1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16
17 /**
18 * typedef dma_cookie_t - an opaque DMA cookie
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE 1
24
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 return cookie < 0 ? cookie : 0;
28 }
29
30 /**
31 * enum dma_status - DMA transaction status
32 * @DMA_COMPLETE: transaction completed
33 * @DMA_IN_PROGRESS: transaction not yet processed
34 * @DMA_PAUSED: transaction is paused
35 * @DMA_ERROR: transaction failed
36 */
37 enum dma_status {
38 DMA_COMPLETE,
39 DMA_IN_PROGRESS,
40 DMA_PAUSED,
41 DMA_ERROR,
42 };
43
44 /**
45 * enum dma_transaction_type - DMA transaction types/indexes
46 *
47 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
48 * automatically set as dma devices are registered.
49 */
50 enum dma_transaction_type {
51 DMA_MEMCPY,
52 DMA_XOR,
53 DMA_PQ,
54 DMA_XOR_VAL,
55 DMA_PQ_VAL,
56 DMA_MEMSET,
57 DMA_MEMSET_SG,
58 DMA_INTERRUPT,
59 DMA_PRIVATE,
60 DMA_ASYNC_TX,
61 DMA_SLAVE,
62 DMA_CYCLIC,
63 DMA_INTERLEAVE,
64 /* last transaction type for creation of the capabilities mask */
65 DMA_TX_TYPE_END,
66 };
67
68 /**
69 * enum dma_transfer_direction - dma transfer mode and direction indicator
70 * @DMA_MEM_TO_MEM: Async/Memcpy mode
71 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
72 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
73 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
74 */
75 enum dma_transfer_direction {
76 DMA_MEM_TO_MEM,
77 DMA_MEM_TO_DEV,
78 DMA_DEV_TO_MEM,
79 DMA_DEV_TO_DEV,
80 DMA_TRANS_NONE,
81 };
82
83 /**
84 * Interleaved Transfer Request
85 * ----------------------------
86 * A chunk is collection of contiguous bytes to be transfered.
87 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
88 * ICGs may or maynot change between chunks.
89 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
90 * that when repeated an integral number of times, specifies the transfer.
91 * A transfer template is specification of a Frame, the number of times
92 * it is to be repeated and other per-transfer attributes.
93 *
94 * Practically, a client driver would have ready a template for each
95 * type of transfer it is going to need during its lifetime and
96 * set only 'src_start' and 'dst_start' before submitting the requests.
97 *
98 *
99 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
100 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
101 *
102 * == Chunk size
103 * ... ICG
104 */
105
106 /**
107 * struct data_chunk - Element of scatter-gather list that makes a frame.
108 * @size: Number of bytes to read from source.
109 * size_dst := fn(op, size_src), so doesn't mean much for destination.
110 * @icg: Number of bytes to jump after last src/dst address of this
111 * chunk and before first src/dst address for next chunk.
112 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
113 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
114 * @dst_icg: Number of bytes to jump after last dst address of this
115 * chunk and before the first dst address for next chunk.
116 * Ignored if dst_inc is true and dst_sgl is false.
117 * @src_icg: Number of bytes to jump after last src address of this
118 * chunk and before the first src address for next chunk.
119 * Ignored if src_inc is true and src_sgl is false.
120 */
121 struct data_chunk {
122 size_t size;
123 size_t icg;
124 size_t dst_icg;
125 size_t src_icg;
126 };
127
128 /**
129 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
130 * and attributes.
131 * @src_start: Bus address of source for the first chunk.
132 * @dst_start: Bus address of destination for the first chunk.
133 * @dir: Specifies the type of Source and Destination.
134 * @src_inc: If the source address increments after reading from it.
135 * @dst_inc: If the destination address increments after writing to it.
136 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
137 * Otherwise, source is read contiguously (icg ignored).
138 * Ignored if src_inc is false.
139 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
140 * Otherwise, destination is filled contiguously (icg ignored).
141 * Ignored if dst_inc is false.
142 * @numf: Number of frames in this template.
143 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
144 * @sgl: Array of {chunk,icg} pairs that make up a frame.
145 */
146 struct dma_interleaved_template {
147 dma_addr_t src_start;
148 dma_addr_t dst_start;
149 enum dma_transfer_direction dir;
150 bool src_inc;
151 bool dst_inc;
152 bool src_sgl;
153 bool dst_sgl;
154 size_t numf;
155 size_t frame_size;
156 struct data_chunk sgl[0];
157 };
158
159 /**
160 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
161 * control completion, and communicate status.
162 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
163 * this transaction
164 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
165 * acknowledges receipt, i.e. has has a chance to establish any dependency
166 * chains
167 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
168 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
169 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
170 * sources that were the result of a previous operation, in the case of a PQ
171 * operation it continues the calculation with new sources
172 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
173 * on the result of this operation
174 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
175 * cleared or freed
176 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
177 * data and the descriptor should be in different format from normal
178 * data descriptors.
179 */
180 enum dma_ctrl_flags {
181 DMA_PREP_INTERRUPT = (1 << 0),
182 DMA_CTRL_ACK = (1 << 1),
183 DMA_PREP_PQ_DISABLE_P = (1 << 2),
184 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
185 DMA_PREP_CONTINUE = (1 << 4),
186 DMA_PREP_FENCE = (1 << 5),
187 DMA_CTRL_REUSE = (1 << 6),
188 DMA_PREP_CMD = (1 << 7),
189 };
190
191 /**
192 * enum sum_check_bits - bit position of pq_check_flags
193 */
194 enum sum_check_bits {
195 SUM_CHECK_P = 0,
196 SUM_CHECK_Q = 1,
197 };
198
199 /**
200 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
201 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
202 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
203 */
204 enum sum_check_flags {
205 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
206 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
207 };
208
209
210 /**
211 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
212 * See linux/cpumask.h
213 */
214 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
215
216 /**
217 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
218 * @memcpy_count: transaction counter
219 * @bytes_transferred: byte counter
220 */
221
222 struct dma_chan_percpu {
223 /* stats */
224 unsigned long memcpy_count;
225 unsigned long bytes_transferred;
226 };
227
228 /**
229 * struct dma_router - DMA router structure
230 * @dev: pointer to the DMA router device
231 * @route_free: function to be called when the route can be disconnected
232 */
233 struct dma_router {
234 struct device *dev;
235 void (*route_free)(struct device *dev, void *route_data);
236 };
237
238 /**
239 * struct dma_chan - devices supply DMA channels, clients use them
240 * @device: ptr to the dma device who supplies this channel, always !%NULL
241 * @cookie: last cookie value returned to client
242 * @completed_cookie: last completed cookie for this channel
243 * @chan_id: channel ID for sysfs
244 * @dev: class device for sysfs
245 * @device_node: used to add this to the device chan list
246 * @local: per-cpu pointer to a struct dma_chan_percpu
247 * @client_count: how many clients are using this channel
248 * @table_count: number of appearances in the mem-to-mem allocation table
249 * @router: pointer to the DMA router structure
250 * @route_data: channel specific data for the router
251 * @private: private data for certain client-channel associations
252 */
253 struct dma_chan {
254 struct dma_device *device;
255 dma_cookie_t cookie;
256 dma_cookie_t completed_cookie;
257
258 /* sysfs */
259 int chan_id;
260 struct dma_chan_dev *dev;
261
262 struct list_head device_node;
263 struct dma_chan_percpu __percpu *local;
264 int client_count;
265 int table_count;
266
267 /* DMA router */
268 struct dma_router *router;
269 void *route_data;
270
271 void *private;
272 };
273
274 /**
275 * struct dma_chan_dev - relate sysfs device node to backing channel device
276 * @chan: driver channel device
277 * @device: sysfs device
278 * @dev_id: parent dma_device dev_id
279 * @idr_ref: reference count to gate release of dma_device dev_id
280 */
281 struct dma_chan_dev {
282 struct dma_chan *chan;
283 struct device device;
284 int dev_id;
285 atomic_t *idr_ref;
286 };
287
288 /**
289 * enum dma_slave_buswidth - defines bus width of the DMA slave
290 * device, source or target buses
291 */
292 enum dma_slave_buswidth {
293 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
294 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
295 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
296 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
297 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
298 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
299 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
300 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
301 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
302 };
303
304 /**
305 * struct dma_slave_config - dma slave channel runtime config
306 * @direction: whether the data shall go in or out on this slave
307 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
308 * legal values. DEPRECATED, drivers should use the direction argument
309 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
310 * the dir field in the dma_interleaved_template structure.
311 * @src_addr: this is the physical address where DMA slave data
312 * should be read (RX), if the source is memory this argument is
313 * ignored.
314 * @dst_addr: this is the physical address where DMA slave data
315 * should be written (TX), if the source is memory this argument
316 * is ignored.
317 * @src_addr_width: this is the width in bytes of the source (RX)
318 * register where DMA data shall be read. If the source
319 * is memory this may be ignored depending on architecture.
320 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
321 * @dst_addr_width: same as src_addr_width but for destination
322 * target (TX) mutatis mutandis.
323 * @src_maxburst: the maximum number of words (note: words, as in
324 * units of the src_addr_width member, not bytes) that can be sent
325 * in one burst to the device. Typically something like half the
326 * FIFO depth on I/O peripherals so you don't overflow it. This
327 * may or may not be applicable on memory sources.
328 * @dst_maxburst: same as src_maxburst but for destination target
329 * mutatis mutandis.
330 * @src_port_window_size: The length of the register area in words the data need
331 * to be accessed on the device side. It is only used for devices which is using
332 * an area instead of a single register to receive the data. Typically the DMA
333 * loops in this area in order to transfer the data.
334 * @dst_port_window_size: same as src_port_window_size but for the destination
335 * port.
336 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
337 * with 'true' if peripheral should be flow controller. Direction will be
338 * selected at Runtime.
339 * @slave_id: Slave requester id. Only valid for slave channels. The dma
340 * slave peripheral will have unique id as dma requester which need to be
341 * pass as slave config.
342 *
343 * This struct is passed in as configuration data to a DMA engine
344 * in order to set up a certain channel for DMA transport at runtime.
345 * The DMA device/engine has to provide support for an additional
346 * callback in the dma_device structure, device_config and this struct
347 * will then be passed in as an argument to the function.
348 *
349 * The rationale for adding configuration information to this struct is as
350 * follows: if it is likely that more than one DMA slave controllers in
351 * the world will support the configuration option, then make it generic.
352 * If not: if it is fixed so that it be sent in static from the platform
353 * data, then prefer to do that.
354 */
355 struct dma_slave_config {
356 enum dma_transfer_direction direction;
357 phys_addr_t src_addr;
358 phys_addr_t dst_addr;
359 enum dma_slave_buswidth src_addr_width;
360 enum dma_slave_buswidth dst_addr_width;
361 u32 src_maxburst;
362 u32 dst_maxburst;
363 u32 src_port_window_size;
364 u32 dst_port_window_size;
365 bool device_fc;
366 unsigned int slave_id;
367 };
368
369 /**
370 * enum dma_residue_granularity - Granularity of the reported transfer residue
371 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
372 * DMA channel is only able to tell whether a descriptor has been completed or
373 * not, which means residue reporting is not supported by this channel. The
374 * residue field of the dma_tx_state field will always be 0.
375 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
376 * completed segment of the transfer (For cyclic transfers this is after each
377 * period). This is typically implemented by having the hardware generate an
378 * interrupt after each transferred segment and then the drivers updates the
379 * outstanding residue by the size of the segment. Another possibility is if
380 * the hardware supports scatter-gather and the segment descriptor has a field
381 * which gets set after the segment has been completed. The driver then counts
382 * the number of segments without the flag set to compute the residue.
383 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
384 * burst. This is typically only supported if the hardware has a progress
385 * register of some sort (E.g. a register with the current read/write address
386 * or a register with the amount of bursts/beats/bytes that have been
387 * transferred or still need to be transferred).
388 */
389 enum dma_residue_granularity {
390 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
391 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
392 DMA_RESIDUE_GRANULARITY_BURST = 2,
393 };
394
395 /**
396 * struct dma_slave_caps - expose capabilities of a slave channel only
397 * @src_addr_widths: bit mask of src addr widths the channel supports.
398 * Width is specified in bytes, e.g. for a channel supporting
399 * a width of 4 the mask should have BIT(4) set.
400 * @dst_addr_widths: bit mask of dst addr widths the channel supports
401 * @directions: bit mask of slave directions the channel supports.
402 * Since the enum dma_transfer_direction is not defined as bit flag for
403 * each type, the dma controller should set BIT(<TYPE>) and same
404 * should be checked by controller as well
405 * @max_burst: max burst capability per-transfer
406 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
407 * for resume later)
408 * @cmd_resume: true, if resume is supported
409 * @cmd_terminate: true, if terminate cmd is supported
410 * @residue_granularity: granularity of the reported transfer residue
411 * @descriptor_reuse: if a descriptor can be reused by client and
412 * resubmitted multiple times
413 */
414 struct dma_slave_caps {
415 u32 src_addr_widths;
416 u32 dst_addr_widths;
417 u32 directions;
418 u32 max_burst;
419 bool cmd_pause;
420 bool cmd_resume;
421 bool cmd_terminate;
422 enum dma_residue_granularity residue_granularity;
423 bool descriptor_reuse;
424 };
425
dma_chan_name(struct dma_chan * chan)426 static inline const char *dma_chan_name(struct dma_chan *chan)
427 {
428 return dev_name(&chan->dev->device);
429 }
430
431 void dma_chan_cleanup(struct kref *kref);
432
433 /**
434 * typedef dma_filter_fn - callback filter for dma_request_channel
435 * @chan: channel to be reviewed
436 * @filter_param: opaque parameter passed through dma_request_channel
437 *
438 * When this optional parameter is specified in a call to dma_request_channel a
439 * suitable channel is passed to this routine for further dispositioning before
440 * being returned. Where 'suitable' indicates a non-busy channel that
441 * satisfies the given capability mask. It returns 'true' to indicate that the
442 * channel is suitable.
443 */
444 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
445
446 typedef void (*dma_async_tx_callback)(void *dma_async_param);
447
448 enum dmaengine_tx_result {
449 DMA_TRANS_NOERROR = 0, /* SUCCESS */
450 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
451 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
452 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
453 };
454
455 struct dmaengine_result {
456 enum dmaengine_tx_result result;
457 u32 residue;
458 };
459
460 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
461 const struct dmaengine_result *result);
462
463 struct dmaengine_unmap_data {
464 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
465 u16 map_cnt;
466 #else
467 u8 map_cnt;
468 #endif
469 u8 to_cnt;
470 u8 from_cnt;
471 u8 bidi_cnt;
472 struct device *dev;
473 struct kref kref;
474 size_t len;
475 dma_addr_t addr[0];
476 };
477
478 /**
479 * struct dma_async_tx_descriptor - async transaction descriptor
480 * ---dma generic offload fields---
481 * @cookie: tracking cookie for this transaction, set to -EBUSY if
482 * this tx is sitting on a dependency list
483 * @flags: flags to augment operation preparation, control completion, and
484 * communicate status
485 * @phys: physical address of the descriptor
486 * @chan: target channel for this operation
487 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
488 * descriptor pending. To be pushed on .issue_pending() call
489 * @callback: routine to call after this operation is complete
490 * @callback_param: general parameter to pass to the callback routine
491 * ---async_tx api specific fields---
492 * @next: at completion submit this descriptor
493 * @parent: pointer to the next level up in the dependency chain
494 * @lock: protect the parent and next pointers
495 */
496 struct dma_async_tx_descriptor {
497 dma_cookie_t cookie;
498 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
499 dma_addr_t phys;
500 struct dma_chan *chan;
501 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
502 int (*desc_free)(struct dma_async_tx_descriptor *tx);
503 dma_async_tx_callback callback;
504 dma_async_tx_callback_result callback_result;
505 void *callback_param;
506 struct dmaengine_unmap_data *unmap;
507 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
508 struct dma_async_tx_descriptor *next;
509 struct dma_async_tx_descriptor *parent;
510 spinlock_t lock;
511 #endif
512 };
513
514 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)515 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
516 struct dmaengine_unmap_data *unmap)
517 {
518 kref_get(&unmap->kref);
519 tx->unmap = unmap;
520 }
521
522 struct dmaengine_unmap_data *
523 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
524 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
525 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)526 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
527 struct dmaengine_unmap_data *unmap)
528 {
529 }
530 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)531 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
532 {
533 return NULL;
534 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)535 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
536 {
537 }
538 #endif
539
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)540 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
541 {
542 if (tx->unmap) {
543 dmaengine_unmap_put(tx->unmap);
544 tx->unmap = NULL;
545 }
546 }
547
548 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)549 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
550 {
551 }
txd_unlock(struct dma_async_tx_descriptor * txd)552 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
553 {
554 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)555 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
556 {
557 BUG();
558 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)559 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
560 {
561 }
txd_clear_next(struct dma_async_tx_descriptor * txd)562 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
563 {
564 }
txd_next(struct dma_async_tx_descriptor * txd)565 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
566 {
567 return NULL;
568 }
txd_parent(struct dma_async_tx_descriptor * txd)569 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
570 {
571 return NULL;
572 }
573
574 #else
txd_lock(struct dma_async_tx_descriptor * txd)575 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
576 {
577 spin_lock_bh(&txd->lock);
578 }
txd_unlock(struct dma_async_tx_descriptor * txd)579 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
580 {
581 spin_unlock_bh(&txd->lock);
582 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)583 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
584 {
585 txd->next = next;
586 next->parent = txd;
587 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)588 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
589 {
590 txd->parent = NULL;
591 }
txd_clear_next(struct dma_async_tx_descriptor * txd)592 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
593 {
594 txd->next = NULL;
595 }
txd_parent(struct dma_async_tx_descriptor * txd)596 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
597 {
598 return txd->parent;
599 }
txd_next(struct dma_async_tx_descriptor * txd)600 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
601 {
602 return txd->next;
603 }
604 #endif
605
606 /**
607 * struct dma_tx_state - filled in to report the status of
608 * a transfer.
609 * @last: last completed DMA cookie
610 * @used: last issued DMA cookie (i.e. the one in progress)
611 * @residue: the remaining number of bytes left to transmit
612 * on the selected transfer for states DMA_IN_PROGRESS and
613 * DMA_PAUSED if this is implemented in the driver, else 0
614 */
615 struct dma_tx_state {
616 dma_cookie_t last;
617 dma_cookie_t used;
618 u32 residue;
619 };
620
621 /**
622 * enum dmaengine_alignment - defines alignment of the DMA async tx
623 * buffers
624 */
625 enum dmaengine_alignment {
626 DMAENGINE_ALIGN_1_BYTE = 0,
627 DMAENGINE_ALIGN_2_BYTES = 1,
628 DMAENGINE_ALIGN_4_BYTES = 2,
629 DMAENGINE_ALIGN_8_BYTES = 3,
630 DMAENGINE_ALIGN_16_BYTES = 4,
631 DMAENGINE_ALIGN_32_BYTES = 5,
632 DMAENGINE_ALIGN_64_BYTES = 6,
633 };
634
635 /**
636 * struct dma_slave_map - associates slave device and it's slave channel with
637 * parameter to be used by a filter function
638 * @devname: name of the device
639 * @slave: slave channel name
640 * @param: opaque parameter to pass to struct dma_filter.fn
641 */
642 struct dma_slave_map {
643 const char *devname;
644 const char *slave;
645 void *param;
646 };
647
648 /**
649 * struct dma_filter - information for slave device/channel to filter_fn/param
650 * mapping
651 * @fn: filter function callback
652 * @mapcnt: number of slave device/channel in the map
653 * @map: array of channel to filter mapping data
654 */
655 struct dma_filter {
656 dma_filter_fn fn;
657 int mapcnt;
658 const struct dma_slave_map *map;
659 };
660
661 /**
662 * struct dma_device - info on the entity supplying DMA services
663 * @chancnt: how many DMA channels are supported
664 * @privatecnt: how many DMA channels are requested by dma_request_channel
665 * @channels: the list of struct dma_chan
666 * @global_node: list_head for global dma_device_list
667 * @filter: information for device/slave to filter function/param mapping
668 * @cap_mask: one or more dma_capability flags
669 * @max_xor: maximum number of xor sources, 0 if no capability
670 * @max_pq: maximum number of PQ sources and PQ-continue capability
671 * @copy_align: alignment shift for memcpy operations
672 * @xor_align: alignment shift for xor operations
673 * @pq_align: alignment shift for pq operations
674 * @fill_align: alignment shift for memset operations
675 * @dev_id: unique device ID
676 * @dev: struct device reference for dma mapping api
677 * @src_addr_widths: bit mask of src addr widths the device supports
678 * Width is specified in bytes, e.g. for a device supporting
679 * a width of 4 the mask should have BIT(4) set.
680 * @dst_addr_widths: bit mask of dst addr widths the device supports
681 * @directions: bit mask of slave directions the device supports.
682 * Since the enum dma_transfer_direction is not defined as bit flag for
683 * each type, the dma controller should set BIT(<TYPE>) and same
684 * should be checked by controller as well
685 * @max_burst: max burst capability per-transfer
686 * @residue_granularity: granularity of the transfer residue reported
687 * by tx_status
688 * @device_alloc_chan_resources: allocate resources and return the
689 * number of allocated descriptors
690 * @device_free_chan_resources: release DMA channel's resources
691 * @device_prep_dma_memcpy: prepares a memcpy operation
692 * @device_prep_dma_xor: prepares a xor operation
693 * @device_prep_dma_xor_val: prepares a xor validation operation
694 * @device_prep_dma_pq: prepares a pq operation
695 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
696 * @device_prep_dma_memset: prepares a memset operation
697 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
698 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
699 * @device_prep_slave_sg: prepares a slave dma operation
700 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
701 * The function takes a buffer of size buf_len. The callback function will
702 * be called after period_len bytes have been transferred.
703 * @device_prep_interleaved_dma: Transfer expression in a generic way.
704 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
705 * @device_config: Pushes a new configuration to a channel, return 0 or an error
706 * code
707 * @device_pause: Pauses any transfer happening on a channel. Returns
708 * 0 or an error code
709 * @device_resume: Resumes any transfer on a channel previously
710 * paused. Returns 0 or an error code
711 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
712 * or an error code
713 * @device_synchronize: Synchronizes the termination of a transfers to the
714 * current context.
715 * @device_tx_status: poll for transaction completion, the optional
716 * txstate parameter can be supplied with a pointer to get a
717 * struct with auxiliary transfer status information, otherwise the call
718 * will just return a simple status code
719 * @device_issue_pending: push pending transactions to hardware
720 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
721 */
722 struct dma_device {
723
724 unsigned int chancnt;
725 unsigned int privatecnt;
726 struct list_head channels;
727 struct list_head global_node;
728 struct dma_filter filter;
729 dma_cap_mask_t cap_mask;
730 unsigned short max_xor;
731 unsigned short max_pq;
732 enum dmaengine_alignment copy_align;
733 enum dmaengine_alignment xor_align;
734 enum dmaengine_alignment pq_align;
735 enum dmaengine_alignment fill_align;
736 #define DMA_HAS_PQ_CONTINUE (1 << 15)
737
738 int dev_id;
739 struct device *dev;
740
741 u32 src_addr_widths;
742 u32 dst_addr_widths;
743 u32 directions;
744 u32 max_burst;
745 bool descriptor_reuse;
746 enum dma_residue_granularity residue_granularity;
747
748 int (*device_alloc_chan_resources)(struct dma_chan *chan);
749 void (*device_free_chan_resources)(struct dma_chan *chan);
750
751 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
752 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
753 size_t len, unsigned long flags);
754 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
755 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
756 unsigned int src_cnt, size_t len, unsigned long flags);
757 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
758 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
759 size_t len, enum sum_check_flags *result, unsigned long flags);
760 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
761 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
762 unsigned int src_cnt, const unsigned char *scf,
763 size_t len, unsigned long flags);
764 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
765 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
766 unsigned int src_cnt, const unsigned char *scf, size_t len,
767 enum sum_check_flags *pqres, unsigned long flags);
768 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
769 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
770 unsigned long flags);
771 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
772 struct dma_chan *chan, struct scatterlist *sg,
773 unsigned int nents, int value, unsigned long flags);
774 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
775 struct dma_chan *chan, unsigned long flags);
776
777 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
778 struct dma_chan *chan, struct scatterlist *sgl,
779 unsigned int sg_len, enum dma_transfer_direction direction,
780 unsigned long flags, void *context);
781 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
782 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
783 size_t period_len, enum dma_transfer_direction direction,
784 unsigned long flags);
785 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
786 struct dma_chan *chan, struct dma_interleaved_template *xt,
787 unsigned long flags);
788 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
789 struct dma_chan *chan, dma_addr_t dst, u64 data,
790 unsigned long flags);
791
792 int (*device_config)(struct dma_chan *chan,
793 struct dma_slave_config *config);
794 int (*device_pause)(struct dma_chan *chan);
795 int (*device_resume)(struct dma_chan *chan);
796 int (*device_terminate_all)(struct dma_chan *chan);
797 void (*device_synchronize)(struct dma_chan *chan);
798
799 enum dma_status (*device_tx_status)(struct dma_chan *chan,
800 dma_cookie_t cookie,
801 struct dma_tx_state *txstate);
802 void (*device_issue_pending)(struct dma_chan *chan);
803 };
804
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)805 static inline int dmaengine_slave_config(struct dma_chan *chan,
806 struct dma_slave_config *config)
807 {
808 if (chan->device->device_config)
809 return chan->device->device_config(chan, config);
810
811 return -ENOSYS;
812 }
813
is_slave_direction(enum dma_transfer_direction direction)814 static inline bool is_slave_direction(enum dma_transfer_direction direction)
815 {
816 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
817 }
818
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)819 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
820 struct dma_chan *chan, dma_addr_t buf, size_t len,
821 enum dma_transfer_direction dir, unsigned long flags)
822 {
823 struct scatterlist sg;
824 sg_init_table(&sg, 1);
825 sg_dma_address(&sg) = buf;
826 sg_dma_len(&sg) = len;
827
828 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
829 return NULL;
830
831 return chan->device->device_prep_slave_sg(chan, &sg, 1,
832 dir, flags, NULL);
833 }
834
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)835 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
836 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
837 enum dma_transfer_direction dir, unsigned long flags)
838 {
839 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
840 return NULL;
841
842 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
843 dir, flags, NULL);
844 }
845
846 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
847 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)848 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
849 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
850 enum dma_transfer_direction dir, unsigned long flags,
851 struct rio_dma_ext *rio_ext)
852 {
853 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
854 return NULL;
855
856 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
857 dir, flags, rio_ext);
858 }
859 #endif
860
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)861 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
862 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
863 size_t period_len, enum dma_transfer_direction dir,
864 unsigned long flags)
865 {
866 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
867 return NULL;
868
869 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
870 period_len, dir, flags);
871 }
872
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)873 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
874 struct dma_chan *chan, struct dma_interleaved_template *xt,
875 unsigned long flags)
876 {
877 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
878 return NULL;
879
880 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
881 }
882
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)883 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
884 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
885 unsigned long flags)
886 {
887 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
888 return NULL;
889
890 return chan->device->device_prep_dma_memset(chan, dest, value,
891 len, flags);
892 }
893
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)894 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
895 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
896 size_t len, unsigned long flags)
897 {
898 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
899 return NULL;
900
901 return chan->device->device_prep_dma_memcpy(chan, dest, src,
902 len, flags);
903 }
904
905 /**
906 * dmaengine_terminate_all() - Terminate all active DMA transfers
907 * @chan: The channel for which to terminate the transfers
908 *
909 * This function is DEPRECATED use either dmaengine_terminate_sync() or
910 * dmaengine_terminate_async() instead.
911 */
dmaengine_terminate_all(struct dma_chan * chan)912 static inline int dmaengine_terminate_all(struct dma_chan *chan)
913 {
914 if (chan->device->device_terminate_all)
915 return chan->device->device_terminate_all(chan);
916
917 return -ENOSYS;
918 }
919
920 /**
921 * dmaengine_terminate_async() - Terminate all active DMA transfers
922 * @chan: The channel for which to terminate the transfers
923 *
924 * Calling this function will terminate all active and pending descriptors
925 * that have previously been submitted to the channel. It is not guaranteed
926 * though that the transfer for the active descriptor has stopped when the
927 * function returns. Furthermore it is possible the complete callback of a
928 * submitted transfer is still running when this function returns.
929 *
930 * dmaengine_synchronize() needs to be called before it is safe to free
931 * any memory that is accessed by previously submitted descriptors or before
932 * freeing any resources accessed from within the completion callback of any
933 * perviously submitted descriptors.
934 *
935 * This function can be called from atomic context as well as from within a
936 * complete callback of a descriptor submitted on the same channel.
937 *
938 * If none of the two conditions above apply consider using
939 * dmaengine_terminate_sync() instead.
940 */
dmaengine_terminate_async(struct dma_chan * chan)941 static inline int dmaengine_terminate_async(struct dma_chan *chan)
942 {
943 if (chan->device->device_terminate_all)
944 return chan->device->device_terminate_all(chan);
945
946 return -EINVAL;
947 }
948
949 /**
950 * dmaengine_synchronize() - Synchronize DMA channel termination
951 * @chan: The channel to synchronize
952 *
953 * Synchronizes to the DMA channel termination to the current context. When this
954 * function returns it is guaranteed that all transfers for previously issued
955 * descriptors have stopped and and it is safe to free the memory assoicated
956 * with them. Furthermore it is guaranteed that all complete callback functions
957 * for a previously submitted descriptor have finished running and it is safe to
958 * free resources accessed from within the complete callbacks.
959 *
960 * The behavior of this function is undefined if dma_async_issue_pending() has
961 * been called between dmaengine_terminate_async() and this function.
962 *
963 * This function must only be called from non-atomic context and must not be
964 * called from within a complete callback of a descriptor submitted on the same
965 * channel.
966 */
dmaengine_synchronize(struct dma_chan * chan)967 static inline void dmaengine_synchronize(struct dma_chan *chan)
968 {
969 might_sleep();
970
971 if (chan->device->device_synchronize)
972 chan->device->device_synchronize(chan);
973 }
974
975 /**
976 * dmaengine_terminate_sync() - Terminate all active DMA transfers
977 * @chan: The channel for which to terminate the transfers
978 *
979 * Calling this function will terminate all active and pending transfers
980 * that have previously been submitted to the channel. It is similar to
981 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
982 * stopped and that all complete callbacks have finished running when the
983 * function returns.
984 *
985 * This function must only be called from non-atomic context and must not be
986 * called from within a complete callback of a descriptor submitted on the same
987 * channel.
988 */
dmaengine_terminate_sync(struct dma_chan * chan)989 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
990 {
991 int ret;
992
993 ret = dmaengine_terminate_async(chan);
994 if (ret)
995 return ret;
996
997 dmaengine_synchronize(chan);
998
999 return 0;
1000 }
1001
dmaengine_pause(struct dma_chan * chan)1002 static inline int dmaengine_pause(struct dma_chan *chan)
1003 {
1004 if (chan->device->device_pause)
1005 return chan->device->device_pause(chan);
1006
1007 return -ENOSYS;
1008 }
1009
dmaengine_resume(struct dma_chan * chan)1010 static inline int dmaengine_resume(struct dma_chan *chan)
1011 {
1012 if (chan->device->device_resume)
1013 return chan->device->device_resume(chan);
1014
1015 return -ENOSYS;
1016 }
1017
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1018 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1019 dma_cookie_t cookie, struct dma_tx_state *state)
1020 {
1021 return chan->device->device_tx_status(chan, cookie, state);
1022 }
1023
dmaengine_submit(struct dma_async_tx_descriptor * desc)1024 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1025 {
1026 return desc->tx_submit(desc);
1027 }
1028
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1029 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1030 size_t off1, size_t off2, size_t len)
1031 {
1032 size_t mask;
1033
1034 if (!align)
1035 return true;
1036 mask = (1 << align) - 1;
1037 if (mask & (off1 | off2 | len))
1038 return false;
1039 return true;
1040 }
1041
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1042 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1043 size_t off2, size_t len)
1044 {
1045 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1046 }
1047
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1048 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1049 size_t off2, size_t len)
1050 {
1051 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1052 }
1053
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1054 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1055 size_t off2, size_t len)
1056 {
1057 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1058 }
1059
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1060 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1061 size_t off2, size_t len)
1062 {
1063 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1064 }
1065
1066 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1067 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1068 {
1069 dma->max_pq = maxpq;
1070 if (has_pq_continue)
1071 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1072 }
1073
dmaf_continue(enum dma_ctrl_flags flags)1074 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1075 {
1076 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1077 }
1078
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1079 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1080 {
1081 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1082
1083 return (flags & mask) == mask;
1084 }
1085
dma_dev_has_pq_continue(struct dma_device * dma)1086 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1087 {
1088 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1089 }
1090
dma_dev_to_maxpq(struct dma_device * dma)1091 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1092 {
1093 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1094 }
1095
1096 /* dma_maxpq - reduce maxpq in the face of continued operations
1097 * @dma - dma device with PQ capability
1098 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1099 *
1100 * When an engine does not support native continuation we need 3 extra
1101 * source slots to reuse P and Q with the following coefficients:
1102 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1103 * 2/ {01} * Q : use Q to continue Q' calculation
1104 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1105 *
1106 * In the case where P is disabled we only need 1 extra source:
1107 * 1/ {01} * Q : use Q to continue Q' calculation
1108 */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1109 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1110 {
1111 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1112 return dma_dev_to_maxpq(dma);
1113 else if (dmaf_p_disabled_continue(flags))
1114 return dma_dev_to_maxpq(dma) - 1;
1115 else if (dmaf_continue(flags))
1116 return dma_dev_to_maxpq(dma) - 3;
1117 BUG();
1118 }
1119
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1120 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1121 size_t dir_icg)
1122 {
1123 if (inc) {
1124 if (dir_icg)
1125 return dir_icg;
1126 else if (sgl)
1127 return icg;
1128 }
1129
1130 return 0;
1131 }
1132
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1133 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1134 struct data_chunk *chunk)
1135 {
1136 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1137 chunk->icg, chunk->dst_icg);
1138 }
1139
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1140 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1141 struct data_chunk *chunk)
1142 {
1143 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1144 chunk->icg, chunk->src_icg);
1145 }
1146
1147 /* --- public DMA engine API --- */
1148
1149 #ifdef CONFIG_DMA_ENGINE
1150 void dmaengine_get(void);
1151 void dmaengine_put(void);
1152 #else
dmaengine_get(void)1153 static inline void dmaengine_get(void)
1154 {
1155 }
dmaengine_put(void)1156 static inline void dmaengine_put(void)
1157 {
1158 }
1159 #endif
1160
1161 #ifdef CONFIG_ASYNC_TX_DMA
1162 #define async_dmaengine_get() dmaengine_get()
1163 #define async_dmaengine_put() dmaengine_put()
1164 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1165 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1166 #else
1167 #define async_dma_find_channel(type) dma_find_channel(type)
1168 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1169 #else
async_dmaengine_get(void)1170 static inline void async_dmaengine_get(void)
1171 {
1172 }
async_dmaengine_put(void)1173 static inline void async_dmaengine_put(void)
1174 {
1175 }
1176 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1177 async_dma_find_channel(enum dma_transaction_type type)
1178 {
1179 return NULL;
1180 }
1181 #endif /* CONFIG_ASYNC_TX_DMA */
1182 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1183 struct dma_chan *chan);
1184
async_tx_ack(struct dma_async_tx_descriptor * tx)1185 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1186 {
1187 tx->flags |= DMA_CTRL_ACK;
1188 }
1189
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1190 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1191 {
1192 tx->flags &= ~DMA_CTRL_ACK;
1193 }
1194
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1195 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1196 {
1197 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1198 }
1199
1200 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1201 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1202 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1203 {
1204 set_bit(tx_type, dstp->bits);
1205 }
1206
1207 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1208 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1209 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1210 {
1211 clear_bit(tx_type, dstp->bits);
1212 }
1213
1214 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1215 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1216 {
1217 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1218 }
1219
1220 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1221 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1222 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1223 {
1224 return test_bit(tx_type, srcp->bits);
1225 }
1226
1227 #define for_each_dma_cap_mask(cap, mask) \
1228 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1229
1230 /**
1231 * dma_async_issue_pending - flush pending transactions to HW
1232 * @chan: target DMA channel
1233 *
1234 * This allows drivers to push copies to HW in batches,
1235 * reducing MMIO writes where possible.
1236 */
dma_async_issue_pending(struct dma_chan * chan)1237 static inline void dma_async_issue_pending(struct dma_chan *chan)
1238 {
1239 chan->device->device_issue_pending(chan);
1240 }
1241
1242 /**
1243 * dma_async_is_tx_complete - poll for transaction completion
1244 * @chan: DMA channel
1245 * @cookie: transaction identifier to check status of
1246 * @last: returns last completed cookie, can be NULL
1247 * @used: returns last issued cookie, can be NULL
1248 *
1249 * If @last and @used are passed in, upon return they reflect the driver
1250 * internal state and can be used with dma_async_is_complete() to check
1251 * the status of multiple cookies without re-checking hardware state.
1252 */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1253 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1254 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1255 {
1256 struct dma_tx_state state;
1257 enum dma_status status;
1258
1259 status = chan->device->device_tx_status(chan, cookie, &state);
1260 if (last)
1261 *last = state.last;
1262 if (used)
1263 *used = state.used;
1264 return status;
1265 }
1266
1267 /**
1268 * dma_async_is_complete - test a cookie against chan state
1269 * @cookie: transaction identifier to test status of
1270 * @last_complete: last know completed transaction
1271 * @last_used: last cookie value handed out
1272 *
1273 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1274 * the test logic is separated for lightweight testing of multiple cookies
1275 */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1276 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1277 dma_cookie_t last_complete, dma_cookie_t last_used)
1278 {
1279 if (last_complete <= last_used) {
1280 if ((cookie <= last_complete) || (cookie > last_used))
1281 return DMA_COMPLETE;
1282 } else {
1283 if ((cookie <= last_complete) && (cookie > last_used))
1284 return DMA_COMPLETE;
1285 }
1286 return DMA_IN_PROGRESS;
1287 }
1288
1289 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1290 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1291 {
1292 if (st) {
1293 st->last = last;
1294 st->used = used;
1295 st->residue = residue;
1296 }
1297 }
1298
1299 #ifdef CONFIG_DMA_ENGINE
1300 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1301 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1302 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1303 void dma_issue_pending_all(void);
1304 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1305 dma_filter_fn fn, void *fn_param,
1306 struct device_node *np);
1307 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1308
1309 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1310 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1311
1312 void dma_release_channel(struct dma_chan *chan);
1313 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1314 #else
dma_find_channel(enum dma_transaction_type tx_type)1315 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1316 {
1317 return NULL;
1318 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1319 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1320 {
1321 return DMA_COMPLETE;
1322 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1323 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1324 {
1325 return DMA_COMPLETE;
1326 }
dma_issue_pending_all(void)1327 static inline void dma_issue_pending_all(void)
1328 {
1329 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1330 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1331 dma_filter_fn fn,
1332 void *fn_param,
1333 struct device_node *np)
1334 {
1335 return NULL;
1336 }
dma_request_slave_channel(struct device * dev,const char * name)1337 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1338 const char *name)
1339 {
1340 return NULL;
1341 }
dma_request_chan(struct device * dev,const char * name)1342 static inline struct dma_chan *dma_request_chan(struct device *dev,
1343 const char *name)
1344 {
1345 return ERR_PTR(-ENODEV);
1346 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1347 static inline struct dma_chan *dma_request_chan_by_mask(
1348 const dma_cap_mask_t *mask)
1349 {
1350 return ERR_PTR(-ENODEV);
1351 }
dma_release_channel(struct dma_chan * chan)1352 static inline void dma_release_channel(struct dma_chan *chan)
1353 {
1354 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1355 static inline int dma_get_slave_caps(struct dma_chan *chan,
1356 struct dma_slave_caps *caps)
1357 {
1358 return -ENXIO;
1359 }
1360 #endif
1361
1362 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1363
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1364 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1365 {
1366 struct dma_slave_caps caps;
1367 int ret;
1368
1369 ret = dma_get_slave_caps(tx->chan, &caps);
1370 if (ret)
1371 return ret;
1372
1373 if (caps.descriptor_reuse) {
1374 tx->flags |= DMA_CTRL_REUSE;
1375 return 0;
1376 } else {
1377 return -EPERM;
1378 }
1379 }
1380
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1381 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1382 {
1383 tx->flags &= ~DMA_CTRL_REUSE;
1384 }
1385
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1386 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1387 {
1388 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1389 }
1390
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1391 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1392 {
1393 /* this is supported for reusable desc, so check that */
1394 if (dmaengine_desc_test_reuse(desc))
1395 return desc->desc_free(desc);
1396 else
1397 return -EPERM;
1398 }
1399
1400 /* --- DMA device --- */
1401
1402 int dma_async_device_register(struct dma_device *device);
1403 int dmaenginem_async_device_register(struct dma_device *device);
1404 void dma_async_device_unregister(struct dma_device *device);
1405 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1406 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1407 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1408 #define dma_request_channel(mask, x, y) \
1409 __dma_request_channel(&(mask), x, y, NULL)
1410 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1411 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1412
1413 static inline struct dma_chan
__dma_request_slave_channel_compat(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1414 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1415 dma_filter_fn fn, void *fn_param,
1416 struct device *dev, const char *name)
1417 {
1418 struct dma_chan *chan;
1419
1420 chan = dma_request_slave_channel(dev, name);
1421 if (chan)
1422 return chan;
1423
1424 if (!fn || !fn_param)
1425 return NULL;
1426
1427 return __dma_request_channel(mask, fn, fn_param, NULL);
1428 }
1429 #endif /* DMAENGINE_H */
1430