• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7 
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16 
17 /**
18  * typedef dma_cookie_t - an opaque DMA cookie
19  *
20  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21  */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE	1
24 
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 	return cookie < 0 ? cookie : 0;
28 }
29 
30 /**
31  * enum dma_status - DMA transaction status
32  * @DMA_COMPLETE: transaction completed
33  * @DMA_IN_PROGRESS: transaction not yet processed
34  * @DMA_PAUSED: transaction is paused
35  * @DMA_ERROR: transaction failed
36  */
37 enum dma_status {
38 	DMA_COMPLETE,
39 	DMA_IN_PROGRESS,
40 	DMA_PAUSED,
41 	DMA_ERROR,
42 };
43 
44 /**
45  * enum dma_transaction_type - DMA transaction types/indexes
46  *
47  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
48  * automatically set as dma devices are registered.
49  */
50 enum dma_transaction_type {
51 	DMA_MEMCPY,
52 	DMA_XOR,
53 	DMA_PQ,
54 	DMA_XOR_VAL,
55 	DMA_PQ_VAL,
56 	DMA_MEMSET,
57 	DMA_MEMSET_SG,
58 	DMA_INTERRUPT,
59 	DMA_PRIVATE,
60 	DMA_ASYNC_TX,
61 	DMA_SLAVE,
62 	DMA_CYCLIC,
63 	DMA_INTERLEAVE,
64 /* last transaction type for creation of the capabilities mask */
65 	DMA_TX_TYPE_END,
66 };
67 
68 /**
69  * enum dma_transfer_direction - dma transfer mode and direction indicator
70  * @DMA_MEM_TO_MEM: Async/Memcpy mode
71  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
72  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
73  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
74  */
75 enum dma_transfer_direction {
76 	DMA_MEM_TO_MEM,
77 	DMA_MEM_TO_DEV,
78 	DMA_DEV_TO_MEM,
79 	DMA_DEV_TO_DEV,
80 	DMA_TRANS_NONE,
81 };
82 
83 /**
84  * Interleaved Transfer Request
85  * ----------------------------
86  * A chunk is collection of contiguous bytes to be transfered.
87  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
88  * ICGs may or maynot change between chunks.
89  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
90  *  that when repeated an integral number of times, specifies the transfer.
91  * A transfer template is specification of a Frame, the number of times
92  *  it is to be repeated and other per-transfer attributes.
93  *
94  * Practically, a client driver would have ready a template for each
95  *  type of transfer it is going to need during its lifetime and
96  *  set only 'src_start' and 'dst_start' before submitting the requests.
97  *
98  *
99  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
100  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
101  *
102  *    ==  Chunk size
103  *    ... ICG
104  */
105 
106 /**
107  * struct data_chunk - Element of scatter-gather list that makes a frame.
108  * @size: Number of bytes to read from source.
109  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
110  * @icg: Number of bytes to jump after last src/dst address of this
111  *	 chunk and before first src/dst address for next chunk.
112  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
113  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
114  * @dst_icg: Number of bytes to jump after last dst address of this
115  *	 chunk and before the first dst address for next chunk.
116  *	 Ignored if dst_inc is true and dst_sgl is false.
117  * @src_icg: Number of bytes to jump after last src address of this
118  *	 chunk and before the first src address for next chunk.
119  *	 Ignored if src_inc is true and src_sgl is false.
120  */
121 struct data_chunk {
122 	size_t size;
123 	size_t icg;
124 	size_t dst_icg;
125 	size_t src_icg;
126 };
127 
128 /**
129  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
130  *	 and attributes.
131  * @src_start: Bus address of source for the first chunk.
132  * @dst_start: Bus address of destination for the first chunk.
133  * @dir: Specifies the type of Source and Destination.
134  * @src_inc: If the source address increments after reading from it.
135  * @dst_inc: If the destination address increments after writing to it.
136  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
137  *		Otherwise, source is read contiguously (icg ignored).
138  *		Ignored if src_inc is false.
139  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
140  *		Otherwise, destination is filled contiguously (icg ignored).
141  *		Ignored if dst_inc is false.
142  * @numf: Number of frames in this template.
143  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
144  * @sgl: Array of {chunk,icg} pairs that make up a frame.
145  */
146 struct dma_interleaved_template {
147 	dma_addr_t src_start;
148 	dma_addr_t dst_start;
149 	enum dma_transfer_direction dir;
150 	bool src_inc;
151 	bool dst_inc;
152 	bool src_sgl;
153 	bool dst_sgl;
154 	size_t numf;
155 	size_t frame_size;
156 	struct data_chunk sgl[0];
157 };
158 
159 /**
160  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
161  *  control completion, and communicate status.
162  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
163  *  this transaction
164  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
165  *  acknowledges receipt, i.e. has has a chance to establish any dependency
166  *  chains
167  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
168  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
169  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
170  *  sources that were the result of a previous operation, in the case of a PQ
171  *  operation it continues the calculation with new sources
172  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
173  *  on the result of this operation
174  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
175  *  cleared or freed
176  * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
177  *  data and the descriptor should be in different format from normal
178  *  data descriptors.
179  */
180 enum dma_ctrl_flags {
181 	DMA_PREP_INTERRUPT = (1 << 0),
182 	DMA_CTRL_ACK = (1 << 1),
183 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
184 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
185 	DMA_PREP_CONTINUE = (1 << 4),
186 	DMA_PREP_FENCE = (1 << 5),
187 	DMA_CTRL_REUSE = (1 << 6),
188 	DMA_PREP_CMD = (1 << 7),
189 };
190 
191 /**
192  * enum sum_check_bits - bit position of pq_check_flags
193  */
194 enum sum_check_bits {
195 	SUM_CHECK_P = 0,
196 	SUM_CHECK_Q = 1,
197 };
198 
199 /**
200  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
201  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
202  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
203  */
204 enum sum_check_flags {
205 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
206 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
207 };
208 
209 
210 /**
211  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
212  * See linux/cpumask.h
213  */
214 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
215 
216 /**
217  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
218  * @memcpy_count: transaction counter
219  * @bytes_transferred: byte counter
220  */
221 
222 struct dma_chan_percpu {
223 	/* stats */
224 	unsigned long memcpy_count;
225 	unsigned long bytes_transferred;
226 };
227 
228 /**
229  * struct dma_router - DMA router structure
230  * @dev: pointer to the DMA router device
231  * @route_free: function to be called when the route can be disconnected
232  */
233 struct dma_router {
234 	struct device *dev;
235 	void (*route_free)(struct device *dev, void *route_data);
236 };
237 
238 /**
239  * struct dma_chan - devices supply DMA channels, clients use them
240  * @device: ptr to the dma device who supplies this channel, always !%NULL
241  * @cookie: last cookie value returned to client
242  * @completed_cookie: last completed cookie for this channel
243  * @chan_id: channel ID for sysfs
244  * @dev: class device for sysfs
245  * @device_node: used to add this to the device chan list
246  * @local: per-cpu pointer to a struct dma_chan_percpu
247  * @client_count: how many clients are using this channel
248  * @table_count: number of appearances in the mem-to-mem allocation table
249  * @router: pointer to the DMA router structure
250  * @route_data: channel specific data for the router
251  * @private: private data for certain client-channel associations
252  */
253 struct dma_chan {
254 	struct dma_device *device;
255 	dma_cookie_t cookie;
256 	dma_cookie_t completed_cookie;
257 
258 	/* sysfs */
259 	int chan_id;
260 	struct dma_chan_dev *dev;
261 
262 	struct list_head device_node;
263 	struct dma_chan_percpu __percpu *local;
264 	int client_count;
265 	int table_count;
266 
267 	/* DMA router */
268 	struct dma_router *router;
269 	void *route_data;
270 
271 	void *private;
272 };
273 
274 /**
275  * struct dma_chan_dev - relate sysfs device node to backing channel device
276  * @chan: driver channel device
277  * @device: sysfs device
278  * @dev_id: parent dma_device dev_id
279  * @idr_ref: reference count to gate release of dma_device dev_id
280  */
281 struct dma_chan_dev {
282 	struct dma_chan *chan;
283 	struct device device;
284 	int dev_id;
285 	atomic_t *idr_ref;
286 };
287 
288 /**
289  * enum dma_slave_buswidth - defines bus width of the DMA slave
290  * device, source or target buses
291  */
292 enum dma_slave_buswidth {
293 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
294 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
295 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
296 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
297 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
298 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
299 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
300 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
301 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
302 };
303 
304 /**
305  * struct dma_slave_config - dma slave channel runtime config
306  * @direction: whether the data shall go in or out on this slave
307  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
308  * legal values. DEPRECATED, drivers should use the direction argument
309  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
310  * the dir field in the dma_interleaved_template structure.
311  * @src_addr: this is the physical address where DMA slave data
312  * should be read (RX), if the source is memory this argument is
313  * ignored.
314  * @dst_addr: this is the physical address where DMA slave data
315  * should be written (TX), if the source is memory this argument
316  * is ignored.
317  * @src_addr_width: this is the width in bytes of the source (RX)
318  * register where DMA data shall be read. If the source
319  * is memory this may be ignored depending on architecture.
320  * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
321  * @dst_addr_width: same as src_addr_width but for destination
322  * target (TX) mutatis mutandis.
323  * @src_maxburst: the maximum number of words (note: words, as in
324  * units of the src_addr_width member, not bytes) that can be sent
325  * in one burst to the device. Typically something like half the
326  * FIFO depth on I/O peripherals so you don't overflow it. This
327  * may or may not be applicable on memory sources.
328  * @dst_maxburst: same as src_maxburst but for destination target
329  * mutatis mutandis.
330  * @src_port_window_size: The length of the register area in words the data need
331  * to be accessed on the device side. It is only used for devices which is using
332  * an area instead of a single register to receive the data. Typically the DMA
333  * loops in this area in order to transfer the data.
334  * @dst_port_window_size: same as src_port_window_size but for the destination
335  * port.
336  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
337  * with 'true' if peripheral should be flow controller. Direction will be
338  * selected at Runtime.
339  * @slave_id: Slave requester id. Only valid for slave channels. The dma
340  * slave peripheral will have unique id as dma requester which need to be
341  * pass as slave config.
342  *
343  * This struct is passed in as configuration data to a DMA engine
344  * in order to set up a certain channel for DMA transport at runtime.
345  * The DMA device/engine has to provide support for an additional
346  * callback in the dma_device structure, device_config and this struct
347  * will then be passed in as an argument to the function.
348  *
349  * The rationale for adding configuration information to this struct is as
350  * follows: if it is likely that more than one DMA slave controllers in
351  * the world will support the configuration option, then make it generic.
352  * If not: if it is fixed so that it be sent in static from the platform
353  * data, then prefer to do that.
354  */
355 struct dma_slave_config {
356 	enum dma_transfer_direction direction;
357 	phys_addr_t src_addr;
358 	phys_addr_t dst_addr;
359 	enum dma_slave_buswidth src_addr_width;
360 	enum dma_slave_buswidth dst_addr_width;
361 	u32 src_maxburst;
362 	u32 dst_maxburst;
363 	u32 src_port_window_size;
364 	u32 dst_port_window_size;
365 	bool device_fc;
366 	unsigned int slave_id;
367 };
368 
369 /**
370  * enum dma_residue_granularity - Granularity of the reported transfer residue
371  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
372  *  DMA channel is only able to tell whether a descriptor has been completed or
373  *  not, which means residue reporting is not supported by this channel. The
374  *  residue field of the dma_tx_state field will always be 0.
375  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
376  *  completed segment of the transfer (For cyclic transfers this is after each
377  *  period). This is typically implemented by having the hardware generate an
378  *  interrupt after each transferred segment and then the drivers updates the
379  *  outstanding residue by the size of the segment. Another possibility is if
380  *  the hardware supports scatter-gather and the segment descriptor has a field
381  *  which gets set after the segment has been completed. The driver then counts
382  *  the number of segments without the flag set to compute the residue.
383  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
384  *  burst. This is typically only supported if the hardware has a progress
385  *  register of some sort (E.g. a register with the current read/write address
386  *  or a register with the amount of bursts/beats/bytes that have been
387  *  transferred or still need to be transferred).
388  */
389 enum dma_residue_granularity {
390 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
391 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
392 	DMA_RESIDUE_GRANULARITY_BURST = 2,
393 };
394 
395 /**
396  * struct dma_slave_caps - expose capabilities of a slave channel only
397  * @src_addr_widths: bit mask of src addr widths the channel supports.
398  *	Width is specified in bytes, e.g. for a channel supporting
399  *	a width of 4 the mask should have BIT(4) set.
400  * @dst_addr_widths: bit mask of dst addr widths the channel supports
401  * @directions: bit mask of slave directions the channel supports.
402  *	Since the enum dma_transfer_direction is not defined as bit flag for
403  *	each type, the dma controller should set BIT(<TYPE>) and same
404  *	should be checked by controller as well
405  * @max_burst: max burst capability per-transfer
406  * @cmd_pause: true, if pause is supported (i.e. for reading residue or
407  *	       for resume later)
408  * @cmd_resume: true, if resume is supported
409  * @cmd_terminate: true, if terminate cmd is supported
410  * @residue_granularity: granularity of the reported transfer residue
411  * @descriptor_reuse: if a descriptor can be reused by client and
412  * resubmitted multiple times
413  */
414 struct dma_slave_caps {
415 	u32 src_addr_widths;
416 	u32 dst_addr_widths;
417 	u32 directions;
418 	u32 max_burst;
419 	bool cmd_pause;
420 	bool cmd_resume;
421 	bool cmd_terminate;
422 	enum dma_residue_granularity residue_granularity;
423 	bool descriptor_reuse;
424 };
425 
dma_chan_name(struct dma_chan * chan)426 static inline const char *dma_chan_name(struct dma_chan *chan)
427 {
428 	return dev_name(&chan->dev->device);
429 }
430 
431 void dma_chan_cleanup(struct kref *kref);
432 
433 /**
434  * typedef dma_filter_fn - callback filter for dma_request_channel
435  * @chan: channel to be reviewed
436  * @filter_param: opaque parameter passed through dma_request_channel
437  *
438  * When this optional parameter is specified in a call to dma_request_channel a
439  * suitable channel is passed to this routine for further dispositioning before
440  * being returned.  Where 'suitable' indicates a non-busy channel that
441  * satisfies the given capability mask.  It returns 'true' to indicate that the
442  * channel is suitable.
443  */
444 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
445 
446 typedef void (*dma_async_tx_callback)(void *dma_async_param);
447 
448 enum dmaengine_tx_result {
449 	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
450 	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
451 	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
452 	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
453 };
454 
455 struct dmaengine_result {
456 	enum dmaengine_tx_result result;
457 	u32 residue;
458 };
459 
460 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
461 				const struct dmaengine_result *result);
462 
463 struct dmaengine_unmap_data {
464 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
465 	u16 map_cnt;
466 #else
467 	u8 map_cnt;
468 #endif
469 	u8 to_cnt;
470 	u8 from_cnt;
471 	u8 bidi_cnt;
472 	struct device *dev;
473 	struct kref kref;
474 	size_t len;
475 	dma_addr_t addr[0];
476 };
477 
478 /**
479  * struct dma_async_tx_descriptor - async transaction descriptor
480  * ---dma generic offload fields---
481  * @cookie: tracking cookie for this transaction, set to -EBUSY if
482  *	this tx is sitting on a dependency list
483  * @flags: flags to augment operation preparation, control completion, and
484  * 	communicate status
485  * @phys: physical address of the descriptor
486  * @chan: target channel for this operation
487  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
488  * descriptor pending. To be pushed on .issue_pending() call
489  * @callback: routine to call after this operation is complete
490  * @callback_param: general parameter to pass to the callback routine
491  * ---async_tx api specific fields---
492  * @next: at completion submit this descriptor
493  * @parent: pointer to the next level up in the dependency chain
494  * @lock: protect the parent and next pointers
495  */
496 struct dma_async_tx_descriptor {
497 	dma_cookie_t cookie;
498 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
499 	dma_addr_t phys;
500 	struct dma_chan *chan;
501 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
502 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
503 	dma_async_tx_callback callback;
504 	dma_async_tx_callback_result callback_result;
505 	void *callback_param;
506 	struct dmaengine_unmap_data *unmap;
507 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
508 	struct dma_async_tx_descriptor *next;
509 	struct dma_async_tx_descriptor *parent;
510 	spinlock_t lock;
511 #endif
512 };
513 
514 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)515 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
516 				 struct dmaengine_unmap_data *unmap)
517 {
518 	kref_get(&unmap->kref);
519 	tx->unmap = unmap;
520 }
521 
522 struct dmaengine_unmap_data *
523 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
524 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
525 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)526 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
527 				 struct dmaengine_unmap_data *unmap)
528 {
529 }
530 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)531 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
532 {
533 	return NULL;
534 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)535 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
536 {
537 }
538 #endif
539 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)540 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
541 {
542 	if (tx->unmap) {
543 		dmaengine_unmap_put(tx->unmap);
544 		tx->unmap = NULL;
545 	}
546 }
547 
548 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)549 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
550 {
551 }
txd_unlock(struct dma_async_tx_descriptor * txd)552 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
553 {
554 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)555 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
556 {
557 	BUG();
558 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)559 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
560 {
561 }
txd_clear_next(struct dma_async_tx_descriptor * txd)562 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
563 {
564 }
txd_next(struct dma_async_tx_descriptor * txd)565 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
566 {
567 	return NULL;
568 }
txd_parent(struct dma_async_tx_descriptor * txd)569 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
570 {
571 	return NULL;
572 }
573 
574 #else
txd_lock(struct dma_async_tx_descriptor * txd)575 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
576 {
577 	spin_lock_bh(&txd->lock);
578 }
txd_unlock(struct dma_async_tx_descriptor * txd)579 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
580 {
581 	spin_unlock_bh(&txd->lock);
582 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)583 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
584 {
585 	txd->next = next;
586 	next->parent = txd;
587 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)588 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
589 {
590 	txd->parent = NULL;
591 }
txd_clear_next(struct dma_async_tx_descriptor * txd)592 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
593 {
594 	txd->next = NULL;
595 }
txd_parent(struct dma_async_tx_descriptor * txd)596 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
597 {
598 	return txd->parent;
599 }
txd_next(struct dma_async_tx_descriptor * txd)600 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
601 {
602 	return txd->next;
603 }
604 #endif
605 
606 /**
607  * struct dma_tx_state - filled in to report the status of
608  * a transfer.
609  * @last: last completed DMA cookie
610  * @used: last issued DMA cookie (i.e. the one in progress)
611  * @residue: the remaining number of bytes left to transmit
612  *	on the selected transfer for states DMA_IN_PROGRESS and
613  *	DMA_PAUSED if this is implemented in the driver, else 0
614  */
615 struct dma_tx_state {
616 	dma_cookie_t last;
617 	dma_cookie_t used;
618 	u32 residue;
619 };
620 
621 /**
622  * enum dmaengine_alignment - defines alignment of the DMA async tx
623  * buffers
624  */
625 enum dmaengine_alignment {
626 	DMAENGINE_ALIGN_1_BYTE = 0,
627 	DMAENGINE_ALIGN_2_BYTES = 1,
628 	DMAENGINE_ALIGN_4_BYTES = 2,
629 	DMAENGINE_ALIGN_8_BYTES = 3,
630 	DMAENGINE_ALIGN_16_BYTES = 4,
631 	DMAENGINE_ALIGN_32_BYTES = 5,
632 	DMAENGINE_ALIGN_64_BYTES = 6,
633 };
634 
635 /**
636  * struct dma_slave_map - associates slave device and it's slave channel with
637  * parameter to be used by a filter function
638  * @devname: name of the device
639  * @slave: slave channel name
640  * @param: opaque parameter to pass to struct dma_filter.fn
641  */
642 struct dma_slave_map {
643 	const char *devname;
644 	const char *slave;
645 	void *param;
646 };
647 
648 /**
649  * struct dma_filter - information for slave device/channel to filter_fn/param
650  * mapping
651  * @fn: filter function callback
652  * @mapcnt: number of slave device/channel in the map
653  * @map: array of channel to filter mapping data
654  */
655 struct dma_filter {
656 	dma_filter_fn fn;
657 	int mapcnt;
658 	const struct dma_slave_map *map;
659 };
660 
661 /**
662  * struct dma_device - info on the entity supplying DMA services
663  * @chancnt: how many DMA channels are supported
664  * @privatecnt: how many DMA channels are requested by dma_request_channel
665  * @channels: the list of struct dma_chan
666  * @global_node: list_head for global dma_device_list
667  * @filter: information for device/slave to filter function/param mapping
668  * @cap_mask: one or more dma_capability flags
669  * @max_xor: maximum number of xor sources, 0 if no capability
670  * @max_pq: maximum number of PQ sources and PQ-continue capability
671  * @copy_align: alignment shift for memcpy operations
672  * @xor_align: alignment shift for xor operations
673  * @pq_align: alignment shift for pq operations
674  * @fill_align: alignment shift for memset operations
675  * @dev_id: unique device ID
676  * @dev: struct device reference for dma mapping api
677  * @src_addr_widths: bit mask of src addr widths the device supports
678  *	Width is specified in bytes, e.g. for a device supporting
679  *	a width of 4 the mask should have BIT(4) set.
680  * @dst_addr_widths: bit mask of dst addr widths the device supports
681  * @directions: bit mask of slave directions the device supports.
682  *	Since the enum dma_transfer_direction is not defined as bit flag for
683  *	each type, the dma controller should set BIT(<TYPE>) and same
684  *	should be checked by controller as well
685  * @max_burst: max burst capability per-transfer
686  * @residue_granularity: granularity of the transfer residue reported
687  *	by tx_status
688  * @device_alloc_chan_resources: allocate resources and return the
689  *	number of allocated descriptors
690  * @device_free_chan_resources: release DMA channel's resources
691  * @device_prep_dma_memcpy: prepares a memcpy operation
692  * @device_prep_dma_xor: prepares a xor operation
693  * @device_prep_dma_xor_val: prepares a xor validation operation
694  * @device_prep_dma_pq: prepares a pq operation
695  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
696  * @device_prep_dma_memset: prepares a memset operation
697  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
698  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
699  * @device_prep_slave_sg: prepares a slave dma operation
700  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
701  *	The function takes a buffer of size buf_len. The callback function will
702  *	be called after period_len bytes have been transferred.
703  * @device_prep_interleaved_dma: Transfer expression in a generic way.
704  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
705  * @device_config: Pushes a new configuration to a channel, return 0 or an error
706  *	code
707  * @device_pause: Pauses any transfer happening on a channel. Returns
708  *	0 or an error code
709  * @device_resume: Resumes any transfer on a channel previously
710  *	paused. Returns 0 or an error code
711  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
712  *	or an error code
713  * @device_synchronize: Synchronizes the termination of a transfers to the
714  *  current context.
715  * @device_tx_status: poll for transaction completion, the optional
716  *	txstate parameter can be supplied with a pointer to get a
717  *	struct with auxiliary transfer status information, otherwise the call
718  *	will just return a simple status code
719  * @device_issue_pending: push pending transactions to hardware
720  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
721  */
722 struct dma_device {
723 
724 	unsigned int chancnt;
725 	unsigned int privatecnt;
726 	struct list_head channels;
727 	struct list_head global_node;
728 	struct dma_filter filter;
729 	dma_cap_mask_t  cap_mask;
730 	unsigned short max_xor;
731 	unsigned short max_pq;
732 	enum dmaengine_alignment copy_align;
733 	enum dmaengine_alignment xor_align;
734 	enum dmaengine_alignment pq_align;
735 	enum dmaengine_alignment fill_align;
736 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
737 
738 	int dev_id;
739 	struct device *dev;
740 
741 	u32 src_addr_widths;
742 	u32 dst_addr_widths;
743 	u32 directions;
744 	u32 max_burst;
745 	bool descriptor_reuse;
746 	enum dma_residue_granularity residue_granularity;
747 
748 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
749 	void (*device_free_chan_resources)(struct dma_chan *chan);
750 
751 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
752 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
753 		size_t len, unsigned long flags);
754 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
755 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
756 		unsigned int src_cnt, size_t len, unsigned long flags);
757 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
758 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
759 		size_t len, enum sum_check_flags *result, unsigned long flags);
760 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
761 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
762 		unsigned int src_cnt, const unsigned char *scf,
763 		size_t len, unsigned long flags);
764 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
765 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
766 		unsigned int src_cnt, const unsigned char *scf, size_t len,
767 		enum sum_check_flags *pqres, unsigned long flags);
768 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
769 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
770 		unsigned long flags);
771 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
772 		struct dma_chan *chan, struct scatterlist *sg,
773 		unsigned int nents, int value, unsigned long flags);
774 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
775 		struct dma_chan *chan, unsigned long flags);
776 
777 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
778 		struct dma_chan *chan, struct scatterlist *sgl,
779 		unsigned int sg_len, enum dma_transfer_direction direction,
780 		unsigned long flags, void *context);
781 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
782 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
783 		size_t period_len, enum dma_transfer_direction direction,
784 		unsigned long flags);
785 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
786 		struct dma_chan *chan, struct dma_interleaved_template *xt,
787 		unsigned long flags);
788 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
789 		struct dma_chan *chan, dma_addr_t dst, u64 data,
790 		unsigned long flags);
791 
792 	int (*device_config)(struct dma_chan *chan,
793 			     struct dma_slave_config *config);
794 	int (*device_pause)(struct dma_chan *chan);
795 	int (*device_resume)(struct dma_chan *chan);
796 	int (*device_terminate_all)(struct dma_chan *chan);
797 	void (*device_synchronize)(struct dma_chan *chan);
798 
799 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
800 					    dma_cookie_t cookie,
801 					    struct dma_tx_state *txstate);
802 	void (*device_issue_pending)(struct dma_chan *chan);
803 };
804 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)805 static inline int dmaengine_slave_config(struct dma_chan *chan,
806 					  struct dma_slave_config *config)
807 {
808 	if (chan->device->device_config)
809 		return chan->device->device_config(chan, config);
810 
811 	return -ENOSYS;
812 }
813 
is_slave_direction(enum dma_transfer_direction direction)814 static inline bool is_slave_direction(enum dma_transfer_direction direction)
815 {
816 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
817 }
818 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)819 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
820 	struct dma_chan *chan, dma_addr_t buf, size_t len,
821 	enum dma_transfer_direction dir, unsigned long flags)
822 {
823 	struct scatterlist sg;
824 	sg_init_table(&sg, 1);
825 	sg_dma_address(&sg) = buf;
826 	sg_dma_len(&sg) = len;
827 
828 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
829 		return NULL;
830 
831 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
832 						  dir, flags, NULL);
833 }
834 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)835 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
836 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
837 	enum dma_transfer_direction dir, unsigned long flags)
838 {
839 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
840 		return NULL;
841 
842 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
843 						  dir, flags, NULL);
844 }
845 
846 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
847 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)848 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
849 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
850 	enum dma_transfer_direction dir, unsigned long flags,
851 	struct rio_dma_ext *rio_ext)
852 {
853 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
854 		return NULL;
855 
856 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
857 						  dir, flags, rio_ext);
858 }
859 #endif
860 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)861 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
862 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
863 		size_t period_len, enum dma_transfer_direction dir,
864 		unsigned long flags)
865 {
866 	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
867 		return NULL;
868 
869 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
870 						period_len, dir, flags);
871 }
872 
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)873 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
874 		struct dma_chan *chan, struct dma_interleaved_template *xt,
875 		unsigned long flags)
876 {
877 	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
878 		return NULL;
879 
880 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
881 }
882 
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)883 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
884 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
885 		unsigned long flags)
886 {
887 	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
888 		return NULL;
889 
890 	return chan->device->device_prep_dma_memset(chan, dest, value,
891 						    len, flags);
892 }
893 
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)894 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
895 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
896 		size_t len, unsigned long flags)
897 {
898 	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
899 		return NULL;
900 
901 	return chan->device->device_prep_dma_memcpy(chan, dest, src,
902 						    len, flags);
903 }
904 
905 /**
906  * dmaengine_terminate_all() - Terminate all active DMA transfers
907  * @chan: The channel for which to terminate the transfers
908  *
909  * This function is DEPRECATED use either dmaengine_terminate_sync() or
910  * dmaengine_terminate_async() instead.
911  */
dmaengine_terminate_all(struct dma_chan * chan)912 static inline int dmaengine_terminate_all(struct dma_chan *chan)
913 {
914 	if (chan->device->device_terminate_all)
915 		return chan->device->device_terminate_all(chan);
916 
917 	return -ENOSYS;
918 }
919 
920 /**
921  * dmaengine_terminate_async() - Terminate all active DMA transfers
922  * @chan: The channel for which to terminate the transfers
923  *
924  * Calling this function will terminate all active and pending descriptors
925  * that have previously been submitted to the channel. It is not guaranteed
926  * though that the transfer for the active descriptor has stopped when the
927  * function returns. Furthermore it is possible the complete callback of a
928  * submitted transfer is still running when this function returns.
929  *
930  * dmaengine_synchronize() needs to be called before it is safe to free
931  * any memory that is accessed by previously submitted descriptors or before
932  * freeing any resources accessed from within the completion callback of any
933  * perviously submitted descriptors.
934  *
935  * This function can be called from atomic context as well as from within a
936  * complete callback of a descriptor submitted on the same channel.
937  *
938  * If none of the two conditions above apply consider using
939  * dmaengine_terminate_sync() instead.
940  */
dmaengine_terminate_async(struct dma_chan * chan)941 static inline int dmaengine_terminate_async(struct dma_chan *chan)
942 {
943 	if (chan->device->device_terminate_all)
944 		return chan->device->device_terminate_all(chan);
945 
946 	return -EINVAL;
947 }
948 
949 /**
950  * dmaengine_synchronize() - Synchronize DMA channel termination
951  * @chan: The channel to synchronize
952  *
953  * Synchronizes to the DMA channel termination to the current context. When this
954  * function returns it is guaranteed that all transfers for previously issued
955  * descriptors have stopped and and it is safe to free the memory assoicated
956  * with them. Furthermore it is guaranteed that all complete callback functions
957  * for a previously submitted descriptor have finished running and it is safe to
958  * free resources accessed from within the complete callbacks.
959  *
960  * The behavior of this function is undefined if dma_async_issue_pending() has
961  * been called between dmaengine_terminate_async() and this function.
962  *
963  * This function must only be called from non-atomic context and must not be
964  * called from within a complete callback of a descriptor submitted on the same
965  * channel.
966  */
dmaengine_synchronize(struct dma_chan * chan)967 static inline void dmaengine_synchronize(struct dma_chan *chan)
968 {
969 	might_sleep();
970 
971 	if (chan->device->device_synchronize)
972 		chan->device->device_synchronize(chan);
973 }
974 
975 /**
976  * dmaengine_terminate_sync() - Terminate all active DMA transfers
977  * @chan: The channel for which to terminate the transfers
978  *
979  * Calling this function will terminate all active and pending transfers
980  * that have previously been submitted to the channel. It is similar to
981  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
982  * stopped and that all complete callbacks have finished running when the
983  * function returns.
984  *
985  * This function must only be called from non-atomic context and must not be
986  * called from within a complete callback of a descriptor submitted on the same
987  * channel.
988  */
dmaengine_terminate_sync(struct dma_chan * chan)989 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
990 {
991 	int ret;
992 
993 	ret = dmaengine_terminate_async(chan);
994 	if (ret)
995 		return ret;
996 
997 	dmaengine_synchronize(chan);
998 
999 	return 0;
1000 }
1001 
dmaengine_pause(struct dma_chan * chan)1002 static inline int dmaengine_pause(struct dma_chan *chan)
1003 {
1004 	if (chan->device->device_pause)
1005 		return chan->device->device_pause(chan);
1006 
1007 	return -ENOSYS;
1008 }
1009 
dmaengine_resume(struct dma_chan * chan)1010 static inline int dmaengine_resume(struct dma_chan *chan)
1011 {
1012 	if (chan->device->device_resume)
1013 		return chan->device->device_resume(chan);
1014 
1015 	return -ENOSYS;
1016 }
1017 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1018 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1019 	dma_cookie_t cookie, struct dma_tx_state *state)
1020 {
1021 	return chan->device->device_tx_status(chan, cookie, state);
1022 }
1023 
dmaengine_submit(struct dma_async_tx_descriptor * desc)1024 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1025 {
1026 	return desc->tx_submit(desc);
1027 }
1028 
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1029 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1030 					 size_t off1, size_t off2, size_t len)
1031 {
1032 	size_t mask;
1033 
1034 	if (!align)
1035 		return true;
1036 	mask = (1 << align) - 1;
1037 	if (mask & (off1 | off2 | len))
1038 		return false;
1039 	return true;
1040 }
1041 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1042 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1043 				       size_t off2, size_t len)
1044 {
1045 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1046 }
1047 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1048 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1049 				      size_t off2, size_t len)
1050 {
1051 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1052 }
1053 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1054 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1055 				     size_t off2, size_t len)
1056 {
1057 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1058 }
1059 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1060 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1061 				       size_t off2, size_t len)
1062 {
1063 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1064 }
1065 
1066 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1067 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1068 {
1069 	dma->max_pq = maxpq;
1070 	if (has_pq_continue)
1071 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1072 }
1073 
dmaf_continue(enum dma_ctrl_flags flags)1074 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1075 {
1076 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1077 }
1078 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1079 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1080 {
1081 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1082 
1083 	return (flags & mask) == mask;
1084 }
1085 
dma_dev_has_pq_continue(struct dma_device * dma)1086 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1087 {
1088 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1089 }
1090 
dma_dev_to_maxpq(struct dma_device * dma)1091 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1092 {
1093 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1094 }
1095 
1096 /* dma_maxpq - reduce maxpq in the face of continued operations
1097  * @dma - dma device with PQ capability
1098  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1099  *
1100  * When an engine does not support native continuation we need 3 extra
1101  * source slots to reuse P and Q with the following coefficients:
1102  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1103  * 2/ {01} * Q : use Q to continue Q' calculation
1104  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1105  *
1106  * In the case where P is disabled we only need 1 extra source:
1107  * 1/ {01} * Q : use Q to continue Q' calculation
1108  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1109 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1110 {
1111 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1112 		return dma_dev_to_maxpq(dma);
1113 	else if (dmaf_p_disabled_continue(flags))
1114 		return dma_dev_to_maxpq(dma) - 1;
1115 	else if (dmaf_continue(flags))
1116 		return dma_dev_to_maxpq(dma) - 3;
1117 	BUG();
1118 }
1119 
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1120 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1121 				      size_t dir_icg)
1122 {
1123 	if (inc) {
1124 		if (dir_icg)
1125 			return dir_icg;
1126 		else if (sgl)
1127 			return icg;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1133 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1134 					   struct data_chunk *chunk)
1135 {
1136 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1137 				 chunk->icg, chunk->dst_icg);
1138 }
1139 
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1140 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1141 					   struct data_chunk *chunk)
1142 {
1143 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1144 				 chunk->icg, chunk->src_icg);
1145 }
1146 
1147 /* --- public DMA engine API --- */
1148 
1149 #ifdef CONFIG_DMA_ENGINE
1150 void dmaengine_get(void);
1151 void dmaengine_put(void);
1152 #else
dmaengine_get(void)1153 static inline void dmaengine_get(void)
1154 {
1155 }
dmaengine_put(void)1156 static inline void dmaengine_put(void)
1157 {
1158 }
1159 #endif
1160 
1161 #ifdef CONFIG_ASYNC_TX_DMA
1162 #define async_dmaengine_get()	dmaengine_get()
1163 #define async_dmaengine_put()	dmaengine_put()
1164 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1165 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1166 #else
1167 #define async_dma_find_channel(type) dma_find_channel(type)
1168 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1169 #else
async_dmaengine_get(void)1170 static inline void async_dmaengine_get(void)
1171 {
1172 }
async_dmaengine_put(void)1173 static inline void async_dmaengine_put(void)
1174 {
1175 }
1176 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1177 async_dma_find_channel(enum dma_transaction_type type)
1178 {
1179 	return NULL;
1180 }
1181 #endif /* CONFIG_ASYNC_TX_DMA */
1182 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1183 				  struct dma_chan *chan);
1184 
async_tx_ack(struct dma_async_tx_descriptor * tx)1185 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1186 {
1187 	tx->flags |= DMA_CTRL_ACK;
1188 }
1189 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1190 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1191 {
1192 	tx->flags &= ~DMA_CTRL_ACK;
1193 }
1194 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1195 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1196 {
1197 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1198 }
1199 
1200 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1201 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1202 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1203 {
1204 	set_bit(tx_type, dstp->bits);
1205 }
1206 
1207 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1208 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1209 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1210 {
1211 	clear_bit(tx_type, dstp->bits);
1212 }
1213 
1214 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1215 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1216 {
1217 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1218 }
1219 
1220 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1221 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1222 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1223 {
1224 	return test_bit(tx_type, srcp->bits);
1225 }
1226 
1227 #define for_each_dma_cap_mask(cap, mask) \
1228 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1229 
1230 /**
1231  * dma_async_issue_pending - flush pending transactions to HW
1232  * @chan: target DMA channel
1233  *
1234  * This allows drivers to push copies to HW in batches,
1235  * reducing MMIO writes where possible.
1236  */
dma_async_issue_pending(struct dma_chan * chan)1237 static inline void dma_async_issue_pending(struct dma_chan *chan)
1238 {
1239 	chan->device->device_issue_pending(chan);
1240 }
1241 
1242 /**
1243  * dma_async_is_tx_complete - poll for transaction completion
1244  * @chan: DMA channel
1245  * @cookie: transaction identifier to check status of
1246  * @last: returns last completed cookie, can be NULL
1247  * @used: returns last issued cookie, can be NULL
1248  *
1249  * If @last and @used are passed in, upon return they reflect the driver
1250  * internal state and can be used with dma_async_is_complete() to check
1251  * the status of multiple cookies without re-checking hardware state.
1252  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1253 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1254 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1255 {
1256 	struct dma_tx_state state;
1257 	enum dma_status status;
1258 
1259 	status = chan->device->device_tx_status(chan, cookie, &state);
1260 	if (last)
1261 		*last = state.last;
1262 	if (used)
1263 		*used = state.used;
1264 	return status;
1265 }
1266 
1267 /**
1268  * dma_async_is_complete - test a cookie against chan state
1269  * @cookie: transaction identifier to test status of
1270  * @last_complete: last know completed transaction
1271  * @last_used: last cookie value handed out
1272  *
1273  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1274  * the test logic is separated for lightweight testing of multiple cookies
1275  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1276 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1277 			dma_cookie_t last_complete, dma_cookie_t last_used)
1278 {
1279 	if (last_complete <= last_used) {
1280 		if ((cookie <= last_complete) || (cookie > last_used))
1281 			return DMA_COMPLETE;
1282 	} else {
1283 		if ((cookie <= last_complete) && (cookie > last_used))
1284 			return DMA_COMPLETE;
1285 	}
1286 	return DMA_IN_PROGRESS;
1287 }
1288 
1289 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1290 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1291 {
1292 	if (st) {
1293 		st->last = last;
1294 		st->used = used;
1295 		st->residue = residue;
1296 	}
1297 }
1298 
1299 #ifdef CONFIG_DMA_ENGINE
1300 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1301 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1302 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1303 void dma_issue_pending_all(void);
1304 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1305 				       dma_filter_fn fn, void *fn_param,
1306 				       struct device_node *np);
1307 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1308 
1309 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1310 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1311 
1312 void dma_release_channel(struct dma_chan *chan);
1313 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1314 #else
dma_find_channel(enum dma_transaction_type tx_type)1315 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1316 {
1317 	return NULL;
1318 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1319 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1320 {
1321 	return DMA_COMPLETE;
1322 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1323 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1324 {
1325 	return DMA_COMPLETE;
1326 }
dma_issue_pending_all(void)1327 static inline void dma_issue_pending_all(void)
1328 {
1329 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1330 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1331 						     dma_filter_fn fn,
1332 						     void *fn_param,
1333 						     struct device_node *np)
1334 {
1335 	return NULL;
1336 }
dma_request_slave_channel(struct device * dev,const char * name)1337 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1338 							 const char *name)
1339 {
1340 	return NULL;
1341 }
dma_request_chan(struct device * dev,const char * name)1342 static inline struct dma_chan *dma_request_chan(struct device *dev,
1343 						const char *name)
1344 {
1345 	return ERR_PTR(-ENODEV);
1346 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1347 static inline struct dma_chan *dma_request_chan_by_mask(
1348 						const dma_cap_mask_t *mask)
1349 {
1350 	return ERR_PTR(-ENODEV);
1351 }
dma_release_channel(struct dma_chan * chan)1352 static inline void dma_release_channel(struct dma_chan *chan)
1353 {
1354 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1355 static inline int dma_get_slave_caps(struct dma_chan *chan,
1356 				     struct dma_slave_caps *caps)
1357 {
1358 	return -ENXIO;
1359 }
1360 #endif
1361 
1362 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1363 
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1364 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1365 {
1366 	struct dma_slave_caps caps;
1367 	int ret;
1368 
1369 	ret = dma_get_slave_caps(tx->chan, &caps);
1370 	if (ret)
1371 		return ret;
1372 
1373 	if (caps.descriptor_reuse) {
1374 		tx->flags |= DMA_CTRL_REUSE;
1375 		return 0;
1376 	} else {
1377 		return -EPERM;
1378 	}
1379 }
1380 
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1381 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1382 {
1383 	tx->flags &= ~DMA_CTRL_REUSE;
1384 }
1385 
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1386 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1387 {
1388 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1389 }
1390 
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1391 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1392 {
1393 	/* this is supported for reusable desc, so check that */
1394 	if (dmaengine_desc_test_reuse(desc))
1395 		return desc->desc_free(desc);
1396 	else
1397 		return -EPERM;
1398 }
1399 
1400 /* --- DMA device --- */
1401 
1402 int dma_async_device_register(struct dma_device *device);
1403 int dmaenginem_async_device_register(struct dma_device *device);
1404 void dma_async_device_unregister(struct dma_device *device);
1405 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1406 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1407 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1408 #define dma_request_channel(mask, x, y) \
1409 	__dma_request_channel(&(mask), x, y, NULL)
1410 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1411 	__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1412 
1413 static inline struct dma_chan
__dma_request_slave_channel_compat(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1414 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1415 				  dma_filter_fn fn, void *fn_param,
1416 				  struct device *dev, const char *name)
1417 {
1418 	struct dma_chan *chan;
1419 
1420 	chan = dma_request_slave_channel(dev, name);
1421 	if (chan)
1422 		return chan;
1423 
1424 	if (!fn || !fn_param)
1425 		return NULL;
1426 
1427 	return __dma_request_channel(mask, fn, fn_param, NULL);
1428 }
1429 #endif /* DMAENGINE_H */
1430