• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "nic.h"
19 #include "farch_regs.h"
20 #include "sriov.h"
21 #include "siena_sriov.h"
22 #include "io.h"
23 #include "workarounds.h"
24 
25 /* Falcon-architecture (SFC9000-family) support */
26 
27 /**************************************************************************
28  *
29  * Configurable values
30  *
31  **************************************************************************
32  */
33 
34 /* This is set to 16 for a good reason.  In summary, if larger than
35  * 16, the descriptor cache holds more than a default socket
36  * buffer's worth of packets (for UDP we can only have at most one
37  * socket buffer's worth outstanding).  This combined with the fact
38  * that we only get 1 TX event per descriptor cache means the NIC
39  * goes idle.
40  */
41 #define TX_DC_ENTRIES 16
42 #define TX_DC_ENTRIES_ORDER 1
43 
44 #define RX_DC_ENTRIES 64
45 #define RX_DC_ENTRIES_ORDER 3
46 
47 /* If EFX_MAX_INT_ERRORS internal errors occur within
48  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
49  * disable it.
50  */
51 #define EFX_INT_ERROR_EXPIRE 3600
52 #define EFX_MAX_INT_ERRORS 5
53 
54 /* Depth of RX flush request fifo */
55 #define EFX_RX_FLUSH_COUNT 4
56 
57 /* Driver generated events */
58 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
59 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
60 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
61 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
62 
63 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
64 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
65 
66 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
67 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
68 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
69 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
70 			   efx_rx_queue_index(_rx_queue))
71 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
72 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
73 			   efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
75 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
76 			   (_tx_queue)->queue)
77 
78 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
79 
80 /**************************************************************************
81  *
82  * Hardware access
83  *
84  **************************************************************************/
85 
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)86 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
87 				     unsigned int index)
88 {
89 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
90 			value, index);
91 }
92 
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)93 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
94 				     const efx_oword_t *mask)
95 {
96 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
97 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
98 }
99 
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)100 int efx_farch_test_registers(struct efx_nic *efx,
101 			     const struct efx_farch_register_test *regs,
102 			     size_t n_regs)
103 {
104 	unsigned address = 0;
105 	int i, j;
106 	efx_oword_t mask, imask, original, reg, buf;
107 
108 	for (i = 0; i < n_regs; ++i) {
109 		address = regs[i].address;
110 		mask = imask = regs[i].mask;
111 		EFX_INVERT_OWORD(imask);
112 
113 		efx_reado(efx, &original, address);
114 
115 		/* bit sweep on and off */
116 		for (j = 0; j < 128; j++) {
117 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
118 				continue;
119 
120 			/* Test this testable bit can be set in isolation */
121 			EFX_AND_OWORD(reg, original, mask);
122 			EFX_SET_OWORD32(reg, j, j, 1);
123 
124 			efx_writeo(efx, &reg, address);
125 			efx_reado(efx, &buf, address);
126 
127 			if (efx_masked_compare_oword(&reg, &buf, &mask))
128 				goto fail;
129 
130 			/* Test this testable bit can be cleared in isolation */
131 			EFX_OR_OWORD(reg, original, mask);
132 			EFX_SET_OWORD32(reg, j, j, 0);
133 
134 			efx_writeo(efx, &reg, address);
135 			efx_reado(efx, &buf, address);
136 
137 			if (efx_masked_compare_oword(&reg, &buf, &mask))
138 				goto fail;
139 		}
140 
141 		efx_writeo(efx, &original, address);
142 	}
143 
144 	return 0;
145 
146 fail:
147 	netif_err(efx, hw, efx->net_dev,
148 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
149 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
150 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
151 	return -EIO;
152 }
153 
154 /**************************************************************************
155  *
156  * Special buffer handling
157  * Special buffers are used for event queues and the TX and RX
158  * descriptor rings.
159  *
160  *************************************************************************/
161 
162 /*
163  * Initialise a special buffer
164  *
165  * This will define a buffer (previously allocated via
166  * efx_alloc_special_buffer()) in the buffer table, allowing
167  * it to be used for event queues, descriptor rings etc.
168  */
169 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)170 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
171 {
172 	efx_qword_t buf_desc;
173 	unsigned int index;
174 	dma_addr_t dma_addr;
175 	int i;
176 
177 	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
178 
179 	/* Write buffer descriptors to NIC */
180 	for (i = 0; i < buffer->entries; i++) {
181 		index = buffer->index + i;
182 		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
183 		netif_dbg(efx, probe, efx->net_dev,
184 			  "mapping special buffer %d at %llx\n",
185 			  index, (unsigned long long)dma_addr);
186 		EFX_POPULATE_QWORD_3(buf_desc,
187 				     FRF_AZ_BUF_ADR_REGION, 0,
188 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
189 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
190 		efx_write_buf_tbl(efx, &buf_desc, index);
191 	}
192 }
193 
194 /* Unmaps a buffer and clears the buffer table entries */
195 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)196 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197 {
198 	efx_oword_t buf_tbl_upd;
199 	unsigned int start = buffer->index;
200 	unsigned int end = (buffer->index + buffer->entries - 1);
201 
202 	if (!buffer->entries)
203 		return;
204 
205 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
206 		  buffer->index, buffer->index + buffer->entries - 1);
207 
208 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
209 			     FRF_AZ_BUF_UPD_CMD, 0,
210 			     FRF_AZ_BUF_CLR_CMD, 1,
211 			     FRF_AZ_BUF_CLR_END_ID, end,
212 			     FRF_AZ_BUF_CLR_START_ID, start);
213 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
214 }
215 
216 /*
217  * Allocate a new special buffer
218  *
219  * This allocates memory for a new buffer, clears it and allocates a
220  * new buffer ID range.  It does not write into the buffer table.
221  *
222  * This call will allocate 4KB buffers, since 8KB buffers can't be
223  * used for event queues and descriptor rings.
224  */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)225 static int efx_alloc_special_buffer(struct efx_nic *efx,
226 				    struct efx_special_buffer *buffer,
227 				    unsigned int len)
228 {
229 #ifdef CONFIG_SFC_SRIOV
230 	struct siena_nic_data *nic_data = efx->nic_data;
231 #endif
232 	len = ALIGN(len, EFX_BUF_SIZE);
233 
234 	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
235 		return -ENOMEM;
236 	buffer->entries = len / EFX_BUF_SIZE;
237 	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
238 
239 	/* Select new buffer ID */
240 	buffer->index = efx->next_buffer_table;
241 	efx->next_buffer_table += buffer->entries;
242 #ifdef CONFIG_SFC_SRIOV
243 	BUG_ON(efx_siena_sriov_enabled(efx) &&
244 	       nic_data->vf_buftbl_base < efx->next_buffer_table);
245 #endif
246 
247 	netif_dbg(efx, probe, efx->net_dev,
248 		  "allocating special buffers %d-%d at %llx+%x "
249 		  "(virt %p phys %llx)\n", buffer->index,
250 		  buffer->index + buffer->entries - 1,
251 		  (u64)buffer->buf.dma_addr, len,
252 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
253 
254 	return 0;
255 }
256 
257 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)258 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
259 {
260 	if (!buffer->buf.addr)
261 		return;
262 
263 	netif_dbg(efx, hw, efx->net_dev,
264 		  "deallocating special buffers %d-%d at %llx+%x "
265 		  "(virt %p phys %llx)\n", buffer->index,
266 		  buffer->index + buffer->entries - 1,
267 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
268 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
269 
270 	efx_nic_free_buffer(efx, &buffer->buf);
271 	buffer->entries = 0;
272 }
273 
274 /**************************************************************************
275  *
276  * TX path
277  *
278  **************************************************************************/
279 
280 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)281 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
282 {
283 	unsigned write_ptr;
284 	efx_dword_t reg;
285 
286 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
287 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
288 	efx_writed_page(tx_queue->efx, &reg,
289 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
290 }
291 
292 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)293 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
294 					  const efx_qword_t *txd)
295 {
296 	unsigned write_ptr;
297 	efx_oword_t reg;
298 
299 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
300 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
301 
302 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
303 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
304 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
305 	reg.qword[0] = *txd;
306 	efx_writeo_page(tx_queue->efx, &reg,
307 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
308 }
309 
310 
311 /* For each entry inserted into the software descriptor ring, create a
312  * descriptor in the hardware TX descriptor ring (in host memory), and
313  * write a doorbell.
314  */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)315 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
316 {
317 	struct efx_tx_buffer *buffer;
318 	efx_qword_t *txd;
319 	unsigned write_ptr;
320 	unsigned old_write_count = tx_queue->write_count;
321 
322 	tx_queue->xmit_more_available = false;
323 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
324 		return;
325 
326 	do {
327 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
328 		buffer = &tx_queue->buffer[write_ptr];
329 		txd = efx_tx_desc(tx_queue, write_ptr);
330 		++tx_queue->write_count;
331 
332 		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
333 
334 		/* Create TX descriptor ring entry */
335 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
336 		EFX_POPULATE_QWORD_4(*txd,
337 				     FSF_AZ_TX_KER_CONT,
338 				     buffer->flags & EFX_TX_BUF_CONT,
339 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
340 				     FSF_AZ_TX_KER_BUF_REGION, 0,
341 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
342 	} while (tx_queue->write_count != tx_queue->insert_count);
343 
344 	wmb(); /* Ensure descriptors are written before they are fetched */
345 
346 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
347 		txd = efx_tx_desc(tx_queue,
348 				  old_write_count & tx_queue->ptr_mask);
349 		efx_farch_push_tx_desc(tx_queue, txd);
350 		++tx_queue->pushes;
351 	} else {
352 		efx_farch_notify_tx_desc(tx_queue);
353 	}
354 }
355 
efx_farch_tx_limit_len(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,unsigned int len)356 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
357 				    dma_addr_t dma_addr, unsigned int len)
358 {
359 	/* Don't cross 4K boundaries with descriptors. */
360 	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
361 
362 	len = min(limit, len);
363 
364 	return len;
365 }
366 
367 
368 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)369 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
370 {
371 	struct efx_nic *efx = tx_queue->efx;
372 	unsigned entries;
373 
374 	entries = tx_queue->ptr_mask + 1;
375 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
376 					entries * sizeof(efx_qword_t));
377 }
378 
efx_farch_tx_init(struct efx_tx_queue * tx_queue)379 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
380 {
381 	int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
382 	struct efx_nic *efx = tx_queue->efx;
383 	efx_oword_t reg;
384 
385 	/* Pin TX descriptor ring */
386 	efx_init_special_buffer(efx, &tx_queue->txd);
387 
388 	/* Push TX descriptor ring to card */
389 	EFX_POPULATE_OWORD_10(reg,
390 			      FRF_AZ_TX_DESCQ_EN, 1,
391 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
392 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
393 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
394 			      FRF_AZ_TX_DESCQ_EVQ_ID,
395 			      tx_queue->channel->channel,
396 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
397 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
398 			      FRF_AZ_TX_DESCQ_SIZE,
399 			      __ffs(tx_queue->txd.entries),
400 			      FRF_AZ_TX_DESCQ_TYPE, 0,
401 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
402 
403 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
404 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
405 
406 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
407 			 tx_queue->queue);
408 
409 	EFX_POPULATE_OWORD_1(reg,
410 			     FRF_BZ_TX_PACE,
411 			     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
412 			     FFE_BZ_TX_PACE_OFF :
413 			     FFE_BZ_TX_PACE_RESERVED);
414 	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
415 }
416 
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)417 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
418 {
419 	struct efx_nic *efx = tx_queue->efx;
420 	efx_oword_t tx_flush_descq;
421 
422 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
423 	atomic_set(&tx_queue->flush_outstanding, 1);
424 
425 	EFX_POPULATE_OWORD_2(tx_flush_descq,
426 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
427 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
428 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
429 }
430 
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)431 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
432 {
433 	struct efx_nic *efx = tx_queue->efx;
434 	efx_oword_t tx_desc_ptr;
435 
436 	/* Remove TX descriptor ring from card */
437 	EFX_ZERO_OWORD(tx_desc_ptr);
438 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
439 			 tx_queue->queue);
440 
441 	/* Unpin TX descriptor ring */
442 	efx_fini_special_buffer(efx, &tx_queue->txd);
443 }
444 
445 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)446 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
447 {
448 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
449 }
450 
451 /**************************************************************************
452  *
453  * RX path
454  *
455  **************************************************************************/
456 
457 /* This creates an entry in the RX descriptor queue */
458 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)459 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
460 {
461 	struct efx_rx_buffer *rx_buf;
462 	efx_qword_t *rxd;
463 
464 	rxd = efx_rx_desc(rx_queue, index);
465 	rx_buf = efx_rx_buffer(rx_queue, index);
466 	EFX_POPULATE_QWORD_3(*rxd,
467 			     FSF_AZ_RX_KER_BUF_SIZE,
468 			     rx_buf->len -
469 			     rx_queue->efx->type->rx_buffer_padding,
470 			     FSF_AZ_RX_KER_BUF_REGION, 0,
471 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
472 }
473 
474 /* This writes to the RX_DESC_WPTR register for the specified receive
475  * descriptor ring.
476  */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)477 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
478 {
479 	struct efx_nic *efx = rx_queue->efx;
480 	efx_dword_t reg;
481 	unsigned write_ptr;
482 
483 	while (rx_queue->notified_count != rx_queue->added_count) {
484 		efx_farch_build_rx_desc(
485 			rx_queue,
486 			rx_queue->notified_count & rx_queue->ptr_mask);
487 		++rx_queue->notified_count;
488 	}
489 
490 	wmb();
491 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
492 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
493 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
494 			efx_rx_queue_index(rx_queue));
495 }
496 
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)497 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
498 {
499 	struct efx_nic *efx = rx_queue->efx;
500 	unsigned entries;
501 
502 	entries = rx_queue->ptr_mask + 1;
503 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
504 					entries * sizeof(efx_qword_t));
505 }
506 
efx_farch_rx_init(struct efx_rx_queue * rx_queue)507 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
508 {
509 	efx_oword_t rx_desc_ptr;
510 	struct efx_nic *efx = rx_queue->efx;
511 	bool jumbo_en;
512 
513 	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
514 	jumbo_en = efx->rx_scatter;
515 
516 	netif_dbg(efx, hw, efx->net_dev,
517 		  "RX queue %d ring in special buffers %d-%d\n",
518 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
519 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
520 
521 	rx_queue->scatter_n = 0;
522 
523 	/* Pin RX descriptor ring */
524 	efx_init_special_buffer(efx, &rx_queue->rxd);
525 
526 	/* Push RX descriptor ring to card */
527 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
528 			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
529 			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
530 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
531 			      FRF_AZ_RX_DESCQ_EVQ_ID,
532 			      efx_rx_queue_channel(rx_queue)->channel,
533 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
534 			      FRF_AZ_RX_DESCQ_LABEL,
535 			      efx_rx_queue_index(rx_queue),
536 			      FRF_AZ_RX_DESCQ_SIZE,
537 			      __ffs(rx_queue->rxd.entries),
538 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
539 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
540 			      FRF_AZ_RX_DESCQ_EN, 1);
541 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
542 			 efx_rx_queue_index(rx_queue));
543 }
544 
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)545 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
546 {
547 	struct efx_nic *efx = rx_queue->efx;
548 	efx_oword_t rx_flush_descq;
549 
550 	EFX_POPULATE_OWORD_2(rx_flush_descq,
551 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
552 			     FRF_AZ_RX_FLUSH_DESCQ,
553 			     efx_rx_queue_index(rx_queue));
554 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
555 }
556 
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)557 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
558 {
559 	efx_oword_t rx_desc_ptr;
560 	struct efx_nic *efx = rx_queue->efx;
561 
562 	/* Remove RX descriptor ring from card */
563 	EFX_ZERO_OWORD(rx_desc_ptr);
564 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
565 			 efx_rx_queue_index(rx_queue));
566 
567 	/* Unpin RX descriptor ring */
568 	efx_fini_special_buffer(efx, &rx_queue->rxd);
569 }
570 
571 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)572 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
573 {
574 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
575 }
576 
577 /**************************************************************************
578  *
579  * Flush handling
580  *
581  **************************************************************************/
582 
583 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
584  * or more RX flushes can be kicked off.
585  */
efx_farch_flush_wake(struct efx_nic * efx)586 static bool efx_farch_flush_wake(struct efx_nic *efx)
587 {
588 	/* Ensure that all updates are visible to efx_farch_flush_queues() */
589 	smp_mb();
590 
591 	return (atomic_read(&efx->active_queues) == 0 ||
592 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
593 		 && atomic_read(&efx->rxq_flush_pending) > 0));
594 }
595 
efx_check_tx_flush_complete(struct efx_nic * efx)596 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
597 {
598 	bool i = true;
599 	efx_oword_t txd_ptr_tbl;
600 	struct efx_channel *channel;
601 	struct efx_tx_queue *tx_queue;
602 
603 	efx_for_each_channel(channel, efx) {
604 		efx_for_each_channel_tx_queue(tx_queue, channel) {
605 			efx_reado_table(efx, &txd_ptr_tbl,
606 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
607 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
608 					    FRF_AZ_TX_DESCQ_FLUSH) ||
609 			    EFX_OWORD_FIELD(txd_ptr_tbl,
610 					    FRF_AZ_TX_DESCQ_EN)) {
611 				netif_dbg(efx, hw, efx->net_dev,
612 					  "flush did not complete on TXQ %d\n",
613 					  tx_queue->queue);
614 				i = false;
615 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
616 						  1, 0)) {
617 				/* The flush is complete, but we didn't
618 				 * receive a flush completion event
619 				 */
620 				netif_dbg(efx, hw, efx->net_dev,
621 					  "flush complete on TXQ %d, so drain "
622 					  "the queue\n", tx_queue->queue);
623 				/* Don't need to increment active_queues as it
624 				 * has already been incremented for the queues
625 				 * which did not drain
626 				 */
627 				efx_farch_magic_event(channel,
628 						      EFX_CHANNEL_MAGIC_TX_DRAIN(
629 							      tx_queue));
630 			}
631 		}
632 	}
633 
634 	return i;
635 }
636 
637 /* Flush all the transmit queues, and continue flushing receive queues until
638  * they're all flushed. Wait for the DRAIN events to be received so that there
639  * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)640 static int efx_farch_do_flush(struct efx_nic *efx)
641 {
642 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
643 	struct efx_channel *channel;
644 	struct efx_rx_queue *rx_queue;
645 	struct efx_tx_queue *tx_queue;
646 	int rc = 0;
647 
648 	efx_for_each_channel(channel, efx) {
649 		efx_for_each_channel_tx_queue(tx_queue, channel) {
650 			efx_farch_flush_tx_queue(tx_queue);
651 		}
652 		efx_for_each_channel_rx_queue(rx_queue, channel) {
653 			rx_queue->flush_pending = true;
654 			atomic_inc(&efx->rxq_flush_pending);
655 		}
656 	}
657 
658 	while (timeout && atomic_read(&efx->active_queues) > 0) {
659 		/* If SRIOV is enabled, then offload receive queue flushing to
660 		 * the firmware (though we will still have to poll for
661 		 * completion). If that fails, fall back to the old scheme.
662 		 */
663 		if (efx_siena_sriov_enabled(efx)) {
664 			rc = efx_mcdi_flush_rxqs(efx);
665 			if (!rc)
666 				goto wait;
667 		}
668 
669 		/* The hardware supports four concurrent rx flushes, each of
670 		 * which may need to be retried if there is an outstanding
671 		 * descriptor fetch
672 		 */
673 		efx_for_each_channel(channel, efx) {
674 			efx_for_each_channel_rx_queue(rx_queue, channel) {
675 				if (atomic_read(&efx->rxq_flush_outstanding) >=
676 				    EFX_RX_FLUSH_COUNT)
677 					break;
678 
679 				if (rx_queue->flush_pending) {
680 					rx_queue->flush_pending = false;
681 					atomic_dec(&efx->rxq_flush_pending);
682 					atomic_inc(&efx->rxq_flush_outstanding);
683 					efx_farch_flush_rx_queue(rx_queue);
684 				}
685 			}
686 		}
687 
688 	wait:
689 		timeout = wait_event_timeout(efx->flush_wq,
690 					     efx_farch_flush_wake(efx),
691 					     timeout);
692 	}
693 
694 	if (atomic_read(&efx->active_queues) &&
695 	    !efx_check_tx_flush_complete(efx)) {
696 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
697 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
698 			  atomic_read(&efx->rxq_flush_outstanding),
699 			  atomic_read(&efx->rxq_flush_pending));
700 		rc = -ETIMEDOUT;
701 
702 		atomic_set(&efx->active_queues, 0);
703 		atomic_set(&efx->rxq_flush_pending, 0);
704 		atomic_set(&efx->rxq_flush_outstanding, 0);
705 	}
706 
707 	return rc;
708 }
709 
efx_farch_fini_dmaq(struct efx_nic * efx)710 int efx_farch_fini_dmaq(struct efx_nic *efx)
711 {
712 	struct efx_channel *channel;
713 	struct efx_tx_queue *tx_queue;
714 	struct efx_rx_queue *rx_queue;
715 	int rc = 0;
716 
717 	/* Do not attempt to write to the NIC during EEH recovery */
718 	if (efx->state != STATE_RECOVERY) {
719 		/* Only perform flush if DMA is enabled */
720 		if (efx->pci_dev->is_busmaster) {
721 			efx->type->prepare_flush(efx);
722 			rc = efx_farch_do_flush(efx);
723 			efx->type->finish_flush(efx);
724 		}
725 
726 		efx_for_each_channel(channel, efx) {
727 			efx_for_each_channel_rx_queue(rx_queue, channel)
728 				efx_farch_rx_fini(rx_queue);
729 			efx_for_each_channel_tx_queue(tx_queue, channel)
730 				efx_farch_tx_fini(tx_queue);
731 		}
732 	}
733 
734 	return rc;
735 }
736 
737 /* Reset queue and flush accounting after FLR
738  *
739  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
740  * mastering was disabled), in which case we don't receive (RXQ) flush
741  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
742  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
743  * events were received, and we didn't go through efx_check_tx_flush_complete())
744  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
745  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
746  * for batched flush requests; and the efx->active_queues gets messed up because
747  * we keep incrementing for the newly initialised queues, but it never went to
748  * zero previously.  Then we get a timeout every time we try to restart the
749  * queues, as it doesn't go back to zero when we should be flushing the queues.
750  */
efx_farch_finish_flr(struct efx_nic * efx)751 void efx_farch_finish_flr(struct efx_nic *efx)
752 {
753 	atomic_set(&efx->rxq_flush_pending, 0);
754 	atomic_set(&efx->rxq_flush_outstanding, 0);
755 	atomic_set(&efx->active_queues, 0);
756 }
757 
758 
759 /**************************************************************************
760  *
761  * Event queue processing
762  * Event queues are processed by per-channel tasklets.
763  *
764  **************************************************************************/
765 
766 /* Update a channel's event queue's read pointer (RPTR) register
767  *
768  * This writes the EVQ_RPTR_REG register for the specified channel's
769  * event queue.
770  */
efx_farch_ev_read_ack(struct efx_channel * channel)771 void efx_farch_ev_read_ack(struct efx_channel *channel)
772 {
773 	efx_dword_t reg;
774 	struct efx_nic *efx = channel->efx;
775 
776 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
777 			     channel->eventq_read_ptr & channel->eventq_mask);
778 
779 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
780 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
781 	 */
782 	efx_writed(efx, &reg,
783 		   efx->type->evq_rptr_tbl_base +
784 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
785 }
786 
787 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)788 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
789 			      efx_qword_t *event)
790 {
791 	efx_oword_t drv_ev_reg;
792 
793 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
794 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
795 	drv_ev_reg.u32[0] = event->u32[0];
796 	drv_ev_reg.u32[1] = event->u32[1];
797 	drv_ev_reg.u32[2] = 0;
798 	drv_ev_reg.u32[3] = 0;
799 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
800 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
801 }
802 
efx_farch_magic_event(struct efx_channel * channel,u32 magic)803 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
804 {
805 	efx_qword_t event;
806 
807 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
808 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
809 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
810 	efx_farch_generate_event(channel->efx, channel->channel, &event);
811 }
812 
813 /* Handle a transmit completion event
814  *
815  * The NIC batches TX completion events; the message we receive is of
816  * the form "complete all TX events up to this index".
817  */
818 static void
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)819 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
820 {
821 	unsigned int tx_ev_desc_ptr;
822 	unsigned int tx_ev_q_label;
823 	struct efx_tx_queue *tx_queue;
824 	struct efx_nic *efx = channel->efx;
825 
826 	if (unlikely(READ_ONCE(efx->reset_pending)))
827 		return;
828 
829 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
830 		/* Transmit completion */
831 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
832 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
833 		tx_queue = efx_channel_get_tx_queue(
834 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
835 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
836 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
837 		/* Rewrite the FIFO write pointer */
838 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
839 		tx_queue = efx_channel_get_tx_queue(
840 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
841 
842 		netif_tx_lock(efx->net_dev);
843 		efx_farch_notify_tx_desc(tx_queue);
844 		netif_tx_unlock(efx->net_dev);
845 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
846 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
847 	} else {
848 		netif_err(efx, tx_err, efx->net_dev,
849 			  "channel %d unexpected TX event "
850 			  EFX_QWORD_FMT"\n", channel->channel,
851 			  EFX_QWORD_VAL(*event));
852 	}
853 }
854 
855 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)856 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
857 				      const efx_qword_t *event)
858 {
859 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
860 	struct efx_nic *efx = rx_queue->efx;
861 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
862 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
863 	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
864 	bool rx_ev_other_err, rx_ev_pause_frm;
865 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
866 	unsigned rx_ev_pkt_type;
867 
868 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
869 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
870 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
871 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
872 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
873 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
874 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
875 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
876 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
877 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
878 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
879 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
880 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
881 
882 	/* Every error apart from tobe_disc and pause_frm */
883 	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
884 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
885 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
886 
887 	/* Count errors that are not in MAC stats.  Ignore expected
888 	 * checksum errors during self-test. */
889 	if (rx_ev_frm_trunc)
890 		++channel->n_rx_frm_trunc;
891 	else if (rx_ev_tobe_disc)
892 		++channel->n_rx_tobe_disc;
893 	else if (!efx->loopback_selftest) {
894 		if (rx_ev_ip_hdr_chksum_err)
895 			++channel->n_rx_ip_hdr_chksum_err;
896 		else if (rx_ev_tcp_udp_chksum_err)
897 			++channel->n_rx_tcp_udp_chksum_err;
898 	}
899 
900 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
901 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
902 	 * to a FIFO overflow.
903 	 */
904 #ifdef DEBUG
905 	if (rx_ev_other_err && net_ratelimit()) {
906 		netif_dbg(efx, rx_err, efx->net_dev,
907 			  " RX queue %d unexpected RX event "
908 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
909 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
910 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
911 			  rx_ev_ip_hdr_chksum_err ?
912 			  " [IP_HDR_CHKSUM_ERR]" : "",
913 			  rx_ev_tcp_udp_chksum_err ?
914 			  " [TCP_UDP_CHKSUM_ERR]" : "",
915 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
916 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
917 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
918 			  rx_ev_pause_frm ? " [PAUSE]" : "");
919 	}
920 #endif
921 
922 	if (efx->net_dev->features & NETIF_F_RXALL)
923 		/* don't discard frame for CRC error */
924 		rx_ev_eth_crc_err = false;
925 
926 	/* The frame must be discarded if any of these are true. */
927 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
928 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
929 		EFX_RX_PKT_DISCARD : 0;
930 }
931 
932 /* Handle receive events that are not in-order. Return true if this
933  * can be handled as a partial packet discard, false if it's more
934  * serious.
935  */
936 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)937 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
938 {
939 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
940 	struct efx_nic *efx = rx_queue->efx;
941 	unsigned expected, dropped;
942 
943 	if (rx_queue->scatter_n &&
944 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
945 		      rx_queue->ptr_mask)) {
946 		++channel->n_rx_nodesc_trunc;
947 		return true;
948 	}
949 
950 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
951 	dropped = (index - expected) & rx_queue->ptr_mask;
952 	netif_info(efx, rx_err, efx->net_dev,
953 		   "dropped %d events (index=%d expected=%d)\n",
954 		   dropped, index, expected);
955 
956 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
957 	return false;
958 }
959 
960 /* Handle a packet received event
961  *
962  * The NIC gives a "discard" flag if it's a unicast packet with the
963  * wrong destination address
964  * Also "is multicast" and "matches multicast filter" flags can be used to
965  * discard non-matching multicast packets.
966  */
967 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)968 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
969 {
970 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
971 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
972 	unsigned expected_ptr;
973 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
974 	u16 flags;
975 	struct efx_rx_queue *rx_queue;
976 	struct efx_nic *efx = channel->efx;
977 
978 	if (unlikely(READ_ONCE(efx->reset_pending)))
979 		return;
980 
981 	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
982 	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
983 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
984 		channel->channel);
985 
986 	rx_queue = efx_channel_get_rx_queue(channel);
987 
988 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
989 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
990 			rx_queue->ptr_mask);
991 
992 	/* Check for partial drops and other errors */
993 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
994 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
995 		if (rx_ev_desc_ptr != expected_ptr &&
996 		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
997 			return;
998 
999 		/* Discard all pending fragments */
1000 		if (rx_queue->scatter_n) {
1001 			efx_rx_packet(
1002 				rx_queue,
1003 				rx_queue->removed_count & rx_queue->ptr_mask,
1004 				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1005 			rx_queue->removed_count += rx_queue->scatter_n;
1006 			rx_queue->scatter_n = 0;
1007 		}
1008 
1009 		/* Return if there is no new fragment */
1010 		if (rx_ev_desc_ptr != expected_ptr)
1011 			return;
1012 
1013 		/* Discard new fragment if not SOP */
1014 		if (!rx_ev_sop) {
1015 			efx_rx_packet(
1016 				rx_queue,
1017 				rx_queue->removed_count & rx_queue->ptr_mask,
1018 				1, 0, EFX_RX_PKT_DISCARD);
1019 			++rx_queue->removed_count;
1020 			return;
1021 		}
1022 	}
1023 
1024 	++rx_queue->scatter_n;
1025 	if (rx_ev_cont)
1026 		return;
1027 
1028 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1029 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1030 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1031 
1032 	if (likely(rx_ev_pkt_ok)) {
1033 		/* If packet is marked as OK then we can rely on the
1034 		 * hardware checksum and classification.
1035 		 */
1036 		flags = 0;
1037 		switch (rx_ev_hdr_type) {
1038 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1039 			flags |= EFX_RX_PKT_TCP;
1040 			/* fall through */
1041 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1042 			flags |= EFX_RX_PKT_CSUMMED;
1043 			/* fall through */
1044 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1045 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1046 			break;
1047 		}
1048 	} else {
1049 		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1050 	}
1051 
1052 	/* Detect multicast packets that didn't match the filter */
1053 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1054 	if (rx_ev_mcast_pkt) {
1055 		unsigned int rx_ev_mcast_hash_match =
1056 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1057 
1058 		if (unlikely(!rx_ev_mcast_hash_match)) {
1059 			++channel->n_rx_mcast_mismatch;
1060 			flags |= EFX_RX_PKT_DISCARD;
1061 		}
1062 	}
1063 
1064 	channel->irq_mod_score += 2;
1065 
1066 	/* Handle received packet */
1067 	efx_rx_packet(rx_queue,
1068 		      rx_queue->removed_count & rx_queue->ptr_mask,
1069 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1070 	rx_queue->removed_count += rx_queue->scatter_n;
1071 	rx_queue->scatter_n = 0;
1072 }
1073 
1074 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1075  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1076  * of all transmit completions.
1077  */
1078 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1079 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1080 {
1081 	struct efx_tx_queue *tx_queue;
1082 	int qid;
1083 
1084 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1085 	if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1086 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1087 					    qid % EFX_TXQ_TYPES);
1088 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1089 			efx_farch_magic_event(tx_queue->channel,
1090 					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1091 		}
1092 	}
1093 }
1094 
1095 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1096  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1097  * the RX queue back to the mask of RX queues in need of flushing.
1098  */
1099 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1100 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1101 {
1102 	struct efx_channel *channel;
1103 	struct efx_rx_queue *rx_queue;
1104 	int qid;
1105 	bool failed;
1106 
1107 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1108 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1109 	if (qid >= efx->n_channels)
1110 		return;
1111 	channel = efx_get_channel(efx, qid);
1112 	if (!efx_channel_has_rx_queue(channel))
1113 		return;
1114 	rx_queue = efx_channel_get_rx_queue(channel);
1115 
1116 	if (failed) {
1117 		netif_info(efx, hw, efx->net_dev,
1118 			   "RXQ %d flush retry\n", qid);
1119 		rx_queue->flush_pending = true;
1120 		atomic_inc(&efx->rxq_flush_pending);
1121 	} else {
1122 		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1123 				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1124 	}
1125 	atomic_dec(&efx->rxq_flush_outstanding);
1126 	if (efx_farch_flush_wake(efx))
1127 		wake_up(&efx->flush_wq);
1128 }
1129 
1130 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1131 efx_farch_handle_drain_event(struct efx_channel *channel)
1132 {
1133 	struct efx_nic *efx = channel->efx;
1134 
1135 	WARN_ON(atomic_read(&efx->active_queues) == 0);
1136 	atomic_dec(&efx->active_queues);
1137 	if (efx_farch_flush_wake(efx))
1138 		wake_up(&efx->flush_wq);
1139 }
1140 
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1141 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1142 					     efx_qword_t *event)
1143 {
1144 	struct efx_nic *efx = channel->efx;
1145 	struct efx_rx_queue *rx_queue =
1146 		efx_channel_has_rx_queue(channel) ?
1147 		efx_channel_get_rx_queue(channel) : NULL;
1148 	unsigned magic, code;
1149 
1150 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1151 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1152 
1153 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1154 		channel->event_test_cpu = raw_smp_processor_id();
1155 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1156 		/* The queue must be empty, so we won't receive any rx
1157 		 * events, so efx_process_channel() won't refill the
1158 		 * queue. Refill it here */
1159 		efx_fast_push_rx_descriptors(rx_queue, true);
1160 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1161 		efx_farch_handle_drain_event(channel);
1162 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1163 		efx_farch_handle_drain_event(channel);
1164 	} else {
1165 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1166 			  "generated event "EFX_QWORD_FMT"\n",
1167 			  channel->channel, EFX_QWORD_VAL(*event));
1168 	}
1169 }
1170 
1171 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1172 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1173 {
1174 	struct efx_nic *efx = channel->efx;
1175 	unsigned int ev_sub_code;
1176 	unsigned int ev_sub_data;
1177 
1178 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1179 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1180 
1181 	switch (ev_sub_code) {
1182 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1183 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1184 			   channel->channel, ev_sub_data);
1185 		efx_farch_handle_tx_flush_done(efx, event);
1186 #ifdef CONFIG_SFC_SRIOV
1187 		efx_siena_sriov_tx_flush_done(efx, event);
1188 #endif
1189 		break;
1190 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1191 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1192 			   channel->channel, ev_sub_data);
1193 		efx_farch_handle_rx_flush_done(efx, event);
1194 #ifdef CONFIG_SFC_SRIOV
1195 		efx_siena_sriov_rx_flush_done(efx, event);
1196 #endif
1197 		break;
1198 	case FSE_AZ_EVQ_INIT_DONE_EV:
1199 		netif_dbg(efx, hw, efx->net_dev,
1200 			  "channel %d EVQ %d initialised\n",
1201 			  channel->channel, ev_sub_data);
1202 		break;
1203 	case FSE_AZ_SRM_UPD_DONE_EV:
1204 		netif_vdbg(efx, hw, efx->net_dev,
1205 			   "channel %d SRAM update done\n", channel->channel);
1206 		break;
1207 	case FSE_AZ_WAKE_UP_EV:
1208 		netif_vdbg(efx, hw, efx->net_dev,
1209 			   "channel %d RXQ %d wakeup event\n",
1210 			   channel->channel, ev_sub_data);
1211 		break;
1212 	case FSE_AZ_TIMER_EV:
1213 		netif_vdbg(efx, hw, efx->net_dev,
1214 			   "channel %d RX queue %d timer expired\n",
1215 			   channel->channel, ev_sub_data);
1216 		break;
1217 	case FSE_AA_RX_RECOVER_EV:
1218 		netif_err(efx, rx_err, efx->net_dev,
1219 			  "channel %d seen DRIVER RX_RESET event. "
1220 			"Resetting.\n", channel->channel);
1221 		atomic_inc(&efx->rx_reset);
1222 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1223 		break;
1224 	case FSE_BZ_RX_DSC_ERROR_EV:
1225 		if (ev_sub_data < EFX_VI_BASE) {
1226 			netif_err(efx, rx_err, efx->net_dev,
1227 				  "RX DMA Q %d reports descriptor fetch error."
1228 				  " RX Q %d is disabled.\n", ev_sub_data,
1229 				  ev_sub_data);
1230 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1231 		}
1232 #ifdef CONFIG_SFC_SRIOV
1233 		else
1234 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1235 #endif
1236 		break;
1237 	case FSE_BZ_TX_DSC_ERROR_EV:
1238 		if (ev_sub_data < EFX_VI_BASE) {
1239 			netif_err(efx, tx_err, efx->net_dev,
1240 				  "TX DMA Q %d reports descriptor fetch error."
1241 				  " TX Q %d is disabled.\n", ev_sub_data,
1242 				  ev_sub_data);
1243 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1244 		}
1245 #ifdef CONFIG_SFC_SRIOV
1246 		else
1247 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1248 #endif
1249 		break;
1250 	default:
1251 		netif_vdbg(efx, hw, efx->net_dev,
1252 			   "channel %d unknown driver event code %d "
1253 			   "data %04x\n", channel->channel, ev_sub_code,
1254 			   ev_sub_data);
1255 		break;
1256 	}
1257 }
1258 
efx_farch_ev_process(struct efx_channel * channel,int budget)1259 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1260 {
1261 	struct efx_nic *efx = channel->efx;
1262 	unsigned int read_ptr;
1263 	efx_qword_t event, *p_event;
1264 	int ev_code;
1265 	int spent = 0;
1266 
1267 	if (budget <= 0)
1268 		return spent;
1269 
1270 	read_ptr = channel->eventq_read_ptr;
1271 
1272 	for (;;) {
1273 		p_event = efx_event(channel, read_ptr);
1274 		event = *p_event;
1275 
1276 		if (!efx_event_present(&event))
1277 			/* End of events */
1278 			break;
1279 
1280 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1281 			   "channel %d event is "EFX_QWORD_FMT"\n",
1282 			   channel->channel, EFX_QWORD_VAL(event));
1283 
1284 		/* Clear this event by marking it all ones */
1285 		EFX_SET_QWORD(*p_event);
1286 
1287 		++read_ptr;
1288 
1289 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1290 
1291 		switch (ev_code) {
1292 		case FSE_AZ_EV_CODE_RX_EV:
1293 			efx_farch_handle_rx_event(channel, &event);
1294 			if (++spent == budget)
1295 				goto out;
1296 			break;
1297 		case FSE_AZ_EV_CODE_TX_EV:
1298 			efx_farch_handle_tx_event(channel, &event);
1299 			break;
1300 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1301 			efx_farch_handle_generated_event(channel, &event);
1302 			break;
1303 		case FSE_AZ_EV_CODE_DRIVER_EV:
1304 			efx_farch_handle_driver_event(channel, &event);
1305 			break;
1306 #ifdef CONFIG_SFC_SRIOV
1307 		case FSE_CZ_EV_CODE_USER_EV:
1308 			efx_siena_sriov_event(channel, &event);
1309 			break;
1310 #endif
1311 		case FSE_CZ_EV_CODE_MCDI_EV:
1312 			efx_mcdi_process_event(channel, &event);
1313 			break;
1314 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1315 			if (efx->type->handle_global_event &&
1316 			    efx->type->handle_global_event(channel, &event))
1317 				break;
1318 			/* else fall through */
1319 		default:
1320 			netif_err(channel->efx, hw, channel->efx->net_dev,
1321 				  "channel %d unknown event type %d (data "
1322 				  EFX_QWORD_FMT ")\n", channel->channel,
1323 				  ev_code, EFX_QWORD_VAL(event));
1324 		}
1325 	}
1326 
1327 out:
1328 	channel->eventq_read_ptr = read_ptr;
1329 	return spent;
1330 }
1331 
1332 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1333 int efx_farch_ev_probe(struct efx_channel *channel)
1334 {
1335 	struct efx_nic *efx = channel->efx;
1336 	unsigned entries;
1337 
1338 	entries = channel->eventq_mask + 1;
1339 	return efx_alloc_special_buffer(efx, &channel->eventq,
1340 					entries * sizeof(efx_qword_t));
1341 }
1342 
efx_farch_ev_init(struct efx_channel * channel)1343 int efx_farch_ev_init(struct efx_channel *channel)
1344 {
1345 	efx_oword_t reg;
1346 	struct efx_nic *efx = channel->efx;
1347 
1348 	netif_dbg(efx, hw, efx->net_dev,
1349 		  "channel %d event queue in special buffers %d-%d\n",
1350 		  channel->channel, channel->eventq.index,
1351 		  channel->eventq.index + channel->eventq.entries - 1);
1352 
1353 	EFX_POPULATE_OWORD_3(reg,
1354 			     FRF_CZ_TIMER_Q_EN, 1,
1355 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
1356 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1357 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1358 
1359 	/* Pin event queue buffer */
1360 	efx_init_special_buffer(efx, &channel->eventq);
1361 
1362 	/* Fill event queue with all ones (i.e. empty events) */
1363 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1364 
1365 	/* Push event queue to card */
1366 	EFX_POPULATE_OWORD_3(reg,
1367 			     FRF_AZ_EVQ_EN, 1,
1368 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1369 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1370 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1371 			 channel->channel);
1372 
1373 	return 0;
1374 }
1375 
efx_farch_ev_fini(struct efx_channel * channel)1376 void efx_farch_ev_fini(struct efx_channel *channel)
1377 {
1378 	efx_oword_t reg;
1379 	struct efx_nic *efx = channel->efx;
1380 
1381 	/* Remove event queue from card */
1382 	EFX_ZERO_OWORD(reg);
1383 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1384 			 channel->channel);
1385 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1386 
1387 	/* Unpin event queue */
1388 	efx_fini_special_buffer(efx, &channel->eventq);
1389 }
1390 
1391 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1392 void efx_farch_ev_remove(struct efx_channel *channel)
1393 {
1394 	efx_free_special_buffer(channel->efx, &channel->eventq);
1395 }
1396 
1397 
efx_farch_ev_test_generate(struct efx_channel * channel)1398 void efx_farch_ev_test_generate(struct efx_channel *channel)
1399 {
1400 	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1401 }
1402 
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1403 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1404 {
1405 	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1406 			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1407 }
1408 
1409 /**************************************************************************
1410  *
1411  * Hardware interrupts
1412  * The hardware interrupt handler does very little work; all the event
1413  * queue processing is carried out by per-channel tasklets.
1414  *
1415  **************************************************************************/
1416 
1417 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1418 static inline void efx_farch_interrupts(struct efx_nic *efx,
1419 				      bool enabled, bool force)
1420 {
1421 	efx_oword_t int_en_reg_ker;
1422 
1423 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1424 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1425 			     FRF_AZ_KER_INT_KER, force,
1426 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1427 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1428 }
1429 
efx_farch_irq_enable_master(struct efx_nic * efx)1430 void efx_farch_irq_enable_master(struct efx_nic *efx)
1431 {
1432 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1433 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1434 
1435 	efx_farch_interrupts(efx, true, false);
1436 }
1437 
efx_farch_irq_disable_master(struct efx_nic * efx)1438 void efx_farch_irq_disable_master(struct efx_nic *efx)
1439 {
1440 	/* Disable interrupts */
1441 	efx_farch_interrupts(efx, false, false);
1442 }
1443 
1444 /* Generate a test interrupt
1445  * Interrupt must already have been enabled, otherwise nasty things
1446  * may happen.
1447  */
efx_farch_irq_test_generate(struct efx_nic * efx)1448 int efx_farch_irq_test_generate(struct efx_nic *efx)
1449 {
1450 	efx_farch_interrupts(efx, true, true);
1451 	return 0;
1452 }
1453 
1454 /* Process a fatal interrupt
1455  * Disable bus mastering ASAP and schedule a reset
1456  */
efx_farch_fatal_interrupt(struct efx_nic * efx)1457 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1458 {
1459 	efx_oword_t *int_ker = efx->irq_status.addr;
1460 	efx_oword_t fatal_intr;
1461 	int error, mem_perr;
1462 
1463 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1464 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1465 
1466 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1467 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1468 		  EFX_OWORD_VAL(fatal_intr),
1469 		  error ? "disabling bus mastering" : "no recognised error");
1470 
1471 	/* If this is a memory parity error dump which blocks are offending */
1472 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1473 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1474 	if (mem_perr) {
1475 		efx_oword_t reg;
1476 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1477 		netif_err(efx, hw, efx->net_dev,
1478 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1479 			  EFX_OWORD_VAL(reg));
1480 	}
1481 
1482 	/* Disable both devices */
1483 	pci_clear_master(efx->pci_dev);
1484 	efx_farch_irq_disable_master(efx);
1485 
1486 	/* Count errors and reset or disable the NIC accordingly */
1487 	if (efx->int_error_count == 0 ||
1488 	    time_after(jiffies, efx->int_error_expire)) {
1489 		efx->int_error_count = 0;
1490 		efx->int_error_expire =
1491 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1492 	}
1493 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1494 		netif_err(efx, hw, efx->net_dev,
1495 			  "SYSTEM ERROR - reset scheduled\n");
1496 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1497 	} else {
1498 		netif_err(efx, hw, efx->net_dev,
1499 			  "SYSTEM ERROR - max number of errors seen."
1500 			  "NIC will be disabled\n");
1501 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1502 	}
1503 
1504 	return IRQ_HANDLED;
1505 }
1506 
1507 /* Handle a legacy interrupt
1508  * Acknowledges the interrupt and schedule event queue processing.
1509  */
efx_farch_legacy_interrupt(int irq,void * dev_id)1510 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1511 {
1512 	struct efx_nic *efx = dev_id;
1513 	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1514 	efx_oword_t *int_ker = efx->irq_status.addr;
1515 	irqreturn_t result = IRQ_NONE;
1516 	struct efx_channel *channel;
1517 	efx_dword_t reg;
1518 	u32 queues;
1519 	int syserr;
1520 
1521 	/* Read the ISR which also ACKs the interrupts */
1522 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1523 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1524 
1525 	/* Legacy interrupts are disabled too late by the EEH kernel
1526 	 * code. Disable them earlier.
1527 	 * If an EEH error occurred, the read will have returned all ones.
1528 	 */
1529 	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1530 	    !efx->eeh_disabled_legacy_irq) {
1531 		disable_irq_nosync(efx->legacy_irq);
1532 		efx->eeh_disabled_legacy_irq = true;
1533 	}
1534 
1535 	/* Handle non-event-queue sources */
1536 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1537 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1538 		if (unlikely(syserr))
1539 			return efx_farch_fatal_interrupt(efx);
1540 		efx->last_irq_cpu = raw_smp_processor_id();
1541 	}
1542 
1543 	if (queues != 0) {
1544 		efx->irq_zero_count = 0;
1545 
1546 		/* Schedule processing of any interrupting queues */
1547 		if (likely(soft_enabled)) {
1548 			efx_for_each_channel(channel, efx) {
1549 				if (queues & 1)
1550 					efx_schedule_channel_irq(channel);
1551 				queues >>= 1;
1552 			}
1553 		}
1554 		result = IRQ_HANDLED;
1555 
1556 	} else {
1557 		efx_qword_t *event;
1558 
1559 		/* Legacy ISR read can return zero once (SF bug 15783) */
1560 
1561 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1562 		 * because this might be a shared interrupt. */
1563 		if (efx->irq_zero_count++ == 0)
1564 			result = IRQ_HANDLED;
1565 
1566 		/* Ensure we schedule or rearm all event queues */
1567 		if (likely(soft_enabled)) {
1568 			efx_for_each_channel(channel, efx) {
1569 				event = efx_event(channel,
1570 						  channel->eventq_read_ptr);
1571 				if (efx_event_present(event))
1572 					efx_schedule_channel_irq(channel);
1573 				else
1574 					efx_farch_ev_read_ack(channel);
1575 			}
1576 		}
1577 	}
1578 
1579 	if (result == IRQ_HANDLED)
1580 		netif_vdbg(efx, intr, efx->net_dev,
1581 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1582 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1583 
1584 	return result;
1585 }
1586 
1587 /* Handle an MSI interrupt
1588  *
1589  * Handle an MSI hardware interrupt.  This routine schedules event
1590  * queue processing.  No interrupt acknowledgement cycle is necessary.
1591  * Also, we never need to check that the interrupt is for us, since
1592  * MSI interrupts cannot be shared.
1593  */
efx_farch_msi_interrupt(int irq,void * dev_id)1594 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1595 {
1596 	struct efx_msi_context *context = dev_id;
1597 	struct efx_nic *efx = context->efx;
1598 	efx_oword_t *int_ker = efx->irq_status.addr;
1599 	int syserr;
1600 
1601 	netif_vdbg(efx, intr, efx->net_dev,
1602 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1603 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1604 
1605 	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1606 		return IRQ_HANDLED;
1607 
1608 	/* Handle non-event-queue sources */
1609 	if (context->index == efx->irq_level) {
1610 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1611 		if (unlikely(syserr))
1612 			return efx_farch_fatal_interrupt(efx);
1613 		efx->last_irq_cpu = raw_smp_processor_id();
1614 	}
1615 
1616 	/* Schedule processing of the channel */
1617 	efx_schedule_channel_irq(efx->channel[context->index]);
1618 
1619 	return IRQ_HANDLED;
1620 }
1621 
1622 /* Setup RSS indirection table.
1623  * This maps from the hash value of the packet to RXQ
1624  */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1625 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1626 {
1627 	size_t i = 0;
1628 	efx_dword_t dword;
1629 
1630 	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1631 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1632 
1633 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1634 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1635 				     efx->rss_context.rx_indir_table[i]);
1636 		efx_writed(efx, &dword,
1637 			   FR_BZ_RX_INDIRECTION_TBL +
1638 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1639 	}
1640 }
1641 
efx_farch_rx_pull_indir_table(struct efx_nic * efx)1642 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1643 {
1644 	size_t i = 0;
1645 	efx_dword_t dword;
1646 
1647 	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1648 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1649 
1650 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1651 		efx_readd(efx, &dword,
1652 			   FR_BZ_RX_INDIRECTION_TBL +
1653 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1654 		efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1655 	}
1656 }
1657 
1658 /* Looks at available SRAM resources and works out how many queues we
1659  * can support, and where things like descriptor caches should live.
1660  *
1661  * SRAM is split up as follows:
1662  * 0                          buftbl entries for channels
1663  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1664  * efx->rx_dc_base            RX descriptor caches
1665  * efx->tx_dc_base            TX descriptor caches
1666  */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1667 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1668 {
1669 	unsigned vi_count, buftbl_min, total_tx_channels;
1670 
1671 #ifdef CONFIG_SFC_SRIOV
1672 	struct siena_nic_data *nic_data = efx->nic_data;
1673 #endif
1674 
1675 	total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1676 	/* Account for the buffer table entries backing the datapath channels
1677 	 * and the descriptor caches for those channels.
1678 	 */
1679 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1680 		       total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1681 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1682 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1683 	vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1684 
1685 #ifdef CONFIG_SFC_SRIOV
1686 	if (efx->type->sriov_wanted) {
1687 		if (efx->type->sriov_wanted(efx)) {
1688 			unsigned vi_dc_entries, buftbl_free;
1689 			unsigned entries_per_vf, vf_limit;
1690 
1691 			nic_data->vf_buftbl_base = buftbl_min;
1692 
1693 			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1694 			vi_count = max(vi_count, EFX_VI_BASE);
1695 			buftbl_free = (sram_lim_qw - buftbl_min -
1696 				       vi_count * vi_dc_entries);
1697 
1698 			entries_per_vf = ((vi_dc_entries +
1699 					   EFX_VF_BUFTBL_PER_VI) *
1700 					  efx_vf_size(efx));
1701 			vf_limit = min(buftbl_free / entries_per_vf,
1702 				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1703 
1704 			if (efx->vf_count > vf_limit) {
1705 				netif_err(efx, probe, efx->net_dev,
1706 					  "Reducing VF count from from %d to %d\n",
1707 					  efx->vf_count, vf_limit);
1708 				efx->vf_count = vf_limit;
1709 			}
1710 			vi_count += efx->vf_count * efx_vf_size(efx);
1711 		}
1712 	}
1713 #endif
1714 
1715 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1716 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1717 }
1718 
efx_farch_fpga_ver(struct efx_nic * efx)1719 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1720 {
1721 	efx_oword_t altera_build;
1722 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1723 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1724 }
1725 
efx_farch_init_common(struct efx_nic * efx)1726 void efx_farch_init_common(struct efx_nic *efx)
1727 {
1728 	efx_oword_t temp;
1729 
1730 	/* Set positions of descriptor caches in SRAM. */
1731 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1732 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1733 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1734 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1735 
1736 	/* Set TX descriptor cache size. */
1737 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1738 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1739 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1740 
1741 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1742 	 * this allows most efficient prefetching.
1743 	 */
1744 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1745 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1746 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1747 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1748 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1749 
1750 	/* Program INT_KER address */
1751 	EFX_POPULATE_OWORD_2(temp,
1752 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1753 			     EFX_INT_MODE_USE_MSI(efx),
1754 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1755 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1756 
1757 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1758 		/* Use an interrupt level unused by event queues */
1759 		efx->irq_level = 0x1f;
1760 	else
1761 		/* Use a valid MSI-X vector */
1762 		efx->irq_level = 0;
1763 
1764 	/* Enable all the genuinely fatal interrupts.  (They are still
1765 	 * masked by the overall interrupt mask, controlled by
1766 	 * falcon_interrupts()).
1767 	 *
1768 	 * Note: All other fatal interrupts are enabled
1769 	 */
1770 	EFX_POPULATE_OWORD_3(temp,
1771 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1772 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1773 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1774 	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1775 	EFX_INVERT_OWORD(temp);
1776 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1777 
1778 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1779 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1780 	 */
1781 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1782 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1783 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1784 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1785 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1786 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1787 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1788 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1789 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1790 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1791 	/* Disable hardware watchdog which can misfire */
1792 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1793 	/* Squash TX of packets of 16 bytes or less */
1794 	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1795 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1796 
1797 	EFX_POPULATE_OWORD_4(temp,
1798 			     /* Default values */
1799 			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1800 			     FRF_BZ_TX_PACE_SB_AF, 0xb,
1801 			     FRF_BZ_TX_PACE_FB_BASE, 0,
1802 			     /* Allow large pace values in the fast bin. */
1803 			     FRF_BZ_TX_PACE_BIN_TH,
1804 			     FFE_BZ_TX_PACE_RESERVED);
1805 	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1806 }
1807 
1808 /**************************************************************************
1809  *
1810  * Filter tables
1811  *
1812  **************************************************************************
1813  */
1814 
1815 /* "Fudge factors" - difference between programmed value and actual depth.
1816  * Due to pipelined implementation we need to program H/W with a value that
1817  * is larger than the hop limit we want.
1818  */
1819 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1820 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1821 
1822 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1823  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1824  * table is full.
1825  */
1826 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1827 
1828 /* Don't try very hard to find space for performance hints, as this is
1829  * counter-productive. */
1830 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1831 
1832 enum efx_farch_filter_type {
1833 	EFX_FARCH_FILTER_TCP_FULL = 0,
1834 	EFX_FARCH_FILTER_TCP_WILD,
1835 	EFX_FARCH_FILTER_UDP_FULL,
1836 	EFX_FARCH_FILTER_UDP_WILD,
1837 	EFX_FARCH_FILTER_MAC_FULL = 4,
1838 	EFX_FARCH_FILTER_MAC_WILD,
1839 	EFX_FARCH_FILTER_UC_DEF = 8,
1840 	EFX_FARCH_FILTER_MC_DEF,
1841 	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1842 };
1843 
1844 enum efx_farch_filter_table_id {
1845 	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1846 	EFX_FARCH_FILTER_TABLE_RX_MAC,
1847 	EFX_FARCH_FILTER_TABLE_RX_DEF,
1848 	EFX_FARCH_FILTER_TABLE_TX_MAC,
1849 	EFX_FARCH_FILTER_TABLE_COUNT,
1850 };
1851 
1852 enum efx_farch_filter_index {
1853 	EFX_FARCH_FILTER_INDEX_UC_DEF,
1854 	EFX_FARCH_FILTER_INDEX_MC_DEF,
1855 	EFX_FARCH_FILTER_SIZE_RX_DEF,
1856 };
1857 
1858 struct efx_farch_filter_spec {
1859 	u8	type:4;
1860 	u8	priority:4;
1861 	u8	flags;
1862 	u16	dmaq_id;
1863 	u32	data[3];
1864 };
1865 
1866 struct efx_farch_filter_table {
1867 	enum efx_farch_filter_table_id id;
1868 	u32		offset;		/* address of table relative to BAR */
1869 	unsigned	size;		/* number of entries */
1870 	unsigned	step;		/* step between entries */
1871 	unsigned	used;		/* number currently used */
1872 	unsigned long	*used_bitmap;
1873 	struct efx_farch_filter_spec *spec;
1874 	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1875 };
1876 
1877 struct efx_farch_filter_state {
1878 	struct rw_semaphore lock; /* Protects table contents */
1879 	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1880 };
1881 
1882 static void
1883 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1884 				   struct efx_farch_filter_table *table,
1885 				   unsigned int filter_idx);
1886 
1887 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1888  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1889 static u16 efx_farch_filter_hash(u32 key)
1890 {
1891 	u16 tmp;
1892 
1893 	/* First 16 rounds */
1894 	tmp = 0x1fff ^ key >> 16;
1895 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1896 	tmp = tmp ^ tmp >> 9;
1897 	/* Last 16 rounds */
1898 	tmp = tmp ^ tmp << 13 ^ key;
1899 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1900 	return tmp ^ tmp >> 9;
1901 }
1902 
1903 /* To allow for hash collisions, filter search continues at these
1904  * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1905 static u16 efx_farch_filter_increment(u32 key)
1906 {
1907 	return key * 2 - 1;
1908 }
1909 
1910 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1911 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1912 {
1913 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1914 		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1915 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1916 		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1917 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918 		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1919 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920 		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1921 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1922 		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1923 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1924 		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1925 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1926 		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1927 	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1928 }
1929 
efx_farch_filter_push_rx_config(struct efx_nic * efx)1930 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1931 {
1932 	struct efx_farch_filter_state *state = efx->filter_state;
1933 	struct efx_farch_filter_table *table;
1934 	efx_oword_t filter_ctl;
1935 
1936 	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1937 
1938 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1939 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1940 			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1941 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1942 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1943 			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1944 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1945 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1946 			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1947 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1948 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1949 			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1950 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1951 
1952 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1953 	if (table->size) {
1954 		EFX_SET_OWORD_FIELD(
1955 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1956 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1957 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1958 		EFX_SET_OWORD_FIELD(
1959 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1960 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1961 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1962 	}
1963 
1964 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1965 	if (table->size) {
1966 		EFX_SET_OWORD_FIELD(
1967 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1968 			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1969 		EFX_SET_OWORD_FIELD(
1970 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1971 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1972 			   EFX_FILTER_FLAG_RX_RSS));
1973 		EFX_SET_OWORD_FIELD(
1974 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1975 			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1976 		EFX_SET_OWORD_FIELD(
1977 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1978 			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1979 			   EFX_FILTER_FLAG_RX_RSS));
1980 
1981 		/* There is a single bit to enable RX scatter for all
1982 		 * unmatched packets.  Only set it if scatter is
1983 		 * enabled in both filter specs.
1984 		 */
1985 		EFX_SET_OWORD_FIELD(
1986 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1987 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1988 			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1989 			   EFX_FILTER_FLAG_RX_SCATTER));
1990 	} else {
1991 		/* We don't expose 'default' filters because unmatched
1992 		 * packets always go to the queue number found in the
1993 		 * RSS table.  But we still need to set the RX scatter
1994 		 * bit here.
1995 		 */
1996 		EFX_SET_OWORD_FIELD(
1997 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1998 			efx->rx_scatter);
1999 	}
2000 
2001 	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2002 }
2003 
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2004 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2005 {
2006 	struct efx_farch_filter_state *state = efx->filter_state;
2007 	struct efx_farch_filter_table *table;
2008 	efx_oword_t tx_cfg;
2009 
2010 	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2011 
2012 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2013 	if (table->size) {
2014 		EFX_SET_OWORD_FIELD(
2015 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2016 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2017 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2018 		EFX_SET_OWORD_FIELD(
2019 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2020 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2021 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2022 	}
2023 
2024 	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2025 }
2026 
2027 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2028 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2029 			       const struct efx_filter_spec *gen_spec)
2030 {
2031 	bool is_full = false;
2032 
2033 	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2034 		return -EINVAL;
2035 
2036 	spec->priority = gen_spec->priority;
2037 	spec->flags = gen_spec->flags;
2038 	spec->dmaq_id = gen_spec->dmaq_id;
2039 
2040 	switch (gen_spec->match_flags) {
2041 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2042 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2043 	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2044 		is_full = true;
2045 		/* fall through */
2046 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2048 		__be32 rhost, host1, host2;
2049 		__be16 rport, port1, port2;
2050 
2051 		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2052 
2053 		if (gen_spec->ether_type != htons(ETH_P_IP))
2054 			return -EPROTONOSUPPORT;
2055 		if (gen_spec->loc_port == 0 ||
2056 		    (is_full && gen_spec->rem_port == 0))
2057 			return -EADDRNOTAVAIL;
2058 		switch (gen_spec->ip_proto) {
2059 		case IPPROTO_TCP:
2060 			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2061 				      EFX_FARCH_FILTER_TCP_WILD);
2062 			break;
2063 		case IPPROTO_UDP:
2064 			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2065 				      EFX_FARCH_FILTER_UDP_WILD);
2066 			break;
2067 		default:
2068 			return -EPROTONOSUPPORT;
2069 		}
2070 
2071 		/* Filter is constructed in terms of source and destination,
2072 		 * with the odd wrinkle that the ports are swapped in a UDP
2073 		 * wildcard filter.  We need to convert from local and remote
2074 		 * (= zero for wildcard) addresses.
2075 		 */
2076 		rhost = is_full ? gen_spec->rem_host[0] : 0;
2077 		rport = is_full ? gen_spec->rem_port : 0;
2078 		host1 = rhost;
2079 		host2 = gen_spec->loc_host[0];
2080 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2081 			port1 = gen_spec->loc_port;
2082 			port2 = rport;
2083 		} else {
2084 			port1 = rport;
2085 			port2 = gen_spec->loc_port;
2086 		}
2087 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2088 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2089 		spec->data[2] = ntohl(host2);
2090 
2091 		break;
2092 	}
2093 
2094 	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2095 		is_full = true;
2096 		/* fall through */
2097 	case EFX_FILTER_MATCH_LOC_MAC:
2098 		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2099 			      EFX_FARCH_FILTER_MAC_WILD);
2100 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2101 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2102 				 gen_spec->loc_mac[3] << 16 |
2103 				 gen_spec->loc_mac[4] << 8 |
2104 				 gen_spec->loc_mac[5]);
2105 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2106 				 gen_spec->loc_mac[1]);
2107 		break;
2108 
2109 	case EFX_FILTER_MATCH_LOC_MAC_IG:
2110 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2111 			      EFX_FARCH_FILTER_MC_DEF :
2112 			      EFX_FARCH_FILTER_UC_DEF);
2113 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2114 		break;
2115 
2116 	default:
2117 		return -EPROTONOSUPPORT;
2118 	}
2119 
2120 	return 0;
2121 }
2122 
2123 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2124 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2125 			     const struct efx_farch_filter_spec *spec)
2126 {
2127 	bool is_full = false;
2128 
2129 	/* *gen_spec should be completely initialised, to be consistent
2130 	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2131 	 * it back to userland.
2132 	 */
2133 	memset(gen_spec, 0, sizeof(*gen_spec));
2134 
2135 	gen_spec->priority = spec->priority;
2136 	gen_spec->flags = spec->flags;
2137 	gen_spec->dmaq_id = spec->dmaq_id;
2138 
2139 	switch (spec->type) {
2140 	case EFX_FARCH_FILTER_TCP_FULL:
2141 	case EFX_FARCH_FILTER_UDP_FULL:
2142 		is_full = true;
2143 		/* fall through */
2144 	case EFX_FARCH_FILTER_TCP_WILD:
2145 	case EFX_FARCH_FILTER_UDP_WILD: {
2146 		__be32 host1, host2;
2147 		__be16 port1, port2;
2148 
2149 		gen_spec->match_flags =
2150 			EFX_FILTER_MATCH_ETHER_TYPE |
2151 			EFX_FILTER_MATCH_IP_PROTO |
2152 			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2153 		if (is_full)
2154 			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2155 						  EFX_FILTER_MATCH_REM_PORT);
2156 		gen_spec->ether_type = htons(ETH_P_IP);
2157 		gen_spec->ip_proto =
2158 			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2159 			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2160 			IPPROTO_TCP : IPPROTO_UDP;
2161 
2162 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2163 		port1 = htons(spec->data[0]);
2164 		host2 = htonl(spec->data[2]);
2165 		port2 = htons(spec->data[1] >> 16);
2166 		if (spec->flags & EFX_FILTER_FLAG_TX) {
2167 			gen_spec->loc_host[0] = host1;
2168 			gen_spec->rem_host[0] = host2;
2169 		} else {
2170 			gen_spec->loc_host[0] = host2;
2171 			gen_spec->rem_host[0] = host1;
2172 		}
2173 		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2174 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2175 			gen_spec->loc_port = port1;
2176 			gen_spec->rem_port = port2;
2177 		} else {
2178 			gen_spec->loc_port = port2;
2179 			gen_spec->rem_port = port1;
2180 		}
2181 
2182 		break;
2183 	}
2184 
2185 	case EFX_FARCH_FILTER_MAC_FULL:
2186 		is_full = true;
2187 		/* fall through */
2188 	case EFX_FARCH_FILTER_MAC_WILD:
2189 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2190 		if (is_full)
2191 			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2192 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2193 		gen_spec->loc_mac[1] = spec->data[2];
2194 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2195 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2196 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2197 		gen_spec->loc_mac[5] = spec->data[1];
2198 		gen_spec->outer_vid = htons(spec->data[0]);
2199 		break;
2200 
2201 	case EFX_FARCH_FILTER_UC_DEF:
2202 	case EFX_FARCH_FILTER_MC_DEF:
2203 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2204 		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2205 		break;
2206 
2207 	default:
2208 		WARN_ON(1);
2209 		break;
2210 	}
2211 }
2212 
2213 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2214 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2215 			      struct efx_farch_filter_spec *spec)
2216 {
2217 	/* If there's only one channel then disable RSS for non VF
2218 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2219 	 */
2220 	spec->priority = EFX_FILTER_PRI_AUTO;
2221 	spec->flags = (EFX_FILTER_FLAG_RX |
2222 		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2223 		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2224 	spec->dmaq_id = 0;
2225 }
2226 
2227 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2228 static u32 efx_farch_filter_build(efx_oword_t *filter,
2229 				  struct efx_farch_filter_spec *spec)
2230 {
2231 	u32 data3;
2232 
2233 	switch (efx_farch_filter_spec_table_id(spec)) {
2234 	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2235 		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2236 			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2237 		EFX_POPULATE_OWORD_7(
2238 			*filter,
2239 			FRF_BZ_RSS_EN,
2240 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2241 			FRF_BZ_SCATTER_EN,
2242 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2243 			FRF_BZ_TCP_UDP, is_udp,
2244 			FRF_BZ_RXQ_ID, spec->dmaq_id,
2245 			EFX_DWORD_2, spec->data[2],
2246 			EFX_DWORD_1, spec->data[1],
2247 			EFX_DWORD_0, spec->data[0]);
2248 		data3 = is_udp;
2249 		break;
2250 	}
2251 
2252 	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2253 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2254 		EFX_POPULATE_OWORD_7(
2255 			*filter,
2256 			FRF_CZ_RMFT_RSS_EN,
2257 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2258 			FRF_CZ_RMFT_SCATTER_EN,
2259 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2260 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2261 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2262 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2263 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2264 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2265 		data3 = is_wild;
2266 		break;
2267 	}
2268 
2269 	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2270 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2271 		EFX_POPULATE_OWORD_5(*filter,
2272 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2273 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2274 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2275 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2276 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2277 		data3 = is_wild | spec->dmaq_id << 1;
2278 		break;
2279 	}
2280 
2281 	default:
2282 		BUG();
2283 	}
2284 
2285 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2286 }
2287 
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2288 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2289 				   const struct efx_farch_filter_spec *right)
2290 {
2291 	if (left->type != right->type ||
2292 	    memcmp(left->data, right->data, sizeof(left->data)))
2293 		return false;
2294 
2295 	if (left->flags & EFX_FILTER_FLAG_TX &&
2296 	    left->dmaq_id != right->dmaq_id)
2297 		return false;
2298 
2299 	return true;
2300 }
2301 
2302 /*
2303  * Construct/deconstruct external filter IDs.  At least the RX filter
2304  * IDs must be ordered by matching priority, for RX NFC semantics.
2305  *
2306  * Deconstruction needs to be robust against invalid IDs so that
2307  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2308  * accept user-provided IDs.
2309  */
2310 
2311 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2312 
2313 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2314 	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2315 	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2316 	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2317 	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2318 	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2319 	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2320 	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2321 	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2322 };
2323 
2324 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2325 	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2326 	EFX_FARCH_FILTER_TABLE_RX_IP,
2327 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2328 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2329 	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2330 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2331 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2332 };
2333 
2334 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2335 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2336 
2337 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2338 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2339 			 unsigned int index)
2340 {
2341 	unsigned int range;
2342 
2343 	range = efx_farch_filter_type_match_pri[spec->type];
2344 	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2345 		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2346 
2347 	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2348 }
2349 
2350 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2351 efx_farch_filter_id_table_id(u32 id)
2352 {
2353 	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2354 
2355 	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2356 		return efx_farch_filter_range_table[range];
2357 	else
2358 		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2359 }
2360 
efx_farch_filter_id_index(u32 id)2361 static inline unsigned int efx_farch_filter_id_index(u32 id)
2362 {
2363 	return id & EFX_FARCH_FILTER_INDEX_MASK;
2364 }
2365 
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2366 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2367 {
2368 	struct efx_farch_filter_state *state = efx->filter_state;
2369 	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2370 	enum efx_farch_filter_table_id table_id;
2371 
2372 	do {
2373 		table_id = efx_farch_filter_range_table[range];
2374 		if (state->table[table_id].size != 0)
2375 			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2376 				state->table[table_id].size;
2377 	} while (range--);
2378 
2379 	return 0;
2380 }
2381 
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2382 s32 efx_farch_filter_insert(struct efx_nic *efx,
2383 			    struct efx_filter_spec *gen_spec,
2384 			    bool replace_equal)
2385 {
2386 	struct efx_farch_filter_state *state = efx->filter_state;
2387 	struct efx_farch_filter_table *table;
2388 	struct efx_farch_filter_spec spec;
2389 	efx_oword_t filter;
2390 	int rep_index, ins_index;
2391 	unsigned int depth = 0;
2392 	int rc;
2393 
2394 	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2395 	if (rc)
2396 		return rc;
2397 
2398 	down_write(&state->lock);
2399 
2400 	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2401 	if (table->size == 0) {
2402 		rc = -EINVAL;
2403 		goto out_unlock;
2404 	}
2405 
2406 	netif_vdbg(efx, hw, efx->net_dev,
2407 		   "%s: type %d search_limit=%d", __func__, spec.type,
2408 		   table->search_limit[spec.type]);
2409 
2410 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2411 		/* One filter spec per type */
2412 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2413 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2414 			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2415 		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2416 		ins_index = rep_index;
2417 	} else {
2418 		/* Search concurrently for
2419 		 * (1) a filter to be replaced (rep_index): any filter
2420 		 *     with the same match values, up to the current
2421 		 *     search depth for this type, and
2422 		 * (2) the insertion point (ins_index): (1) or any
2423 		 *     free slot before it or up to the maximum search
2424 		 *     depth for this priority
2425 		 * We fail if we cannot find (2).
2426 		 *
2427 		 * We can stop once either
2428 		 * (a) we find (1), in which case we have definitely
2429 		 *     found (2) as well; or
2430 		 * (b) we have searched exhaustively for (1), and have
2431 		 *     either found (2) or searched exhaustively for it
2432 		 */
2433 		u32 key = efx_farch_filter_build(&filter, &spec);
2434 		unsigned int hash = efx_farch_filter_hash(key);
2435 		unsigned int incr = efx_farch_filter_increment(key);
2436 		unsigned int max_rep_depth = table->search_limit[spec.type];
2437 		unsigned int max_ins_depth =
2438 			spec.priority <= EFX_FILTER_PRI_HINT ?
2439 			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2440 			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2441 		unsigned int i = hash & (table->size - 1);
2442 
2443 		ins_index = -1;
2444 		depth = 1;
2445 
2446 		for (;;) {
2447 			if (!test_bit(i, table->used_bitmap)) {
2448 				if (ins_index < 0)
2449 					ins_index = i;
2450 			} else if (efx_farch_filter_equal(&spec,
2451 							  &table->spec[i])) {
2452 				/* Case (a) */
2453 				if (ins_index < 0)
2454 					ins_index = i;
2455 				rep_index = i;
2456 				break;
2457 			}
2458 
2459 			if (depth >= max_rep_depth &&
2460 			    (ins_index >= 0 || depth >= max_ins_depth)) {
2461 				/* Case (b) */
2462 				if (ins_index < 0) {
2463 					rc = -EBUSY;
2464 					goto out_unlock;
2465 				}
2466 				rep_index = -1;
2467 				break;
2468 			}
2469 
2470 			i = (i + incr) & (table->size - 1);
2471 			++depth;
2472 		}
2473 	}
2474 
2475 	/* If we found a filter to be replaced, check whether we
2476 	 * should do so
2477 	 */
2478 	if (rep_index >= 0) {
2479 		struct efx_farch_filter_spec *saved_spec =
2480 			&table->spec[rep_index];
2481 
2482 		if (spec.priority == saved_spec->priority && !replace_equal) {
2483 			rc = -EEXIST;
2484 			goto out_unlock;
2485 		}
2486 		if (spec.priority < saved_spec->priority) {
2487 			rc = -EPERM;
2488 			goto out_unlock;
2489 		}
2490 		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2491 		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2492 			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2493 	}
2494 
2495 	/* Insert the filter */
2496 	if (ins_index != rep_index) {
2497 		__set_bit(ins_index, table->used_bitmap);
2498 		++table->used;
2499 	}
2500 	table->spec[ins_index] = spec;
2501 
2502 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2503 		efx_farch_filter_push_rx_config(efx);
2504 	} else {
2505 		if (table->search_limit[spec.type] < depth) {
2506 			table->search_limit[spec.type] = depth;
2507 			if (spec.flags & EFX_FILTER_FLAG_TX)
2508 				efx_farch_filter_push_tx_limits(efx);
2509 			else
2510 				efx_farch_filter_push_rx_config(efx);
2511 		}
2512 
2513 		efx_writeo(efx, &filter,
2514 			   table->offset + table->step * ins_index);
2515 
2516 		/* If we were able to replace a filter by inserting
2517 		 * at a lower depth, clear the replaced filter
2518 		 */
2519 		if (ins_index != rep_index && rep_index >= 0)
2520 			efx_farch_filter_table_clear_entry(efx, table,
2521 							   rep_index);
2522 	}
2523 
2524 	netif_vdbg(efx, hw, efx->net_dev,
2525 		   "%s: filter type %d index %d rxq %u set",
2526 		   __func__, spec.type, ins_index, spec.dmaq_id);
2527 	rc = efx_farch_filter_make_id(&spec, ins_index);
2528 
2529 out_unlock:
2530 	up_write(&state->lock);
2531 	return rc;
2532 }
2533 
2534 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2535 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2536 				   struct efx_farch_filter_table *table,
2537 				   unsigned int filter_idx)
2538 {
2539 	static efx_oword_t filter;
2540 
2541 	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2542 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2543 
2544 	__clear_bit(filter_idx, table->used_bitmap);
2545 	--table->used;
2546 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2547 
2548 	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2549 
2550 	/* If this filter required a greater search depth than
2551 	 * any other, the search limit for its type can now be
2552 	 * decreased.  However, it is hard to determine that
2553 	 * unless the table has become completely empty - in
2554 	 * which case, all its search limits can be set to 0.
2555 	 */
2556 	if (unlikely(table->used == 0)) {
2557 		memset(table->search_limit, 0, sizeof(table->search_limit));
2558 		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2559 			efx_farch_filter_push_tx_limits(efx);
2560 		else
2561 			efx_farch_filter_push_rx_config(efx);
2562 	}
2563 }
2564 
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2565 static int efx_farch_filter_remove(struct efx_nic *efx,
2566 				   struct efx_farch_filter_table *table,
2567 				   unsigned int filter_idx,
2568 				   enum efx_filter_priority priority)
2569 {
2570 	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2571 
2572 	if (!test_bit(filter_idx, table->used_bitmap) ||
2573 	    spec->priority != priority)
2574 		return -ENOENT;
2575 
2576 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2577 		efx_farch_filter_init_rx_auto(efx, spec);
2578 		efx_farch_filter_push_rx_config(efx);
2579 	} else {
2580 		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2581 	}
2582 
2583 	return 0;
2584 }
2585 
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2586 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2587 				 enum efx_filter_priority priority,
2588 				 u32 filter_id)
2589 {
2590 	struct efx_farch_filter_state *state = efx->filter_state;
2591 	enum efx_farch_filter_table_id table_id;
2592 	struct efx_farch_filter_table *table;
2593 	unsigned int filter_idx;
2594 	struct efx_farch_filter_spec *spec;
2595 	int rc;
2596 
2597 	table_id = efx_farch_filter_id_table_id(filter_id);
2598 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2599 		return -ENOENT;
2600 	table = &state->table[table_id];
2601 
2602 	filter_idx = efx_farch_filter_id_index(filter_id);
2603 	if (filter_idx >= table->size)
2604 		return -ENOENT;
2605 	down_write(&state->lock);
2606 	spec = &table->spec[filter_idx];
2607 
2608 	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2609 	up_write(&state->lock);
2610 
2611 	return rc;
2612 }
2613 
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2614 int efx_farch_filter_get_safe(struct efx_nic *efx,
2615 			      enum efx_filter_priority priority,
2616 			      u32 filter_id, struct efx_filter_spec *spec_buf)
2617 {
2618 	struct efx_farch_filter_state *state = efx->filter_state;
2619 	enum efx_farch_filter_table_id table_id;
2620 	struct efx_farch_filter_table *table;
2621 	struct efx_farch_filter_spec *spec;
2622 	unsigned int filter_idx;
2623 	int rc = -ENOENT;
2624 
2625 	down_read(&state->lock);
2626 
2627 	table_id = efx_farch_filter_id_table_id(filter_id);
2628 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2629 		goto out_unlock;
2630 	table = &state->table[table_id];
2631 
2632 	filter_idx = efx_farch_filter_id_index(filter_id);
2633 	if (filter_idx >= table->size)
2634 		goto out_unlock;
2635 	spec = &table->spec[filter_idx];
2636 
2637 	if (test_bit(filter_idx, table->used_bitmap) &&
2638 	    spec->priority == priority) {
2639 		efx_farch_filter_to_gen_spec(spec_buf, spec);
2640 		rc = 0;
2641 	}
2642 
2643 out_unlock:
2644 	up_read(&state->lock);
2645 	return rc;
2646 }
2647 
2648 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2649 efx_farch_filter_table_clear(struct efx_nic *efx,
2650 			     enum efx_farch_filter_table_id table_id,
2651 			     enum efx_filter_priority priority)
2652 {
2653 	struct efx_farch_filter_state *state = efx->filter_state;
2654 	struct efx_farch_filter_table *table = &state->table[table_id];
2655 	unsigned int filter_idx;
2656 
2657 	down_write(&state->lock);
2658 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2659 		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2660 			efx_farch_filter_remove(efx, table,
2661 						filter_idx, priority);
2662 	}
2663 	up_write(&state->lock);
2664 }
2665 
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2666 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2667 			       enum efx_filter_priority priority)
2668 {
2669 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2670 				     priority);
2671 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2672 				     priority);
2673 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2674 				     priority);
2675 	return 0;
2676 }
2677 
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2678 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2679 				   enum efx_filter_priority priority)
2680 {
2681 	struct efx_farch_filter_state *state = efx->filter_state;
2682 	enum efx_farch_filter_table_id table_id;
2683 	struct efx_farch_filter_table *table;
2684 	unsigned int filter_idx;
2685 	u32 count = 0;
2686 
2687 	down_read(&state->lock);
2688 
2689 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2690 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2691 	     table_id++) {
2692 		table = &state->table[table_id];
2693 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2694 			if (test_bit(filter_idx, table->used_bitmap) &&
2695 			    table->spec[filter_idx].priority == priority)
2696 				++count;
2697 		}
2698 	}
2699 
2700 	up_read(&state->lock);
2701 
2702 	return count;
2703 }
2704 
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2705 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2706 				enum efx_filter_priority priority,
2707 				u32 *buf, u32 size)
2708 {
2709 	struct efx_farch_filter_state *state = efx->filter_state;
2710 	enum efx_farch_filter_table_id table_id;
2711 	struct efx_farch_filter_table *table;
2712 	unsigned int filter_idx;
2713 	s32 count = 0;
2714 
2715 	down_read(&state->lock);
2716 
2717 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2718 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2719 	     table_id++) {
2720 		table = &state->table[table_id];
2721 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2722 			if (test_bit(filter_idx, table->used_bitmap) &&
2723 			    table->spec[filter_idx].priority == priority) {
2724 				if (count == size) {
2725 					count = -EMSGSIZE;
2726 					goto out;
2727 				}
2728 				buf[count++] = efx_farch_filter_make_id(
2729 					&table->spec[filter_idx], filter_idx);
2730 			}
2731 		}
2732 	}
2733 out:
2734 	up_read(&state->lock);
2735 
2736 	return count;
2737 }
2738 
2739 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2740 void efx_farch_filter_table_restore(struct efx_nic *efx)
2741 {
2742 	struct efx_farch_filter_state *state = efx->filter_state;
2743 	enum efx_farch_filter_table_id table_id;
2744 	struct efx_farch_filter_table *table;
2745 	efx_oword_t filter;
2746 	unsigned int filter_idx;
2747 
2748 	down_write(&state->lock);
2749 
2750 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2751 		table = &state->table[table_id];
2752 
2753 		/* Check whether this is a regular register table */
2754 		if (table->step == 0)
2755 			continue;
2756 
2757 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2758 			if (!test_bit(filter_idx, table->used_bitmap))
2759 				continue;
2760 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2761 			efx_writeo(efx, &filter,
2762 				   table->offset + table->step * filter_idx);
2763 		}
2764 	}
2765 
2766 	efx_farch_filter_push_rx_config(efx);
2767 	efx_farch_filter_push_tx_limits(efx);
2768 
2769 	up_write(&state->lock);
2770 }
2771 
efx_farch_filter_table_remove(struct efx_nic * efx)2772 void efx_farch_filter_table_remove(struct efx_nic *efx)
2773 {
2774 	struct efx_farch_filter_state *state = efx->filter_state;
2775 	enum efx_farch_filter_table_id table_id;
2776 
2777 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2778 		kfree(state->table[table_id].used_bitmap);
2779 		vfree(state->table[table_id].spec);
2780 	}
2781 	kfree(state);
2782 }
2783 
efx_farch_filter_table_probe(struct efx_nic * efx)2784 int efx_farch_filter_table_probe(struct efx_nic *efx)
2785 {
2786 	struct efx_farch_filter_state *state;
2787 	struct efx_farch_filter_table *table;
2788 	unsigned table_id;
2789 
2790 	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2791 	if (!state)
2792 		return -ENOMEM;
2793 	efx->filter_state = state;
2794 	init_rwsem(&state->lock);
2795 
2796 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2797 	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2798 	table->offset = FR_BZ_RX_FILTER_TBL0;
2799 	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2800 	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2801 
2802 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2803 	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2804 	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2805 	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2806 	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2807 
2808 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2809 	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2810 	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2811 
2812 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2813 	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2814 	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2815 	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2816 	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2817 
2818 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2819 		table = &state->table[table_id];
2820 		if (table->size == 0)
2821 			continue;
2822 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2823 					     sizeof(unsigned long),
2824 					     GFP_KERNEL);
2825 		if (!table->used_bitmap)
2826 			goto fail;
2827 		table->spec = vzalloc(array_size(sizeof(*table->spec),
2828 						 table->size));
2829 		if (!table->spec)
2830 			goto fail;
2831 	}
2832 
2833 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2834 	if (table->size) {
2835 		/* RX default filters must always exist */
2836 		struct efx_farch_filter_spec *spec;
2837 		unsigned i;
2838 
2839 		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2840 			spec = &table->spec[i];
2841 			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2842 			efx_farch_filter_init_rx_auto(efx, spec);
2843 			__set_bit(i, table->used_bitmap);
2844 		}
2845 	}
2846 
2847 	efx_farch_filter_push_rx_config(efx);
2848 
2849 	return 0;
2850 
2851 fail:
2852 	efx_farch_filter_table_remove(efx);
2853 	return -ENOMEM;
2854 }
2855 
2856 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2857 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2858 {
2859 	struct efx_farch_filter_state *state = efx->filter_state;
2860 	enum efx_farch_filter_table_id table_id;
2861 	struct efx_farch_filter_table *table;
2862 	efx_oword_t filter;
2863 	unsigned int filter_idx;
2864 
2865 	down_write(&state->lock);
2866 
2867 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2868 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2869 	     table_id++) {
2870 		table = &state->table[table_id];
2871 
2872 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2873 			if (!test_bit(filter_idx, table->used_bitmap) ||
2874 			    table->spec[filter_idx].dmaq_id >=
2875 			    efx->n_rx_channels)
2876 				continue;
2877 
2878 			if (efx->rx_scatter)
2879 				table->spec[filter_idx].flags |=
2880 					EFX_FILTER_FLAG_RX_SCATTER;
2881 			else
2882 				table->spec[filter_idx].flags &=
2883 					~EFX_FILTER_FLAG_RX_SCATTER;
2884 
2885 			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2886 				/* Pushed by efx_farch_filter_push_rx_config() */
2887 				continue;
2888 
2889 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2890 			efx_writeo(efx, &filter,
2891 				   table->offset + table->step * filter_idx);
2892 		}
2893 	}
2894 
2895 	efx_farch_filter_push_rx_config(efx);
2896 
2897 	up_write(&state->lock);
2898 }
2899 
2900 #ifdef CONFIG_RFS_ACCEL
2901 
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2902 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2903 				     unsigned int index)
2904 {
2905 	struct efx_farch_filter_state *state = efx->filter_state;
2906 	struct efx_farch_filter_table *table;
2907 	bool ret = false, force = false;
2908 	u16 arfs_id;
2909 
2910 	down_write(&state->lock);
2911 	spin_lock_bh(&efx->rps_hash_lock);
2912 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2913 	if (test_bit(index, table->used_bitmap) &&
2914 	    table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2915 		struct efx_arfs_rule *rule = NULL;
2916 		struct efx_filter_spec spec;
2917 
2918 		efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2919 		if (!efx->rps_hash_table) {
2920 			/* In the absence of the table, we always returned 0 to
2921 			 * ARFS, so use the same to query it.
2922 			 */
2923 			arfs_id = 0;
2924 		} else {
2925 			rule = efx_rps_hash_find(efx, &spec);
2926 			if (!rule) {
2927 				/* ARFS table doesn't know of this filter, remove it */
2928 				force = true;
2929 			} else {
2930 				arfs_id = rule->arfs_id;
2931 				if (!efx_rps_check_rule(rule, index, &force))
2932 					goto out_unlock;
2933 			}
2934 		}
2935 		if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2936 						 flow_id, arfs_id)) {
2937 			if (rule)
2938 				rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2939 			efx_rps_hash_del(efx, &spec);
2940 			efx_farch_filter_table_clear_entry(efx, table, index);
2941 			ret = true;
2942 		}
2943 	}
2944 out_unlock:
2945 	spin_unlock_bh(&efx->rps_hash_lock);
2946 	up_write(&state->lock);
2947 	return ret;
2948 }
2949 
2950 #endif /* CONFIG_RFS_ACCEL */
2951 
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2952 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2953 {
2954 	struct net_device *net_dev = efx->net_dev;
2955 	struct netdev_hw_addr *ha;
2956 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2957 	u32 crc;
2958 	int bit;
2959 
2960 	if (!efx_dev_registered(efx))
2961 		return;
2962 
2963 	netif_addr_lock_bh(net_dev);
2964 
2965 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2966 
2967 	/* Build multicast hash table */
2968 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2969 		memset(mc_hash, 0xff, sizeof(*mc_hash));
2970 	} else {
2971 		memset(mc_hash, 0x00, sizeof(*mc_hash));
2972 		netdev_for_each_mc_addr(ha, net_dev) {
2973 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2974 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2975 			__set_bit_le(bit, mc_hash);
2976 		}
2977 
2978 		/* Broadcast packets go through the multicast hash filter.
2979 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2980 		 * so we always add bit 0xff to the mask.
2981 		 */
2982 		__set_bit_le(0xff, mc_hash);
2983 	}
2984 
2985 	netif_addr_unlock_bh(net_dev);
2986 }
2987