1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/namei.h>
48
49 /* [Feb-1997 T. Schoebel-Theuer]
50 * Fundamental changes in the pathname lookup mechanisms (namei)
51 * were necessary because of omirr. The reason is that omirr needs
52 * to know the _real_ pathname, not the user-supplied one, in case
53 * of symlinks (and also when transname replacements occur).
54 *
55 * The new code replaces the old recursive symlink resolution with
56 * an iterative one (in case of non-nested symlink chains). It does
57 * this with calls to <fs>_follow_link().
58 * As a side effect, dir_namei(), _namei() and follow_link() are now
59 * replaced with a single function lookup_dentry() that can handle all
60 * the special cases of the former code.
61 *
62 * With the new dcache, the pathname is stored at each inode, at least as
63 * long as the refcount of the inode is positive. As a side effect, the
64 * size of the dcache depends on the inode cache and thus is dynamic.
65 *
66 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
67 * resolution to correspond with current state of the code.
68 *
69 * Note that the symlink resolution is not *completely* iterative.
70 * There is still a significant amount of tail- and mid- recursion in
71 * the algorithm. Also, note that <fs>_readlink() is not used in
72 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
73 * may return different results than <fs>_follow_link(). Many virtual
74 * filesystems (including /proc) exhibit this behavior.
75 */
76
77 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
78 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
79 * and the name already exists in form of a symlink, try to create the new
80 * name indicated by the symlink. The old code always complained that the
81 * name already exists, due to not following the symlink even if its target
82 * is nonexistent. The new semantics affects also mknod() and link() when
83 * the name is a symlink pointing to a non-existent name.
84 *
85 * I don't know which semantics is the right one, since I have no access
86 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
87 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
88 * "old" one. Personally, I think the new semantics is much more logical.
89 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
90 * file does succeed in both HP-UX and SunOs, but not in Solaris
91 * and in the old Linux semantics.
92 */
93
94 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
95 * semantics. See the comments in "open_namei" and "do_link" below.
96 *
97 * [10-Sep-98 Alan Modra] Another symlink change.
98 */
99
100 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
101 * inside the path - always follow.
102 * in the last component in creation/removal/renaming - never follow.
103 * if LOOKUP_FOLLOW passed - follow.
104 * if the pathname has trailing slashes - follow.
105 * otherwise - don't follow.
106 * (applied in that order).
107 *
108 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
109 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
110 * During the 2.4 we need to fix the userland stuff depending on it -
111 * hopefully we will be able to get rid of that wart in 2.5. So far only
112 * XEmacs seems to be relying on it...
113 */
114 /*
115 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
116 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
117 * any extra contention...
118 */
119
120 /* In order to reduce some races, while at the same time doing additional
121 * checking and hopefully speeding things up, we copy filenames to the
122 * kernel data space before using them..
123 *
124 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
125 * PATH_MAX includes the nul terminator --RR.
126 */
127
128 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
129
130 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)131 getname_flags(const char __user *filename, int flags, int *empty)
132 {
133 struct filename *result;
134 char *kname;
135 int len;
136
137 result = audit_reusename(filename);
138 if (result)
139 return result;
140
141 result = __getname();
142 if (unlikely(!result))
143 return ERR_PTR(-ENOMEM);
144
145 /*
146 * First, try to embed the struct filename inside the names_cache
147 * allocation
148 */
149 kname = (char *)result->iname;
150 result->name = kname;
151
152 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
153 if (unlikely(len < 0)) {
154 __putname(result);
155 return ERR_PTR(len);
156 }
157
158 /*
159 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
160 * separate struct filename so we can dedicate the entire
161 * names_cache allocation for the pathname, and re-do the copy from
162 * userland.
163 */
164 if (unlikely(len == EMBEDDED_NAME_MAX)) {
165 const size_t size = offsetof(struct filename, iname[1]);
166 kname = (char *)result;
167
168 /*
169 * size is chosen that way we to guarantee that
170 * result->iname[0] is within the same object and that
171 * kname can't be equal to result->iname, no matter what.
172 */
173 result = kzalloc(size, GFP_KERNEL);
174 if (unlikely(!result)) {
175 __putname(kname);
176 return ERR_PTR(-ENOMEM);
177 }
178 result->name = kname;
179 len = strncpy_from_user(kname, filename, PATH_MAX);
180 if (unlikely(len < 0)) {
181 __putname(kname);
182 kfree(result);
183 return ERR_PTR(len);
184 }
185 if (unlikely(len == PATH_MAX)) {
186 __putname(kname);
187 kfree(result);
188 return ERR_PTR(-ENAMETOOLONG);
189 }
190 }
191
192 result->refcnt = 1;
193 /* The empty path is special. */
194 if (unlikely(!len)) {
195 if (empty)
196 *empty = 1;
197 if (!(flags & LOOKUP_EMPTY)) {
198 putname(result);
199 return ERR_PTR(-ENOENT);
200 }
201 }
202
203 result->uptr = filename;
204 result->aname = NULL;
205 audit_getname(result);
206 return result;
207 }
208
209 struct filename *
getname(const char __user * filename)210 getname(const char __user * filename)
211 {
212 return getname_flags(filename, 0, NULL);
213 }
214
215 struct filename *
getname_kernel(const char * filename)216 getname_kernel(const char * filename)
217 {
218 struct filename *result;
219 int len = strlen(filename) + 1;
220
221 result = __getname();
222 if (unlikely(!result))
223 return ERR_PTR(-ENOMEM);
224
225 if (len <= EMBEDDED_NAME_MAX) {
226 result->name = (char *)result->iname;
227 } else if (len <= PATH_MAX) {
228 const size_t size = offsetof(struct filename, iname[1]);
229 struct filename *tmp;
230
231 tmp = kmalloc(size, GFP_KERNEL);
232 if (unlikely(!tmp)) {
233 __putname(result);
234 return ERR_PTR(-ENOMEM);
235 }
236 tmp->name = (char *)result;
237 result = tmp;
238 } else {
239 __putname(result);
240 return ERR_PTR(-ENAMETOOLONG);
241 }
242 memcpy((char *)result->name, filename, len);
243 result->uptr = NULL;
244 result->aname = NULL;
245 result->refcnt = 1;
246 audit_getname(result);
247
248 return result;
249 }
250
putname(struct filename * name)251 void putname(struct filename *name)
252 {
253 BUG_ON(name->refcnt <= 0);
254
255 if (--name->refcnt > 0)
256 return;
257
258 if (name->name != name->iname) {
259 __putname(name->name);
260 kfree(name);
261 } else
262 __putname(name);
263 }
264
check_acl(struct inode * inode,int mask)265 static int check_acl(struct inode *inode, int mask)
266 {
267 #ifdef CONFIG_FS_POSIX_ACL
268 struct posix_acl *acl;
269
270 if (mask & MAY_NOT_BLOCK) {
271 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
272 if (!acl)
273 return -EAGAIN;
274 /* no ->get_acl() calls in RCU mode... */
275 if (is_uncached_acl(acl))
276 return -ECHILD;
277 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
278 }
279
280 acl = get_acl(inode, ACL_TYPE_ACCESS);
281 if (IS_ERR(acl))
282 return PTR_ERR(acl);
283 if (acl) {
284 int error = posix_acl_permission(inode, acl, mask);
285 posix_acl_release(acl);
286 return error;
287 }
288 #endif
289
290 return -EAGAIN;
291 }
292
293 /*
294 * This does the basic permission checking
295 */
acl_permission_check(struct inode * inode,int mask)296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 unsigned int mode = inode->i_mode;
299
300 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
301 mode >>= 6;
302 else {
303 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
304 int error = check_acl(inode, mask);
305 if (error != -EAGAIN)
306 return error;
307 }
308
309 if (in_group_p(inode->i_gid))
310 mode >>= 3;
311 }
312
313 /*
314 * If the DACs are ok we don't need any capability check.
315 */
316 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
317 return 0;
318 return -EACCES;
319 }
320
321 /**
322 * generic_permission - check for access rights on a Posix-like filesystem
323 * @inode: inode to check access rights for
324 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
325 *
326 * Used to check for read/write/execute permissions on a file.
327 * We use "fsuid" for this, letting us set arbitrary permissions
328 * for filesystem access without changing the "normal" uids which
329 * are used for other things.
330 *
331 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
332 * request cannot be satisfied (eg. requires blocking or too much complexity).
333 * It would then be called again in ref-walk mode.
334 */
generic_permission(struct inode * inode,int mask)335 int generic_permission(struct inode *inode, int mask)
336 {
337 int ret;
338
339 /*
340 * Do the basic permission checks.
341 */
342 ret = acl_permission_check(inode, mask);
343 if (ret != -EACCES)
344 return ret;
345
346 if (S_ISDIR(inode->i_mode)) {
347 /* DACs are overridable for directories */
348 if (!(mask & MAY_WRITE))
349 if (capable_wrt_inode_uidgid(inode,
350 CAP_DAC_READ_SEARCH))
351 return 0;
352 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
353 return 0;
354 return -EACCES;
355 }
356
357 /*
358 * Searching includes executable on directories, else just read.
359 */
360 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
361 if (mask == MAY_READ)
362 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
363 return 0;
364 /*
365 * Read/write DACs are always overridable.
366 * Executable DACs are overridable when there is
367 * at least one exec bit set.
368 */
369 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
370 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
371 return 0;
372
373 return -EACCES;
374 }
375 EXPORT_SYMBOL(generic_permission);
376
377 /*
378 * We _really_ want to just do "generic_permission()" without
379 * even looking at the inode->i_op values. So we keep a cache
380 * flag in inode->i_opflags, that says "this has not special
381 * permission function, use the fast case".
382 */
do_inode_permission(struct vfsmount * mnt,struct inode * inode,int mask)383 static inline int do_inode_permission(struct vfsmount *mnt, struct inode *inode, int mask)
384 {
385 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
386 if (likely(mnt && inode->i_op->permission2))
387 return inode->i_op->permission2(mnt, inode, mask);
388 if (likely(inode->i_op->permission))
389 return inode->i_op->permission(inode, mask);
390
391 /* This gets set once for the inode lifetime */
392 spin_lock(&inode->i_lock);
393 inode->i_opflags |= IOP_FASTPERM;
394 spin_unlock(&inode->i_lock);
395 }
396 return generic_permission(inode, mask);
397 }
398
399 /**
400 * sb_permission - Check superblock-level permissions
401 * @sb: Superblock of inode to check permission on
402 * @inode: Inode to check permission on
403 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
404 *
405 * Separate out file-system wide checks from inode-specific permission checks.
406 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)407 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
408 {
409 if (unlikely(mask & MAY_WRITE)) {
410 umode_t mode = inode->i_mode;
411
412 /* Nobody gets write access to a read-only fs. */
413 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
414 return -EROFS;
415 }
416 return 0;
417 }
418
419 /**
420 * inode_permission2 - Check for access rights to a given inode
421 * @mnt:
422 * @inode: Inode to check permission on
423 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
424 *
425 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
426 * this, letting us set arbitrary permissions for filesystem access without
427 * changing the "normal" UIDs which are used for other things.
428 *
429 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
430 */
inode_permission2(struct vfsmount * mnt,struct inode * inode,int mask)431 int inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
432 {
433 int retval;
434
435 retval = sb_permission(inode->i_sb, inode, mask);
436 if (retval)
437 return retval;
438
439 if (unlikely(mask & MAY_WRITE)) {
440 /*
441 * Nobody gets write access to an immutable file.
442 */
443 if (IS_IMMUTABLE(inode))
444 return -EPERM;
445
446 /*
447 * Updating mtime will likely cause i_uid and i_gid to be
448 * written back improperly if their true value is unknown
449 * to the vfs.
450 */
451 if (HAS_UNMAPPED_ID(inode))
452 return -EACCES;
453 }
454
455 retval = do_inode_permission(mnt, inode, mask);
456 if (retval)
457 return retval;
458
459 retval = devcgroup_inode_permission(inode, mask);
460 if (retval)
461 return retval;
462
463 retval = security_inode_permission(inode, mask);
464 return retval;
465 }
466 EXPORT_SYMBOL(inode_permission2);
467
inode_permission(struct inode * inode,int mask)468 int inode_permission(struct inode *inode, int mask)
469 {
470 return inode_permission2(NULL, inode, mask);
471 }
472 EXPORT_SYMBOL(inode_permission);
473
474 /**
475 * path_get - get a reference to a path
476 * @path: path to get the reference to
477 *
478 * Given a path increment the reference count to the dentry and the vfsmount.
479 */
path_get(const struct path * path)480 void path_get(const struct path *path)
481 {
482 mntget(path->mnt);
483 dget(path->dentry);
484 }
485 EXPORT_SYMBOL(path_get);
486
487 /**
488 * path_put - put a reference to a path
489 * @path: path to put the reference to
490 *
491 * Given a path decrement the reference count to the dentry and the vfsmount.
492 */
path_put(const struct path * path)493 void path_put(const struct path *path)
494 {
495 dput(path->dentry);
496 mntput(path->mnt);
497 }
498 EXPORT_SYMBOL(path_put);
499
500 #define EMBEDDED_LEVELS 2
501 struct nameidata {
502 struct path path;
503 struct qstr last;
504 struct path root;
505 struct inode *inode; /* path.dentry.d_inode */
506 unsigned int flags;
507 unsigned seq, m_seq;
508 int last_type;
509 unsigned depth;
510 int total_link_count;
511 struct saved {
512 struct path link;
513 struct delayed_call done;
514 const char *name;
515 unsigned seq;
516 } *stack, internal[EMBEDDED_LEVELS];
517 struct filename *name;
518 struct nameidata *saved;
519 struct inode *link_inode;
520 unsigned root_seq;
521 int dfd;
522 } __randomize_layout;
523
set_nameidata(struct nameidata * p,int dfd,struct filename * name)524 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
525 {
526 struct nameidata *old = current->nameidata;
527 p->stack = p->internal;
528 p->dfd = dfd;
529 p->name = name;
530 p->total_link_count = old ? old->total_link_count : 0;
531 p->saved = old;
532 current->nameidata = p;
533 }
534
restore_nameidata(void)535 static void restore_nameidata(void)
536 {
537 struct nameidata *now = current->nameidata, *old = now->saved;
538
539 current->nameidata = old;
540 if (old)
541 old->total_link_count = now->total_link_count;
542 if (now->stack != now->internal)
543 kfree(now->stack);
544 }
545
__nd_alloc_stack(struct nameidata * nd)546 static int __nd_alloc_stack(struct nameidata *nd)
547 {
548 struct saved *p;
549
550 if (nd->flags & LOOKUP_RCU) {
551 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
552 GFP_ATOMIC);
553 if (unlikely(!p))
554 return -ECHILD;
555 } else {
556 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
557 GFP_KERNEL);
558 if (unlikely(!p))
559 return -ENOMEM;
560 }
561 memcpy(p, nd->internal, sizeof(nd->internal));
562 nd->stack = p;
563 return 0;
564 }
565
566 /**
567 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
568 * @path: nameidate to verify
569 *
570 * Rename can sometimes move a file or directory outside of a bind
571 * mount, path_connected allows those cases to be detected.
572 */
path_connected(const struct path * path)573 static bool path_connected(const struct path *path)
574 {
575 struct vfsmount *mnt = path->mnt;
576 struct super_block *sb = mnt->mnt_sb;
577
578 /* Bind mounts and multi-root filesystems can have disconnected paths */
579 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
580 return true;
581
582 return is_subdir(path->dentry, mnt->mnt_root);
583 }
584
nd_alloc_stack(struct nameidata * nd)585 static inline int nd_alloc_stack(struct nameidata *nd)
586 {
587 if (likely(nd->depth != EMBEDDED_LEVELS))
588 return 0;
589 if (likely(nd->stack != nd->internal))
590 return 0;
591 return __nd_alloc_stack(nd);
592 }
593
drop_links(struct nameidata * nd)594 static void drop_links(struct nameidata *nd)
595 {
596 int i = nd->depth;
597 while (i--) {
598 struct saved *last = nd->stack + i;
599 do_delayed_call(&last->done);
600 clear_delayed_call(&last->done);
601 }
602 }
603
terminate_walk(struct nameidata * nd)604 static void terminate_walk(struct nameidata *nd)
605 {
606 drop_links(nd);
607 if (!(nd->flags & LOOKUP_RCU)) {
608 int i;
609 path_put(&nd->path);
610 for (i = 0; i < nd->depth; i++)
611 path_put(&nd->stack[i].link);
612 if (nd->flags & LOOKUP_ROOT_GRABBED) {
613 path_put(&nd->root);
614 nd->flags &= ~LOOKUP_ROOT_GRABBED;
615 }
616 } else {
617 nd->flags &= ~LOOKUP_RCU;
618 rcu_read_unlock();
619 }
620 nd->depth = 0;
621 }
622
623 /* path_put is needed afterwards regardless of success or failure */
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)624 static bool legitimize_path(struct nameidata *nd,
625 struct path *path, unsigned seq)
626 {
627 int res = __legitimize_mnt(path->mnt, nd->m_seq);
628 if (unlikely(res)) {
629 if (res > 0)
630 path->mnt = NULL;
631 path->dentry = NULL;
632 return false;
633 }
634 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
635 path->dentry = NULL;
636 return false;
637 }
638 return !read_seqcount_retry(&path->dentry->d_seq, seq);
639 }
640
legitimize_links(struct nameidata * nd)641 static bool legitimize_links(struct nameidata *nd)
642 {
643 int i;
644 for (i = 0; i < nd->depth; i++) {
645 struct saved *last = nd->stack + i;
646 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
647 drop_links(nd);
648 nd->depth = i + 1;
649 return false;
650 }
651 }
652 return true;
653 }
654
legitimize_root(struct nameidata * nd)655 static bool legitimize_root(struct nameidata *nd)
656 {
657 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
658 return true;
659 nd->flags |= LOOKUP_ROOT_GRABBED;
660 return legitimize_path(nd, &nd->root, nd->root_seq);
661 }
662
663 /*
664 * Path walking has 2 modes, rcu-walk and ref-walk (see
665 * Documentation/filesystems/path-lookup.txt). In situations when we can't
666 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
667 * normal reference counts on dentries and vfsmounts to transition to ref-walk
668 * mode. Refcounts are grabbed at the last known good point before rcu-walk
669 * got stuck, so ref-walk may continue from there. If this is not successful
670 * (eg. a seqcount has changed), then failure is returned and it's up to caller
671 * to restart the path walk from the beginning in ref-walk mode.
672 */
673
674 /**
675 * unlazy_walk - try to switch to ref-walk mode.
676 * @nd: nameidata pathwalk data
677 * Returns: 0 on success, -ECHILD on failure
678 *
679 * unlazy_walk attempts to legitimize the current nd->path and nd->root
680 * for ref-walk mode.
681 * Must be called from rcu-walk context.
682 * Nothing should touch nameidata between unlazy_walk() failure and
683 * terminate_walk().
684 */
unlazy_walk(struct nameidata * nd)685 static int unlazy_walk(struct nameidata *nd)
686 {
687 struct dentry *parent = nd->path.dentry;
688
689 BUG_ON(!(nd->flags & LOOKUP_RCU));
690
691 nd->flags &= ~LOOKUP_RCU;
692 if (unlikely(!legitimize_links(nd)))
693 goto out1;
694 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
695 goto out;
696 if (unlikely(!legitimize_root(nd)))
697 goto out;
698 rcu_read_unlock();
699 BUG_ON(nd->inode != parent->d_inode);
700 return 0;
701
702 out1:
703 nd->path.mnt = NULL;
704 nd->path.dentry = NULL;
705 out:
706 rcu_read_unlock();
707 return -ECHILD;
708 }
709
710 /**
711 * unlazy_child - try to switch to ref-walk mode.
712 * @nd: nameidata pathwalk data
713 * @dentry: child of nd->path.dentry
714 * @seq: seq number to check dentry against
715 * Returns: 0 on success, -ECHILD on failure
716 *
717 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
718 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
719 * @nd. Must be called from rcu-walk context.
720 * Nothing should touch nameidata between unlazy_child() failure and
721 * terminate_walk().
722 */
unlazy_child(struct nameidata * nd,struct dentry * dentry,unsigned seq)723 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
724 {
725 BUG_ON(!(nd->flags & LOOKUP_RCU));
726
727 nd->flags &= ~LOOKUP_RCU;
728 if (unlikely(!legitimize_links(nd)))
729 goto out2;
730 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
731 goto out2;
732 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
733 goto out1;
734
735 /*
736 * We need to move both the parent and the dentry from the RCU domain
737 * to be properly refcounted. And the sequence number in the dentry
738 * validates *both* dentry counters, since we checked the sequence
739 * number of the parent after we got the child sequence number. So we
740 * know the parent must still be valid if the child sequence number is
741 */
742 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
743 goto out;
744 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
745 goto out_dput;
746 /*
747 * Sequence counts matched. Now make sure that the root is
748 * still valid and get it if required.
749 */
750 if (unlikely(!legitimize_root(nd)))
751 goto out_dput;
752 rcu_read_unlock();
753 return 0;
754
755 out2:
756 nd->path.mnt = NULL;
757 out1:
758 nd->path.dentry = NULL;
759 out:
760 rcu_read_unlock();
761 return -ECHILD;
762 out_dput:
763 rcu_read_unlock();
764 dput(dentry);
765 return -ECHILD;
766 }
767
d_revalidate(struct dentry * dentry,unsigned int flags)768 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
769 {
770 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
771 return dentry->d_op->d_revalidate(dentry, flags);
772 else
773 return 1;
774 }
775
776 #define INIT_PATH_SIZE 64
777
success_walk_trace(struct nameidata * nd)778 static void success_walk_trace(struct nameidata *nd)
779 {
780 struct path *pt = &nd->path;
781 struct inode *i = nd->inode;
782 char buf[INIT_PATH_SIZE], *try_buf;
783 int cur_path_size;
784 char *p;
785
786 /* When eBPF/ tracepoint is disabled, keep overhead low. */
787 if (!trace_inodepath_enabled())
788 return;
789
790 /* First try stack allocated buffer. */
791 try_buf = buf;
792 cur_path_size = INIT_PATH_SIZE;
793
794 while (cur_path_size <= PATH_MAX) {
795 /* Free previous heap allocation if we are now trying
796 * a second or later heap allocation.
797 */
798 if (try_buf != buf)
799 kfree(try_buf);
800
801 /* All but the first alloc are on the heap. */
802 if (cur_path_size != INIT_PATH_SIZE) {
803 try_buf = kmalloc(cur_path_size, GFP_KERNEL);
804 if (!try_buf) {
805 try_buf = buf;
806 sprintf(try_buf, "error:buf_alloc_failed");
807 break;
808 }
809 }
810
811 p = d_path(pt, try_buf, cur_path_size);
812
813 if (!IS_ERR(p)) {
814 char *end = mangle_path(try_buf, p, "\n");
815
816 if (end) {
817 try_buf[end - try_buf] = 0;
818 break;
819 } else {
820 /* On mangle errors, double path size
821 * till PATH_MAX.
822 */
823 cur_path_size = cur_path_size << 1;
824 continue;
825 }
826 }
827
828 if (PTR_ERR(p) == -ENAMETOOLONG) {
829 /* If d_path complains that name is too long,
830 * then double path size till PATH_MAX.
831 */
832 cur_path_size = cur_path_size << 1;
833 continue;
834 }
835
836 sprintf(try_buf, "error:d_path_failed_%lu",
837 -1 * PTR_ERR(p));
838 break;
839 }
840
841 if (cur_path_size > PATH_MAX)
842 sprintf(try_buf, "error:d_path_name_too_long");
843
844 trace_inodepath(i, try_buf);
845
846 if (try_buf != buf)
847 kfree(try_buf);
848 return;
849 }
850
851 /**
852 * complete_walk - successful completion of path walk
853 * @nd: pointer nameidata
854 *
855 * If we had been in RCU mode, drop out of it and legitimize nd->path.
856 * Revalidate the final result, unless we'd already done that during
857 * the path walk or the filesystem doesn't ask for it. Return 0 on
858 * success, -error on failure. In case of failure caller does not
859 * need to drop nd->path.
860 */
complete_walk(struct nameidata * nd)861 static int complete_walk(struct nameidata *nd)
862 {
863 struct dentry *dentry = nd->path.dentry;
864 int status;
865
866 if (nd->flags & LOOKUP_RCU) {
867 if (!(nd->flags & LOOKUP_ROOT))
868 nd->root.mnt = NULL;
869 if (unlikely(unlazy_walk(nd)))
870 return -ECHILD;
871 }
872
873 if (likely(!(nd->flags & LOOKUP_JUMPED))) {
874 success_walk_trace(nd);
875 return 0;
876 }
877
878 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) {
879 success_walk_trace(nd);
880 return 0;
881 }
882
883 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
884 if (status > 0) {
885 success_walk_trace(nd);
886 return 0;
887 }
888
889 if (!status)
890 status = -ESTALE;
891
892 return status;
893 }
894
set_root(struct nameidata * nd)895 static void set_root(struct nameidata *nd)
896 {
897 struct fs_struct *fs = current->fs;
898
899 if (nd->flags & LOOKUP_RCU) {
900 unsigned seq;
901
902 do {
903 seq = read_seqcount_begin(&fs->seq);
904 nd->root = fs->root;
905 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
906 } while (read_seqcount_retry(&fs->seq, seq));
907 } else {
908 get_fs_root(fs, &nd->root);
909 nd->flags |= LOOKUP_ROOT_GRABBED;
910 }
911 }
912
path_put_conditional(struct path * path,struct nameidata * nd)913 static void path_put_conditional(struct path *path, struct nameidata *nd)
914 {
915 dput(path->dentry);
916 if (path->mnt != nd->path.mnt)
917 mntput(path->mnt);
918 }
919
path_to_nameidata(const struct path * path,struct nameidata * nd)920 static inline void path_to_nameidata(const struct path *path,
921 struct nameidata *nd)
922 {
923 if (!(nd->flags & LOOKUP_RCU)) {
924 dput(nd->path.dentry);
925 if (nd->path.mnt != path->mnt)
926 mntput(nd->path.mnt);
927 }
928 nd->path.mnt = path->mnt;
929 nd->path.dentry = path->dentry;
930 }
931
nd_jump_root(struct nameidata * nd)932 static int nd_jump_root(struct nameidata *nd)
933 {
934 if (nd->flags & LOOKUP_RCU) {
935 struct dentry *d;
936 nd->path = nd->root;
937 d = nd->path.dentry;
938 nd->inode = d->d_inode;
939 nd->seq = nd->root_seq;
940 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
941 return -ECHILD;
942 } else {
943 path_put(&nd->path);
944 nd->path = nd->root;
945 path_get(&nd->path);
946 nd->inode = nd->path.dentry->d_inode;
947 }
948 nd->flags |= LOOKUP_JUMPED;
949 return 0;
950 }
951
952 /*
953 * Helper to directly jump to a known parsed path from ->get_link,
954 * caller must have taken a reference to path beforehand.
955 */
nd_jump_link(struct path * path)956 void nd_jump_link(struct path *path)
957 {
958 struct nameidata *nd = current->nameidata;
959 path_put(&nd->path);
960
961 nd->path = *path;
962 nd->inode = nd->path.dentry->d_inode;
963 nd->flags |= LOOKUP_JUMPED;
964 }
965
put_link(struct nameidata * nd)966 static inline void put_link(struct nameidata *nd)
967 {
968 struct saved *last = nd->stack + --nd->depth;
969 do_delayed_call(&last->done);
970 if (!(nd->flags & LOOKUP_RCU))
971 path_put(&last->link);
972 }
973
974 int sysctl_protected_symlinks __read_mostly = 0;
975 int sysctl_protected_hardlinks __read_mostly = 0;
976 int sysctl_protected_fifos __read_mostly;
977 int sysctl_protected_regular __read_mostly;
978
979 /**
980 * may_follow_link - Check symlink following for unsafe situations
981 * @nd: nameidata pathwalk data
982 *
983 * In the case of the sysctl_protected_symlinks sysctl being enabled,
984 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
985 * in a sticky world-writable directory. This is to protect privileged
986 * processes from failing races against path names that may change out
987 * from under them by way of other users creating malicious symlinks.
988 * It will permit symlinks to be followed only when outside a sticky
989 * world-writable directory, or when the uid of the symlink and follower
990 * match, or when the directory owner matches the symlink's owner.
991 *
992 * Returns 0 if following the symlink is allowed, -ve on error.
993 */
may_follow_link(struct nameidata * nd)994 static inline int may_follow_link(struct nameidata *nd)
995 {
996 const struct inode *inode;
997 const struct inode *parent;
998 kuid_t puid;
999
1000 if (!sysctl_protected_symlinks)
1001 return 0;
1002
1003 /* Allowed if owner and follower match. */
1004 inode = nd->link_inode;
1005 if (uid_eq(current_cred()->fsuid, inode->i_uid))
1006 return 0;
1007
1008 /* Allowed if parent directory not sticky and world-writable. */
1009 parent = nd->inode;
1010 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1011 return 0;
1012
1013 /* Allowed if parent directory and link owner match. */
1014 puid = parent->i_uid;
1015 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
1016 return 0;
1017
1018 if (nd->flags & LOOKUP_RCU)
1019 return -ECHILD;
1020
1021 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1022 audit_log_link_denied("follow_link");
1023 return -EACCES;
1024 }
1025
1026 /**
1027 * safe_hardlink_source - Check for safe hardlink conditions
1028 * @inode: the source inode to hardlink from
1029 *
1030 * Return false if at least one of the following conditions:
1031 * - inode is not a regular file
1032 * - inode is setuid
1033 * - inode is setgid and group-exec
1034 * - access failure for read and write
1035 *
1036 * Otherwise returns true.
1037 */
safe_hardlink_source(struct inode * inode)1038 static bool safe_hardlink_source(struct inode *inode)
1039 {
1040 umode_t mode = inode->i_mode;
1041
1042 /* Special files should not get pinned to the filesystem. */
1043 if (!S_ISREG(mode))
1044 return false;
1045
1046 /* Setuid files should not get pinned to the filesystem. */
1047 if (mode & S_ISUID)
1048 return false;
1049
1050 /* Executable setgid files should not get pinned to the filesystem. */
1051 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1052 return false;
1053
1054 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1055 if (inode_permission(inode, MAY_READ | MAY_WRITE))
1056 return false;
1057
1058 return true;
1059 }
1060
1061 /**
1062 * may_linkat - Check permissions for creating a hardlink
1063 * @link: the source to hardlink from
1064 *
1065 * Block hardlink when all of:
1066 * - sysctl_protected_hardlinks enabled
1067 * - fsuid does not match inode
1068 * - hardlink source is unsafe (see safe_hardlink_source() above)
1069 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1070 *
1071 * Returns 0 if successful, -ve on error.
1072 */
may_linkat(struct path * link)1073 static int may_linkat(struct path *link)
1074 {
1075 struct inode *inode = link->dentry->d_inode;
1076
1077 /* Inode writeback is not safe when the uid or gid are invalid. */
1078 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1079 return -EOVERFLOW;
1080
1081 if (!sysctl_protected_hardlinks)
1082 return 0;
1083
1084 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1085 * otherwise, it must be a safe source.
1086 */
1087 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1088 return 0;
1089
1090 audit_log_link_denied("linkat");
1091 return -EPERM;
1092 }
1093
1094 /**
1095 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1096 * should be allowed, or not, on files that already
1097 * exist.
1098 * @dir_mode: mode bits of directory
1099 * @dir_uid: owner of directory
1100 * @inode: the inode of the file to open
1101 *
1102 * Block an O_CREAT open of a FIFO (or a regular file) when:
1103 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1104 * - the file already exists
1105 * - we are in a sticky directory
1106 * - we don't own the file
1107 * - the owner of the directory doesn't own the file
1108 * - the directory is world writable
1109 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1110 * the directory doesn't have to be world writable: being group writable will
1111 * be enough.
1112 *
1113 * Returns 0 if the open is allowed, -ve on error.
1114 */
may_create_in_sticky(umode_t dir_mode,kuid_t dir_uid,struct inode * const inode)1115 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1116 struct inode * const inode)
1117 {
1118 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1119 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1120 likely(!(dir_mode & S_ISVTX)) ||
1121 uid_eq(inode->i_uid, dir_uid) ||
1122 uid_eq(current_fsuid(), inode->i_uid))
1123 return 0;
1124
1125 if (likely(dir_mode & 0002) ||
1126 (dir_mode & 0020 &&
1127 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1128 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1129 return -EACCES;
1130 }
1131 return 0;
1132 }
1133
1134 static __always_inline
get_link(struct nameidata * nd)1135 const char *get_link(struct nameidata *nd)
1136 {
1137 struct saved *last = nd->stack + nd->depth - 1;
1138 struct dentry *dentry = last->link.dentry;
1139 struct inode *inode = nd->link_inode;
1140 int error;
1141 const char *res;
1142
1143 if (!(nd->flags & LOOKUP_RCU)) {
1144 touch_atime(&last->link);
1145 cond_resched();
1146 } else if (atime_needs_update(&last->link, inode)) {
1147 if (unlikely(unlazy_walk(nd)))
1148 return ERR_PTR(-ECHILD);
1149 touch_atime(&last->link);
1150 }
1151
1152 error = security_inode_follow_link(dentry, inode,
1153 nd->flags & LOOKUP_RCU);
1154 if (unlikely(error))
1155 return ERR_PTR(error);
1156
1157 nd->last_type = LAST_BIND;
1158 res = READ_ONCE(inode->i_link);
1159 if (!res) {
1160 const char * (*get)(struct dentry *, struct inode *,
1161 struct delayed_call *);
1162 get = inode->i_op->get_link;
1163 if (nd->flags & LOOKUP_RCU) {
1164 res = get(NULL, inode, &last->done);
1165 if (res == ERR_PTR(-ECHILD)) {
1166 if (unlikely(unlazy_walk(nd)))
1167 return ERR_PTR(-ECHILD);
1168 res = get(dentry, inode, &last->done);
1169 }
1170 } else {
1171 res = get(dentry, inode, &last->done);
1172 }
1173 if (IS_ERR_OR_NULL(res))
1174 return res;
1175 }
1176 if (*res == '/') {
1177 if (!nd->root.mnt)
1178 set_root(nd);
1179 if (unlikely(nd_jump_root(nd)))
1180 return ERR_PTR(-ECHILD);
1181 while (unlikely(*++res == '/'))
1182 ;
1183 }
1184 if (!*res)
1185 res = NULL;
1186 return res;
1187 }
1188
1189 /*
1190 * follow_up - Find the mountpoint of path's vfsmount
1191 *
1192 * Given a path, find the mountpoint of its source file system.
1193 * Replace @path with the path of the mountpoint in the parent mount.
1194 * Up is towards /.
1195 *
1196 * Return 1 if we went up a level and 0 if we were already at the
1197 * root.
1198 */
follow_up(struct path * path)1199 int follow_up(struct path *path)
1200 {
1201 struct mount *mnt = real_mount(path->mnt);
1202 struct mount *parent;
1203 struct dentry *mountpoint;
1204
1205 read_seqlock_excl(&mount_lock);
1206 parent = mnt->mnt_parent;
1207 if (parent == mnt) {
1208 read_sequnlock_excl(&mount_lock);
1209 return 0;
1210 }
1211 mntget(&parent->mnt);
1212 mountpoint = dget(mnt->mnt_mountpoint);
1213 read_sequnlock_excl(&mount_lock);
1214 dput(path->dentry);
1215 path->dentry = mountpoint;
1216 mntput(path->mnt);
1217 path->mnt = &parent->mnt;
1218 return 1;
1219 }
1220 EXPORT_SYMBOL(follow_up);
1221
1222 /*
1223 * Perform an automount
1224 * - return -EISDIR to tell follow_managed() to stop and return the path we
1225 * were called with.
1226 */
follow_automount(struct path * path,struct nameidata * nd,bool * need_mntput)1227 static int follow_automount(struct path *path, struct nameidata *nd,
1228 bool *need_mntput)
1229 {
1230 struct vfsmount *mnt;
1231 int err;
1232
1233 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1234 return -EREMOTE;
1235
1236 /* We don't want to mount if someone's just doing a stat -
1237 * unless they're stat'ing a directory and appended a '/' to
1238 * the name.
1239 *
1240 * We do, however, want to mount if someone wants to open or
1241 * create a file of any type under the mountpoint, wants to
1242 * traverse through the mountpoint or wants to open the
1243 * mounted directory. Also, autofs may mark negative dentries
1244 * as being automount points. These will need the attentions
1245 * of the daemon to instantiate them before they can be used.
1246 */
1247 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1248 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1249 path->dentry->d_inode)
1250 return -EISDIR;
1251
1252 nd->total_link_count++;
1253 if (nd->total_link_count >= 40)
1254 return -ELOOP;
1255
1256 mnt = path->dentry->d_op->d_automount(path);
1257 if (IS_ERR(mnt)) {
1258 /*
1259 * The filesystem is allowed to return -EISDIR here to indicate
1260 * it doesn't want to automount. For instance, autofs would do
1261 * this so that its userspace daemon can mount on this dentry.
1262 *
1263 * However, we can only permit this if it's a terminal point in
1264 * the path being looked up; if it wasn't then the remainder of
1265 * the path is inaccessible and we should say so.
1266 */
1267 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1268 return -EREMOTE;
1269 return PTR_ERR(mnt);
1270 }
1271
1272 if (!mnt) /* mount collision */
1273 return 0;
1274
1275 if (!*need_mntput) {
1276 /* lock_mount() may release path->mnt on error */
1277 mntget(path->mnt);
1278 *need_mntput = true;
1279 }
1280 err = finish_automount(mnt, path);
1281
1282 switch (err) {
1283 case -EBUSY:
1284 /* Someone else made a mount here whilst we were busy */
1285 return 0;
1286 case 0:
1287 path_put(path);
1288 path->mnt = mnt;
1289 path->dentry = dget(mnt->mnt_root);
1290 return 0;
1291 default:
1292 return err;
1293 }
1294
1295 }
1296
1297 /*
1298 * Handle a dentry that is managed in some way.
1299 * - Flagged for transit management (autofs)
1300 * - Flagged as mountpoint
1301 * - Flagged as automount point
1302 *
1303 * This may only be called in refwalk mode.
1304 *
1305 * Serialization is taken care of in namespace.c
1306 */
follow_managed(struct path * path,struct nameidata * nd)1307 static int follow_managed(struct path *path, struct nameidata *nd)
1308 {
1309 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1310 unsigned managed;
1311 bool need_mntput = false;
1312 int ret = 0;
1313
1314 /* Given that we're not holding a lock here, we retain the value in a
1315 * local variable for each dentry as we look at it so that we don't see
1316 * the components of that value change under us */
1317 while (managed = READ_ONCE(path->dentry->d_flags),
1318 managed &= DCACHE_MANAGED_DENTRY,
1319 unlikely(managed != 0)) {
1320 /* Allow the filesystem to manage the transit without i_mutex
1321 * being held. */
1322 if (managed & DCACHE_MANAGE_TRANSIT) {
1323 BUG_ON(!path->dentry->d_op);
1324 BUG_ON(!path->dentry->d_op->d_manage);
1325 ret = path->dentry->d_op->d_manage(path, false);
1326 if (ret < 0)
1327 break;
1328 }
1329
1330 /* Transit to a mounted filesystem. */
1331 if (managed & DCACHE_MOUNTED) {
1332 struct vfsmount *mounted = lookup_mnt(path);
1333 if (mounted) {
1334 dput(path->dentry);
1335 if (need_mntput)
1336 mntput(path->mnt);
1337 path->mnt = mounted;
1338 path->dentry = dget(mounted->mnt_root);
1339 need_mntput = true;
1340 continue;
1341 }
1342
1343 /* Something is mounted on this dentry in another
1344 * namespace and/or whatever was mounted there in this
1345 * namespace got unmounted before lookup_mnt() could
1346 * get it */
1347 }
1348
1349 /* Handle an automount point */
1350 if (managed & DCACHE_NEED_AUTOMOUNT) {
1351 ret = follow_automount(path, nd, &need_mntput);
1352 if (ret < 0)
1353 break;
1354 continue;
1355 }
1356
1357 /* We didn't change the current path point */
1358 break;
1359 }
1360
1361 if (need_mntput && path->mnt == mnt)
1362 mntput(path->mnt);
1363 if (ret == -EISDIR || !ret)
1364 ret = 1;
1365 if (need_mntput)
1366 nd->flags |= LOOKUP_JUMPED;
1367 if (unlikely(ret < 0))
1368 path_put_conditional(path, nd);
1369 return ret;
1370 }
1371
follow_down_one(struct path * path)1372 int follow_down_one(struct path *path)
1373 {
1374 struct vfsmount *mounted;
1375
1376 mounted = lookup_mnt(path);
1377 if (mounted) {
1378 dput(path->dentry);
1379 mntput(path->mnt);
1380 path->mnt = mounted;
1381 path->dentry = dget(mounted->mnt_root);
1382 return 1;
1383 }
1384 return 0;
1385 }
1386 EXPORT_SYMBOL(follow_down_one);
1387
managed_dentry_rcu(const struct path * path)1388 static inline int managed_dentry_rcu(const struct path *path)
1389 {
1390 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1391 path->dentry->d_op->d_manage(path, true) : 0;
1392 }
1393
1394 /*
1395 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1396 * we meet a managed dentry that would need blocking.
1397 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1398 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1399 struct inode **inode, unsigned *seqp)
1400 {
1401 for (;;) {
1402 struct mount *mounted;
1403 /*
1404 * Don't forget we might have a non-mountpoint managed dentry
1405 * that wants to block transit.
1406 */
1407 switch (managed_dentry_rcu(path)) {
1408 case -ECHILD:
1409 default:
1410 return false;
1411 case -EISDIR:
1412 return true;
1413 case 0:
1414 break;
1415 }
1416
1417 if (!d_mountpoint(path->dentry))
1418 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1419
1420 mounted = __lookup_mnt(path->mnt, path->dentry);
1421 if (!mounted)
1422 break;
1423 path->mnt = &mounted->mnt;
1424 path->dentry = mounted->mnt.mnt_root;
1425 nd->flags |= LOOKUP_JUMPED;
1426 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1427 /*
1428 * Update the inode too. We don't need to re-check the
1429 * dentry sequence number here after this d_inode read,
1430 * because a mount-point is always pinned.
1431 */
1432 *inode = path->dentry->d_inode;
1433 }
1434 return !read_seqretry(&mount_lock, nd->m_seq) &&
1435 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1436 }
1437
follow_dotdot_rcu(struct nameidata * nd)1438 static int follow_dotdot_rcu(struct nameidata *nd)
1439 {
1440 struct inode *inode = nd->inode;
1441
1442 while (1) {
1443 if (path_equal(&nd->path, &nd->root))
1444 break;
1445 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1446 struct dentry *old = nd->path.dentry;
1447 struct dentry *parent = old->d_parent;
1448 unsigned seq;
1449
1450 inode = parent->d_inode;
1451 seq = read_seqcount_begin(&parent->d_seq);
1452 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1453 return -ECHILD;
1454 nd->path.dentry = parent;
1455 nd->seq = seq;
1456 if (unlikely(!path_connected(&nd->path)))
1457 return -ENOENT;
1458 break;
1459 } else {
1460 struct mount *mnt = real_mount(nd->path.mnt);
1461 struct mount *mparent = mnt->mnt_parent;
1462 struct dentry *mountpoint = mnt->mnt_mountpoint;
1463 struct inode *inode2 = mountpoint->d_inode;
1464 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1465 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1466 return -ECHILD;
1467 if (&mparent->mnt == nd->path.mnt)
1468 break;
1469 /* we know that mountpoint was pinned */
1470 nd->path.dentry = mountpoint;
1471 nd->path.mnt = &mparent->mnt;
1472 inode = inode2;
1473 nd->seq = seq;
1474 }
1475 }
1476 while (unlikely(d_mountpoint(nd->path.dentry))) {
1477 struct mount *mounted;
1478 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1479 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1480 return -ECHILD;
1481 if (!mounted)
1482 break;
1483 nd->path.mnt = &mounted->mnt;
1484 nd->path.dentry = mounted->mnt.mnt_root;
1485 inode = nd->path.dentry->d_inode;
1486 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1487 }
1488 nd->inode = inode;
1489 return 0;
1490 }
1491
1492 /*
1493 * Follow down to the covering mount currently visible to userspace. At each
1494 * point, the filesystem owning that dentry may be queried as to whether the
1495 * caller is permitted to proceed or not.
1496 */
follow_down(struct path * path)1497 int follow_down(struct path *path)
1498 {
1499 unsigned managed;
1500 int ret;
1501
1502 while (managed = READ_ONCE(path->dentry->d_flags),
1503 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1504 /* Allow the filesystem to manage the transit without i_mutex
1505 * being held.
1506 *
1507 * We indicate to the filesystem if someone is trying to mount
1508 * something here. This gives autofs the chance to deny anyone
1509 * other than its daemon the right to mount on its
1510 * superstructure.
1511 *
1512 * The filesystem may sleep at this point.
1513 */
1514 if (managed & DCACHE_MANAGE_TRANSIT) {
1515 BUG_ON(!path->dentry->d_op);
1516 BUG_ON(!path->dentry->d_op->d_manage);
1517 ret = path->dentry->d_op->d_manage(path, false);
1518 if (ret < 0)
1519 return ret == -EISDIR ? 0 : ret;
1520 }
1521
1522 /* Transit to a mounted filesystem. */
1523 if (managed & DCACHE_MOUNTED) {
1524 struct vfsmount *mounted = lookup_mnt(path);
1525 if (!mounted)
1526 break;
1527 dput(path->dentry);
1528 mntput(path->mnt);
1529 path->mnt = mounted;
1530 path->dentry = dget(mounted->mnt_root);
1531 continue;
1532 }
1533
1534 /* Don't handle automount points here */
1535 break;
1536 }
1537 return 0;
1538 }
1539 EXPORT_SYMBOL(follow_down);
1540
1541 /*
1542 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1543 */
follow_mount(struct path * path)1544 static void follow_mount(struct path *path)
1545 {
1546 while (d_mountpoint(path->dentry)) {
1547 struct vfsmount *mounted = lookup_mnt(path);
1548 if (!mounted)
1549 break;
1550 dput(path->dentry);
1551 mntput(path->mnt);
1552 path->mnt = mounted;
1553 path->dentry = dget(mounted->mnt_root);
1554 }
1555 }
1556
path_parent_directory(struct path * path)1557 static int path_parent_directory(struct path *path)
1558 {
1559 struct dentry *old = path->dentry;
1560 /* rare case of legitimate dget_parent()... */
1561 path->dentry = dget_parent(path->dentry);
1562 dput(old);
1563 if (unlikely(!path_connected(path)))
1564 return -ENOENT;
1565 return 0;
1566 }
1567
follow_dotdot(struct nameidata * nd)1568 static int follow_dotdot(struct nameidata *nd)
1569 {
1570 while(1) {
1571 if (path_equal(&nd->path, &nd->root))
1572 break;
1573 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1574 int ret = path_parent_directory(&nd->path);
1575 if (ret)
1576 return ret;
1577 break;
1578 }
1579 if (!follow_up(&nd->path))
1580 break;
1581 }
1582 follow_mount(&nd->path);
1583 nd->inode = nd->path.dentry->d_inode;
1584 return 0;
1585 }
1586
1587 /*
1588 * This looks up the name in dcache and possibly revalidates the found dentry.
1589 * NULL is returned if the dentry does not exist in the cache.
1590 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1591 static struct dentry *lookup_dcache(const struct qstr *name,
1592 struct dentry *dir,
1593 unsigned int flags)
1594 {
1595 struct dentry *dentry = d_lookup(dir, name);
1596 if (dentry) {
1597 int error = d_revalidate(dentry, flags);
1598 if (unlikely(error <= 0)) {
1599 if (!error)
1600 d_invalidate(dentry);
1601 dput(dentry);
1602 return ERR_PTR(error);
1603 }
1604 }
1605 return dentry;
1606 }
1607
1608 /*
1609 * Parent directory has inode locked exclusive. This is one
1610 * and only case when ->lookup() gets called on non in-lookup
1611 * dentries - as the matter of fact, this only gets called
1612 * when directory is guaranteed to have no in-lookup children
1613 * at all.
1614 */
__lookup_hash(const struct qstr * name,struct dentry * base,unsigned int flags)1615 static struct dentry *__lookup_hash(const struct qstr *name,
1616 struct dentry *base, unsigned int flags)
1617 {
1618 struct dentry *dentry = lookup_dcache(name, base, flags);
1619 struct dentry *old;
1620 struct inode *dir = base->d_inode;
1621
1622 if (dentry)
1623 return dentry;
1624
1625 /* Don't create child dentry for a dead directory. */
1626 if (unlikely(IS_DEADDIR(dir)))
1627 return ERR_PTR(-ENOENT);
1628
1629 dentry = d_alloc(base, name);
1630 if (unlikely(!dentry))
1631 return ERR_PTR(-ENOMEM);
1632
1633 old = dir->i_op->lookup(dir, dentry, flags);
1634 if (unlikely(old)) {
1635 dput(dentry);
1636 dentry = old;
1637 }
1638 return dentry;
1639 }
1640
lookup_fast(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1641 static int lookup_fast(struct nameidata *nd,
1642 struct path *path, struct inode **inode,
1643 unsigned *seqp)
1644 {
1645 struct vfsmount *mnt = nd->path.mnt;
1646 struct dentry *dentry, *parent = nd->path.dentry;
1647 int status = 1;
1648 int err;
1649
1650 /*
1651 * Rename seqlock is not required here because in the off chance
1652 * of a false negative due to a concurrent rename, the caller is
1653 * going to fall back to non-racy lookup.
1654 */
1655 if (nd->flags & LOOKUP_RCU) {
1656 unsigned seq;
1657 bool negative;
1658 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1659 if (unlikely(!dentry)) {
1660 if (unlazy_walk(nd))
1661 return -ECHILD;
1662 return 0;
1663 }
1664
1665 /*
1666 * This sequence count validates that the inode matches
1667 * the dentry name information from lookup.
1668 */
1669 *inode = d_backing_inode(dentry);
1670 negative = d_is_negative(dentry);
1671 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1672 return -ECHILD;
1673
1674 /*
1675 * This sequence count validates that the parent had no
1676 * changes while we did the lookup of the dentry above.
1677 *
1678 * The memory barrier in read_seqcount_begin of child is
1679 * enough, we can use __read_seqcount_retry here.
1680 */
1681 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1682 return -ECHILD;
1683
1684 *seqp = seq;
1685 status = d_revalidate(dentry, nd->flags);
1686 if (likely(status > 0)) {
1687 /*
1688 * Note: do negative dentry check after revalidation in
1689 * case that drops it.
1690 */
1691 if (unlikely(negative))
1692 return -ENOENT;
1693 path->mnt = mnt;
1694 path->dentry = dentry;
1695 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1696 return 1;
1697 }
1698 if (unlazy_child(nd, dentry, seq))
1699 return -ECHILD;
1700 if (unlikely(status == -ECHILD))
1701 /* we'd been told to redo it in non-rcu mode */
1702 status = d_revalidate(dentry, nd->flags);
1703 } else {
1704 dentry = __d_lookup(parent, &nd->last);
1705 if (unlikely(!dentry))
1706 return 0;
1707 status = d_revalidate(dentry, nd->flags);
1708 }
1709 if (unlikely(status <= 0)) {
1710 if (!status)
1711 d_invalidate(dentry);
1712 dput(dentry);
1713 return status;
1714 }
1715 if (unlikely(d_is_negative(dentry))) {
1716 dput(dentry);
1717 return -ENOENT;
1718 }
1719
1720 path->mnt = mnt;
1721 path->dentry = dentry;
1722 err = follow_managed(path, nd);
1723 if (likely(err > 0))
1724 *inode = d_backing_inode(path->dentry);
1725 return err;
1726 }
1727
1728 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1729 static struct dentry *__lookup_slow(const struct qstr *name,
1730 struct dentry *dir,
1731 unsigned int flags)
1732 {
1733 struct dentry *dentry, *old;
1734 struct inode *inode = dir->d_inode;
1735 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1736
1737 /* Don't go there if it's already dead */
1738 if (unlikely(IS_DEADDIR(inode)))
1739 return ERR_PTR(-ENOENT);
1740 again:
1741 dentry = d_alloc_parallel(dir, name, &wq);
1742 if (IS_ERR(dentry))
1743 return dentry;
1744 if (unlikely(!d_in_lookup(dentry))) {
1745 if (!(flags & LOOKUP_NO_REVAL)) {
1746 int error = d_revalidate(dentry, flags);
1747 if (unlikely(error <= 0)) {
1748 if (!error) {
1749 d_invalidate(dentry);
1750 dput(dentry);
1751 goto again;
1752 }
1753 dput(dentry);
1754 dentry = ERR_PTR(error);
1755 }
1756 }
1757 } else {
1758 old = inode->i_op->lookup(inode, dentry, flags);
1759 d_lookup_done(dentry);
1760 if (unlikely(old)) {
1761 dput(dentry);
1762 dentry = old;
1763 }
1764 }
1765 return dentry;
1766 }
1767
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1768 static struct dentry *lookup_slow(const struct qstr *name,
1769 struct dentry *dir,
1770 unsigned int flags)
1771 {
1772 struct inode *inode = dir->d_inode;
1773 struct dentry *res;
1774 inode_lock_shared(inode);
1775 res = __lookup_slow(name, dir, flags);
1776 inode_unlock_shared(inode);
1777 return res;
1778 }
1779
may_lookup(struct nameidata * nd)1780 static inline int may_lookup(struct nameidata *nd)
1781 {
1782 if (nd->flags & LOOKUP_RCU) {
1783 int err = inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1784 if (err != -ECHILD)
1785 return err;
1786 if (unlazy_walk(nd))
1787 return -ECHILD;
1788 }
1789 return inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC);
1790 }
1791
handle_dots(struct nameidata * nd,int type)1792 static inline int handle_dots(struct nameidata *nd, int type)
1793 {
1794 if (type == LAST_DOTDOT) {
1795 if (!nd->root.mnt)
1796 set_root(nd);
1797 if (nd->flags & LOOKUP_RCU) {
1798 return follow_dotdot_rcu(nd);
1799 } else
1800 return follow_dotdot(nd);
1801 }
1802 return 0;
1803 }
1804
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq)1805 static int pick_link(struct nameidata *nd, struct path *link,
1806 struct inode *inode, unsigned seq)
1807 {
1808 int error;
1809 struct saved *last;
1810 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1811 path_to_nameidata(link, nd);
1812 return -ELOOP;
1813 }
1814 if (!(nd->flags & LOOKUP_RCU)) {
1815 if (link->mnt == nd->path.mnt)
1816 mntget(link->mnt);
1817 }
1818 error = nd_alloc_stack(nd);
1819 if (unlikely(error)) {
1820 if (error == -ECHILD) {
1821 if (unlikely(!legitimize_path(nd, link, seq))) {
1822 drop_links(nd);
1823 nd->depth = 0;
1824 nd->flags &= ~LOOKUP_RCU;
1825 nd->path.mnt = NULL;
1826 nd->path.dentry = NULL;
1827 rcu_read_unlock();
1828 } else if (likely(unlazy_walk(nd)) == 0)
1829 error = nd_alloc_stack(nd);
1830 }
1831 if (error) {
1832 path_put(link);
1833 return error;
1834 }
1835 }
1836
1837 last = nd->stack + nd->depth++;
1838 last->link = *link;
1839 clear_delayed_call(&last->done);
1840 nd->link_inode = inode;
1841 last->seq = seq;
1842 return 1;
1843 }
1844
1845 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1846
1847 /*
1848 * Do we need to follow links? We _really_ want to be able
1849 * to do this check without having to look at inode->i_op,
1850 * so we keep a cache of "no, this doesn't need follow_link"
1851 * for the common case.
1852 */
step_into(struct nameidata * nd,struct path * path,int flags,struct inode * inode,unsigned seq)1853 static inline int step_into(struct nameidata *nd, struct path *path,
1854 int flags, struct inode *inode, unsigned seq)
1855 {
1856 if (!(flags & WALK_MORE) && nd->depth)
1857 put_link(nd);
1858 if (likely(!d_is_symlink(path->dentry)) ||
1859 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1860 /* not a symlink or should not follow */
1861 path_to_nameidata(path, nd);
1862 nd->inode = inode;
1863 nd->seq = seq;
1864 return 0;
1865 }
1866 /* make sure that d_is_symlink above matches inode */
1867 if (nd->flags & LOOKUP_RCU) {
1868 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1869 return -ECHILD;
1870 }
1871 return pick_link(nd, path, inode, seq);
1872 }
1873
walk_component(struct nameidata * nd,int flags)1874 static int walk_component(struct nameidata *nd, int flags)
1875 {
1876 struct path path;
1877 struct inode *inode;
1878 unsigned seq;
1879 int err;
1880 /*
1881 * "." and ".." are special - ".." especially so because it has
1882 * to be able to know about the current root directory and
1883 * parent relationships.
1884 */
1885 if (unlikely(nd->last_type != LAST_NORM)) {
1886 err = handle_dots(nd, nd->last_type);
1887 if (!(flags & WALK_MORE) && nd->depth)
1888 put_link(nd);
1889 return err;
1890 }
1891 err = lookup_fast(nd, &path, &inode, &seq);
1892 if (unlikely(err <= 0)) {
1893 if (err < 0)
1894 return err;
1895 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1896 nd->flags);
1897 if (IS_ERR(path.dentry))
1898 return PTR_ERR(path.dentry);
1899
1900 path.mnt = nd->path.mnt;
1901 err = follow_managed(&path, nd);
1902 if (unlikely(err < 0))
1903 return err;
1904
1905 if (unlikely(d_is_negative(path.dentry))) {
1906 path_to_nameidata(&path, nd);
1907 return -ENOENT;
1908 }
1909
1910 seq = 0; /* we are already out of RCU mode */
1911 inode = d_backing_inode(path.dentry);
1912 }
1913
1914 return step_into(nd, &path, flags, inode, seq);
1915 }
1916
1917 /*
1918 * We can do the critical dentry name comparison and hashing
1919 * operations one word at a time, but we are limited to:
1920 *
1921 * - Architectures with fast unaligned word accesses. We could
1922 * do a "get_unaligned()" if this helps and is sufficiently
1923 * fast.
1924 *
1925 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1926 * do not trap on the (extremely unlikely) case of a page
1927 * crossing operation.
1928 *
1929 * - Furthermore, we need an efficient 64-bit compile for the
1930 * 64-bit case in order to generate the "number of bytes in
1931 * the final mask". Again, that could be replaced with a
1932 * efficient population count instruction or similar.
1933 */
1934 #ifdef CONFIG_DCACHE_WORD_ACCESS
1935
1936 #include <asm/word-at-a-time.h>
1937
1938 #ifdef HASH_MIX
1939
1940 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1941
1942 #elif defined(CONFIG_64BIT)
1943 /*
1944 * Register pressure in the mixing function is an issue, particularly
1945 * on 32-bit x86, but almost any function requires one state value and
1946 * one temporary. Instead, use a function designed for two state values
1947 * and no temporaries.
1948 *
1949 * This function cannot create a collision in only two iterations, so
1950 * we have two iterations to achieve avalanche. In those two iterations,
1951 * we have six layers of mixing, which is enough to spread one bit's
1952 * influence out to 2^6 = 64 state bits.
1953 *
1954 * Rotate constants are scored by considering either 64 one-bit input
1955 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1956 * probability of that delta causing a change to each of the 128 output
1957 * bits, using a sample of random initial states.
1958 *
1959 * The Shannon entropy of the computed probabilities is then summed
1960 * to produce a score. Ideally, any input change has a 50% chance of
1961 * toggling any given output bit.
1962 *
1963 * Mixing scores (in bits) for (12,45):
1964 * Input delta: 1-bit 2-bit
1965 * 1 round: 713.3 42542.6
1966 * 2 rounds: 2753.7 140389.8
1967 * 3 rounds: 5954.1 233458.2
1968 * 4 rounds: 7862.6 256672.2
1969 * Perfect: 8192 258048
1970 * (64*128) (64*63/2 * 128)
1971 */
1972 #define HASH_MIX(x, y, a) \
1973 ( x ^= (a), \
1974 y ^= x, x = rol64(x,12),\
1975 x += y, y = rol64(y,45),\
1976 y *= 9 )
1977
1978 /*
1979 * Fold two longs into one 32-bit hash value. This must be fast, but
1980 * latency isn't quite as critical, as there is a fair bit of additional
1981 * work done before the hash value is used.
1982 */
fold_hash(unsigned long x,unsigned long y)1983 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1984 {
1985 y ^= x * GOLDEN_RATIO_64;
1986 y *= GOLDEN_RATIO_64;
1987 return y >> 32;
1988 }
1989
1990 #else /* 32-bit case */
1991
1992 /*
1993 * Mixing scores (in bits) for (7,20):
1994 * Input delta: 1-bit 2-bit
1995 * 1 round: 330.3 9201.6
1996 * 2 rounds: 1246.4 25475.4
1997 * 3 rounds: 1907.1 31295.1
1998 * 4 rounds: 2042.3 31718.6
1999 * Perfect: 2048 31744
2000 * (32*64) (32*31/2 * 64)
2001 */
2002 #define HASH_MIX(x, y, a) \
2003 ( x ^= (a), \
2004 y ^= x, x = rol32(x, 7),\
2005 x += y, y = rol32(y,20),\
2006 y *= 9 )
2007
fold_hash(unsigned long x,unsigned long y)2008 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2009 {
2010 /* Use arch-optimized multiply if one exists */
2011 return __hash_32(y ^ __hash_32(x));
2012 }
2013
2014 #endif
2015
2016 /*
2017 * Return the hash of a string of known length. This is carfully
2018 * designed to match hash_name(), which is the more critical function.
2019 * In particular, we must end by hashing a final word containing 0..7
2020 * payload bytes, to match the way that hash_name() iterates until it
2021 * finds the delimiter after the name.
2022 */
full_name_hash(const void * salt,const char * name,unsigned int len)2023 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2024 {
2025 unsigned long a, x = 0, y = (unsigned long)salt;
2026
2027 for (;;) {
2028 if (!len)
2029 goto done;
2030 a = load_unaligned_zeropad(name);
2031 if (len < sizeof(unsigned long))
2032 break;
2033 HASH_MIX(x, y, a);
2034 name += sizeof(unsigned long);
2035 len -= sizeof(unsigned long);
2036 }
2037 x ^= a & bytemask_from_count(len);
2038 done:
2039 return fold_hash(x, y);
2040 }
2041 EXPORT_SYMBOL(full_name_hash);
2042
2043 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2044 u64 hashlen_string(const void *salt, const char *name)
2045 {
2046 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2047 unsigned long adata, mask, len;
2048 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2049
2050 len = 0;
2051 goto inside;
2052
2053 do {
2054 HASH_MIX(x, y, a);
2055 len += sizeof(unsigned long);
2056 inside:
2057 a = load_unaligned_zeropad(name+len);
2058 } while (!has_zero(a, &adata, &constants));
2059
2060 adata = prep_zero_mask(a, adata, &constants);
2061 mask = create_zero_mask(adata);
2062 x ^= a & zero_bytemask(mask);
2063
2064 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2065 }
2066 EXPORT_SYMBOL(hashlen_string);
2067
2068 /*
2069 * Calculate the length and hash of the path component, and
2070 * return the "hash_len" as the result.
2071 */
hash_name(const void * salt,const char * name)2072 static inline u64 hash_name(const void *salt, const char *name)
2073 {
2074 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2075 unsigned long adata, bdata, mask, len;
2076 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2077
2078 len = 0;
2079 goto inside;
2080
2081 do {
2082 HASH_MIX(x, y, a);
2083 len += sizeof(unsigned long);
2084 inside:
2085 a = load_unaligned_zeropad(name+len);
2086 b = a ^ REPEAT_BYTE('/');
2087 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2088
2089 adata = prep_zero_mask(a, adata, &constants);
2090 bdata = prep_zero_mask(b, bdata, &constants);
2091 mask = create_zero_mask(adata | bdata);
2092 x ^= a & zero_bytemask(mask);
2093
2094 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2095 }
2096
2097 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2098
2099 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2100 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2101 {
2102 unsigned long hash = init_name_hash(salt);
2103 while (len--)
2104 hash = partial_name_hash((unsigned char)*name++, hash);
2105 return end_name_hash(hash);
2106 }
2107 EXPORT_SYMBOL(full_name_hash);
2108
2109 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2110 u64 hashlen_string(const void *salt, const char *name)
2111 {
2112 unsigned long hash = init_name_hash(salt);
2113 unsigned long len = 0, c;
2114
2115 c = (unsigned char)*name;
2116 while (c) {
2117 len++;
2118 hash = partial_name_hash(c, hash);
2119 c = (unsigned char)name[len];
2120 }
2121 return hashlen_create(end_name_hash(hash), len);
2122 }
2123 EXPORT_SYMBOL(hashlen_string);
2124
2125 /*
2126 * We know there's a real path component here of at least
2127 * one character.
2128 */
hash_name(const void * salt,const char * name)2129 static inline u64 hash_name(const void *salt, const char *name)
2130 {
2131 unsigned long hash = init_name_hash(salt);
2132 unsigned long len = 0, c;
2133
2134 c = (unsigned char)*name;
2135 do {
2136 len++;
2137 hash = partial_name_hash(c, hash);
2138 c = (unsigned char)name[len];
2139 } while (c && c != '/');
2140 return hashlen_create(end_name_hash(hash), len);
2141 }
2142
2143 #endif
2144
2145 /*
2146 * Name resolution.
2147 * This is the basic name resolution function, turning a pathname into
2148 * the final dentry. We expect 'base' to be positive and a directory.
2149 *
2150 * Returns 0 and nd will have valid dentry and mnt on success.
2151 * Returns error and drops reference to input namei data on failure.
2152 */
link_path_walk(const char * name,struct nameidata * nd)2153 static int link_path_walk(const char *name, struct nameidata *nd)
2154 {
2155 int err;
2156
2157 if (IS_ERR(name))
2158 return PTR_ERR(name);
2159 while (*name=='/')
2160 name++;
2161 if (!*name)
2162 return 0;
2163
2164 /* At this point we know we have a real path component. */
2165 for(;;) {
2166 u64 hash_len;
2167 int type;
2168
2169 err = may_lookup(nd);
2170 if (err)
2171 return err;
2172
2173 hash_len = hash_name(nd->path.dentry, name);
2174
2175 type = LAST_NORM;
2176 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2177 case 2:
2178 if (name[1] == '.') {
2179 type = LAST_DOTDOT;
2180 nd->flags |= LOOKUP_JUMPED;
2181 }
2182 break;
2183 case 1:
2184 type = LAST_DOT;
2185 }
2186 if (likely(type == LAST_NORM)) {
2187 struct dentry *parent = nd->path.dentry;
2188 nd->flags &= ~LOOKUP_JUMPED;
2189 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2190 struct qstr this = { { .hash_len = hash_len }, .name = name };
2191 err = parent->d_op->d_hash(parent, &this);
2192 if (err < 0)
2193 return err;
2194 hash_len = this.hash_len;
2195 name = this.name;
2196 }
2197 }
2198
2199 nd->last.hash_len = hash_len;
2200 nd->last.name = name;
2201 nd->last_type = type;
2202
2203 name += hashlen_len(hash_len);
2204 if (!*name)
2205 goto OK;
2206 /*
2207 * If it wasn't NUL, we know it was '/'. Skip that
2208 * slash, and continue until no more slashes.
2209 */
2210 do {
2211 name++;
2212 } while (unlikely(*name == '/'));
2213 if (unlikely(!*name)) {
2214 OK:
2215 /* pathname body, done */
2216 if (!nd->depth)
2217 return 0;
2218 name = nd->stack[nd->depth - 1].name;
2219 /* trailing symlink, done */
2220 if (!name)
2221 return 0;
2222 /* last component of nested symlink */
2223 err = walk_component(nd, WALK_FOLLOW);
2224 } else {
2225 /* not the last component */
2226 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2227 }
2228 if (err < 0)
2229 return err;
2230
2231 if (err) {
2232 const char *s = get_link(nd);
2233
2234 if (IS_ERR(s))
2235 return PTR_ERR(s);
2236 err = 0;
2237 if (unlikely(!s)) {
2238 /* jumped */
2239 put_link(nd);
2240 } else {
2241 nd->stack[nd->depth - 1].name = name;
2242 name = s;
2243 continue;
2244 }
2245 }
2246 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2247 if (nd->flags & LOOKUP_RCU) {
2248 if (unlazy_walk(nd))
2249 return -ECHILD;
2250 }
2251 return -ENOTDIR;
2252 }
2253 }
2254 }
2255
2256 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2257 static const char *path_init(struct nameidata *nd, unsigned flags)
2258 {
2259 const char *s = nd->name->name;
2260
2261 if (!*s)
2262 flags &= ~LOOKUP_RCU;
2263 if (flags & LOOKUP_RCU)
2264 rcu_read_lock();
2265
2266 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2267 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2268 nd->depth = 0;
2269 if (flags & LOOKUP_ROOT) {
2270 struct dentry *root = nd->root.dentry;
2271 struct inode *inode = root->d_inode;
2272 if (*s && unlikely(!d_can_lookup(root)))
2273 return ERR_PTR(-ENOTDIR);
2274 nd->path = nd->root;
2275 nd->inode = inode;
2276 if (flags & LOOKUP_RCU) {
2277 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2278 nd->root_seq = nd->seq;
2279 nd->m_seq = read_seqbegin(&mount_lock);
2280 } else {
2281 path_get(&nd->path);
2282 }
2283 return s;
2284 }
2285
2286 nd->root.mnt = NULL;
2287 nd->path.mnt = NULL;
2288 nd->path.dentry = NULL;
2289
2290 nd->m_seq = read_seqbegin(&mount_lock);
2291 if (*s == '/') {
2292 set_root(nd);
2293 if (likely(!nd_jump_root(nd)))
2294 return s;
2295 return ERR_PTR(-ECHILD);
2296 } else if (nd->dfd == AT_FDCWD) {
2297 if (flags & LOOKUP_RCU) {
2298 struct fs_struct *fs = current->fs;
2299 unsigned seq;
2300
2301 do {
2302 seq = read_seqcount_begin(&fs->seq);
2303 nd->path = fs->pwd;
2304 nd->inode = nd->path.dentry->d_inode;
2305 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2306 } while (read_seqcount_retry(&fs->seq, seq));
2307 } else {
2308 get_fs_pwd(current->fs, &nd->path);
2309 nd->inode = nd->path.dentry->d_inode;
2310 }
2311 return s;
2312 } else {
2313 /* Caller must check execute permissions on the starting path component */
2314 struct fd f = fdget_raw(nd->dfd);
2315 struct dentry *dentry;
2316
2317 if (!f.file)
2318 return ERR_PTR(-EBADF);
2319
2320 dentry = f.file->f_path.dentry;
2321
2322 if (*s && unlikely(!d_can_lookup(dentry))) {
2323 fdput(f);
2324 return ERR_PTR(-ENOTDIR);
2325 }
2326
2327 nd->path = f.file->f_path;
2328 if (flags & LOOKUP_RCU) {
2329 nd->inode = nd->path.dentry->d_inode;
2330 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2331 } else {
2332 path_get(&nd->path);
2333 nd->inode = nd->path.dentry->d_inode;
2334 }
2335 fdput(f);
2336 return s;
2337 }
2338 }
2339
trailing_symlink(struct nameidata * nd)2340 static const char *trailing_symlink(struct nameidata *nd)
2341 {
2342 const char *s;
2343 int error = may_follow_link(nd);
2344 if (unlikely(error))
2345 return ERR_PTR(error);
2346 nd->flags |= LOOKUP_PARENT;
2347 nd->stack[0].name = NULL;
2348 s = get_link(nd);
2349 return s ? s : "";
2350 }
2351
lookup_last(struct nameidata * nd)2352 static inline int lookup_last(struct nameidata *nd)
2353 {
2354 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2355 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2356
2357 nd->flags &= ~LOOKUP_PARENT;
2358 return walk_component(nd, 0);
2359 }
2360
handle_lookup_down(struct nameidata * nd)2361 static int handle_lookup_down(struct nameidata *nd)
2362 {
2363 struct path path = nd->path;
2364 struct inode *inode = nd->inode;
2365 unsigned seq = nd->seq;
2366 int err;
2367
2368 if (nd->flags & LOOKUP_RCU) {
2369 /*
2370 * don't bother with unlazy_walk on failure - we are
2371 * at the very beginning of walk, so we lose nothing
2372 * if we simply redo everything in non-RCU mode
2373 */
2374 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2375 return -ECHILD;
2376 } else {
2377 dget(path.dentry);
2378 err = follow_managed(&path, nd);
2379 if (unlikely(err < 0))
2380 return err;
2381 inode = d_backing_inode(path.dentry);
2382 seq = 0;
2383 }
2384 path_to_nameidata(&path, nd);
2385 nd->inode = inode;
2386 nd->seq = seq;
2387 return 0;
2388 }
2389
2390 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2391 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2392 {
2393 const char *s = path_init(nd, flags);
2394 int err;
2395
2396 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2397 err = handle_lookup_down(nd);
2398 if (unlikely(err < 0))
2399 s = ERR_PTR(err);
2400 }
2401
2402 while (!(err = link_path_walk(s, nd))
2403 && ((err = lookup_last(nd)) > 0)) {
2404 s = trailing_symlink(nd);
2405 }
2406 if (!err)
2407 err = complete_walk(nd);
2408
2409 if (!err && nd->flags & LOOKUP_DIRECTORY)
2410 if (!d_can_lookup(nd->path.dentry))
2411 err = -ENOTDIR;
2412 if (!err) {
2413 *path = nd->path;
2414 nd->path.mnt = NULL;
2415 nd->path.dentry = NULL;
2416 }
2417 terminate_walk(nd);
2418 return err;
2419 }
2420
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2421 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2422 struct path *path, struct path *root)
2423 {
2424 int retval;
2425 struct nameidata nd;
2426 if (IS_ERR(name))
2427 return PTR_ERR(name);
2428 if (unlikely(root)) {
2429 nd.root = *root;
2430 flags |= LOOKUP_ROOT;
2431 }
2432 set_nameidata(&nd, dfd, name);
2433 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2434 if (unlikely(retval == -ECHILD))
2435 retval = path_lookupat(&nd, flags, path);
2436 if (unlikely(retval == -ESTALE))
2437 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2438
2439 if (likely(!retval))
2440 audit_inode(name, path->dentry, 0);
2441 restore_nameidata();
2442 putname(name);
2443 return retval;
2444 }
2445
2446 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2447 static int path_parentat(struct nameidata *nd, unsigned flags,
2448 struct path *parent)
2449 {
2450 const char *s = path_init(nd, flags);
2451 int err = link_path_walk(s, nd);
2452 if (!err)
2453 err = complete_walk(nd);
2454 if (!err) {
2455 *parent = nd->path;
2456 nd->path.mnt = NULL;
2457 nd->path.dentry = NULL;
2458 }
2459 terminate_walk(nd);
2460 return err;
2461 }
2462
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2463 static struct filename *filename_parentat(int dfd, struct filename *name,
2464 unsigned int flags, struct path *parent,
2465 struct qstr *last, int *type)
2466 {
2467 int retval;
2468 struct nameidata nd;
2469
2470 if (IS_ERR(name))
2471 return name;
2472 set_nameidata(&nd, dfd, name);
2473 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2474 if (unlikely(retval == -ECHILD))
2475 retval = path_parentat(&nd, flags, parent);
2476 if (unlikely(retval == -ESTALE))
2477 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2478 if (likely(!retval)) {
2479 *last = nd.last;
2480 *type = nd.last_type;
2481 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2482 } else {
2483 putname(name);
2484 name = ERR_PTR(retval);
2485 }
2486 restore_nameidata();
2487 return name;
2488 }
2489
2490 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2491 struct dentry *kern_path_locked(const char *name, struct path *path)
2492 {
2493 struct filename *filename;
2494 struct dentry *d;
2495 struct qstr last;
2496 int type;
2497
2498 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2499 &last, &type);
2500 if (IS_ERR(filename))
2501 return ERR_CAST(filename);
2502 if (unlikely(type != LAST_NORM)) {
2503 path_put(path);
2504 putname(filename);
2505 return ERR_PTR(-EINVAL);
2506 }
2507 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2508 d = __lookup_hash(&last, path->dentry, 0);
2509 if (IS_ERR(d)) {
2510 inode_unlock(path->dentry->d_inode);
2511 path_put(path);
2512 }
2513 putname(filename);
2514 return d;
2515 }
2516
kern_path(const char * name,unsigned int flags,struct path * path)2517 int kern_path(const char *name, unsigned int flags, struct path *path)
2518 {
2519 return filename_lookup(AT_FDCWD, getname_kernel(name),
2520 flags, path, NULL);
2521 }
2522 EXPORT_SYMBOL(kern_path);
2523
2524 /**
2525 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2526 * @dentry: pointer to dentry of the base directory
2527 * @mnt: pointer to vfs mount of the base directory
2528 * @name: pointer to file name
2529 * @flags: lookup flags
2530 * @path: pointer to struct path to fill
2531 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2532 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2533 const char *name, unsigned int flags,
2534 struct path *path)
2535 {
2536 struct path root = {.mnt = mnt, .dentry = dentry};
2537 /* the first argument of filename_lookup() is ignored with root */
2538 return filename_lookup(AT_FDCWD, getname_kernel(name),
2539 flags , path, &root);
2540 }
2541 EXPORT_SYMBOL(vfs_path_lookup);
2542
lookup_one_len_common(const char * name,struct vfsmount * mnt,struct dentry * base,int len,struct qstr * this)2543 static int lookup_one_len_common(const char *name, struct vfsmount *mnt,
2544 struct dentry *base, int len, struct qstr *this)
2545 {
2546 this->name = name;
2547 this->len = len;
2548 this->hash = full_name_hash(base, name, len);
2549 if (!len)
2550 return -EACCES;
2551
2552 if (unlikely(name[0] == '.')) {
2553 if (len < 2 || (len == 2 && name[1] == '.'))
2554 return -EACCES;
2555 }
2556
2557 while (len--) {
2558 unsigned int c = *(const unsigned char *)name++;
2559 if (c == '/' || c == '\0')
2560 return -EACCES;
2561 }
2562 /*
2563 * See if the low-level filesystem might want
2564 * to use its own hash..
2565 */
2566 if (base->d_flags & DCACHE_OP_HASH) {
2567 int err = base->d_op->d_hash(base, this);
2568 if (err < 0)
2569 return err;
2570 }
2571
2572 return inode_permission2(mnt, base->d_inode, MAY_EXEC);
2573 }
2574
2575 /**
2576 * try_lookup_one_len - filesystem helper to lookup single pathname component
2577 * @name: pathname component to lookup
2578 * @base: base directory to lookup from
2579 * @len: maximum length @len should be interpreted to
2580 *
2581 * Look up a dentry by name in the dcache, returning NULL if it does not
2582 * currently exist. The function does not try to create a dentry.
2583 *
2584 * Note that this routine is purely a helper for filesystem usage and should
2585 * not be called by generic code.
2586 *
2587 * The caller must hold base->i_mutex.
2588 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2589 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2590 {
2591 struct qstr this;
2592 int err;
2593
2594 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2595
2596 err = lookup_one_len_common(name, NULL, base, len, &this);
2597 if (err)
2598 return ERR_PTR(err);
2599
2600 return lookup_dcache(&this, base, 0);
2601 }
2602 EXPORT_SYMBOL(try_lookup_one_len);
2603
2604 /**
2605 * lookup_one_len - filesystem helper to lookup single pathname component
2606 * @name: pathname component to lookup
2607 * @base: base directory to lookup from
2608 * @len: maximum length @len should be interpreted to
2609 *
2610 * Note that this routine is purely a helper for filesystem usage and should
2611 * not be called by generic code.
2612 *
2613 * The caller must hold base->i_mutex.
2614 */
lookup_one_len2(const char * name,struct vfsmount * mnt,struct dentry * base,int len)2615 struct dentry *lookup_one_len2(const char *name, struct vfsmount *mnt, struct dentry *base, int len)
2616 {
2617 struct dentry *dentry;
2618 struct qstr this;
2619 int err;
2620
2621 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2622
2623 err = lookup_one_len_common(name, mnt, base, len, &this);
2624 if (err)
2625 return ERR_PTR(err);
2626
2627 dentry = lookup_dcache(&this, base, 0);
2628 return dentry ? dentry : __lookup_slow(&this, base, 0);
2629 }
2630 EXPORT_SYMBOL(lookup_one_len2);
2631
lookup_one_len(const char * name,struct dentry * base,int len)2632 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2633 {
2634 return lookup_one_len2(name, NULL, base, len);
2635 }
2636 EXPORT_SYMBOL(lookup_one_len);
2637
2638 /**
2639 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2640 * @name: pathname component to lookup
2641 * @base: base directory to lookup from
2642 * @len: maximum length @len should be interpreted to
2643 *
2644 * Note that this routine is purely a helper for filesystem usage and should
2645 * not be called by generic code.
2646 *
2647 * Unlike lookup_one_len, it should be called without the parent
2648 * i_mutex held, and will take the i_mutex itself if necessary.
2649 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2650 struct dentry *lookup_one_len_unlocked(const char *name,
2651 struct dentry *base, int len)
2652 {
2653 struct qstr this;
2654 int err;
2655 struct dentry *ret;
2656
2657 err = lookup_one_len_common(name, NULL, base, len, &this);
2658 if (err)
2659 return ERR_PTR(err);
2660
2661 ret = lookup_dcache(&this, base, 0);
2662 if (!ret)
2663 ret = lookup_slow(&this, base, 0);
2664 return ret;
2665 }
2666 EXPORT_SYMBOL(lookup_one_len_unlocked);
2667
2668 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2669 int path_pts(struct path *path)
2670 {
2671 /* Find something mounted on "pts" in the same directory as
2672 * the input path.
2673 */
2674 struct dentry *child, *parent;
2675 struct qstr this;
2676 int ret;
2677
2678 ret = path_parent_directory(path);
2679 if (ret)
2680 return ret;
2681
2682 parent = path->dentry;
2683 this.name = "pts";
2684 this.len = 3;
2685 child = d_hash_and_lookup(parent, &this);
2686 if (!child)
2687 return -ENOENT;
2688
2689 path->dentry = child;
2690 dput(parent);
2691 follow_mount(path);
2692 return 0;
2693 }
2694 #endif
2695
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2696 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2697 struct path *path, int *empty)
2698 {
2699 return filename_lookup(dfd, getname_flags(name, flags, empty),
2700 flags, path, NULL);
2701 }
2702 EXPORT_SYMBOL(user_path_at_empty);
2703
2704 /**
2705 * mountpoint_last - look up last component for umount
2706 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2707 *
2708 * This is a special lookup_last function just for umount. In this case, we
2709 * need to resolve the path without doing any revalidation.
2710 *
2711 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2712 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2713 * in almost all cases, this lookup will be served out of the dcache. The only
2714 * cases where it won't are if nd->last refers to a symlink or the path is
2715 * bogus and it doesn't exist.
2716 *
2717 * Returns:
2718 * -error: if there was an error during lookup. This includes -ENOENT if the
2719 * lookup found a negative dentry.
2720 *
2721 * 0: if we successfully resolved nd->last and found it to not to be a
2722 * symlink that needs to be followed.
2723 *
2724 * 1: if we successfully resolved nd->last and found it to be a symlink
2725 * that needs to be followed.
2726 */
2727 static int
mountpoint_last(struct nameidata * nd)2728 mountpoint_last(struct nameidata *nd)
2729 {
2730 int error = 0;
2731 struct dentry *dir = nd->path.dentry;
2732 struct path path;
2733
2734 /* If we're in rcuwalk, drop out of it to handle last component */
2735 if (nd->flags & LOOKUP_RCU) {
2736 if (unlazy_walk(nd))
2737 return -ECHILD;
2738 }
2739
2740 nd->flags &= ~LOOKUP_PARENT;
2741
2742 if (unlikely(nd->last_type != LAST_NORM)) {
2743 error = handle_dots(nd, nd->last_type);
2744 if (error)
2745 return error;
2746 path.dentry = dget(nd->path.dentry);
2747 } else {
2748 path.dentry = d_lookup(dir, &nd->last);
2749 if (!path.dentry) {
2750 /*
2751 * No cached dentry. Mounted dentries are pinned in the
2752 * cache, so that means that this dentry is probably
2753 * a symlink or the path doesn't actually point
2754 * to a mounted dentry.
2755 */
2756 path.dentry = lookup_slow(&nd->last, dir,
2757 nd->flags | LOOKUP_NO_REVAL);
2758 if (IS_ERR(path.dentry))
2759 return PTR_ERR(path.dentry);
2760 }
2761 }
2762 if (d_is_negative(path.dentry)) {
2763 dput(path.dentry);
2764 return -ENOENT;
2765 }
2766 path.mnt = nd->path.mnt;
2767 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2768 }
2769
2770 /**
2771 * path_mountpoint - look up a path to be umounted
2772 * @nd: lookup context
2773 * @flags: lookup flags
2774 * @path: pointer to container for result
2775 *
2776 * Look up the given name, but don't attempt to revalidate the last component.
2777 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2778 */
2779 static int
path_mountpoint(struct nameidata * nd,unsigned flags,struct path * path)2780 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2781 {
2782 const char *s = path_init(nd, flags);
2783 int err;
2784
2785 while (!(err = link_path_walk(s, nd)) &&
2786 (err = mountpoint_last(nd)) > 0) {
2787 s = trailing_symlink(nd);
2788 }
2789 if (!err) {
2790 *path = nd->path;
2791 nd->path.mnt = NULL;
2792 nd->path.dentry = NULL;
2793 follow_mount(path);
2794 }
2795 terminate_walk(nd);
2796 return err;
2797 }
2798
2799 static int
filename_mountpoint(int dfd,struct filename * name,struct path * path,unsigned int flags)2800 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2801 unsigned int flags)
2802 {
2803 struct nameidata nd;
2804 int error;
2805 if (IS_ERR(name))
2806 return PTR_ERR(name);
2807 set_nameidata(&nd, dfd, name);
2808 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2809 if (unlikely(error == -ECHILD))
2810 error = path_mountpoint(&nd, flags, path);
2811 if (unlikely(error == -ESTALE))
2812 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2813 if (likely(!error))
2814 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2815 restore_nameidata();
2816 putname(name);
2817 return error;
2818 }
2819
2820 /**
2821 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2822 * @dfd: directory file descriptor
2823 * @name: pathname from userland
2824 * @flags: lookup flags
2825 * @path: pointer to container to hold result
2826 *
2827 * A umount is a special case for path walking. We're not actually interested
2828 * in the inode in this situation, and ESTALE errors can be a problem. We
2829 * simply want track down the dentry and vfsmount attached at the mountpoint
2830 * and avoid revalidating the last component.
2831 *
2832 * Returns 0 and populates "path" on success.
2833 */
2834 int
user_path_mountpoint_at(int dfd,const char __user * name,unsigned int flags,struct path * path)2835 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2836 struct path *path)
2837 {
2838 return filename_mountpoint(dfd, getname(name), path, flags);
2839 }
2840
2841 int
kern_path_mountpoint(int dfd,const char * name,struct path * path,unsigned int flags)2842 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2843 unsigned int flags)
2844 {
2845 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2846 }
2847 EXPORT_SYMBOL(kern_path_mountpoint);
2848
__check_sticky(struct inode * dir,struct inode * inode)2849 int __check_sticky(struct inode *dir, struct inode *inode)
2850 {
2851 kuid_t fsuid = current_fsuid();
2852
2853 if (uid_eq(inode->i_uid, fsuid))
2854 return 0;
2855 if (uid_eq(dir->i_uid, fsuid))
2856 return 0;
2857 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2858 }
2859 EXPORT_SYMBOL(__check_sticky);
2860
2861 /*
2862 * Check whether we can remove a link victim from directory dir, check
2863 * whether the type of victim is right.
2864 * 1. We can't do it if dir is read-only (done in permission())
2865 * 2. We should have write and exec permissions on dir
2866 * 3. We can't remove anything from append-only dir
2867 * 4. We can't do anything with immutable dir (done in permission())
2868 * 5. If the sticky bit on dir is set we should either
2869 * a. be owner of dir, or
2870 * b. be owner of victim, or
2871 * c. have CAP_FOWNER capability
2872 * 6. If the victim is append-only or immutable we can't do antyhing with
2873 * links pointing to it.
2874 * 7. If the victim has an unknown uid or gid we can't change the inode.
2875 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2876 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2877 * 10. We can't remove a root or mountpoint.
2878 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2879 * nfs_async_unlink().
2880 */
may_delete(struct vfsmount * mnt,struct inode * dir,struct dentry * victim,bool isdir)2881 static int may_delete(struct vfsmount *mnt, struct inode *dir, struct dentry *victim, bool isdir)
2882 {
2883 struct inode *inode = d_backing_inode(victim);
2884 int error;
2885
2886 if (d_is_negative(victim))
2887 return -ENOENT;
2888 BUG_ON(!inode);
2889
2890 BUG_ON(victim->d_parent->d_inode != dir);
2891
2892 /* Inode writeback is not safe when the uid or gid are invalid. */
2893 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2894 return -EOVERFLOW;
2895
2896 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2897
2898 error = inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2899 if (error)
2900 return error;
2901 if (IS_APPEND(dir))
2902 return -EPERM;
2903
2904 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2905 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2906 return -EPERM;
2907 if (isdir) {
2908 if (!d_is_dir(victim))
2909 return -ENOTDIR;
2910 if (IS_ROOT(victim))
2911 return -EBUSY;
2912 } else if (d_is_dir(victim))
2913 return -EISDIR;
2914 if (IS_DEADDIR(dir))
2915 return -ENOENT;
2916 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2917 return -EBUSY;
2918 return 0;
2919 }
2920
2921 /* Check whether we can create an object with dentry child in directory
2922 * dir.
2923 * 1. We can't do it if child already exists (open has special treatment for
2924 * this case, but since we are inlined it's OK)
2925 * 2. We can't do it if dir is read-only (done in permission())
2926 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2927 * 4. We should have write and exec permissions on dir
2928 * 5. We can't do it if dir is immutable (done in permission())
2929 */
may_create(struct vfsmount * mnt,struct inode * dir,struct dentry * child)2930 static inline int may_create(struct vfsmount *mnt, struct inode *dir, struct dentry *child)
2931 {
2932 struct user_namespace *s_user_ns;
2933 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2934 if (child->d_inode)
2935 return -EEXIST;
2936 if (IS_DEADDIR(dir))
2937 return -ENOENT;
2938 s_user_ns = dir->i_sb->s_user_ns;
2939 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2940 !kgid_has_mapping(s_user_ns, current_fsgid()))
2941 return -EOVERFLOW;
2942 return inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2943 }
2944
2945 /*
2946 * p1 and p2 should be directories on the same fs.
2947 */
lock_rename(struct dentry * p1,struct dentry * p2)2948 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2949 {
2950 struct dentry *p;
2951
2952 if (p1 == p2) {
2953 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2954 return NULL;
2955 }
2956
2957 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2958
2959 p = d_ancestor(p2, p1);
2960 if (p) {
2961 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2962 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2963 return p;
2964 }
2965
2966 p = d_ancestor(p1, p2);
2967 if (p) {
2968 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2969 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2970 return p;
2971 }
2972
2973 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2974 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2975 return NULL;
2976 }
2977 EXPORT_SYMBOL(lock_rename);
2978
unlock_rename(struct dentry * p1,struct dentry * p2)2979 void unlock_rename(struct dentry *p1, struct dentry *p2)
2980 {
2981 inode_unlock(p1->d_inode);
2982 if (p1 != p2) {
2983 inode_unlock(p2->d_inode);
2984 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2985 }
2986 }
2987 EXPORT_SYMBOL(unlock_rename);
2988
vfs_create2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2989 int vfs_create2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry,
2990 umode_t mode, bool want_excl)
2991 {
2992 int error = may_create(mnt, dir, dentry);
2993 if (error)
2994 return error;
2995
2996 if (!dir->i_op->create)
2997 return -EACCES; /* shouldn't it be ENOSYS? */
2998 mode &= S_IALLUGO;
2999 mode |= S_IFREG;
3000 error = security_inode_create(dir, dentry, mode);
3001 if (error)
3002 return error;
3003 error = dir->i_op->create(dir, dentry, mode, want_excl);
3004 if (!error)
3005 fsnotify_create(dir, dentry);
3006 return error;
3007 }
3008 EXPORT_SYMBOL(vfs_create2);
3009
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3010 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3011 bool want_excl)
3012 {
3013 return vfs_create2(NULL, dir, dentry, mode, want_excl);
3014 }
3015 EXPORT_SYMBOL(vfs_create);
3016
vfs_mkobj2(struct vfsmount * mnt,struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3017 int vfs_mkobj2(struct vfsmount *mnt, struct dentry *dentry, umode_t mode,
3018 int (*f)(struct dentry *, umode_t, void *),
3019 void *arg)
3020 {
3021 struct inode *dir = dentry->d_parent->d_inode;
3022 int error = may_create(mnt, dir, dentry);
3023 if (error)
3024 return error;
3025
3026 mode &= S_IALLUGO;
3027 mode |= S_IFREG;
3028 error = security_inode_create(dir, dentry, mode);
3029 if (error)
3030 return error;
3031 error = f(dentry, mode, arg);
3032 if (!error)
3033 fsnotify_create(dir, dentry);
3034 return error;
3035 }
3036 EXPORT_SYMBOL(vfs_mkobj2);
3037
3038
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3039 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3040 int (*f)(struct dentry *, umode_t, void *),
3041 void *arg)
3042 {
3043 return vfs_mkobj2(NULL, dentry, mode, f, arg);
3044 }
3045 EXPORT_SYMBOL(vfs_mkobj);
3046
may_open_dev(const struct path * path)3047 bool may_open_dev(const struct path *path)
3048 {
3049 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3050 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3051 }
3052
may_open(const struct path * path,int acc_mode,int flag)3053 static int may_open(const struct path *path, int acc_mode, int flag)
3054 {
3055 struct dentry *dentry = path->dentry;
3056 struct vfsmount *mnt = path->mnt;
3057 struct inode *inode = dentry->d_inode;
3058 int error;
3059
3060 if (!inode)
3061 return -ENOENT;
3062
3063 switch (inode->i_mode & S_IFMT) {
3064 case S_IFLNK:
3065 return -ELOOP;
3066 case S_IFDIR:
3067 if (acc_mode & MAY_WRITE)
3068 return -EISDIR;
3069 break;
3070 case S_IFBLK:
3071 case S_IFCHR:
3072 if (!may_open_dev(path))
3073 return -EACCES;
3074 /*FALLTHRU*/
3075 case S_IFIFO:
3076 case S_IFSOCK:
3077 flag &= ~O_TRUNC;
3078 break;
3079 }
3080
3081 error = inode_permission2(mnt, inode, MAY_OPEN | acc_mode);
3082 if (error)
3083 return error;
3084
3085 /*
3086 * An append-only file must be opened in append mode for writing.
3087 */
3088 if (IS_APPEND(inode)) {
3089 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3090 return -EPERM;
3091 if (flag & O_TRUNC)
3092 return -EPERM;
3093 }
3094
3095 /* O_NOATIME can only be set by the owner or superuser */
3096 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
3097 return -EPERM;
3098
3099 return 0;
3100 }
3101
handle_truncate(struct file * filp)3102 static int handle_truncate(struct file *filp)
3103 {
3104 const struct path *path = &filp->f_path;
3105 struct inode *inode = path->dentry->d_inode;
3106 int error = get_write_access(inode);
3107 if (error)
3108 return error;
3109 /*
3110 * Refuse to truncate files with mandatory locks held on them.
3111 */
3112 error = locks_verify_locked(filp);
3113 if (!error)
3114 error = security_path_truncate(path);
3115 if (!error) {
3116 error = do_truncate2(path->mnt, path->dentry, 0,
3117 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3118 filp);
3119 }
3120 put_write_access(inode);
3121 return error;
3122 }
3123
open_to_namei_flags(int flag)3124 static inline int open_to_namei_flags(int flag)
3125 {
3126 if ((flag & O_ACCMODE) == 3)
3127 flag--;
3128 return flag;
3129 }
3130
may_o_create(const struct path * dir,struct dentry * dentry,umode_t mode)3131 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3132 {
3133 struct user_namespace *s_user_ns;
3134 int error = security_path_mknod(dir, dentry, mode, 0);
3135 if (error)
3136 return error;
3137
3138 s_user_ns = dir->dentry->d_sb->s_user_ns;
3139 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3140 !kgid_has_mapping(s_user_ns, current_fsgid()))
3141 return -EOVERFLOW;
3142
3143 error = inode_permission2(dir->mnt, dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3144 if (error)
3145 return error;
3146
3147 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3148 }
3149
3150 /*
3151 * Attempt to atomically look up, create and open a file from a negative
3152 * dentry.
3153 *
3154 * Returns 0 if successful. The file will have been created and attached to
3155 * @file by the filesystem calling finish_open().
3156 *
3157 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3158 * be set. The caller will need to perform the open themselves. @path will
3159 * have been updated to point to the new dentry. This may be negative.
3160 *
3161 * Returns an error code otherwise.
3162 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct path * path,struct file * file,const struct open_flags * op,int open_flag,umode_t mode)3163 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3164 struct path *path, struct file *file,
3165 const struct open_flags *op,
3166 int open_flag, umode_t mode)
3167 {
3168 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3169 struct inode *dir = nd->path.dentry->d_inode;
3170 int error;
3171
3172 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3173 open_flag &= ~O_TRUNC;
3174
3175 if (nd->flags & LOOKUP_DIRECTORY)
3176 open_flag |= O_DIRECTORY;
3177
3178 file->f_path.dentry = DENTRY_NOT_SET;
3179 file->f_path.mnt = nd->path.mnt;
3180 error = dir->i_op->atomic_open(dir, dentry, file,
3181 open_to_namei_flags(open_flag), mode);
3182 d_lookup_done(dentry);
3183 if (!error) {
3184 if (file->f_mode & FMODE_OPENED) {
3185 /*
3186 * We didn't have the inode before the open, so check open
3187 * permission here.
3188 */
3189 int acc_mode = op->acc_mode;
3190 if (file->f_mode & FMODE_CREATED) {
3191 WARN_ON(!(open_flag & O_CREAT));
3192 fsnotify_create(dir, dentry);
3193 acc_mode = 0;
3194 }
3195 error = may_open(&file->f_path, acc_mode, open_flag);
3196 if (WARN_ON(error > 0))
3197 error = -EINVAL;
3198 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3199 error = -EIO;
3200 } else {
3201 if (file->f_path.dentry) {
3202 dput(dentry);
3203 dentry = file->f_path.dentry;
3204 }
3205 if (file->f_mode & FMODE_CREATED)
3206 fsnotify_create(dir, dentry);
3207 if (unlikely(d_is_negative(dentry))) {
3208 error = -ENOENT;
3209 } else {
3210 path->dentry = dentry;
3211 path->mnt = nd->path.mnt;
3212 return 0;
3213 }
3214 }
3215 }
3216 dput(dentry);
3217 return error;
3218 }
3219
3220 /*
3221 * Look up and maybe create and open the last component.
3222 *
3223 * Must be called with parent locked (exclusive in O_CREAT case).
3224 *
3225 * Returns 0 on success, that is, if
3226 * the file was successfully atomically created (if necessary) and opened, or
3227 * the file was not completely opened at this time, though lookups and
3228 * creations were performed.
3229 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3230 * In the latter case dentry returned in @path might be negative if O_CREAT
3231 * hadn't been specified.
3232 *
3233 * An error code is returned on failure.
3234 */
lookup_open(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,bool got_write)3235 static int lookup_open(struct nameidata *nd, struct path *path,
3236 struct file *file,
3237 const struct open_flags *op,
3238 bool got_write)
3239 {
3240 struct dentry *dir = nd->path.dentry;
3241 struct inode *dir_inode = dir->d_inode;
3242 int open_flag = op->open_flag;
3243 struct dentry *dentry;
3244 int error, create_error = 0;
3245 umode_t mode = op->mode;
3246 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3247
3248 if (unlikely(IS_DEADDIR(dir_inode)))
3249 return -ENOENT;
3250
3251 file->f_mode &= ~FMODE_CREATED;
3252 dentry = d_lookup(dir, &nd->last);
3253 for (;;) {
3254 if (!dentry) {
3255 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3256 if (IS_ERR(dentry))
3257 return PTR_ERR(dentry);
3258 }
3259 if (d_in_lookup(dentry))
3260 break;
3261
3262 error = d_revalidate(dentry, nd->flags);
3263 if (likely(error > 0))
3264 break;
3265 if (error)
3266 goto out_dput;
3267 d_invalidate(dentry);
3268 dput(dentry);
3269 dentry = NULL;
3270 }
3271 if (dentry->d_inode) {
3272 /* Cached positive dentry: will open in f_op->open */
3273 goto out_no_open;
3274 }
3275
3276 /*
3277 * Checking write permission is tricky, bacuse we don't know if we are
3278 * going to actually need it: O_CREAT opens should work as long as the
3279 * file exists. But checking existence breaks atomicity. The trick is
3280 * to check access and if not granted clear O_CREAT from the flags.
3281 *
3282 * Another problem is returing the "right" error value (e.g. for an
3283 * O_EXCL open we want to return EEXIST not EROFS).
3284 */
3285 if (open_flag & O_CREAT) {
3286 if (!IS_POSIXACL(dir->d_inode))
3287 mode &= ~current_umask();
3288 if (unlikely(!got_write)) {
3289 create_error = -EROFS;
3290 open_flag &= ~O_CREAT;
3291 if (open_flag & (O_EXCL | O_TRUNC))
3292 goto no_open;
3293 /* No side effects, safe to clear O_CREAT */
3294 } else {
3295 create_error = may_o_create(&nd->path, dentry, mode);
3296 if (create_error) {
3297 open_flag &= ~O_CREAT;
3298 if (open_flag & O_EXCL)
3299 goto no_open;
3300 }
3301 }
3302 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3303 unlikely(!got_write)) {
3304 /*
3305 * No O_CREATE -> atomicity not a requirement -> fall
3306 * back to lookup + open
3307 */
3308 goto no_open;
3309 }
3310
3311 if (dir_inode->i_op->atomic_open) {
3312 error = atomic_open(nd, dentry, path, file, op, open_flag,
3313 mode);
3314 if (unlikely(error == -ENOENT) && create_error)
3315 error = create_error;
3316 return error;
3317 }
3318
3319 no_open:
3320 if (d_in_lookup(dentry)) {
3321 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3322 nd->flags);
3323 d_lookup_done(dentry);
3324 if (unlikely(res)) {
3325 if (IS_ERR(res)) {
3326 error = PTR_ERR(res);
3327 goto out_dput;
3328 }
3329 dput(dentry);
3330 dentry = res;
3331 }
3332 }
3333
3334 /* Negative dentry, just create the file */
3335 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3336 file->f_mode |= FMODE_CREATED;
3337 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3338 if (!dir_inode->i_op->create) {
3339 error = -EACCES;
3340 goto out_dput;
3341 }
3342 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3343 open_flag & O_EXCL);
3344 if (error)
3345 goto out_dput;
3346 fsnotify_create(dir_inode, dentry);
3347 }
3348 if (unlikely(create_error) && !dentry->d_inode) {
3349 error = create_error;
3350 goto out_dput;
3351 }
3352 out_no_open:
3353 path->dentry = dentry;
3354 path->mnt = nd->path.mnt;
3355 return 0;
3356
3357 out_dput:
3358 dput(dentry);
3359 return error;
3360 }
3361
3362 /*
3363 * Handle the last step of open()
3364 */
do_last(struct nameidata * nd,struct file * file,const struct open_flags * op)3365 static int do_last(struct nameidata *nd,
3366 struct file *file, const struct open_flags *op)
3367 {
3368 struct dentry *dir = nd->path.dentry;
3369 kuid_t dir_uid = dir->d_inode->i_uid;
3370 umode_t dir_mode = dir->d_inode->i_mode;
3371 int open_flag = op->open_flag;
3372 bool will_truncate = (open_flag & O_TRUNC) != 0;
3373 bool got_write = false;
3374 int acc_mode = op->acc_mode;
3375 unsigned seq;
3376 struct inode *inode;
3377 struct path path;
3378 int error;
3379
3380 nd->flags &= ~LOOKUP_PARENT;
3381 nd->flags |= op->intent;
3382
3383 if (nd->last_type != LAST_NORM) {
3384 error = handle_dots(nd, nd->last_type);
3385 if (unlikely(error))
3386 return error;
3387 goto finish_open;
3388 }
3389
3390 if (!(open_flag & O_CREAT)) {
3391 if (nd->last.name[nd->last.len])
3392 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3393 /* we _can_ be in RCU mode here */
3394 error = lookup_fast(nd, &path, &inode, &seq);
3395 if (likely(error > 0))
3396 goto finish_lookup;
3397
3398 if (error < 0)
3399 return error;
3400
3401 BUG_ON(nd->inode != dir->d_inode);
3402 BUG_ON(nd->flags & LOOKUP_RCU);
3403 } else {
3404 /* create side of things */
3405 /*
3406 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3407 * has been cleared when we got to the last component we are
3408 * about to look up
3409 */
3410 error = complete_walk(nd);
3411 if (error)
3412 return error;
3413
3414 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3415 /* trailing slashes? */
3416 if (unlikely(nd->last.name[nd->last.len]))
3417 return -EISDIR;
3418 }
3419
3420 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3421 error = mnt_want_write(nd->path.mnt);
3422 if (!error)
3423 got_write = true;
3424 /*
3425 * do _not_ fail yet - we might not need that or fail with
3426 * a different error; let lookup_open() decide; we'll be
3427 * dropping this one anyway.
3428 */
3429 }
3430 if (open_flag & O_CREAT)
3431 inode_lock(dir->d_inode);
3432 else
3433 inode_lock_shared(dir->d_inode);
3434 error = lookup_open(nd, &path, file, op, got_write);
3435 if (open_flag & O_CREAT)
3436 inode_unlock(dir->d_inode);
3437 else
3438 inode_unlock_shared(dir->d_inode);
3439
3440 if (error)
3441 goto out;
3442
3443 if (file->f_mode & FMODE_OPENED) {
3444 if ((file->f_mode & FMODE_CREATED) ||
3445 !S_ISREG(file_inode(file)->i_mode))
3446 will_truncate = false;
3447
3448 audit_inode(nd->name, file->f_path.dentry, 0);
3449 goto opened;
3450 }
3451
3452 if (file->f_mode & FMODE_CREATED) {
3453 /* Don't check for write permission, don't truncate */
3454 open_flag &= ~O_TRUNC;
3455 will_truncate = false;
3456 acc_mode = 0;
3457 path_to_nameidata(&path, nd);
3458 goto finish_open_created;
3459 }
3460
3461 /*
3462 * If atomic_open() acquired write access it is dropped now due to
3463 * possible mount and symlink following (this might be optimized away if
3464 * necessary...)
3465 */
3466 if (got_write) {
3467 mnt_drop_write(nd->path.mnt);
3468 got_write = false;
3469 }
3470
3471 error = follow_managed(&path, nd);
3472 if (unlikely(error < 0))
3473 return error;
3474
3475 if (unlikely(d_is_negative(path.dentry))) {
3476 path_to_nameidata(&path, nd);
3477 return -ENOENT;
3478 }
3479
3480 /*
3481 * create/update audit record if it already exists.
3482 */
3483 audit_inode(nd->name, path.dentry, 0);
3484
3485 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3486 path_to_nameidata(&path, nd);
3487 return -EEXIST;
3488 }
3489
3490 seq = 0; /* out of RCU mode, so the value doesn't matter */
3491 inode = d_backing_inode(path.dentry);
3492 finish_lookup:
3493 error = step_into(nd, &path, 0, inode, seq);
3494 if (unlikely(error))
3495 return error;
3496 finish_open:
3497 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3498 error = complete_walk(nd);
3499 if (error)
3500 return error;
3501 audit_inode(nd->name, nd->path.dentry, 0);
3502 if (open_flag & O_CREAT) {
3503 error = -EISDIR;
3504 if (d_is_dir(nd->path.dentry))
3505 goto out;
3506 error = may_create_in_sticky(dir_mode, dir_uid,
3507 d_backing_inode(nd->path.dentry));
3508 if (unlikely(error))
3509 goto out;
3510 }
3511 error = -ENOTDIR;
3512 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3513 goto out;
3514 if (!d_is_reg(nd->path.dentry))
3515 will_truncate = false;
3516
3517 if (will_truncate) {
3518 error = mnt_want_write(nd->path.mnt);
3519 if (error)
3520 goto out;
3521 got_write = true;
3522 }
3523 finish_open_created:
3524 error = may_open(&nd->path, acc_mode, open_flag);
3525 if (error)
3526 goto out;
3527 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3528 error = vfs_open(&nd->path, file);
3529 if (error)
3530 goto out;
3531 opened:
3532 error = ima_file_check(file, op->acc_mode);
3533 if (!error && will_truncate)
3534 error = handle_truncate(file);
3535 out:
3536 if (unlikely(error > 0)) {
3537 WARN_ON(1);
3538 error = -EINVAL;
3539 }
3540 if (got_write)
3541 mnt_drop_write(nd->path.mnt);
3542 return error;
3543 }
3544
vfs_tmpfile(struct dentry * dentry,umode_t mode,int open_flag)3545 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3546 {
3547 struct dentry *child = NULL;
3548 struct inode *dir = dentry->d_inode;
3549 struct inode *inode;
3550 int error;
3551
3552 /* we want directory to be writable */
3553 error = inode_permission2(ERR_PTR(-EOPNOTSUPP), dir,
3554 MAY_WRITE | MAY_EXEC);
3555 if (error)
3556 goto out_err;
3557 error = -EOPNOTSUPP;
3558 if (!dir->i_op->tmpfile)
3559 goto out_err;
3560 error = -ENOMEM;
3561 child = d_alloc(dentry, &slash_name);
3562 if (unlikely(!child))
3563 goto out_err;
3564 error = dir->i_op->tmpfile(dir, child, mode);
3565 if (error)
3566 goto out_err;
3567 error = -ENOENT;
3568 inode = child->d_inode;
3569 if (unlikely(!inode))
3570 goto out_err;
3571 if (!(open_flag & O_EXCL)) {
3572 spin_lock(&inode->i_lock);
3573 inode->i_state |= I_LINKABLE;
3574 spin_unlock(&inode->i_lock);
3575 }
3576 ima_post_create_tmpfile(inode);
3577 return child;
3578
3579 out_err:
3580 dput(child);
3581 return ERR_PTR(error);
3582 }
3583 EXPORT_SYMBOL(vfs_tmpfile);
3584
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3585 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3586 const struct open_flags *op,
3587 struct file *file)
3588 {
3589 struct dentry *child;
3590 struct path path;
3591 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3592 if (unlikely(error))
3593 return error;
3594 error = mnt_want_write(path.mnt);
3595 if (unlikely(error))
3596 goto out;
3597 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3598 error = PTR_ERR(child);
3599 if (IS_ERR(child))
3600 goto out2;
3601 dput(path.dentry);
3602 path.dentry = child;
3603 audit_inode(nd->name, child, 0);
3604 /* Don't check for other permissions, the inode was just created */
3605 error = may_open(&path, 0, op->open_flag);
3606 if (error)
3607 goto out2;
3608 file->f_path.mnt = path.mnt;
3609 error = finish_open(file, child, NULL);
3610 out2:
3611 mnt_drop_write(path.mnt);
3612 out:
3613 path_put(&path);
3614 return error;
3615 }
3616
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3617 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3618 {
3619 struct path path;
3620 int error = path_lookupat(nd, flags, &path);
3621 if (!error) {
3622 audit_inode(nd->name, path.dentry, 0);
3623 error = vfs_open(&path, file);
3624 path_put(&path);
3625 }
3626 return error;
3627 }
3628
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3629 static struct file *path_openat(struct nameidata *nd,
3630 const struct open_flags *op, unsigned flags)
3631 {
3632 struct file *file;
3633 int error;
3634
3635 file = alloc_empty_file(op->open_flag, current_cred());
3636 if (IS_ERR(file))
3637 return file;
3638
3639 if (unlikely(file->f_flags & __O_TMPFILE)) {
3640 error = do_tmpfile(nd, flags, op, file);
3641 } else if (unlikely(file->f_flags & O_PATH)) {
3642 error = do_o_path(nd, flags, file);
3643 } else {
3644 const char *s = path_init(nd, flags);
3645 while (!(error = link_path_walk(s, nd)) &&
3646 (error = do_last(nd, file, op)) > 0) {
3647 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3648 s = trailing_symlink(nd);
3649 }
3650 terminate_walk(nd);
3651 }
3652 if (likely(!error)) {
3653 if (likely(file->f_mode & FMODE_OPENED))
3654 return file;
3655 WARN_ON(1);
3656 error = -EINVAL;
3657 }
3658 fput(file);
3659 if (error == -EOPENSTALE) {
3660 if (flags & LOOKUP_RCU)
3661 error = -ECHILD;
3662 else
3663 error = -ESTALE;
3664 }
3665 return ERR_PTR(error);
3666 }
3667
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3668 struct file *do_filp_open(int dfd, struct filename *pathname,
3669 const struct open_flags *op)
3670 {
3671 struct nameidata nd;
3672 int flags = op->lookup_flags;
3673 struct file *filp;
3674
3675 set_nameidata(&nd, dfd, pathname);
3676 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3677 if (unlikely(filp == ERR_PTR(-ECHILD)))
3678 filp = path_openat(&nd, op, flags);
3679 if (unlikely(filp == ERR_PTR(-ESTALE)))
3680 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3681 restore_nameidata();
3682 return filp;
3683 }
3684
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op)3685 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3686 const char *name, const struct open_flags *op)
3687 {
3688 struct nameidata nd;
3689 struct file *file;
3690 struct filename *filename;
3691 int flags = op->lookup_flags | LOOKUP_ROOT;
3692
3693 nd.root.mnt = mnt;
3694 nd.root.dentry = dentry;
3695
3696 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3697 return ERR_PTR(-ELOOP);
3698
3699 filename = getname_kernel(name);
3700 if (IS_ERR(filename))
3701 return ERR_CAST(filename);
3702
3703 set_nameidata(&nd, -1, filename);
3704 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3705 if (unlikely(file == ERR_PTR(-ECHILD)))
3706 file = path_openat(&nd, op, flags);
3707 if (unlikely(file == ERR_PTR(-ESTALE)))
3708 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3709 restore_nameidata();
3710 putname(filename);
3711 return file;
3712 }
3713
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3714 static struct dentry *filename_create(int dfd, struct filename *name,
3715 struct path *path, unsigned int lookup_flags)
3716 {
3717 struct dentry *dentry = ERR_PTR(-EEXIST);
3718 struct qstr last;
3719 int type;
3720 int err2;
3721 int error;
3722 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3723
3724 /*
3725 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3726 * other flags passed in are ignored!
3727 */
3728 lookup_flags &= LOOKUP_REVAL;
3729
3730 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3731 if (IS_ERR(name))
3732 return ERR_CAST(name);
3733
3734 /*
3735 * Yucky last component or no last component at all?
3736 * (foo/., foo/.., /////)
3737 */
3738 if (unlikely(type != LAST_NORM))
3739 goto out;
3740
3741 /* don't fail immediately if it's r/o, at least try to report other errors */
3742 err2 = mnt_want_write(path->mnt);
3743 /*
3744 * Do the final lookup.
3745 */
3746 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3747 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3748 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3749 if (IS_ERR(dentry))
3750 goto unlock;
3751
3752 error = -EEXIST;
3753 if (d_is_positive(dentry))
3754 goto fail;
3755
3756 /*
3757 * Special case - lookup gave negative, but... we had foo/bar/
3758 * From the vfs_mknod() POV we just have a negative dentry -
3759 * all is fine. Let's be bastards - you had / on the end, you've
3760 * been asking for (non-existent) directory. -ENOENT for you.
3761 */
3762 if (unlikely(!is_dir && last.name[last.len])) {
3763 error = -ENOENT;
3764 goto fail;
3765 }
3766 if (unlikely(err2)) {
3767 error = err2;
3768 goto fail;
3769 }
3770 putname(name);
3771 return dentry;
3772 fail:
3773 dput(dentry);
3774 dentry = ERR_PTR(error);
3775 unlock:
3776 inode_unlock(path->dentry->d_inode);
3777 if (!err2)
3778 mnt_drop_write(path->mnt);
3779 out:
3780 path_put(path);
3781 putname(name);
3782 return dentry;
3783 }
3784
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3785 struct dentry *kern_path_create(int dfd, const char *pathname,
3786 struct path *path, unsigned int lookup_flags)
3787 {
3788 return filename_create(dfd, getname_kernel(pathname),
3789 path, lookup_flags);
3790 }
3791 EXPORT_SYMBOL(kern_path_create);
3792
done_path_create(struct path * path,struct dentry * dentry)3793 void done_path_create(struct path *path, struct dentry *dentry)
3794 {
3795 dput(dentry);
3796 inode_unlock(path->dentry->d_inode);
3797 mnt_drop_write(path->mnt);
3798 path_put(path);
3799 }
3800 EXPORT_SYMBOL(done_path_create);
3801
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3802 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3803 struct path *path, unsigned int lookup_flags)
3804 {
3805 return filename_create(dfd, getname(pathname), path, lookup_flags);
3806 }
3807 EXPORT_SYMBOL(user_path_create);
3808
vfs_mknod2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3809 int vfs_mknod2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3810 {
3811 int error = may_create(mnt, dir, dentry);
3812
3813 if (error)
3814 return error;
3815
3816 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3817 return -EPERM;
3818
3819 if (!dir->i_op->mknod)
3820 return -EPERM;
3821
3822 error = devcgroup_inode_mknod(mode, dev);
3823 if (error)
3824 return error;
3825
3826 error = security_inode_mknod(dir, dentry, mode, dev);
3827 if (error)
3828 return error;
3829
3830 error = dir->i_op->mknod(dir, dentry, mode, dev);
3831 if (!error)
3832 fsnotify_create(dir, dentry);
3833 return error;
3834 }
3835 EXPORT_SYMBOL(vfs_mknod2);
3836
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3837 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3838 {
3839 return vfs_mknod2(NULL, dir, dentry, mode, dev);
3840 }
3841 EXPORT_SYMBOL(vfs_mknod);
3842
may_mknod(umode_t mode)3843 static int may_mknod(umode_t mode)
3844 {
3845 switch (mode & S_IFMT) {
3846 case S_IFREG:
3847 case S_IFCHR:
3848 case S_IFBLK:
3849 case S_IFIFO:
3850 case S_IFSOCK:
3851 case 0: /* zero mode translates to S_IFREG */
3852 return 0;
3853 case S_IFDIR:
3854 return -EPERM;
3855 default:
3856 return -EINVAL;
3857 }
3858 }
3859
do_mknodat(int dfd,const char __user * filename,umode_t mode,unsigned int dev)3860 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3861 unsigned int dev)
3862 {
3863 struct dentry *dentry;
3864 struct path path;
3865 int error;
3866 unsigned int lookup_flags = 0;
3867
3868 error = may_mknod(mode);
3869 if (error)
3870 return error;
3871 retry:
3872 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3873 if (IS_ERR(dentry))
3874 return PTR_ERR(dentry);
3875
3876 if (!IS_POSIXACL(path.dentry->d_inode))
3877 mode &= ~current_umask();
3878 error = security_path_mknod(&path, dentry, mode, dev);
3879 if (error)
3880 goto out;
3881 switch (mode & S_IFMT) {
3882 case 0: case S_IFREG:
3883 error = vfs_create2(path.mnt, path.dentry->d_inode,dentry,mode,true);
3884 if (!error)
3885 ima_post_path_mknod(dentry);
3886 break;
3887 case S_IFCHR: case S_IFBLK:
3888 error = vfs_mknod2(path.mnt, path.dentry->d_inode,dentry,mode,
3889 new_decode_dev(dev));
3890 break;
3891 case S_IFIFO: case S_IFSOCK:
3892 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3893 break;
3894 }
3895 out:
3896 done_path_create(&path, dentry);
3897 if (retry_estale(error, lookup_flags)) {
3898 lookup_flags |= LOOKUP_REVAL;
3899 goto retry;
3900 }
3901 return error;
3902 }
3903
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)3904 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3905 unsigned int, dev)
3906 {
3907 return do_mknodat(dfd, filename, mode, dev);
3908 }
3909
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3910 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3911 {
3912 return do_mknodat(AT_FDCWD, filename, mode, dev);
3913 }
3914
vfs_mkdir2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode)3915 int vfs_mkdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode)
3916 {
3917 int error = may_create(mnt, dir, dentry);
3918 unsigned max_links = dir->i_sb->s_max_links;
3919
3920 if (error)
3921 return error;
3922
3923 if (!dir->i_op->mkdir)
3924 return -EPERM;
3925
3926 mode &= (S_IRWXUGO|S_ISVTX);
3927 error = security_inode_mkdir(dir, dentry, mode);
3928 if (error)
3929 return error;
3930
3931 if (max_links && dir->i_nlink >= max_links)
3932 return -EMLINK;
3933
3934 error = dir->i_op->mkdir(dir, dentry, mode);
3935 if (!error)
3936 fsnotify_mkdir(dir, dentry);
3937 return error;
3938 }
3939 EXPORT_SYMBOL(vfs_mkdir2);
3940
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3941 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3942 {
3943 return vfs_mkdir2(NULL, dir, dentry, mode);
3944 }
3945 EXPORT_SYMBOL(vfs_mkdir);
3946
do_mkdirat(int dfd,const char __user * pathname,umode_t mode)3947 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3948 {
3949 struct dentry *dentry;
3950 struct path path;
3951 int error;
3952 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3953
3954 retry:
3955 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3956 if (IS_ERR(dentry))
3957 return PTR_ERR(dentry);
3958
3959 if (!IS_POSIXACL(path.dentry->d_inode))
3960 mode &= ~current_umask();
3961 error = security_path_mkdir(&path, dentry, mode);
3962 if (!error)
3963 error = vfs_mkdir2(path.mnt, path.dentry->d_inode, dentry, mode);
3964 done_path_create(&path, dentry);
3965 if (retry_estale(error, lookup_flags)) {
3966 lookup_flags |= LOOKUP_REVAL;
3967 goto retry;
3968 }
3969 return error;
3970 }
3971
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3972 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3973 {
3974 return do_mkdirat(dfd, pathname, mode);
3975 }
3976
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)3977 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3978 {
3979 return do_mkdirat(AT_FDCWD, pathname, mode);
3980 }
3981
vfs_rmdir2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry)3982 int vfs_rmdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry)
3983 {
3984 int error = may_delete(mnt, dir, dentry, 1);
3985
3986 if (error)
3987 return error;
3988
3989 if (!dir->i_op->rmdir)
3990 return -EPERM;
3991
3992 dget(dentry);
3993 inode_lock(dentry->d_inode);
3994
3995 error = -EBUSY;
3996 if (is_local_mountpoint(dentry))
3997 goto out;
3998
3999 error = security_inode_rmdir(dir, dentry);
4000 if (error)
4001 goto out;
4002
4003 error = dir->i_op->rmdir(dir, dentry);
4004 if (error)
4005 goto out;
4006
4007 shrink_dcache_parent(dentry);
4008 dentry->d_inode->i_flags |= S_DEAD;
4009 dont_mount(dentry);
4010 detach_mounts(dentry);
4011 fsnotify_rmdir(dir, dentry);
4012
4013 out:
4014 inode_unlock(dentry->d_inode);
4015 dput(dentry);
4016 if (!error)
4017 d_delete(dentry);
4018 return error;
4019 }
4020 EXPORT_SYMBOL(vfs_rmdir2);
4021
vfs_rmdir(struct inode * dir,struct dentry * dentry)4022 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
4023 {
4024 return vfs_rmdir2(NULL, dir, dentry);
4025 }
4026 EXPORT_SYMBOL(vfs_rmdir);
4027
do_rmdir(int dfd,const char __user * pathname)4028 long do_rmdir(int dfd, const char __user *pathname)
4029 {
4030 int error = 0;
4031 struct filename *name;
4032 struct dentry *dentry;
4033 struct path path;
4034 struct qstr last;
4035 int type;
4036 unsigned int lookup_flags = 0;
4037 retry:
4038 name = filename_parentat(dfd, getname(pathname), lookup_flags,
4039 &path, &last, &type);
4040 if (IS_ERR(name))
4041 return PTR_ERR(name);
4042
4043 switch (type) {
4044 case LAST_DOTDOT:
4045 error = -ENOTEMPTY;
4046 goto exit1;
4047 case LAST_DOT:
4048 error = -EINVAL;
4049 goto exit1;
4050 case LAST_ROOT:
4051 error = -EBUSY;
4052 goto exit1;
4053 }
4054
4055 error = mnt_want_write(path.mnt);
4056 if (error)
4057 goto exit1;
4058
4059 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4060 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4061 error = PTR_ERR(dentry);
4062 if (IS_ERR(dentry))
4063 goto exit2;
4064 if (!dentry->d_inode) {
4065 error = -ENOENT;
4066 goto exit3;
4067 }
4068 error = security_path_rmdir(&path, dentry);
4069 if (error)
4070 goto exit3;
4071 error = vfs_rmdir2(path.mnt, path.dentry->d_inode, dentry);
4072 exit3:
4073 dput(dentry);
4074 exit2:
4075 inode_unlock(path.dentry->d_inode);
4076 mnt_drop_write(path.mnt);
4077 exit1:
4078 path_put(&path);
4079 putname(name);
4080 if (retry_estale(error, lookup_flags)) {
4081 lookup_flags |= LOOKUP_REVAL;
4082 goto retry;
4083 }
4084 return error;
4085 }
4086
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4087 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4088 {
4089 return do_rmdir(AT_FDCWD, pathname);
4090 }
4091
4092 /**
4093 * vfs_unlink - unlink a filesystem object
4094 * @dir: parent directory
4095 * @dentry: victim
4096 * @delegated_inode: returns victim inode, if the inode is delegated.
4097 *
4098 * The caller must hold dir->i_mutex.
4099 *
4100 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4101 * return a reference to the inode in delegated_inode. The caller
4102 * should then break the delegation on that inode and retry. Because
4103 * breaking a delegation may take a long time, the caller should drop
4104 * dir->i_mutex before doing so.
4105 *
4106 * Alternatively, a caller may pass NULL for delegated_inode. This may
4107 * be appropriate for callers that expect the underlying filesystem not
4108 * to be NFS exported.
4109 */
vfs_unlink2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4110 int vfs_unlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4111 {
4112 struct inode *target = dentry->d_inode;
4113 int error = may_delete(mnt, dir, dentry, 0);
4114
4115 if (error)
4116 return error;
4117
4118 if (!dir->i_op->unlink)
4119 return -EPERM;
4120
4121 inode_lock(target);
4122 if (is_local_mountpoint(dentry))
4123 error = -EBUSY;
4124 else {
4125 error = security_inode_unlink(dir, dentry);
4126 if (!error) {
4127 error = try_break_deleg(target, delegated_inode);
4128 if (error)
4129 goto out;
4130 error = dir->i_op->unlink(dir, dentry);
4131 if (!error) {
4132 dont_mount(dentry);
4133 detach_mounts(dentry);
4134 fsnotify_unlink(dir, dentry);
4135 }
4136 }
4137 }
4138 out:
4139 inode_unlock(target);
4140
4141 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4142 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4143 fsnotify_link_count(target);
4144 d_delete(dentry);
4145 }
4146
4147 return error;
4148 }
4149 EXPORT_SYMBOL(vfs_unlink2);
4150
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4151 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4152 {
4153 return vfs_unlink2(NULL, dir, dentry, delegated_inode);
4154 }
4155 EXPORT_SYMBOL(vfs_unlink);
4156
4157 /*
4158 * Make sure that the actual truncation of the file will occur outside its
4159 * directory's i_mutex. Truncate can take a long time if there is a lot of
4160 * writeout happening, and we don't want to prevent access to the directory
4161 * while waiting on the I/O.
4162 */
do_unlinkat(int dfd,struct filename * name)4163 long do_unlinkat(int dfd, struct filename *name)
4164 {
4165 int error;
4166 struct dentry *dentry;
4167 struct path path;
4168 struct qstr last;
4169 int type;
4170 struct inode *inode = NULL;
4171 struct inode *delegated_inode = NULL;
4172 unsigned int lookup_flags = 0;
4173 retry:
4174 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4175 if (IS_ERR(name))
4176 return PTR_ERR(name);
4177
4178 error = -EISDIR;
4179 if (type != LAST_NORM)
4180 goto exit1;
4181
4182 error = mnt_want_write(path.mnt);
4183 if (error)
4184 goto exit1;
4185 retry_deleg:
4186 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4187 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4188 error = PTR_ERR(dentry);
4189 if (!IS_ERR(dentry)) {
4190 /* Why not before? Because we want correct error value */
4191 if (last.name[last.len])
4192 goto slashes;
4193 inode = dentry->d_inode;
4194 if (d_is_negative(dentry))
4195 goto slashes;
4196 ihold(inode);
4197 error = security_path_unlink(&path, dentry);
4198 if (error)
4199 goto exit2;
4200 error = vfs_unlink2(path.mnt, path.dentry->d_inode, dentry, &delegated_inode);
4201 exit2:
4202 dput(dentry);
4203 }
4204 inode_unlock(path.dentry->d_inode);
4205 if (inode)
4206 iput(inode); /* truncate the inode here */
4207 inode = NULL;
4208 if (delegated_inode) {
4209 error = break_deleg_wait(&delegated_inode);
4210 if (!error)
4211 goto retry_deleg;
4212 }
4213 mnt_drop_write(path.mnt);
4214 exit1:
4215 path_put(&path);
4216 if (retry_estale(error, lookup_flags)) {
4217 lookup_flags |= LOOKUP_REVAL;
4218 inode = NULL;
4219 goto retry;
4220 }
4221 putname(name);
4222 return error;
4223
4224 slashes:
4225 if (d_is_negative(dentry))
4226 error = -ENOENT;
4227 else if (d_is_dir(dentry))
4228 error = -EISDIR;
4229 else
4230 error = -ENOTDIR;
4231 goto exit2;
4232 }
4233
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4234 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4235 {
4236 if ((flag & ~AT_REMOVEDIR) != 0)
4237 return -EINVAL;
4238
4239 if (flag & AT_REMOVEDIR)
4240 return do_rmdir(dfd, pathname);
4241
4242 return do_unlinkat(dfd, getname(pathname));
4243 }
4244
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4245 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4246 {
4247 return do_unlinkat(AT_FDCWD, getname(pathname));
4248 }
4249
vfs_symlink2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,const char * oldname)4250 int vfs_symlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, const char *oldname)
4251 {
4252 int error = may_create(mnt, dir, dentry);
4253
4254 if (error)
4255 return error;
4256
4257 if (!dir->i_op->symlink)
4258 return -EPERM;
4259
4260 error = security_inode_symlink(dir, dentry, oldname);
4261 if (error)
4262 return error;
4263
4264 error = dir->i_op->symlink(dir, dentry, oldname);
4265 if (!error)
4266 fsnotify_create(dir, dentry);
4267 return error;
4268 }
4269 EXPORT_SYMBOL(vfs_symlink2);
4270
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)4271 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4272 {
4273 return vfs_symlink2(NULL, dir, dentry, oldname);
4274 }
4275 EXPORT_SYMBOL(vfs_symlink);
4276
do_symlinkat(const char __user * oldname,int newdfd,const char __user * newname)4277 long do_symlinkat(const char __user *oldname, int newdfd,
4278 const char __user *newname)
4279 {
4280 int error;
4281 struct filename *from;
4282 struct dentry *dentry;
4283 struct path path;
4284 unsigned int lookup_flags = 0;
4285
4286 from = getname(oldname);
4287 if (IS_ERR(from))
4288 return PTR_ERR(from);
4289 retry:
4290 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4291 error = PTR_ERR(dentry);
4292 if (IS_ERR(dentry))
4293 goto out_putname;
4294
4295 error = security_path_symlink(&path, dentry, from->name);
4296 if (!error)
4297 error = vfs_symlink2(path.mnt, path.dentry->d_inode, dentry, from->name);
4298 done_path_create(&path, dentry);
4299 if (retry_estale(error, lookup_flags)) {
4300 lookup_flags |= LOOKUP_REVAL;
4301 goto retry;
4302 }
4303 out_putname:
4304 putname(from);
4305 return error;
4306 }
4307
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4308 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4309 int, newdfd, const char __user *, newname)
4310 {
4311 return do_symlinkat(oldname, newdfd, newname);
4312 }
4313
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4314 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4315 {
4316 return do_symlinkat(oldname, AT_FDCWD, newname);
4317 }
4318
4319 /**
4320 * vfs_link - create a new link
4321 * @old_dentry: object to be linked
4322 * @dir: new parent
4323 * @new_dentry: where to create the new link
4324 * @delegated_inode: returns inode needing a delegation break
4325 *
4326 * The caller must hold dir->i_mutex
4327 *
4328 * If vfs_link discovers a delegation on the to-be-linked file in need
4329 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4330 * inode in delegated_inode. The caller should then break the delegation
4331 * and retry. Because breaking a delegation may take a long time, the
4332 * caller should drop the i_mutex before doing so.
4333 *
4334 * Alternatively, a caller may pass NULL for delegated_inode. This may
4335 * be appropriate for callers that expect the underlying filesystem not
4336 * to be NFS exported.
4337 */
vfs_link2(struct vfsmount * mnt,struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4338 int vfs_link2(struct vfsmount *mnt, struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4339 {
4340 struct inode *inode = old_dentry->d_inode;
4341 unsigned max_links = dir->i_sb->s_max_links;
4342 int error;
4343
4344 if (!inode)
4345 return -ENOENT;
4346
4347 error = may_create(mnt, dir, new_dentry);
4348 if (error)
4349 return error;
4350
4351 if (dir->i_sb != inode->i_sb)
4352 return -EXDEV;
4353
4354 /*
4355 * A link to an append-only or immutable file cannot be created.
4356 */
4357 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4358 return -EPERM;
4359 /*
4360 * Updating the link count will likely cause i_uid and i_gid to
4361 * be writen back improperly if their true value is unknown to
4362 * the vfs.
4363 */
4364 if (HAS_UNMAPPED_ID(inode))
4365 return -EPERM;
4366 if (!dir->i_op->link)
4367 return -EPERM;
4368 if (S_ISDIR(inode->i_mode))
4369 return -EPERM;
4370
4371 error = security_inode_link(old_dentry, dir, new_dentry);
4372 if (error)
4373 return error;
4374
4375 inode_lock(inode);
4376 /* Make sure we don't allow creating hardlink to an unlinked file */
4377 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4378 error = -ENOENT;
4379 else if (max_links && inode->i_nlink >= max_links)
4380 error = -EMLINK;
4381 else {
4382 error = try_break_deleg(inode, delegated_inode);
4383 if (!error)
4384 error = dir->i_op->link(old_dentry, dir, new_dentry);
4385 }
4386
4387 if (!error && (inode->i_state & I_LINKABLE)) {
4388 spin_lock(&inode->i_lock);
4389 inode->i_state &= ~I_LINKABLE;
4390 spin_unlock(&inode->i_lock);
4391 }
4392 inode_unlock(inode);
4393 if (!error)
4394 fsnotify_link(dir, inode, new_dentry);
4395 return error;
4396 }
4397 EXPORT_SYMBOL(vfs_link2);
4398
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4399 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4400 {
4401 return vfs_link2(NULL, old_dentry, dir, new_dentry, delegated_inode);
4402 }
4403 EXPORT_SYMBOL(vfs_link);
4404
4405 /*
4406 * Hardlinks are often used in delicate situations. We avoid
4407 * security-related surprises by not following symlinks on the
4408 * newname. --KAB
4409 *
4410 * We don't follow them on the oldname either to be compatible
4411 * with linux 2.0, and to avoid hard-linking to directories
4412 * and other special files. --ADM
4413 */
do_linkat(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,int flags)4414 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4415 const char __user *newname, int flags)
4416 {
4417 struct dentry *new_dentry;
4418 struct path old_path, new_path;
4419 struct inode *delegated_inode = NULL;
4420 int how = 0;
4421 int error;
4422
4423 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4424 return -EINVAL;
4425 /*
4426 * To use null names we require CAP_DAC_READ_SEARCH
4427 * This ensures that not everyone will be able to create
4428 * handlink using the passed filedescriptor.
4429 */
4430 if (flags & AT_EMPTY_PATH) {
4431 if (!capable(CAP_DAC_READ_SEARCH))
4432 return -ENOENT;
4433 how = LOOKUP_EMPTY;
4434 }
4435
4436 if (flags & AT_SYMLINK_FOLLOW)
4437 how |= LOOKUP_FOLLOW;
4438 retry:
4439 error = user_path_at(olddfd, oldname, how, &old_path);
4440 if (error)
4441 return error;
4442
4443 new_dentry = user_path_create(newdfd, newname, &new_path,
4444 (how & LOOKUP_REVAL));
4445 error = PTR_ERR(new_dentry);
4446 if (IS_ERR(new_dentry))
4447 goto out;
4448
4449 error = -EXDEV;
4450 if (old_path.mnt != new_path.mnt)
4451 goto out_dput;
4452 error = may_linkat(&old_path);
4453 if (unlikely(error))
4454 goto out_dput;
4455 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4456 if (error)
4457 goto out_dput;
4458 error = vfs_link2(old_path.mnt, old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4459 out_dput:
4460 done_path_create(&new_path, new_dentry);
4461 if (delegated_inode) {
4462 error = break_deleg_wait(&delegated_inode);
4463 if (!error) {
4464 path_put(&old_path);
4465 goto retry;
4466 }
4467 }
4468 if (retry_estale(error, how)) {
4469 path_put(&old_path);
4470 how |= LOOKUP_REVAL;
4471 goto retry;
4472 }
4473 out:
4474 path_put(&old_path);
4475
4476 return error;
4477 }
4478
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4479 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4480 int, newdfd, const char __user *, newname, int, flags)
4481 {
4482 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4483 }
4484
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4485 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4486 {
4487 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4488 }
4489
4490 /**
4491 * vfs_rename - rename a filesystem object
4492 * @old_dir: parent of source
4493 * @old_dentry: source
4494 * @new_dir: parent of destination
4495 * @new_dentry: destination
4496 * @delegated_inode: returns an inode needing a delegation break
4497 * @flags: rename flags
4498 *
4499 * The caller must hold multiple mutexes--see lock_rename()).
4500 *
4501 * If vfs_rename discovers a delegation in need of breaking at either
4502 * the source or destination, it will return -EWOULDBLOCK and return a
4503 * reference to the inode in delegated_inode. The caller should then
4504 * break the delegation and retry. Because breaking a delegation may
4505 * take a long time, the caller should drop all locks before doing
4506 * so.
4507 *
4508 * Alternatively, a caller may pass NULL for delegated_inode. This may
4509 * be appropriate for callers that expect the underlying filesystem not
4510 * to be NFS exported.
4511 *
4512 * The worst of all namespace operations - renaming directory. "Perverted"
4513 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4514 * Problems:
4515 *
4516 * a) we can get into loop creation.
4517 * b) race potential - two innocent renames can create a loop together.
4518 * That's where 4.4 screws up. Current fix: serialization on
4519 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4520 * story.
4521 * c) we have to lock _four_ objects - parents and victim (if it exists),
4522 * and source (if it is not a directory).
4523 * And that - after we got ->i_mutex on parents (until then we don't know
4524 * whether the target exists). Solution: try to be smart with locking
4525 * order for inodes. We rely on the fact that tree topology may change
4526 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4527 * move will be locked. Thus we can rank directories by the tree
4528 * (ancestors first) and rank all non-directories after them.
4529 * That works since everybody except rename does "lock parent, lookup,
4530 * lock child" and rename is under ->s_vfs_rename_mutex.
4531 * HOWEVER, it relies on the assumption that any object with ->lookup()
4532 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4533 * we'd better make sure that there's no link(2) for them.
4534 * d) conversion from fhandle to dentry may come in the wrong moment - when
4535 * we are removing the target. Solution: we will have to grab ->i_mutex
4536 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4537 * ->i_mutex on parents, which works but leads to some truly excessive
4538 * locking].
4539 */
vfs_rename2(struct vfsmount * mnt,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4540 int vfs_rename2(struct vfsmount *mnt,
4541 struct inode *old_dir, struct dentry *old_dentry,
4542 struct inode *new_dir, struct dentry *new_dentry,
4543 struct inode **delegated_inode, unsigned int flags)
4544 {
4545 int error;
4546 bool is_dir = d_is_dir(old_dentry);
4547 struct inode *source = old_dentry->d_inode;
4548 struct inode *target = new_dentry->d_inode;
4549 bool new_is_dir = false;
4550 unsigned max_links = new_dir->i_sb->s_max_links;
4551 struct name_snapshot old_name;
4552
4553 if (source == target)
4554 return 0;
4555
4556 error = may_delete(mnt, old_dir, old_dentry, is_dir);
4557 if (error)
4558 return error;
4559
4560 if (!target) {
4561 error = may_create(mnt, new_dir, new_dentry);
4562 } else {
4563 new_is_dir = d_is_dir(new_dentry);
4564
4565 if (!(flags & RENAME_EXCHANGE))
4566 error = may_delete(mnt, new_dir, new_dentry, is_dir);
4567 else
4568 error = may_delete(mnt, new_dir, new_dentry, new_is_dir);
4569 }
4570 if (error)
4571 return error;
4572
4573 if (!old_dir->i_op->rename)
4574 return -EPERM;
4575
4576 /*
4577 * If we are going to change the parent - check write permissions,
4578 * we'll need to flip '..'.
4579 */
4580 if (new_dir != old_dir) {
4581 if (is_dir) {
4582 error = inode_permission2(mnt, source, MAY_WRITE);
4583 if (error)
4584 return error;
4585 }
4586 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4587 error = inode_permission2(mnt, target, MAY_WRITE);
4588 if (error)
4589 return error;
4590 }
4591 }
4592
4593 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4594 flags);
4595 if (error)
4596 return error;
4597
4598 take_dentry_name_snapshot(&old_name, old_dentry);
4599 dget(new_dentry);
4600 if (!is_dir || (flags & RENAME_EXCHANGE))
4601 lock_two_nondirectories(source, target);
4602 else if (target)
4603 inode_lock(target);
4604
4605 error = -EBUSY;
4606 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4607 goto out;
4608
4609 if (max_links && new_dir != old_dir) {
4610 error = -EMLINK;
4611 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4612 goto out;
4613 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4614 old_dir->i_nlink >= max_links)
4615 goto out;
4616 }
4617 if (!is_dir) {
4618 error = try_break_deleg(source, delegated_inode);
4619 if (error)
4620 goto out;
4621 }
4622 if (target && !new_is_dir) {
4623 error = try_break_deleg(target, delegated_inode);
4624 if (error)
4625 goto out;
4626 }
4627 error = old_dir->i_op->rename(old_dir, old_dentry,
4628 new_dir, new_dentry, flags);
4629 if (error)
4630 goto out;
4631
4632 if (!(flags & RENAME_EXCHANGE) && target) {
4633 if (is_dir) {
4634 shrink_dcache_parent(new_dentry);
4635 target->i_flags |= S_DEAD;
4636 }
4637 dont_mount(new_dentry);
4638 detach_mounts(new_dentry);
4639 }
4640 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4641 if (!(flags & RENAME_EXCHANGE))
4642 d_move(old_dentry, new_dentry);
4643 else
4644 d_exchange(old_dentry, new_dentry);
4645 }
4646 out:
4647 if (!is_dir || (flags & RENAME_EXCHANGE))
4648 unlock_two_nondirectories(source, target);
4649 else if (target)
4650 inode_unlock(target);
4651 dput(new_dentry);
4652 if (!error) {
4653 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4654 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4655 if (flags & RENAME_EXCHANGE) {
4656 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4657 new_is_dir, NULL, new_dentry);
4658 }
4659 }
4660 release_dentry_name_snapshot(&old_name);
4661
4662 return error;
4663 }
4664 EXPORT_SYMBOL(vfs_rename2);
4665
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4666 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4667 struct inode *new_dir, struct dentry *new_dentry,
4668 struct inode **delegated_inode, unsigned int flags)
4669 {
4670 return vfs_rename2(NULL, old_dir, old_dentry, new_dir, new_dentry, delegated_inode, flags);
4671 }
4672 EXPORT_SYMBOL(vfs_rename);
4673
do_renameat2(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,unsigned int flags)4674 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4675 const char __user *newname, unsigned int flags)
4676 {
4677 struct dentry *old_dentry, *new_dentry;
4678 struct dentry *trap;
4679 struct path old_path, new_path;
4680 struct qstr old_last, new_last;
4681 int old_type, new_type;
4682 struct inode *delegated_inode = NULL;
4683 struct filename *from;
4684 struct filename *to;
4685 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4686 bool should_retry = false;
4687 int error;
4688
4689 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4690 return -EINVAL;
4691
4692 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4693 (flags & RENAME_EXCHANGE))
4694 return -EINVAL;
4695
4696 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4697 return -EPERM;
4698
4699 if (flags & RENAME_EXCHANGE)
4700 target_flags = 0;
4701
4702 retry:
4703 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4704 &old_path, &old_last, &old_type);
4705 if (IS_ERR(from)) {
4706 error = PTR_ERR(from);
4707 goto exit;
4708 }
4709
4710 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4711 &new_path, &new_last, &new_type);
4712 if (IS_ERR(to)) {
4713 error = PTR_ERR(to);
4714 goto exit1;
4715 }
4716
4717 error = -EXDEV;
4718 if (old_path.mnt != new_path.mnt)
4719 goto exit2;
4720
4721 error = -EBUSY;
4722 if (old_type != LAST_NORM)
4723 goto exit2;
4724
4725 if (flags & RENAME_NOREPLACE)
4726 error = -EEXIST;
4727 if (new_type != LAST_NORM)
4728 goto exit2;
4729
4730 error = mnt_want_write(old_path.mnt);
4731 if (error)
4732 goto exit2;
4733
4734 retry_deleg:
4735 trap = lock_rename(new_path.dentry, old_path.dentry);
4736
4737 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4738 error = PTR_ERR(old_dentry);
4739 if (IS_ERR(old_dentry))
4740 goto exit3;
4741 /* source must exist */
4742 error = -ENOENT;
4743 if (d_is_negative(old_dentry))
4744 goto exit4;
4745 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4746 error = PTR_ERR(new_dentry);
4747 if (IS_ERR(new_dentry))
4748 goto exit4;
4749 error = -EEXIST;
4750 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4751 goto exit5;
4752 if (flags & RENAME_EXCHANGE) {
4753 error = -ENOENT;
4754 if (d_is_negative(new_dentry))
4755 goto exit5;
4756
4757 if (!d_is_dir(new_dentry)) {
4758 error = -ENOTDIR;
4759 if (new_last.name[new_last.len])
4760 goto exit5;
4761 }
4762 }
4763 /* unless the source is a directory trailing slashes give -ENOTDIR */
4764 if (!d_is_dir(old_dentry)) {
4765 error = -ENOTDIR;
4766 if (old_last.name[old_last.len])
4767 goto exit5;
4768 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4769 goto exit5;
4770 }
4771 /* source should not be ancestor of target */
4772 error = -EINVAL;
4773 if (old_dentry == trap)
4774 goto exit5;
4775 /* target should not be an ancestor of source */
4776 if (!(flags & RENAME_EXCHANGE))
4777 error = -ENOTEMPTY;
4778 if (new_dentry == trap)
4779 goto exit5;
4780
4781 error = security_path_rename(&old_path, old_dentry,
4782 &new_path, new_dentry, flags);
4783 if (error)
4784 goto exit5;
4785 error = vfs_rename2(old_path.mnt, old_path.dentry->d_inode, old_dentry,
4786 new_path.dentry->d_inode, new_dentry,
4787 &delegated_inode, flags);
4788 exit5:
4789 dput(new_dentry);
4790 exit4:
4791 dput(old_dentry);
4792 exit3:
4793 unlock_rename(new_path.dentry, old_path.dentry);
4794 if (delegated_inode) {
4795 error = break_deleg_wait(&delegated_inode);
4796 if (!error)
4797 goto retry_deleg;
4798 }
4799 mnt_drop_write(old_path.mnt);
4800 exit2:
4801 if (retry_estale(error, lookup_flags))
4802 should_retry = true;
4803 path_put(&new_path);
4804 putname(to);
4805 exit1:
4806 path_put(&old_path);
4807 putname(from);
4808 if (should_retry) {
4809 should_retry = false;
4810 lookup_flags |= LOOKUP_REVAL;
4811 goto retry;
4812 }
4813 exit:
4814 return error;
4815 }
4816
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4817 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4818 int, newdfd, const char __user *, newname, unsigned int, flags)
4819 {
4820 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4821 }
4822
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4823 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4824 int, newdfd, const char __user *, newname)
4825 {
4826 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4827 }
4828
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4829 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4830 {
4831 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4832 }
4833
vfs_whiteout(struct inode * dir,struct dentry * dentry)4834 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4835 {
4836 int error = may_create(NULL, dir, dentry);
4837 if (error)
4838 return error;
4839
4840 if (!dir->i_op->mknod)
4841 return -EPERM;
4842
4843 return dir->i_op->mknod(dir, dentry,
4844 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4845 }
4846 EXPORT_SYMBOL(vfs_whiteout);
4847
readlink_copy(char __user * buffer,int buflen,const char * link)4848 int readlink_copy(char __user *buffer, int buflen, const char *link)
4849 {
4850 int len = PTR_ERR(link);
4851 if (IS_ERR(link))
4852 goto out;
4853
4854 len = strlen(link);
4855 if (len > (unsigned) buflen)
4856 len = buflen;
4857 if (copy_to_user(buffer, link, len))
4858 len = -EFAULT;
4859 out:
4860 return len;
4861 }
4862
4863 /**
4864 * vfs_readlink - copy symlink body into userspace buffer
4865 * @dentry: dentry on which to get symbolic link
4866 * @buffer: user memory pointer
4867 * @buflen: size of buffer
4868 *
4869 * Does not touch atime. That's up to the caller if necessary
4870 *
4871 * Does not call security hook.
4872 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)4873 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4874 {
4875 struct inode *inode = d_inode(dentry);
4876 DEFINE_DELAYED_CALL(done);
4877 const char *link;
4878 int res;
4879
4880 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4881 if (unlikely(inode->i_op->readlink))
4882 return inode->i_op->readlink(dentry, buffer, buflen);
4883
4884 if (!d_is_symlink(dentry))
4885 return -EINVAL;
4886
4887 spin_lock(&inode->i_lock);
4888 inode->i_opflags |= IOP_DEFAULT_READLINK;
4889 spin_unlock(&inode->i_lock);
4890 }
4891
4892 link = READ_ONCE(inode->i_link);
4893 if (!link) {
4894 link = inode->i_op->get_link(dentry, inode, &done);
4895 if (IS_ERR(link))
4896 return PTR_ERR(link);
4897 }
4898 res = readlink_copy(buffer, buflen, link);
4899 do_delayed_call(&done);
4900 return res;
4901 }
4902 EXPORT_SYMBOL(vfs_readlink);
4903
4904 /**
4905 * vfs_get_link - get symlink body
4906 * @dentry: dentry on which to get symbolic link
4907 * @done: caller needs to free returned data with this
4908 *
4909 * Calls security hook and i_op->get_link() on the supplied inode.
4910 *
4911 * It does not touch atime. That's up to the caller if necessary.
4912 *
4913 * Does not work on "special" symlinks like /proc/$$/fd/N
4914 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)4915 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4916 {
4917 const char *res = ERR_PTR(-EINVAL);
4918 struct inode *inode = d_inode(dentry);
4919
4920 if (d_is_symlink(dentry)) {
4921 res = ERR_PTR(security_inode_readlink(dentry));
4922 if (!res)
4923 res = inode->i_op->get_link(dentry, inode, done);
4924 }
4925 return res;
4926 }
4927 EXPORT_SYMBOL(vfs_get_link);
4928
4929 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)4930 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4931 struct delayed_call *callback)
4932 {
4933 char *kaddr;
4934 struct page *page;
4935 struct address_space *mapping = inode->i_mapping;
4936
4937 if (!dentry) {
4938 page = find_get_page(mapping, 0);
4939 if (!page)
4940 return ERR_PTR(-ECHILD);
4941 if (!PageUptodate(page)) {
4942 put_page(page);
4943 return ERR_PTR(-ECHILD);
4944 }
4945 } else {
4946 page = read_mapping_page(mapping, 0, NULL);
4947 if (IS_ERR(page))
4948 return (char*)page;
4949 }
4950 set_delayed_call(callback, page_put_link, page);
4951 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4952 kaddr = page_address(page);
4953 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4954 return kaddr;
4955 }
4956
4957 EXPORT_SYMBOL(page_get_link);
4958
page_put_link(void * arg)4959 void page_put_link(void *arg)
4960 {
4961 put_page(arg);
4962 }
4963 EXPORT_SYMBOL(page_put_link);
4964
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4965 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4966 {
4967 DEFINE_DELAYED_CALL(done);
4968 int res = readlink_copy(buffer, buflen,
4969 page_get_link(dentry, d_inode(dentry),
4970 &done));
4971 do_delayed_call(&done);
4972 return res;
4973 }
4974 EXPORT_SYMBOL(page_readlink);
4975
4976 /*
4977 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4978 */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4979 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4980 {
4981 struct address_space *mapping = inode->i_mapping;
4982 struct page *page;
4983 void *fsdata;
4984 int err;
4985 unsigned int flags = 0;
4986 if (nofs)
4987 flags |= AOP_FLAG_NOFS;
4988
4989 retry:
4990 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4991 flags, &page, &fsdata);
4992 if (err)
4993 goto fail;
4994
4995 memcpy(page_address(page), symname, len-1);
4996
4997 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4998 page, fsdata);
4999 if (err < 0)
5000 goto fail;
5001 if (err < len-1)
5002 goto retry;
5003
5004 mark_inode_dirty(inode);
5005 return 0;
5006 fail:
5007 return err;
5008 }
5009 EXPORT_SYMBOL(__page_symlink);
5010
page_symlink(struct inode * inode,const char * symname,int len)5011 int page_symlink(struct inode *inode, const char *symname, int len)
5012 {
5013 return __page_symlink(inode, symname, len,
5014 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
5015 }
5016 EXPORT_SYMBOL(page_symlink);
5017
5018 const struct inode_operations page_symlink_inode_operations = {
5019 .get_link = page_get_link,
5020 };
5021 EXPORT_SYMBOL(page_symlink_inode_operations);
5022