk;
1223 }
1224
1225 return template_disk;
1226
1227 no_integrity:
1228 if (prev_disk)
1229 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1230 dm_device_name(t->md),
1231 prev_disk->disk_name,
1232 template_disk->disk_name);
1233 return NULL;
1234 }
1235
1236 /*
1237 * Register the mapped device for blk_integrity support if the
1238 * underlying devices have an integrity profile. But all devices may
1239 * not have matching profiles (checking all devices isn't reliable
1240 * during table load because this table may use other DM device(s) which
1241 * must be resumed before they will have an initialized integity
1242 * profile). Consequently, stacked DM devices force a 2 stage integrity
1243 * profile validation: First pass during table load, final pass during
1244 * resume.
1245 */
dm_table_register_integrity(struct dm_table * t)1246 static int dm_table_register_integrity(struct dm_table *t)
1247 {
1248 struct mapped_device *md = t->md;
1249 struct gendisk *template_disk = NULL;
1250
1251 /* If target handles integrity itself do not register it here. */
1252 if (t->integrity_added)
1253 return 0;
1254
1255 template_disk = dm_table_get_integrity_disk(t);
1256 if (!template_disk)
1257 return 0;
1258
1259 if (!integrity_profile_exists(dm_disk(md))) {
1260 t->integrity_supported = true;
1261 /*
1262 * Register integrity profile during table load; we can do
1263 * this because the final profile must match during resume.
1264 */
1265 blk_integrity_register(dm_disk(md),
1266 blk_get_integrity(template_disk));
1267 return 0;
1268 }
1269
1270 /*
1271 * If DM device already has an initialized integrity
1272 * profile the new profile should not conflict.
1273 */
1274 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1275 DMWARN("%s: conflict with existing integrity profile: "
1276 "%s profile mismatch",
1277 dm_device_name(t->md),
1278 template_disk->disk_name);
1279 return 1;
1280 }
1281
1282 /* Preserve existing integrity profile */
1283 t->integrity_supported = true;
1284 return 0;
1285 }
1286
1287 /*
1288 * Prepares the table for use by building the indices,
1289 * setting the type, and allocating mempools.
1290 */
dm_table_complete(struct dm_table * t)1291 int dm_table_complete(struct dm_table *t)
1292 {
1293 int r;
1294
1295 r = dm_table_determine_type(t);
1296 if (r) {
1297 DMERR("unable to determine table type");
1298 return r;
1299 }
1300
1301 r = dm_table_build_index(t);
1302 if (r) {
1303 DMERR("unable to build btrees");
1304 return r;
1305 }
1306
1307 r = dm_table_register_integrity(t);
1308 if (r) {
1309 DMERR("could not register integrity profile.");
1310 return r;
1311 }
1312
1313 r = dm_table_alloc_md_mempools(t, t->md);
1314 if (r)
1315 DMERR("unable to allocate mempools");
1316
1317 return r;
1318 }
1319
1320 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1321 void dm_table_event_callback(struct dm_table *t,
1322 void (*fn)(void *), void *context)
1323 {
1324 mutex_lock(&_event_lock);
1325 t->event_fn = fn;
1326 t->event_context = context;
1327 mutex_unlock(&_event_lock);
1328 }
1329
dm_table_event(struct dm_table * t)1330 void dm_table_event(struct dm_table *t)
1331 {
1332 /*
1333 * You can no longer call dm_table_event() from interrupt
1334 * context, use a bottom half instead.
1335 */
1336 BUG_ON(in_interrupt());
1337
1338 mutex_lock(&_event_lock);
1339 if (t->event_fn)
1340 t->event_fn(t->event_context);
1341 mutex_unlock(&_event_lock);
1342 }
1343 EXPORT_SYMBOL(dm_table_event);
1344
dm_table_get_size(struct dm_table * t)1345 inline sector_t dm_table_get_size(struct dm_table *t)
1346 {
1347 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1348 }
1349 EXPORT_SYMBOL(dm_table_get_size);
1350
dm_table_get_target(struct dm_table * t,unsigned int index)1351 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1352 {
1353 if (index >= t->num_targets)
1354 return NULL;
1355
1356 return t->targets + index;
1357 }
1358
1359 /*
1360 * Search the btree for the correct target.
1361 *
1362 * Caller should check returned pointer for NULL
1363 * to trap I/O beyond end of device.
1364 */
dm_table_find_target(struct dm_table * t,sector_t sector)1365 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1366 {
1367 unsigned int l, n = 0, k = 0;
1368 sector_t *node;
1369
1370 if (unlikely(sector >= dm_table_get_size(t)))
1371 return NULL;
1372
1373 for (l = 0; l < t->depth; l++) {
1374 n = get_child(n, k);
1375 node = get_node(t, l, n);
1376
1377 for (k = 0; k < KEYS_PER_NODE; k++)
1378 if (node[k] >= sector)
1379 break;
1380 }
1381
1382 return &t->targets[(KEYS_PER_NODE * n) + k];
1383 }
1384
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1385 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1386 sector_t start, sector_t len, void *data)
1387 {
1388 unsigned *num_devices = data;
1389
1390 (*num_devices)++;
1391
1392 return 0;
1393 }
1394
1395 /*
1396 * Check whether a table has no data devices attached using each
1397 * target's iterate_devices method.
1398 * Returns false if the result is unknown because a target doesn't
1399 * support iterate_devices.
1400 */
dm_table_has_no_data_devices(struct dm_table * table)1401 bool dm_table_has_no_data_devices(struct dm_table *table)
1402 {
1403 struct dm_target *ti;
1404 unsigned i, num_devices;
1405
1406 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1407 ti = dm_table_get_target(table, i);
1408
1409 if (!ti->type->iterate_devices)
1410 return false;
1411
1412 num_devices = 0;
1413 ti->type->iterate_devices(ti, count_device, &num_devices);
1414 if (num_devices)
1415 return false;
1416 }
1417
1418 return true;
1419 }
1420
device_is_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1421 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1422 sector_t start, sector_t len, void *data)
1423 {
1424 struct request_queue *q = bdev_get_queue(dev->bdev);
1425 enum blk_zoned_model *zoned_model = data;
1426
1427 return q && blk_queue_zoned_model(q) == *zoned_model;
1428 }
1429
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1430 static bool dm_table_supports_zoned_model(struct dm_table *t,
1431 enum blk_zoned_model zoned_model)
1432 {
1433 struct dm_target *ti;
1434 unsigned i;
1435
1436 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1437 ti = dm_table_get_target(t, i);
1438
1439 if (zoned_model == BLK_ZONED_HM &&
1440 !dm_target_supports_zoned_hm(ti->type))
1441 return false;
1442
1443 if (!ti->type->iterate_devices ||
1444 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1445 return false;
1446 }
1447
1448 return true;
1449 }
1450
device_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1451 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1452 sector_t start, sector_t len, void *data)
1453 {
1454 struct request_queue *q = bdev_get_queue(dev->bdev);
1455 unsigned int *zone_sectors = data;
1456
1457 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1458 }
1459
dm_table_matches_zone_sectors(struct dm_table * t,unsigned int zone_sectors)1460 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1461 unsigned int zone_sectors)
1462 {
1463 struct dm_target *ti;
1464 unsigned i;
1465
1466 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1467 ti = dm_table_get_target(t, i);
1468
1469 if (!ti->type->iterate_devices ||
1470 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1471 return false;
1472 }
1473
1474 return true;
1475 }
1476
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1477 static int validate_hardware_zoned_model(struct dm_table *table,
1478 enum blk_zoned_model zoned_model,
1479 unsigned int zone_sectors)
1480 {
1481 if (zoned_model == BLK_ZONED_NONE)
1482 return 0;
1483
1484 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1485 DMERR("%s: zoned model is not consistent across all devices",
1486 dm_device_name(table->md));
1487 return -EINVAL;
1488 }
1489
1490 /* Check zone size validity and compatibility */
1491 if (!zone_sectors || !is_power_of_2(zone_sectors))
1492 return -EINVAL;
1493
1494 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1495 DMERR("%s: zone sectors is not consistent across all devices",
1496 dm_device_name(table->md));
1497 return -EINVAL;
1498 }
1499
1500 return 0;
1501 }
1502
1503 /*
1504 * Establish the new table's queue_limits and validate them.
1505 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1506 int dm_calculate_queue_limits(struct dm_table *table,
1507 struct queue_limits *limits)
1508 {
1509 struct dm_target *ti;
1510 struct queue_limits ti_limits;
1511 unsigned i;
1512 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1513 unsigned int zone_sectors = 0;
1514
1515 blk_set_stacking_limits(limits);
1516
1517 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1518 blk_set_stacking_limits(&ti_limits);
1519
1520 ti = dm_table_get_target(table, i);
1521
1522 if (!ti->type->iterate_devices)
1523 goto combine_limits;
1524
1525 /*
1526 * Combine queue limits of all the devices this target uses.
1527 */
1528 ti->type->iterate_devices(ti, dm_set_device_limits,
1529 &ti_limits);
1530
1531 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1532 /*
1533 * After stacking all limits, validate all devices
1534 * in table support this zoned model and zone sectors.
1535 */
1536 zoned_model = ti_limits.zoned;
1537 zone_sectors = ti_limits.chunk_sectors;
1538 }
1539
1540 /* Set I/O hints portion of queue limits */
1541 if (ti->type->io_hints)
1542 ti->type->io_hints(ti, &ti_limits);
1543
1544 /*
1545 * Check each device area is consistent with the target's
1546 * overall queue limits.
1547 */
1548 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1549 &ti_limits))
1550 return -EINVAL;
1551
1552 combine_limits:
1553 /*
1554 * Merge this target's queue limits into the overall limits
1555 * for the table.
1556 */
1557 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1558 DMWARN("%s: adding target device "
1559 "(start sect %llu len %llu) "
1560 "caused an alignment inconsistency",
1561 dm_device_name(table->md),
1562 (unsigned long long) ti->begin,
1563 (unsigned long long) ti->len);
1564
1565 /*
1566 * FIXME: this should likely be moved to blk_stack_limits(), would
1567 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1568 */
1569 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1570 /*
1571 * By default, the stacked limits zoned model is set to
1572 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1573 * this model using the first target model reported
1574 * that is not BLK_ZONED_NONE. This will be either the
1575 * first target device zoned model or the model reported
1576 * by the target .io_hints.
1577 */
1578 limits->zoned = ti_limits.zoned;
1579 }
1580 }
1581
1582 /*
1583 * Verify that the zoned model and zone sectors, as determined before
1584 * any .io_hints override, are the same across all devices in the table.
1585 * - this is especially relevant if .io_hints is emulating a disk-managed
1586 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1587 * BUT...
1588 */
1589 if (limits->zoned != BLK_ZONED_NONE) {
1590 /*
1591 * ...IF the above limits stacking determined a zoned model
1592 * validate that all of the table's devices conform to it.
1593 */
1594 zoned_model = limits->zoned;
1595 zone_sectors = limits->chunk_sectors;
1596 }
1597 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1598 return -EINVAL;
1599
1600 return validate_hardware_logical_block_alignment(table, limits);
1601 }
1602
1603 /*
1604 * Verify that all devices have an integrity profile that matches the
1605 * DM device's registered integrity profile. If the profiles don't
1606 * match then unregister the DM device's integrity profile.
1607 */
dm_table_verify_integrity(struct dm_table * t)1608 static void dm_table_verify_integrity(struct dm_table *t)
1609 {
1610 struct gendisk *template_disk = NULL;
1611
1612 if (t->integrity_added)
1613 return;
1614
1615 if (t->integrity_supported) {
1616 /*
1617 * Verify that the original integrity profile
1618 * matches all the devices in this table.
1619 */
1620 template_disk = dm_table_get_integrity_disk(t);
1621 if (template_disk &&
1622 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1623 return;
1624 }
1625
1626 if (integrity_profile_exists(dm_disk(t->md))) {
1627 DMWARN("%s: unable to establish an integrity profile",
1628 dm_device_name(t->md));
1629 blk_integrity_unregister(dm_disk(t->md));
1630 }
1631 }
1632
1633 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
device_intersect_crypto_modes(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1634 static int device_intersect_crypto_modes(struct dm_target *ti,
1635 struct dm_dev *dev, sector_t start,
1636 sector_t len, void *data)
1637 {
1638 struct keyslot_manager *parent = data;
1639 struct keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1640
1641 keyslot_manager_intersect_modes(parent, child);
1642 return 0;
1643 }
1644
1645 /*
1646 * Update the inline crypto modes supported by 'q->ksm' to be the intersection
1647 * of the modes supported by all targets in the table.
1648 *
1649 * For any mode to be supported at all, all targets must have explicitly
1650 * declared that they can pass through inline crypto support. For a particular
1651 * mode to be supported, all underlying devices must also support it.
1652 *
1653 * Assume that 'q->ksm' initially declares all modes to be supported.
1654 */
dm_calculate_supported_crypto_modes(struct dm_table * t,struct request_queue * q)1655 static void dm_calculate_supported_crypto_modes(struct dm_table *t,
1656 struct request_queue *q)
1657 {
1658 struct dm_target *ti;
1659 unsigned int i;
1660
1661 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1662 ti = dm_table_get_target(t, i);
1663
1664 if (!ti->may_passthrough_inline_crypto) {
1665 keyslot_manager_intersect_modes(q->ksm, NULL);
1666 return;
1667 }
1668 if (!ti->type->iterate_devices)
1669 continue;
1670 ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1671 q->ksm);
1672 }
1673 }
1674 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
dm_calculate_supported_crypto_modes(struct dm_table * t,struct request_queue * q)1675 static inline void dm_calculate_supported_crypto_modes(struct dm_table *t,
1676 struct request_queue *q)
1677 {
1678 }
1679 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1680
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1681 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1682 sector_t start, sector_t len, void *data)
1683 {
1684 unsigned long flush = (unsigned long) data;
1685 struct request_queue *q = bdev_get_queue(dev->bdev);
1686
1687 return q && (q->queue_flags & flush);
1688 }
1689
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1690 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1691 {
1692 struct dm_target *ti;
1693 unsigned i;
1694
1695 /*
1696 * Require at least one underlying device to support flushes.
1697 * t->devices includes internal dm devices such as mirror logs
1698 * so we need to use iterate_devices here, which targets
1699 * supporting flushes must provide.
1700 */
1701 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1702 ti = dm_table_get_target(t, i);
1703
1704 if (!ti->num_flush_bios)
1705 continue;
1706
1707 if (ti->flush_supported)
1708 return true;
1709
1710 if (ti->type->iterate_devices &&
1711 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1712 return true;
1713 }
1714
1715 return false;
1716 }
1717
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1718 static int device_dax_write_cache_enabled(struct dm_target *ti,
1719 struct dm_dev *dev, sector_t start,
1720 sector_t len, void *data)
1721 {
1722 struct dax_device *dax_dev = dev->dax_dev;
1723
1724 if (!dax_dev)
1725 return false;
1726
1727 if (dax_write_cache_enabled(dax_dev))
1728 return true;
1729 return false;
1730 }
1731
dm_table_supports_dax_write_cache(struct dm_table * t)1732 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1733 {
1734 struct dm_target *ti;
1735 unsigned i;
1736
1737 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1738 ti = dm_table_get_target(t, i);
1739
1740 if (ti->type->iterate_devices &&
1741 ti->type->iterate_devices(ti,
1742 device_dax_write_cache_enabled, NULL))
1743 return true;
1744 }
1745
1746 return false;
1747 }
1748
device_is_nonrot(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1749 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1750 sector_t start, sector_t len, void *data)
1751 {
1752 struct request_queue *q = bdev_get_queue(dev->bdev);
1753
1754 return q && blk_queue_nonrot(q);
1755 }
1756
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1757 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1758 sector_t start, sector_t len, void *data)
1759 {
1760 struct request_queue *q = bdev_get_queue(dev->bdev);
1761
1762 return q && !blk_queue_add_random(q);
1763 }
1764
dm_table_all_devices_attribute(struct dm_table * t,iterate_devices_callout_fn func)1765 static bool dm_table_all_devices_attribute(struct dm_table *t,
1766 iterate_devices_callout_fn func)
1767 {
1768 struct dm_target *ti;
1769 unsigned i;
1770
1771 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1772 ti = dm_table_get_target(t, i);
1773
1774 if (!ti->type->iterate_devices ||
1775 !ti->type->iterate_devices(ti, func, NULL))
1776 return false;
1777 }
1778
1779 return true;
1780 }
1781
device_no_partial_completion(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1782 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1783 sector_t start, sector_t len, void *data)
1784 {
1785 char b[BDEVNAME_SIZE];
1786
1787 /* For now, NVMe devices are the only devices of this class */
1788 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1789 }
1790
dm_table_does_not_support_partial_completion(struct dm_table * t)1791 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1792 {
1793 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1794 }
1795
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1796 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1797 sector_t start, sector_t len, void *data)
1798 {
1799 struct request_queue *q = bdev_get_queue(dev->bdev);
1800
1801 return q && !q->limits.max_write_same_sectors;
1802 }
1803
dm_table_supports_write_same(struct dm_table * t)1804 static bool dm_table_supports_write_same(struct dm_table *t)
1805 {
1806 struct dm_target *ti;
1807 unsigned i;
1808
1809 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1810 ti = dm_table_get_target(t, i);
1811
1812 if (!ti->num_write_same_bios)
1813 return false;
1814
1815 if (!ti->type->iterate_devices ||
1816 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1817 return false;
1818 }
1819
1820 return true;
1821 }
1822
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1823 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1824 sector_t start, sector_t len, void *data)
1825 {
1826 struct request_queue *q = bdev_get_queue(dev->bdev);
1827
1828 return q && !q->limits.max_write_zeroes_sectors;
1829 }
1830
dm_table_supports_write_zeroes(struct dm_table * t)1831 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1832 {
1833 struct dm_target *ti;
1834 unsigned i = 0;
1835
1836 while (i < dm_table_get_num_targets(t)) {
1837 ti = dm_table_get_target(t, i++);
1838
1839 if (!ti->num_write_zeroes_bios)
1840 return false;
1841
1842 if (!ti->type->iterate_devices ||
1843 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1844 return false;
1845 }
1846
1847 return true;
1848 }
1849
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1850 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1851 sector_t start, sector_t len, void *data)
1852 {
1853 struct request_queue *q = bdev_get_queue(dev->bdev);
1854
1855 return q && !blk_queue_discard(q);
1856 }
1857
dm_table_supports_discards(struct dm_table * t)1858 static bool dm_table_supports_discards(struct dm_table *t)
1859 {
1860 struct dm_target *ti;
1861 unsigned i;
1862
1863 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1864 ti = dm_table_get_target(t, i);
1865
1866 if (!ti->num_discard_bios)
1867 return false;
1868
1869 /*
1870 * Either the target provides discard support (as implied by setting
1871 * 'discards_supported') or it relies on _all_ data devices having
1872 * discard support.
1873 */
1874 if (!ti->discards_supported &&
1875 (!ti->type->iterate_devices ||
1876 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1877 return false;
1878 }
1879
1880 return true;
1881 }
1882
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1883 static int device_not_secure_erase_capable(struct dm_target *ti,
1884 struct dm_dev *dev, sector_t start,
1885 sector_t len, void *data)
1886 {
1887 struct request_queue *q = bdev_get_queue(dev->bdev);
1888
1889 return q && !blk_queue_secure_erase(q);
1890 }
1891
dm_table_supports_secure_erase(struct dm_table * t)1892 static bool dm_table_supports_secure_erase(struct dm_table *t)
1893 {
1894 struct dm_target *ti;
1895 unsigned int i;
1896
1897 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1898 ti = dm_table_get_target(t, i);
1899
1900 if (!ti->num_secure_erase_bios)
1901 return false;
1902
1903 if (!ti->type->iterate_devices ||
1904 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1905 return false;
1906 }
1907
1908 return true;
1909 }
1910
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1911 static int device_requires_stable_pages(struct dm_target *ti,
1912 struct dm_dev *dev, sector_t start,
1913 sector_t len, void *data)
1914 {
1915 struct request_queue *q = bdev_get_queue(dev->bdev);
1916
1917 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1918 }
1919
1920 /*
1921 * If any underlying device requires stable pages, a table must require
1922 * them as well. Only targets that support iterate_devices are considered:
1923 * don't want error, zero, etc to require stable pages.
1924 */
dm_table_requires_stable_pages(struct dm_table * t)1925 static bool dm_table_requires_stable_pages(struct dm_table *t)
1926 {
1927 struct dm_target *ti;
1928 unsigned i;
1929
1930 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1931 ti = dm_table_get_target(t, i);
1932
1933 if (ti->type->iterate_devices &&
1934 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1935 return true;
1936 }
1937
1938 return false;
1939 }
1940
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1941 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1942 struct queue_limits *limits)
1943 {
1944 bool wc = false, fua = false;
1945 int page_size = PAGE_SIZE;
1946
1947 /*
1948 * Copy table's limits to the DM device's request_queue
1949 */
1950 q->limits = *limits;
1951
1952 if (!dm_table_supports_discards(t)) {
1953 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1954 /* Must also clear discard limits... */
1955 q->limits.max_discard_sectors = 0;
1956 q->limits.max_hw_discard_sectors = 0;
1957 q->limits.discard_granularity = 0;
1958 q->limits.discard_alignment = 0;
1959 q->limits.discard_misaligned = 0;
1960 } else
1961 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1962
1963 if (dm_table_supports_secure_erase(t))
1964 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1965
1966 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1967 wc = true;
1968 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1969 fua = true;
1970 }
1971 blk_queue_write_cache(q, wc, fua);
1972
1973 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1974 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1975 if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1976 set_dax_synchronous(t->md->dax_dev);
1977 }
1978 else
1979 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1980
1981 if (dm_table_supports_dax_write_cache(t))
1982 dax_write_cache(t->md->dax_dev, true);
1983
1984 /* Ensure that all underlying devices are non-rotational. */
1985 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1986 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1987 else
1988 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1989
1990 if (!dm_table_supports_write_same(t))
1991 q->limits.max_write_same_sectors = 0;
1992 if (!dm_table_supports_write_zeroes(t))
1993 q->limits.max_write_zeroes_sectors = 0;
1994
1995 dm_table_verify_integrity(t);
1996
1997 dm_calculate_supported_crypto_modes(t, q);
1998
1999 /*
2000 * Some devices don't use blk_integrity but still want stable pages
2001 * because they do their own checksumming.
2002 */
2003 if (dm_table_requires_stable_pages(t))
2004 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
2005 else
2006 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
2007
2008 /*
2009 * Determine whether or not this queue's I/O timings contribute
2010 * to the entropy pool, Only request-based targets use this.
2011 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2012 * have it set.
2013 */
2014 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
2015 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2016
2017 /*
2018 * For a zoned target, the number of zones should be updated for the
2019 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
2020 * target, this is all that is needed.
2021 */
2022 #ifdef CONFIG_BLK_DEV_ZONED
2023 if (blk_queue_is_zoned(q)) {
2024 WARN_ON_ONCE(queue_is_mq(q));
2025 q->nr_zones = blkdev_nr_zones(t->md->disk);
2026 }
2027 #endif
2028
2029 /* Allow reads to exceed readahead limits */
2030 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
2031 }
2032
dm_table_get_num_targets(struct dm_table * t)2033 unsigned int dm_table_get_num_targets(struct dm_table *t)
2034 {
2035 return t->num_targets;
2036 }
2037
dm_table_get_devices(struct dm_table * t)2038 struct list_head *dm_table_get_devices(struct dm_table *t)
2039 {
2040 return &t->devices;
2041 }
2042
dm_table_get_mode(struct dm_table * t)2043 fmode_t dm_table_get_mode(struct dm_table *t)
2044 {
2045 return t->mode;
2046 }
2047 EXPORT_SYMBOL(dm_table_get_mode);
2048
2049 enum suspend_mode {
2050 PRESUSPEND,
2051 PRESUSPEND_UNDO,
2052 POSTSUSPEND,
2053 };
2054
suspend_targets(struct dm_table * t,enum suspend_mode mode)2055 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2056 {
2057 int i = t->num_targets;
2058 struct dm_target *ti = t->targets;
2059
2060 lockdep_assert_held(&t->md->suspend_lock);
2061
2062 while (i--) {
2063 switch (mode) {
2064 case PRESUSPEND:
2065 if (ti->type->presuspend)
2066 ti->type->presuspend(ti);
2067 break;
2068 case PRESUSPEND_UNDO:
2069 if (ti->type->presuspend_undo)
2070 ti->type->presuspend_undo(ti);
2071 break;
2072 case POSTSUSPEND:
2073 if (ti->type->postsuspend)
2074 ti->type->postsuspend(ti);
2075 break;
2076 }
2077 ti++;
2078 }
2079 }
2080
dm_table_presuspend_targets(struct dm_table * t)2081 void dm_table_presuspend_targets(struct dm_table *t)
2082 {
2083 if (!t)
2084 return;
2085
2086 suspend_targets(t, PRESUSPEND);
2087 }
2088
dm_table_presuspend_undo_targets(struct dm_table * t)2089 void dm_table_presuspend_undo_targets(struct dm_table *t)
2090 {
2091 if (!t)
2092 return;
2093
2094 suspend_targets(t, PRESUSPEND_UNDO);
2095 }
2096
dm_table_postsuspend_targets(struct dm_table * t)2097 void dm_table_postsuspend_targets(struct dm_table *t)
2098 {
2099 if (!t)
2100 return;
2101
2102 suspend_targets(t, POSTSUSPEND);
2103 }
2104
dm_table_resume_targets(struct dm_table * t)2105 int dm_table_resume_targets(struct dm_table *t)
2106 {
2107 int i, r = 0;
2108
2109 lockdep_assert_held(&t->md->suspend_lock);
2110
2111 for (i = 0; i < t->num_targets; i++) {
2112 struct dm_target *ti = t->targets + i;
2113
2114 if (!ti->type->preresume)
2115 continue;
2116
2117 r = ti->type->preresume(ti);
2118 if (r) {
2119 DMERR("%s: %s: preresume failed, error = %d",
2120 dm_device_name(t->md), ti->type->name, r);
2121 return r;
2122 }
2123 }
2124
2125 for (i = 0; i < t->num_targets; i++) {
2126 struct dm_target *ti = t->targets + i;
2127
2128 if (ti->type->resume)
2129 ti->type->resume(ti);
2130 }
2131
2132 return 0;
2133 }
2134
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)2135 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2136 {
2137 list_add(&cb->list, &t->target_callbacks);
2138 }
2139 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2140
dm_table_any_congested(struct dm_table * t,int bdi_bits)2141 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2142 {
2143 struct dm_dev_internal *dd;
2144 struct list_head *devices = dm_table_get_devices(t);
2145 struct dm_target_callbacks *cb;
2146 int r = 0;
2147
2148 list_for_each_entry(dd, devices, list) {
2149 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2150 char b[BDEVNAME_SIZE];
2151
2152 if (likely(q))
2153 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2154 else
2155 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2156 dm_device_name(t->md),
2157 bdevname(dd->dm_dev->bdev, b));
2158 }
2159
2160 list_for_each_entry(cb, &t->target_callbacks, list)
2161 if (cb->congested_fn)
2162 r |= cb->congested_fn(cb, bdi_bits);
2163
2164 return r;
2165 }
2166
dm_table_get_md(struct dm_table * t)2167 struct mapped_device *dm_table_get_md(struct dm_table *t)
2168 {
2169 return t->md;
2170 }
2171 EXPORT_SYMBOL(dm_table_get_md);
2172
dm_table_device_name(struct dm_table * t)2173 const char *dm_table_device_name(struct dm_table *t)
2174 {
2175 return dm_device_name(t->md);
2176 }
2177 EXPORT_SYMBOL_GPL(dm_table_device_name);
2178
dm_table_run_md_queue_async(struct dm_table * t)2179 void dm_table_run_md_queue_async(struct dm_table *t)
2180 {
2181 struct mapped_device *md;
2182 struct request_queue *queue;
2183
2184 if (!dm_table_request_based(t))
2185 return;
2186
2187 md = dm_table_get_md(t);
2188 queue = dm_get_md_queue(md);
2189 if (queue)
2190 blk_mq_run_hw_queues(queue, true);
2191 }
2192 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2193
2194