• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23 
24 #include "internals.h"
25 
26 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
27 __read_mostly bool force_irqthreads;
28 EXPORT_SYMBOL_GPL(force_irqthreads);
29 
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	force_irqthreads = true;
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
111 /**
112  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *	@irq: interrupt number to wait for
114  *
115  *	This function waits for any pending IRQ handlers for this interrupt
116  *	to complete before returning. If you use this function while
117  *	holding a resource the IRQ handler may need you will deadlock.
118  *
119  *	Can only be called from preemptible code as it might sleep when
120  *	an interrupt thread is associated to @irq.
121  *
122  *	It optionally makes sure (when the irq chip supports that method)
123  *	that the interrupt is not pending in any CPU and waiting for
124  *	service.
125  */
synchronize_irq(unsigned int irq)126 void synchronize_irq(unsigned int irq)
127 {
128 	struct irq_desc *desc = irq_to_desc(irq);
129 
130 	if (desc) {
131 		__synchronize_hardirq(desc, true);
132 		/*
133 		 * We made sure that no hardirq handler is
134 		 * running. Now verify that no threaded handlers are
135 		 * active.
136 		 */
137 		wait_event(desc->wait_for_threads,
138 			   !atomic_read(&desc->threads_active));
139 	}
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142 
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145 
__irq_can_set_affinity(struct irq_desc * desc)146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 		return false;
151 	return true;
152 }
153 
154 /**
155  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *	@irq:		Interrupt to check
157  *
158  */
irq_can_set_affinity(unsigned int irq)159 int irq_can_set_affinity(unsigned int irq)
160 {
161 	return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163 
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:	Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
irq_can_set_affinity_usr(unsigned int irq)171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 	struct irq_desc *desc = irq_to_desc(irq);
174 
175 	return __irq_can_set_affinity(desc) &&
176 		!irqd_affinity_is_managed(&desc->irq_data);
177 }
178 
179 /**
180  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *	@desc:		irq descriptor which has affitnity changed
182  *
183  *	We just set IRQTF_AFFINITY and delegate the affinity setting
184  *	to the interrupt thread itself. We can not call
185  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *	code can be called from hard interrupt context.
187  */
irq_set_thread_affinity(struct irq_desc * desc)188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 	struct irqaction *action;
191 
192 	for_each_action_of_desc(desc, action)
193 		if (action->thread)
194 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196 
irq_validate_effective_affinity(struct irq_data * data)197 static void irq_validate_effective_affinity(struct irq_data *data)
198 {
199 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
200 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 	struct irq_chip *chip = irq_data_get_irq_chip(data);
202 
203 	if (!cpumask_empty(m))
204 		return;
205 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 		     chip->name, data->irq);
207 #endif
208 }
209 
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)210 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
211 			bool force)
212 {
213 	struct irq_desc *desc = irq_data_to_desc(data);
214 	struct irq_chip *chip = irq_data_get_irq_chip(data);
215 	int ret;
216 
217 	if (!chip || !chip->irq_set_affinity)
218 		return -EINVAL;
219 
220 	ret = chip->irq_set_affinity(data, mask, force);
221 	switch (ret) {
222 	case IRQ_SET_MASK_OK:
223 	case IRQ_SET_MASK_OK_DONE:
224 		cpumask_copy(desc->irq_common_data.affinity, mask);
225 		/* fall through */
226 	case IRQ_SET_MASK_OK_NOCOPY:
227 		irq_validate_effective_affinity(data);
228 		irq_set_thread_affinity(desc);
229 		ret = 0;
230 	}
231 
232 	return ret;
233 }
234 
235 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)236 static inline int irq_set_affinity_pending(struct irq_data *data,
237 					   const struct cpumask *dest)
238 {
239 	struct irq_desc *desc = irq_data_to_desc(data);
240 
241 	irqd_set_move_pending(data);
242 	irq_copy_pending(desc, dest);
243 	return 0;
244 }
245 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)246 static inline int irq_set_affinity_pending(struct irq_data *data,
247 					   const struct cpumask *dest)
248 {
249 	return -EBUSY;
250 }
251 #endif
252 
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)253 static int irq_try_set_affinity(struct irq_data *data,
254 				const struct cpumask *dest, bool force)
255 {
256 	int ret = irq_do_set_affinity(data, dest, force);
257 
258 	/*
259 	 * In case that the underlying vector management is busy and the
260 	 * architecture supports the generic pending mechanism then utilize
261 	 * this to avoid returning an error to user space.
262 	 */
263 	if (ret == -EBUSY && !force)
264 		ret = irq_set_affinity_pending(data, dest);
265 	return ret;
266 }
267 
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)268 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
269 			    bool force)
270 {
271 	struct irq_chip *chip = irq_data_get_irq_chip(data);
272 	struct irq_desc *desc = irq_data_to_desc(data);
273 	int ret = 0;
274 
275 	if (!chip || !chip->irq_set_affinity)
276 		return -EINVAL;
277 
278 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
279 		ret = irq_try_set_affinity(data, mask, force);
280 	} else {
281 		irqd_set_move_pending(data);
282 		irq_copy_pending(desc, mask);
283 	}
284 
285 	if (desc->affinity_notify) {
286 		kref_get(&desc->affinity_notify->kref);
287 		schedule_work(&desc->affinity_notify->work);
288 	}
289 	irqd_set(data, IRQD_AFFINITY_SET);
290 
291 	return ret;
292 }
293 
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)294 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
295 {
296 	struct irq_desc *desc = irq_to_desc(irq);
297 	unsigned long flags;
298 	int ret;
299 
300 	if (!desc)
301 		return -EINVAL;
302 
303 	raw_spin_lock_irqsave(&desc->lock, flags);
304 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
305 	raw_spin_unlock_irqrestore(&desc->lock, flags);
306 	return ret;
307 }
308 
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)309 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
310 {
311 	unsigned long flags;
312 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
313 
314 	if (!desc)
315 		return -EINVAL;
316 	desc->affinity_hint = m;
317 	irq_put_desc_unlock(desc, flags);
318 	/* set the initial affinity to prevent every interrupt being on CPU0 */
319 	if (m)
320 		__irq_set_affinity(irq, m, false);
321 	return 0;
322 }
323 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
324 
irq_affinity_notify(struct work_struct * work)325 static void irq_affinity_notify(struct work_struct *work)
326 {
327 	struct irq_affinity_notify *notify =
328 		container_of(work, struct irq_affinity_notify, work);
329 	struct irq_desc *desc = irq_to_desc(notify->irq);
330 	cpumask_var_t cpumask;
331 	unsigned long flags;
332 
333 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
334 		goto out;
335 
336 	raw_spin_lock_irqsave(&desc->lock, flags);
337 	if (irq_move_pending(&desc->irq_data))
338 		irq_get_pending(cpumask, desc);
339 	else
340 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
341 	raw_spin_unlock_irqrestore(&desc->lock, flags);
342 
343 	notify->notify(notify, cpumask);
344 
345 	free_cpumask_var(cpumask);
346 out:
347 	kref_put(&notify->kref, notify->release);
348 }
349 
350 /**
351  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
352  *	@irq:		Interrupt for which to enable/disable notification
353  *	@notify:	Context for notification, or %NULL to disable
354  *			notification.  Function pointers must be initialised;
355  *			the other fields will be initialised by this function.
356  *
357  *	Must be called in process context.  Notification may only be enabled
358  *	after the IRQ is allocated and must be disabled before the IRQ is
359  *	freed using free_irq().
360  */
361 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)362 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
363 {
364 	struct irq_desc *desc = irq_to_desc(irq);
365 	struct irq_affinity_notify *old_notify;
366 	unsigned long flags;
367 
368 	/* The release function is promised process context */
369 	might_sleep();
370 
371 	if (!desc || desc->istate & IRQS_NMI)
372 		return -EINVAL;
373 
374 	/* Complete initialisation of *notify */
375 	if (notify) {
376 		notify->irq = irq;
377 		kref_init(&notify->kref);
378 		INIT_WORK(&notify->work, irq_affinity_notify);
379 	}
380 
381 	raw_spin_lock_irqsave(&desc->lock, flags);
382 	old_notify = desc->affinity_notify;
383 	desc->affinity_notify = notify;
384 	raw_spin_unlock_irqrestore(&desc->lock, flags);
385 
386 	if (old_notify) {
387 		cancel_work_sync(&old_notify->work);
388 		kref_put(&old_notify->kref, old_notify->release);
389 	}
390 
391 	return 0;
392 }
393 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
394 
395 #ifndef CONFIG_AUTO_IRQ_AFFINITY
396 /*
397  * Generic version of the affinity autoselector.
398  */
irq_setup_affinity(struct irq_desc * desc)399 int irq_setup_affinity(struct irq_desc *desc)
400 {
401 	struct cpumask *set = irq_default_affinity;
402 	int ret, node = irq_desc_get_node(desc);
403 	static DEFINE_RAW_SPINLOCK(mask_lock);
404 	static struct cpumask mask;
405 
406 	/* Excludes PER_CPU and NO_BALANCE interrupts */
407 	if (!__irq_can_set_affinity(desc))
408 		return 0;
409 
410 	raw_spin_lock(&mask_lock);
411 	/*
412 	 * Preserve the managed affinity setting and a userspace affinity
413 	 * setup, but make sure that one of the targets is online.
414 	 */
415 	if (irqd_affinity_is_managed(&desc->irq_data) ||
416 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
417 		if (cpumask_intersects(desc->irq_common_data.affinity,
418 				       cpu_online_mask))
419 			set = desc->irq_common_data.affinity;
420 		else
421 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
422 	}
423 
424 	cpumask_and(&mask, cpu_online_mask, set);
425 	if (cpumask_empty(&mask))
426 		cpumask_copy(&mask, cpu_online_mask);
427 
428 	if (node != NUMA_NO_NODE) {
429 		const struct cpumask *nodemask = cpumask_of_node(node);
430 
431 		/* make sure at least one of the cpus in nodemask is online */
432 		if (cpumask_intersects(&mask, nodemask))
433 			cpumask_and(&mask, &mask, nodemask);
434 	}
435 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
436 	raw_spin_unlock(&mask_lock);
437 	return ret;
438 }
439 #else
440 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)441 int irq_setup_affinity(struct irq_desc *desc)
442 {
443 	return irq_select_affinity(irq_desc_get_irq(desc));
444 }
445 #endif
446 
447 /*
448  * Called when a bogus affinity is set via /proc/irq
449  */
irq_select_affinity_usr(unsigned int irq)450 int irq_select_affinity_usr(unsigned int irq)
451 {
452 	struct irq_desc *desc = irq_to_desc(irq);
453 	unsigned long flags;
454 	int ret;
455 
456 	raw_spin_lock_irqsave(&desc->lock, flags);
457 	ret = irq_setup_affinity(desc);
458 	raw_spin_unlock_irqrestore(&desc->lock, flags);
459 	return ret;
460 }
461 #endif
462 
463 /**
464  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
465  *	@irq: interrupt number to set affinity
466  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
467  *	            specific data for percpu_devid interrupts
468  *
469  *	This function uses the vCPU specific data to set the vCPU
470  *	affinity for an irq. The vCPU specific data is passed from
471  *	outside, such as KVM. One example code path is as below:
472  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
473  */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)474 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
475 {
476 	unsigned long flags;
477 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
478 	struct irq_data *data;
479 	struct irq_chip *chip;
480 	int ret = -ENOSYS;
481 
482 	if (!desc)
483 		return -EINVAL;
484 
485 	data = irq_desc_get_irq_data(desc);
486 	do {
487 		chip = irq_data_get_irq_chip(data);
488 		if (chip && chip->irq_set_vcpu_affinity)
489 			break;
490 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
491 		data = data->parent_data;
492 #else
493 		data = NULL;
494 #endif
495 	} while (data);
496 
497 	if (data)
498 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
499 	irq_put_desc_unlock(desc, flags);
500 
501 	return ret;
502 }
503 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
504 
__disable_irq(struct irq_desc * desc)505 void __disable_irq(struct irq_desc *desc)
506 {
507 	if (!desc->depth++)
508 		irq_disable(desc);
509 }
510 
__disable_irq_nosync(unsigned int irq)511 static int __disable_irq_nosync(unsigned int irq)
512 {
513 	unsigned long flags;
514 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
515 
516 	if (!desc)
517 		return -EINVAL;
518 	__disable_irq(desc);
519 	irq_put_desc_busunlock(desc, flags);
520 	return 0;
521 }
522 
523 /**
524  *	disable_irq_nosync - disable an irq without waiting
525  *	@irq: Interrupt to disable
526  *
527  *	Disable the selected interrupt line.  Disables and Enables are
528  *	nested.
529  *	Unlike disable_irq(), this function does not ensure existing
530  *	instances of the IRQ handler have completed before returning.
531  *
532  *	This function may be called from IRQ context.
533  */
disable_irq_nosync(unsigned int irq)534 void disable_irq_nosync(unsigned int irq)
535 {
536 	__disable_irq_nosync(irq);
537 }
538 EXPORT_SYMBOL(disable_irq_nosync);
539 
540 /**
541  *	disable_irq - disable an irq and wait for completion
542  *	@irq: Interrupt to disable
543  *
544  *	Disable the selected interrupt line.  Enables and Disables are
545  *	nested.
546  *	This function waits for any pending IRQ handlers for this interrupt
547  *	to complete before returning. If you use this function while
548  *	holding a resource the IRQ handler may need you will deadlock.
549  *
550  *	This function may be called - with care - from IRQ context.
551  */
disable_irq(unsigned int irq)552 void disable_irq(unsigned int irq)
553 {
554 	if (!__disable_irq_nosync(irq))
555 		synchronize_irq(irq);
556 }
557 EXPORT_SYMBOL(disable_irq);
558 
559 /**
560  *	disable_hardirq - disables an irq and waits for hardirq completion
561  *	@irq: Interrupt to disable
562  *
563  *	Disable the selected interrupt line.  Enables and Disables are
564  *	nested.
565  *	This function waits for any pending hard IRQ handlers for this
566  *	interrupt to complete before returning. If you use this function while
567  *	holding a resource the hard IRQ handler may need you will deadlock.
568  *
569  *	When used to optimistically disable an interrupt from atomic context
570  *	the return value must be checked.
571  *
572  *	Returns: false if a threaded handler is active.
573  *
574  *	This function may be called - with care - from IRQ context.
575  */
disable_hardirq(unsigned int irq)576 bool disable_hardirq(unsigned int irq)
577 {
578 	if (!__disable_irq_nosync(irq))
579 		return synchronize_hardirq(irq);
580 
581 	return false;
582 }
583 EXPORT_SYMBOL_GPL(disable_hardirq);
584 
585 /**
586  *	disable_nmi_nosync - disable an nmi without waiting
587  *	@irq: Interrupt to disable
588  *
589  *	Disable the selected interrupt line. Disables and enables are
590  *	nested.
591  *	The interrupt to disable must have been requested through request_nmi.
592  *	Unlike disable_nmi(), this function does not ensure existing
593  *	instances of the IRQ handler have completed before returning.
594  */
disable_nmi_nosync(unsigned int irq)595 void disable_nmi_nosync(unsigned int irq)
596 {
597 	disable_irq_nosync(irq);
598 }
599 
__enable_irq(struct irq_desc * desc)600 void __enable_irq(struct irq_desc *desc)
601 {
602 	switch (desc->depth) {
603 	case 0:
604  err_out:
605 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
606 		     irq_desc_get_irq(desc));
607 		break;
608 	case 1: {
609 		if (desc->istate & IRQS_SUSPENDED)
610 			goto err_out;
611 		/* Prevent probing on this irq: */
612 		irq_settings_set_noprobe(desc);
613 		/*
614 		 * Call irq_startup() not irq_enable() here because the
615 		 * interrupt might be marked NOAUTOEN. So irq_startup()
616 		 * needs to be invoked when it gets enabled the first
617 		 * time. If it was already started up, then irq_startup()
618 		 * will invoke irq_enable() under the hood.
619 		 */
620 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
621 		break;
622 	}
623 	default:
624 		desc->depth--;
625 	}
626 }
627 
628 /**
629  *	enable_irq - enable handling of an irq
630  *	@irq: Interrupt to enable
631  *
632  *	Undoes the effect of one call to disable_irq().  If this
633  *	matches the last disable, processing of interrupts on this
634  *	IRQ line is re-enabled.
635  *
636  *	This function may be called from IRQ context only when
637  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
638  */
enable_irq(unsigned int irq)639 void enable_irq(unsigned int irq)
640 {
641 	unsigned long flags;
642 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
643 
644 	if (!desc)
645 		return;
646 	if (WARN(!desc->irq_data.chip,
647 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
648 		goto out;
649 
650 	__enable_irq(desc);
651 out:
652 	irq_put_desc_busunlock(desc, flags);
653 }
654 EXPORT_SYMBOL(enable_irq);
655 
656 /**
657  *	enable_nmi - enable handling of an nmi
658  *	@irq: Interrupt to enable
659  *
660  *	The interrupt to enable must have been requested through request_nmi.
661  *	Undoes the effect of one call to disable_nmi(). If this
662  *	matches the last disable, processing of interrupts on this
663  *	IRQ line is re-enabled.
664  */
enable_nmi(unsigned int irq)665 void enable_nmi(unsigned int irq)
666 {
667 	enable_irq(irq);
668 }
669 
set_irq_wake_real(unsigned int irq,unsigned int on)670 static int set_irq_wake_real(unsigned int irq, unsigned int on)
671 {
672 	struct irq_desc *desc = irq_to_desc(irq);
673 	int ret = -ENXIO;
674 
675 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
676 		return 0;
677 
678 	if (desc->irq_data.chip->irq_set_wake)
679 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
680 
681 	return ret;
682 }
683 
684 /**
685  *	irq_set_irq_wake - control irq power management wakeup
686  *	@irq:	interrupt to control
687  *	@on:	enable/disable power management wakeup
688  *
689  *	Enable/disable power management wakeup mode, which is
690  *	disabled by default.  Enables and disables must match,
691  *	just as they match for non-wakeup mode support.
692  *
693  *	Wakeup mode lets this IRQ wake the system from sleep
694  *	states like "suspend to RAM".
695  */
irq_set_irq_wake(unsigned int irq,unsigned int on)696 int irq_set_irq_wake(unsigned int irq, unsigned int on)
697 {
698 	unsigned long flags;
699 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
700 	int ret = 0;
701 
702 	if (!desc)
703 		return -EINVAL;
704 
705 	/* Don't use NMIs as wake up interrupts please */
706 	if (desc->istate & IRQS_NMI) {
707 		ret = -EINVAL;
708 		goto out_unlock;
709 	}
710 
711 	/* wakeup-capable irqs can be shared between drivers that
712 	 * don't need to have the same sleep mode behaviors.
713 	 */
714 	if (on) {
715 		if (desc->wake_depth++ == 0) {
716 			ret = set_irq_wake_real(irq, on);
717 			if (ret)
718 				desc->wake_depth = 0;
719 			else
720 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
721 		}
722 	} else {
723 		if (desc->wake_depth == 0) {
724 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
725 		} else if (--desc->wake_depth == 0) {
726 			ret = set_irq_wake_real(irq, on);
727 			if (ret)
728 				desc->wake_depth = 1;
729 			else
730 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
731 		}
732 	}
733 
734 out_unlock:
735 	irq_put_desc_busunlock(desc, flags);
736 	return ret;
737 }
738 EXPORT_SYMBOL(irq_set_irq_wake);
739 
740 /*
741  * Internal function that tells the architecture code whether a
742  * particular irq has been exclusively allocated or is available
743  * for driver use.
744  */
can_request_irq(unsigned int irq,unsigned long irqflags)745 int can_request_irq(unsigned int irq, unsigned long irqflags)
746 {
747 	unsigned long flags;
748 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
749 	int canrequest = 0;
750 
751 	if (!desc)
752 		return 0;
753 
754 	if (irq_settings_can_request(desc)) {
755 		if (!desc->action ||
756 		    irqflags & desc->action->flags & IRQF_SHARED)
757 			canrequest = 1;
758 	}
759 	irq_put_desc_unlock(desc, flags);
760 	return canrequest;
761 }
762 
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)763 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
764 {
765 	struct irq_chip *chip = desc->irq_data.chip;
766 	int ret, unmask = 0;
767 
768 	if (!chip || !chip->irq_set_type) {
769 		/*
770 		 * IRQF_TRIGGER_* but the PIC does not support multiple
771 		 * flow-types?
772 		 */
773 		pr_debug("No set_type function for IRQ %d (%s)\n",
774 			 irq_desc_get_irq(desc),
775 			 chip ? (chip->name ? : "unknown") : "unknown");
776 		return 0;
777 	}
778 
779 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
780 		if (!irqd_irq_masked(&desc->irq_data))
781 			mask_irq(desc);
782 		if (!irqd_irq_disabled(&desc->irq_data))
783 			unmask = 1;
784 	}
785 
786 	/* Mask all flags except trigger mode */
787 	flags &= IRQ_TYPE_SENSE_MASK;
788 	ret = chip->irq_set_type(&desc->irq_data, flags);
789 
790 	switch (ret) {
791 	case IRQ_SET_MASK_OK:
792 	case IRQ_SET_MASK_OK_DONE:
793 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
794 		irqd_set(&desc->irq_data, flags);
795 		/* fall through */
796 
797 	case IRQ_SET_MASK_OK_NOCOPY:
798 		flags = irqd_get_trigger_type(&desc->irq_data);
799 		irq_settings_set_trigger_mask(desc, flags);
800 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
801 		irq_settings_clr_level(desc);
802 		if (flags & IRQ_TYPE_LEVEL_MASK) {
803 			irq_settings_set_level(desc);
804 			irqd_set(&desc->irq_data, IRQD_LEVEL);
805 		}
806 
807 		ret = 0;
808 		break;
809 	default:
810 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
811 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
812 	}
813 	if (unmask)
814 		unmask_irq(desc);
815 	return ret;
816 }
817 
818 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)819 int irq_set_parent(int irq, int parent_irq)
820 {
821 	unsigned long flags;
822 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
823 
824 	if (!desc)
825 		return -EINVAL;
826 
827 	desc->parent_irq = parent_irq;
828 
829 	irq_put_desc_unlock(desc, flags);
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(irq_set_parent);
833 #endif
834 
835 /*
836  * Default primary interrupt handler for threaded interrupts. Is
837  * assigned as primary handler when request_threaded_irq is called
838  * with handler == NULL. Useful for oneshot interrupts.
839  */
irq_default_primary_handler(int irq,void * dev_id)840 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
841 {
842 	return IRQ_WAKE_THREAD;
843 }
844 
845 /*
846  * Primary handler for nested threaded interrupts. Should never be
847  * called.
848  */
irq_nested_primary_handler(int irq,void * dev_id)849 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
850 {
851 	WARN(1, "Primary handler called for nested irq %d\n", irq);
852 	return IRQ_NONE;
853 }
854 
irq_forced_secondary_handler(int irq,void * dev_id)855 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
856 {
857 	WARN(1, "Secondary action handler called for irq %d\n", irq);
858 	return IRQ_NONE;
859 }
860 
irq_wait_for_interrupt(struct irqaction * action)861 static int irq_wait_for_interrupt(struct irqaction *action)
862 {
863 	for (;;) {
864 		set_current_state(TASK_INTERRUPTIBLE);
865 
866 		if (kthread_should_stop()) {
867 			/* may need to run one last time */
868 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
869 					       &action->thread_flags)) {
870 				__set_current_state(TASK_RUNNING);
871 				return 0;
872 			}
873 			__set_current_state(TASK_RUNNING);
874 			return -1;
875 		}
876 
877 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
878 				       &action->thread_flags)) {
879 			__set_current_state(TASK_RUNNING);
880 			return 0;
881 		}
882 		schedule();
883 	}
884 }
885 
886 /*
887  * Oneshot interrupts keep the irq line masked until the threaded
888  * handler finished. unmask if the interrupt has not been disabled and
889  * is marked MASKED.
890  */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)891 static void irq_finalize_oneshot(struct irq_desc *desc,
892 				 struct irqaction *action)
893 {
894 	if (!(desc->istate & IRQS_ONESHOT) ||
895 	    action->handler == irq_forced_secondary_handler)
896 		return;
897 again:
898 	chip_bus_lock(desc);
899 	raw_spin_lock_irq(&desc->lock);
900 
901 	/*
902 	 * Implausible though it may be we need to protect us against
903 	 * the following scenario:
904 	 *
905 	 * The thread is faster done than the hard interrupt handler
906 	 * on the other CPU. If we unmask the irq line then the
907 	 * interrupt can come in again and masks the line, leaves due
908 	 * to IRQS_INPROGRESS and the irq line is masked forever.
909 	 *
910 	 * This also serializes the state of shared oneshot handlers
911 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
912 	 * irq_wake_thread(). See the comment there which explains the
913 	 * serialization.
914 	 */
915 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
916 		raw_spin_unlock_irq(&desc->lock);
917 		chip_bus_sync_unlock(desc);
918 		cpu_relax();
919 		goto again;
920 	}
921 
922 	/*
923 	 * Now check again, whether the thread should run. Otherwise
924 	 * we would clear the threads_oneshot bit of this thread which
925 	 * was just set.
926 	 */
927 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
928 		goto out_unlock;
929 
930 	desc->threads_oneshot &= ~action->thread_mask;
931 
932 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
933 	    irqd_irq_masked(&desc->irq_data))
934 		unmask_threaded_irq(desc);
935 
936 out_unlock:
937 	raw_spin_unlock_irq(&desc->lock);
938 	chip_bus_sync_unlock(desc);
939 }
940 
941 #ifdef CONFIG_SMP
942 /*
943  * Check whether we need to change the affinity of the interrupt thread.
944  */
945 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)946 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
947 {
948 	cpumask_var_t mask;
949 	bool valid = true;
950 
951 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
952 		return;
953 
954 	/*
955 	 * In case we are out of memory we set IRQTF_AFFINITY again and
956 	 * try again next time
957 	 */
958 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
959 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
960 		return;
961 	}
962 
963 	raw_spin_lock_irq(&desc->lock);
964 	/*
965 	 * This code is triggered unconditionally. Check the affinity
966 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
967 	 */
968 	if (cpumask_available(desc->irq_common_data.affinity)) {
969 		const struct cpumask *m;
970 
971 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
972 		cpumask_copy(mask, m);
973 	} else {
974 		valid = false;
975 	}
976 	raw_spin_unlock_irq(&desc->lock);
977 
978 	if (valid)
979 		set_cpus_allowed_ptr(current, mask);
980 	free_cpumask_var(mask);
981 }
982 #else
983 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)984 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
985 #endif
986 
987 /*
988  * Interrupts which are not explicitly requested as threaded
989  * interrupts rely on the implicit bh/preempt disable of the hard irq
990  * context. So we need to disable bh here to avoid deadlocks and other
991  * side effects.
992  */
993 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)994 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
995 {
996 	irqreturn_t ret;
997 
998 	local_bh_disable();
999 	ret = action->thread_fn(action->irq, action->dev_id);
1000 	if (ret == IRQ_HANDLED)
1001 		atomic_inc(&desc->threads_handled);
1002 
1003 	irq_finalize_oneshot(desc, action);
1004 	local_bh_enable();
1005 	return ret;
1006 }
1007 
1008 /*
1009  * Interrupts explicitly requested as threaded interrupts want to be
1010  * preemtible - many of them need to sleep and wait for slow busses to
1011  * complete.
1012  */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1013 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1014 		struct irqaction *action)
1015 {
1016 	irqreturn_t ret;
1017 
1018 	ret = action->thread_fn(action->irq, action->dev_id);
1019 	if (ret == IRQ_HANDLED)
1020 		atomic_inc(&desc->threads_handled);
1021 
1022 	irq_finalize_oneshot(desc, action);
1023 	return ret;
1024 }
1025 
wake_threads_waitq(struct irq_desc * desc)1026 static void wake_threads_waitq(struct irq_desc *desc)
1027 {
1028 	if (atomic_dec_and_test(&desc->threads_active))
1029 		wake_up(&desc->wait_for_threads);
1030 }
1031 
irq_thread_dtor(struct callback_head * unused)1032 static void irq_thread_dtor(struct callback_head *unused)
1033 {
1034 	struct task_struct *tsk = current;
1035 	struct irq_desc *desc;
1036 	struct irqaction *action;
1037 
1038 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1039 		return;
1040 
1041 	action = kthread_data(tsk);
1042 
1043 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1044 	       tsk->comm, tsk->pid, action->irq);
1045 
1046 
1047 	desc = irq_to_desc(action->irq);
1048 	/*
1049 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1050 	 * desc->threads_active and wake possible waiters.
1051 	 */
1052 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1053 		wake_threads_waitq(desc);
1054 
1055 	/* Prevent a stale desc->threads_oneshot */
1056 	irq_finalize_oneshot(desc, action);
1057 }
1058 
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1059 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1060 {
1061 	struct irqaction *secondary = action->secondary;
1062 
1063 	if (WARN_ON_ONCE(!secondary))
1064 		return;
1065 
1066 	raw_spin_lock_irq(&desc->lock);
1067 	__irq_wake_thread(desc, secondary);
1068 	raw_spin_unlock_irq(&desc->lock);
1069 }
1070 
1071 /*
1072  * Interrupt handler thread
1073  */
irq_thread(void * data)1074 static int irq_thread(void *data)
1075 {
1076 	struct callback_head on_exit_work;
1077 	struct irqaction *action = data;
1078 	struct irq_desc *desc = irq_to_desc(action->irq);
1079 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1080 			struct irqaction *action);
1081 
1082 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1083 					&action->thread_flags))
1084 		handler_fn = irq_forced_thread_fn;
1085 	else
1086 		handler_fn = irq_thread_fn;
1087 
1088 	init_task_work(&on_exit_work, irq_thread_dtor);
1089 	task_work_add(current, &on_exit_work, false);
1090 
1091 	irq_thread_check_affinity(desc, action);
1092 
1093 	while (!irq_wait_for_interrupt(action)) {
1094 		irqreturn_t action_ret;
1095 
1096 		irq_thread_check_affinity(desc, action);
1097 
1098 		action_ret = handler_fn(desc, action);
1099 		if (action_ret == IRQ_WAKE_THREAD)
1100 			irq_wake_secondary(desc, action);
1101 
1102 		wake_threads_waitq(desc);
1103 	}
1104 
1105 	/*
1106 	 * This is the regular exit path. __free_irq() is stopping the
1107 	 * thread via kthread_stop() after calling
1108 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1109 	 * oneshot mask bit can be set.
1110 	 */
1111 	task_work_cancel(current, irq_thread_dtor);
1112 	return 0;
1113 }
1114 
1115 /**
1116  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1117  *	@irq:		Interrupt line
1118  *	@dev_id:	Device identity for which the thread should be woken
1119  *
1120  */
irq_wake_thread(unsigned int irq,void * dev_id)1121 void irq_wake_thread(unsigned int irq, void *dev_id)
1122 {
1123 	struct irq_desc *desc = irq_to_desc(irq);
1124 	struct irqaction *action;
1125 	unsigned long flags;
1126 
1127 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1128 		return;
1129 
1130 	raw_spin_lock_irqsave(&desc->lock, flags);
1131 	for_each_action_of_desc(desc, action) {
1132 		if (action->dev_id == dev_id) {
1133 			if (action->thread)
1134 				__irq_wake_thread(desc, action);
1135 			break;
1136 		}
1137 	}
1138 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1139 }
1140 EXPORT_SYMBOL_GPL(irq_wake_thread);
1141 
irq_setup_forced_threading(struct irqaction * new)1142 static int irq_setup_forced_threading(struct irqaction *new)
1143 {
1144 	if (!force_irqthreads)
1145 		return 0;
1146 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1147 		return 0;
1148 
1149 	/*
1150 	 * No further action required for interrupts which are requested as
1151 	 * threaded interrupts already
1152 	 */
1153 	if (new->handler == irq_default_primary_handler)
1154 		return 0;
1155 
1156 	new->flags |= IRQF_ONESHOT;
1157 
1158 	/*
1159 	 * Handle the case where we have a real primary handler and a
1160 	 * thread handler. We force thread them as well by creating a
1161 	 * secondary action.
1162 	 */
1163 	if (new->handler && new->thread_fn) {
1164 		/* Allocate the secondary action */
1165 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1166 		if (!new->secondary)
1167 			return -ENOMEM;
1168 		new->secondary->handler = irq_forced_secondary_handler;
1169 		new->secondary->thread_fn = new->thread_fn;
1170 		new->secondary->dev_id = new->dev_id;
1171 		new->secondary->irq = new->irq;
1172 		new->secondary->name = new->name;
1173 	}
1174 	/* Deal with the primary handler */
1175 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1176 	new->thread_fn = new->handler;
1177 	new->handler = irq_default_primary_handler;
1178 	return 0;
1179 }
1180 
irq_request_resources(struct irq_desc * desc)1181 static int irq_request_resources(struct irq_desc *desc)
1182 {
1183 	struct irq_data *d = &desc->irq_data;
1184 	struct irq_chip *c = d->chip;
1185 
1186 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1187 }
1188 
irq_release_resources(struct irq_desc * desc)1189 static void irq_release_resources(struct irq_desc *desc)
1190 {
1191 	struct irq_data *d = &desc->irq_data;
1192 	struct irq_chip *c = d->chip;
1193 
1194 	if (c->irq_release_resources)
1195 		c->irq_release_resources(d);
1196 }
1197 
irq_supports_nmi(struct irq_desc * desc)1198 static bool irq_supports_nmi(struct irq_desc *desc)
1199 {
1200 	struct irq_data *d = irq_desc_get_irq_data(desc);
1201 
1202 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1203 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1204 	if (d->parent_data)
1205 		return false;
1206 #endif
1207 	/* Don't support NMIs for chips behind a slow bus */
1208 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1209 		return false;
1210 
1211 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1212 }
1213 
irq_nmi_setup(struct irq_desc * desc)1214 static int irq_nmi_setup(struct irq_desc *desc)
1215 {
1216 	struct irq_data *d = irq_desc_get_irq_data(desc);
1217 	struct irq_chip *c = d->chip;
1218 
1219 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1220 }
1221 
irq_nmi_teardown(struct irq_desc * desc)1222 static void irq_nmi_teardown(struct irq_desc *desc)
1223 {
1224 	struct irq_data *d = irq_desc_get_irq_data(desc);
1225 	struct irq_chip *c = d->chip;
1226 
1227 	if (c->irq_nmi_teardown)
1228 		c->irq_nmi_teardown(d);
1229 }
1230 
1231 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1232 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1233 {
1234 	struct task_struct *t;
1235 	struct sched_param param = {
1236 		.sched_priority = MAX_USER_RT_PRIO/2,
1237 	};
1238 
1239 	if (!secondary) {
1240 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1241 				   new->name);
1242 	} else {
1243 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1244 				   new->name);
1245 		param.sched_priority -= 1;
1246 	}
1247 
1248 	if (IS_ERR(t))
1249 		return PTR_ERR(t);
1250 
1251 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1252 
1253 	/*
1254 	 * We keep the reference to the task struct even if
1255 	 * the thread dies to avoid that the interrupt code
1256 	 * references an already freed task_struct.
1257 	 */
1258 	new->thread = get_task_struct(t);
1259 	/*
1260 	 * Tell the thread to set its affinity. This is
1261 	 * important for shared interrupt handlers as we do
1262 	 * not invoke setup_affinity() for the secondary
1263 	 * handlers as everything is already set up. Even for
1264 	 * interrupts marked with IRQF_NO_BALANCE this is
1265 	 * correct as we want the thread to move to the cpu(s)
1266 	 * on which the requesting code placed the interrupt.
1267 	 */
1268 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1269 	return 0;
1270 }
1271 
1272 /*
1273  * Internal function to register an irqaction - typically used to
1274  * allocate special interrupts that are part of the architecture.
1275  *
1276  * Locking rules:
1277  *
1278  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1279  *   chip_bus_lock	Provides serialization for slow bus operations
1280  *     desc->lock	Provides serialization against hard interrupts
1281  *
1282  * chip_bus_lock and desc->lock are sufficient for all other management and
1283  * interrupt related functions. desc->request_mutex solely serializes
1284  * request/free_irq().
1285  */
1286 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1287 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1288 {
1289 	struct irqaction *old, **old_ptr;
1290 	unsigned long flags, thread_mask = 0;
1291 	int ret, nested, shared = 0;
1292 
1293 	if (!desc)
1294 		return -EINVAL;
1295 
1296 	if (desc->irq_data.chip == &no_irq_chip)
1297 		return -ENOSYS;
1298 	if (!try_module_get(desc->owner))
1299 		return -ENODEV;
1300 
1301 	new->irq = irq;
1302 
1303 	/*
1304 	 * If the trigger type is not specified by the caller,
1305 	 * then use the default for this interrupt.
1306 	 */
1307 	if (!(new->flags & IRQF_TRIGGER_MASK))
1308 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1309 
1310 	/*
1311 	 * Check whether the interrupt nests into another interrupt
1312 	 * thread.
1313 	 */
1314 	nested = irq_settings_is_nested_thread(desc);
1315 	if (nested) {
1316 		if (!new->thread_fn) {
1317 			ret = -EINVAL;
1318 			goto out_mput;
1319 		}
1320 		/*
1321 		 * Replace the primary handler which was provided from
1322 		 * the driver for non nested interrupt handling by the
1323 		 * dummy function which warns when called.
1324 		 */
1325 		new->handler = irq_nested_primary_handler;
1326 	} else {
1327 		if (irq_settings_can_thread(desc)) {
1328 			ret = irq_setup_forced_threading(new);
1329 			if (ret)
1330 				goto out_mput;
1331 		}
1332 	}
1333 
1334 	/*
1335 	 * Create a handler thread when a thread function is supplied
1336 	 * and the interrupt does not nest into another interrupt
1337 	 * thread.
1338 	 */
1339 	if (new->thread_fn && !nested) {
1340 		ret = setup_irq_thread(new, irq, false);
1341 		if (ret)
1342 			goto out_mput;
1343 		if (new->secondary) {
1344 			ret = setup_irq_thread(new->secondary, irq, true);
1345 			if (ret)
1346 				goto out_thread;
1347 		}
1348 	}
1349 
1350 	/*
1351 	 * Drivers are often written to work w/o knowledge about the
1352 	 * underlying irq chip implementation, so a request for a
1353 	 * threaded irq without a primary hard irq context handler
1354 	 * requires the ONESHOT flag to be set. Some irq chips like
1355 	 * MSI based interrupts are per se one shot safe. Check the
1356 	 * chip flags, so we can avoid the unmask dance at the end of
1357 	 * the threaded handler for those.
1358 	 */
1359 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1360 		new->flags &= ~IRQF_ONESHOT;
1361 
1362 	/*
1363 	 * Protects against a concurrent __free_irq() call which might wait
1364 	 * for synchronize_hardirq() to complete without holding the optional
1365 	 * chip bus lock and desc->lock. Also protects against handing out
1366 	 * a recycled oneshot thread_mask bit while it's still in use by
1367 	 * its previous owner.
1368 	 */
1369 	mutex_lock(&desc->request_mutex);
1370 
1371 	/*
1372 	 * Acquire bus lock as the irq_request_resources() callback below
1373 	 * might rely on the serialization or the magic power management
1374 	 * functions which are abusing the irq_bus_lock() callback,
1375 	 */
1376 	chip_bus_lock(desc);
1377 
1378 	/* First installed action requests resources. */
1379 	if (!desc->action) {
1380 		ret = irq_request_resources(desc);
1381 		if (ret) {
1382 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1383 			       new->name, irq, desc->irq_data.chip->name);
1384 			goto out_bus_unlock;
1385 		}
1386 	}
1387 
1388 	/*
1389 	 * The following block of code has to be executed atomically
1390 	 * protected against a concurrent interrupt and any of the other
1391 	 * management calls which are not serialized via
1392 	 * desc->request_mutex or the optional bus lock.
1393 	 */
1394 	raw_spin_lock_irqsave(&desc->lock, flags);
1395 	old_ptr = &desc->action;
1396 	old = *old_ptr;
1397 	if (old) {
1398 		/*
1399 		 * Can't share interrupts unless both agree to and are
1400 		 * the same type (level, edge, polarity). So both flag
1401 		 * fields must have IRQF_SHARED set and the bits which
1402 		 * set the trigger type must match. Also all must
1403 		 * agree on ONESHOT.
1404 		 * Interrupt lines used for NMIs cannot be shared.
1405 		 */
1406 		unsigned int oldtype;
1407 
1408 		if (desc->istate & IRQS_NMI) {
1409 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1410 				new->name, irq, desc->irq_data.chip->name);
1411 			ret = -EINVAL;
1412 			goto out_unlock;
1413 		}
1414 
1415 		/*
1416 		 * If nobody did set the configuration before, inherit
1417 		 * the one provided by the requester.
1418 		 */
1419 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1420 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1421 		} else {
1422 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1423 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1424 		}
1425 
1426 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1427 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1428 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1429 			goto mismatch;
1430 
1431 		/* All handlers must agree on per-cpuness */
1432 		if ((old->flags & IRQF_PERCPU) !=
1433 		    (new->flags & IRQF_PERCPU))
1434 			goto mismatch;
1435 
1436 		/* add new interrupt at end of irq queue */
1437 		do {
1438 			/*
1439 			 * Or all existing action->thread_mask bits,
1440 			 * so we can find the next zero bit for this
1441 			 * new action.
1442 			 */
1443 			thread_mask |= old->thread_mask;
1444 			old_ptr = &old->next;
1445 			old = *old_ptr;
1446 		} while (old);
1447 		shared = 1;
1448 	}
1449 
1450 	/*
1451 	 * Setup the thread mask for this irqaction for ONESHOT. For
1452 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1453 	 * conditional in irq_wake_thread().
1454 	 */
1455 	if (new->flags & IRQF_ONESHOT) {
1456 		/*
1457 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1458 		 * but who knows.
1459 		 */
1460 		if (thread_mask == ~0UL) {
1461 			ret = -EBUSY;
1462 			goto out_unlock;
1463 		}
1464 		/*
1465 		 * The thread_mask for the action is or'ed to
1466 		 * desc->thread_active to indicate that the
1467 		 * IRQF_ONESHOT thread handler has been woken, but not
1468 		 * yet finished. The bit is cleared when a thread
1469 		 * completes. When all threads of a shared interrupt
1470 		 * line have completed desc->threads_active becomes
1471 		 * zero and the interrupt line is unmasked. See
1472 		 * handle.c:irq_wake_thread() for further information.
1473 		 *
1474 		 * If no thread is woken by primary (hard irq context)
1475 		 * interrupt handlers, then desc->threads_active is
1476 		 * also checked for zero to unmask the irq line in the
1477 		 * affected hard irq flow handlers
1478 		 * (handle_[fasteoi|level]_irq).
1479 		 *
1480 		 * The new action gets the first zero bit of
1481 		 * thread_mask assigned. See the loop above which or's
1482 		 * all existing action->thread_mask bits.
1483 		 */
1484 		new->thread_mask = 1UL << ffz(thread_mask);
1485 
1486 	} else if (new->handler == irq_default_primary_handler &&
1487 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1488 		/*
1489 		 * The interrupt was requested with handler = NULL, so
1490 		 * we use the default primary handler for it. But it
1491 		 * does not have the oneshot flag set. In combination
1492 		 * with level interrupts this is deadly, because the
1493 		 * default primary handler just wakes the thread, then
1494 		 * the irq lines is reenabled, but the device still
1495 		 * has the level irq asserted. Rinse and repeat....
1496 		 *
1497 		 * While this works for edge type interrupts, we play
1498 		 * it safe and reject unconditionally because we can't
1499 		 * say for sure which type this interrupt really
1500 		 * has. The type flags are unreliable as the
1501 		 * underlying chip implementation can override them.
1502 		 */
1503 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1504 		       irq);
1505 		ret = -EINVAL;
1506 		goto out_unlock;
1507 	}
1508 
1509 	if (!shared) {
1510 		init_waitqueue_head(&desc->wait_for_threads);
1511 
1512 		/* Setup the type (level, edge polarity) if configured: */
1513 		if (new->flags & IRQF_TRIGGER_MASK) {
1514 			ret = __irq_set_trigger(desc,
1515 						new->flags & IRQF_TRIGGER_MASK);
1516 
1517 			if (ret)
1518 				goto out_unlock;
1519 		}
1520 
1521 		/*
1522 		 * Activate the interrupt. That activation must happen
1523 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1524 		 * and the callers are supposed to handle
1525 		 * that. enable_irq() of an interrupt requested with
1526 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1527 		 * keeps it in shutdown mode, it merily associates
1528 		 * resources if necessary and if that's not possible it
1529 		 * fails. Interrupts which are in managed shutdown mode
1530 		 * will simply ignore that activation request.
1531 		 */
1532 		ret = irq_activate(desc);
1533 		if (ret)
1534 			goto out_unlock;
1535 
1536 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1537 				  IRQS_ONESHOT | IRQS_WAITING);
1538 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1539 
1540 		if (new->flags & IRQF_PERCPU) {
1541 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1542 			irq_settings_set_per_cpu(desc);
1543 		}
1544 
1545 		if (new->flags & IRQF_ONESHOT)
1546 			desc->istate |= IRQS_ONESHOT;
1547 
1548 		/* Exclude IRQ from balancing if requested */
1549 		if (new->flags & IRQF_NOBALANCING) {
1550 			irq_settings_set_no_balancing(desc);
1551 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1552 		}
1553 
1554 		if (irq_settings_can_autoenable(desc)) {
1555 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1556 		} else {
1557 			/*
1558 			 * Shared interrupts do not go well with disabling
1559 			 * auto enable. The sharing interrupt might request
1560 			 * it while it's still disabled and then wait for
1561 			 * interrupts forever.
1562 			 */
1563 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1564 			/* Undo nested disables: */
1565 			desc->depth = 1;
1566 		}
1567 
1568 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1569 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1570 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1571 
1572 		if (nmsk != omsk)
1573 			/* hope the handler works with current  trigger mode */
1574 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1575 				irq, omsk, nmsk);
1576 	}
1577 
1578 	*old_ptr = new;
1579 
1580 	irq_pm_install_action(desc, new);
1581 
1582 	/* Reset broken irq detection when installing new handler */
1583 	desc->irq_count = 0;
1584 	desc->irqs_unhandled = 0;
1585 
1586 	/*
1587 	 * Check whether we disabled the irq via the spurious handler
1588 	 * before. Reenable it and give it another chance.
1589 	 */
1590 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1591 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1592 		__enable_irq(desc);
1593 	}
1594 
1595 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1596 	chip_bus_sync_unlock(desc);
1597 	mutex_unlock(&desc->request_mutex);
1598 
1599 	irq_setup_timings(desc, new);
1600 
1601 	/*
1602 	 * Strictly no need to wake it up, but hung_task complains
1603 	 * when no hard interrupt wakes the thread up.
1604 	 */
1605 	if (new->thread)
1606 		wake_up_process(new->thread);
1607 	if (new->secondary)
1608 		wake_up_process(new->secondary->thread);
1609 
1610 	register_irq_proc(irq, desc);
1611 	new->dir = NULL;
1612 	register_handler_proc(irq, new);
1613 	return 0;
1614 
1615 mismatch:
1616 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1617 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1618 		       irq, new->flags, new->name, old->flags, old->name);
1619 #ifdef CONFIG_DEBUG_SHIRQ
1620 		dump_stack();
1621 #endif
1622 	}
1623 	ret = -EBUSY;
1624 
1625 out_unlock:
1626 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1627 
1628 	if (!desc->action)
1629 		irq_release_resources(desc);
1630 out_bus_unlock:
1631 	chip_bus_sync_unlock(desc);
1632 	mutex_unlock(&desc->request_mutex);
1633 
1634 out_thread:
1635 	if (new->thread) {
1636 		struct task_struct *t = new->thread;
1637 
1638 		new->thread = NULL;
1639 		kthread_stop(t);
1640 		put_task_struct(t);
1641 	}
1642 	if (new->secondary && new->secondary->thread) {
1643 		struct task_struct *t = new->secondary->thread;
1644 
1645 		new->secondary->thread = NULL;
1646 		kthread_stop(t);
1647 		put_task_struct(t);
1648 	}
1649 out_mput:
1650 	module_put(desc->owner);
1651 	return ret;
1652 }
1653 
1654 /**
1655  *	setup_irq - setup an interrupt
1656  *	@irq: Interrupt line to setup
1657  *	@act: irqaction for the interrupt
1658  *
1659  * Used to statically setup interrupts in the early boot process.
1660  */
setup_irq(unsigned int irq,struct irqaction * act)1661 int setup_irq(unsigned int irq, struct irqaction *act)
1662 {
1663 	int retval;
1664 	struct irq_desc *desc = irq_to_desc(irq);
1665 
1666 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1667 		return -EINVAL;
1668 
1669 	retval = irq_chip_pm_get(&desc->irq_data);
1670 	if (retval < 0)
1671 		return retval;
1672 
1673 	retval = __setup_irq(irq, desc, act);
1674 
1675 	if (retval)
1676 		irq_chip_pm_put(&desc->irq_data);
1677 
1678 	return retval;
1679 }
1680 EXPORT_SYMBOL_GPL(setup_irq);
1681 
1682 /*
1683  * Internal function to unregister an irqaction - used to free
1684  * regular and special interrupts that are part of the architecture.
1685  */
__free_irq(struct irq_desc * desc,void * dev_id)1686 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1687 {
1688 	unsigned irq = desc->irq_data.irq;
1689 	struct irqaction *action, **action_ptr;
1690 	unsigned long flags;
1691 
1692 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1693 
1694 	mutex_lock(&desc->request_mutex);
1695 	chip_bus_lock(desc);
1696 	raw_spin_lock_irqsave(&desc->lock, flags);
1697 
1698 	/*
1699 	 * There can be multiple actions per IRQ descriptor, find the right
1700 	 * one based on the dev_id:
1701 	 */
1702 	action_ptr = &desc->action;
1703 	for (;;) {
1704 		action = *action_ptr;
1705 
1706 		if (!action) {
1707 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1708 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1709 			chip_bus_sync_unlock(desc);
1710 			mutex_unlock(&desc->request_mutex);
1711 			return NULL;
1712 		}
1713 
1714 		if (action->dev_id == dev_id)
1715 			break;
1716 		action_ptr = &action->next;
1717 	}
1718 
1719 	/* Found it - now remove it from the list of entries: */
1720 	*action_ptr = action->next;
1721 
1722 	irq_pm_remove_action(desc, action);
1723 
1724 	/* If this was the last handler, shut down the IRQ line: */
1725 	if (!desc->action) {
1726 		irq_settings_clr_disable_unlazy(desc);
1727 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1728 		irq_shutdown(desc);
1729 	}
1730 
1731 #ifdef CONFIG_SMP
1732 	/* make sure affinity_hint is cleaned up */
1733 	if (WARN_ON_ONCE(desc->affinity_hint))
1734 		desc->affinity_hint = NULL;
1735 #endif
1736 
1737 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1738 	/*
1739 	 * Drop bus_lock here so the changes which were done in the chip
1740 	 * callbacks above are synced out to the irq chips which hang
1741 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1742 	 *
1743 	 * Aside of that the bus_lock can also be taken from the threaded
1744 	 * handler in irq_finalize_oneshot() which results in a deadlock
1745 	 * because kthread_stop() would wait forever for the thread to
1746 	 * complete, which is blocked on the bus lock.
1747 	 *
1748 	 * The still held desc->request_mutex() protects against a
1749 	 * concurrent request_irq() of this irq so the release of resources
1750 	 * and timing data is properly serialized.
1751 	 */
1752 	chip_bus_sync_unlock(desc);
1753 
1754 	unregister_handler_proc(irq, action);
1755 
1756 	/*
1757 	 * Make sure it's not being used on another CPU and if the chip
1758 	 * supports it also make sure that there is no (not yet serviced)
1759 	 * interrupt in flight at the hardware level.
1760 	 */
1761 	__synchronize_hardirq(desc, true);
1762 
1763 #ifdef CONFIG_DEBUG_SHIRQ
1764 	/*
1765 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1766 	 * event to happen even now it's being freed, so let's make sure that
1767 	 * is so by doing an extra call to the handler ....
1768 	 *
1769 	 * ( We do this after actually deregistering it, to make sure that a
1770 	 *   'real' IRQ doesn't run in parallel with our fake. )
1771 	 */
1772 	if (action->flags & IRQF_SHARED) {
1773 		local_irq_save(flags);
1774 		action->handler(irq, dev_id);
1775 		local_irq_restore(flags);
1776 	}
1777 #endif
1778 
1779 	/*
1780 	 * The action has already been removed above, but the thread writes
1781 	 * its oneshot mask bit when it completes. Though request_mutex is
1782 	 * held across this which prevents __setup_irq() from handing out
1783 	 * the same bit to a newly requested action.
1784 	 */
1785 	if (action->thread) {
1786 		kthread_stop(action->thread);
1787 		put_task_struct(action->thread);
1788 		if (action->secondary && action->secondary->thread) {
1789 			kthread_stop(action->secondary->thread);
1790 			put_task_struct(action->secondary->thread);
1791 		}
1792 	}
1793 
1794 	/* Last action releases resources */
1795 	if (!desc->action) {
1796 		/*
1797 		 * Reaquire bus lock as irq_release_resources() might
1798 		 * require it to deallocate resources over the slow bus.
1799 		 */
1800 		chip_bus_lock(desc);
1801 		/*
1802 		 * There is no interrupt on the fly anymore. Deactivate it
1803 		 * completely.
1804 		 */
1805 		raw_spin_lock_irqsave(&desc->lock, flags);
1806 		irq_domain_deactivate_irq(&desc->irq_data);
1807 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1808 
1809 		irq_release_resources(desc);
1810 		chip_bus_sync_unlock(desc);
1811 		irq_remove_timings(desc);
1812 	}
1813 
1814 	mutex_unlock(&desc->request_mutex);
1815 
1816 	irq_chip_pm_put(&desc->irq_data);
1817 	module_put(desc->owner);
1818 	kfree(action->secondary);
1819 	return action;
1820 }
1821 
1822 /**
1823  *	remove_irq - free an interrupt
1824  *	@irq: Interrupt line to free
1825  *	@act: irqaction for the interrupt
1826  *
1827  * Used to remove interrupts statically setup by the early boot process.
1828  */
remove_irq(unsigned int irq,struct irqaction * act)1829 void remove_irq(unsigned int irq, struct irqaction *act)
1830 {
1831 	struct irq_desc *desc = irq_to_desc(irq);
1832 
1833 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1834 		__free_irq(desc, act->dev_id);
1835 }
1836 EXPORT_SYMBOL_GPL(remove_irq);
1837 
1838 /**
1839  *	free_irq - free an interrupt allocated with request_irq
1840  *	@irq: Interrupt line to free
1841  *	@dev_id: Device identity to free
1842  *
1843  *	Remove an interrupt handler. The handler is removed and if the
1844  *	interrupt line is no longer in use by any driver it is disabled.
1845  *	On a shared IRQ the caller must ensure the interrupt is disabled
1846  *	on the card it drives before calling this function. The function
1847  *	does not return until any executing interrupts for this IRQ
1848  *	have completed.
1849  *
1850  *	This function must not be called from interrupt context.
1851  *
1852  *	Returns the devname argument passed to request_irq.
1853  */
free_irq(unsigned int irq,void * dev_id)1854 const void *free_irq(unsigned int irq, void *dev_id)
1855 {
1856 	struct irq_desc *desc = irq_to_desc(irq);
1857 	struct irqaction *action;
1858 	const char *devname;
1859 
1860 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1861 		return NULL;
1862 
1863 #ifdef CONFIG_SMP
1864 	if (WARN_ON(desc->affinity_notify))
1865 		desc->affinity_notify = NULL;
1866 #endif
1867 
1868 	action = __free_irq(desc, dev_id);
1869 
1870 	if (!action)
1871 		return NULL;
1872 
1873 	devname = action->name;
1874 	kfree(action);
1875 	return devname;
1876 }
1877 EXPORT_SYMBOL(free_irq);
1878 
1879 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)1880 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1881 {
1882 	const char *devname = NULL;
1883 
1884 	desc->istate &= ~IRQS_NMI;
1885 
1886 	if (!WARN_ON(desc->action == NULL)) {
1887 		irq_pm_remove_action(desc, desc->action);
1888 		devname = desc->action->name;
1889 		unregister_handler_proc(irq, desc->action);
1890 
1891 		kfree(desc->action);
1892 		desc->action = NULL;
1893 	}
1894 
1895 	irq_settings_clr_disable_unlazy(desc);
1896 	irq_shutdown_and_deactivate(desc);
1897 
1898 	irq_release_resources(desc);
1899 
1900 	irq_chip_pm_put(&desc->irq_data);
1901 	module_put(desc->owner);
1902 
1903 	return devname;
1904 }
1905 
free_nmi(unsigned int irq,void * dev_id)1906 const void *free_nmi(unsigned int irq, void *dev_id)
1907 {
1908 	struct irq_desc *desc = irq_to_desc(irq);
1909 	unsigned long flags;
1910 	const void *devname;
1911 
1912 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1913 		return NULL;
1914 
1915 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1916 		return NULL;
1917 
1918 	/* NMI still enabled */
1919 	if (WARN_ON(desc->depth == 0))
1920 		disable_nmi_nosync(irq);
1921 
1922 	raw_spin_lock_irqsave(&desc->lock, flags);
1923 
1924 	irq_nmi_teardown(desc);
1925 	devname = __cleanup_nmi(irq, desc);
1926 
1927 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1928 
1929 	return devname;
1930 }
1931 
1932 /**
1933  *	request_threaded_irq - allocate an interrupt line
1934  *	@irq: Interrupt line to allocate
1935  *	@handler: Function to be called when the IRQ occurs.
1936  *		  Primary handler for threaded interrupts
1937  *		  If NULL and thread_fn != NULL the default
1938  *		  primary handler is installed
1939  *	@thread_fn: Function called from the irq handler thread
1940  *		    If NULL, no irq thread is created
1941  *	@irqflags: Interrupt type flags
1942  *	@devname: An ascii name for the claiming device
1943  *	@dev_id: A cookie passed back to the handler function
1944  *
1945  *	This call allocates interrupt resources and enables the
1946  *	interrupt line and IRQ handling. From the point this
1947  *	call is made your handler function may be invoked. Since
1948  *	your handler function must clear any interrupt the board
1949  *	raises, you must take care both to initialise your hardware
1950  *	and to set up the interrupt handler in the right order.
1951  *
1952  *	If you want to set up a threaded irq handler for your device
1953  *	then you need to supply @handler and @thread_fn. @handler is
1954  *	still called in hard interrupt context and has to check
1955  *	whether the interrupt originates from the device. If yes it
1956  *	needs to disable the interrupt on the device and return
1957  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1958  *	@thread_fn. This split handler design is necessary to support
1959  *	shared interrupts.
1960  *
1961  *	Dev_id must be globally unique. Normally the address of the
1962  *	device data structure is used as the cookie. Since the handler
1963  *	receives this value it makes sense to use it.
1964  *
1965  *	If your interrupt is shared you must pass a non NULL dev_id
1966  *	as this is required when freeing the interrupt.
1967  *
1968  *	Flags:
1969  *
1970  *	IRQF_SHARED		Interrupt is shared
1971  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1972  *
1973  */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)1974 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1975 			 irq_handler_t thread_fn, unsigned long irqflags,
1976 			 const char *devname, void *dev_id)
1977 {
1978 	struct irqaction *action;
1979 	struct irq_desc *desc;
1980 	int retval;
1981 
1982 	if (irq == IRQ_NOTCONNECTED)
1983 		return -ENOTCONN;
1984 
1985 	/*
1986 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1987 	 * otherwise we'll have trouble later trying to figure out
1988 	 * which interrupt is which (messes up the interrupt freeing
1989 	 * logic etc).
1990 	 *
1991 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1992 	 * it cannot be set along with IRQF_NO_SUSPEND.
1993 	 */
1994 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1995 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1996 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1997 		return -EINVAL;
1998 
1999 	desc = irq_to_desc(irq);
2000 	if (!desc)
2001 		return -EINVAL;
2002 
2003 	if (!irq_settings_can_request(desc) ||
2004 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2005 		return -EINVAL;
2006 
2007 	if (!handler) {
2008 		if (!thread_fn)
2009 			return -EINVAL;
2010 		handler = irq_default_primary_handler;
2011 	}
2012 
2013 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2014 	if (!action)
2015 		return -ENOMEM;
2016 
2017 	action->handler = handler;
2018 	action->thread_fn = thread_fn;
2019 	action->flags = irqflags;
2020 	action->name = devname;
2021 	action->dev_id = dev_id;
2022 
2023 	retval = irq_chip_pm_get(&desc->irq_data);
2024 	if (retval < 0) {
2025 		kfree(action);
2026 		return retval;
2027 	}
2028 
2029 	retval = __setup_irq(irq, desc, action);
2030 
2031 	if (retval) {
2032 		irq_chip_pm_put(&desc->irq_data);
2033 		kfree(action->secondary);
2034 		kfree(action);
2035 	}
2036 
2037 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2038 	if (!retval && (irqflags & IRQF_SHARED)) {
2039 		/*
2040 		 * It's a shared IRQ -- the driver ought to be prepared for it
2041 		 * to happen immediately, so let's make sure....
2042 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2043 		 * run in parallel with our fake.
2044 		 */
2045 		unsigned long flags;
2046 
2047 		disable_irq(irq);
2048 		local_irq_save(flags);
2049 
2050 		handler(irq, dev_id);
2051 
2052 		local_irq_restore(flags);
2053 		enable_irq(irq);
2054 	}
2055 #endif
2056 	return retval;
2057 }
2058 EXPORT_SYMBOL(request_threaded_irq);
2059 
2060 /**
2061  *	request_any_context_irq - allocate an interrupt line
2062  *	@irq: Interrupt line to allocate
2063  *	@handler: Function to be called when the IRQ occurs.
2064  *		  Threaded handler for threaded interrupts.
2065  *	@flags: Interrupt type flags
2066  *	@name: An ascii name for the claiming device
2067  *	@dev_id: A cookie passed back to the handler function
2068  *
2069  *	This call allocates interrupt resources and enables the
2070  *	interrupt line and IRQ handling. It selects either a
2071  *	hardirq or threaded handling method depending on the
2072  *	context.
2073  *
2074  *	On failure, it returns a negative value. On success,
2075  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2076  */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2077 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2078 			    unsigned long flags, const char *name, void *dev_id)
2079 {
2080 	struct irq_desc *desc;
2081 	int ret;
2082 
2083 	if (irq == IRQ_NOTCONNECTED)
2084 		return -ENOTCONN;
2085 
2086 	desc = irq_to_desc(irq);
2087 	if (!desc)
2088 		return -EINVAL;
2089 
2090 	if (irq_settings_is_nested_thread(desc)) {
2091 		ret = request_threaded_irq(irq, NULL, handler,
2092 					   flags, name, dev_id);
2093 		return !ret ? IRQC_IS_NESTED : ret;
2094 	}
2095 
2096 	ret = request_irq(irq, handler, flags, name, dev_id);
2097 	return !ret ? IRQC_IS_HARDIRQ : ret;
2098 }
2099 EXPORT_SYMBOL_GPL(request_any_context_irq);
2100 
2101 /**
2102  *	request_nmi - allocate an interrupt line for NMI delivery
2103  *	@irq: Interrupt line to allocate
2104  *	@handler: Function to be called when the IRQ occurs.
2105  *		  Threaded handler for threaded interrupts.
2106  *	@irqflags: Interrupt type flags
2107  *	@name: An ascii name for the claiming device
2108  *	@dev_id: A cookie passed back to the handler function
2109  *
2110  *	This call allocates interrupt resources and enables the
2111  *	interrupt line and IRQ handling. It sets up the IRQ line
2112  *	to be handled as an NMI.
2113  *
2114  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2115  *	cannot be threaded.
2116  *
2117  *	Interrupt lines requested for NMI delivering must produce per cpu
2118  *	interrupts and have auto enabling setting disabled.
2119  *
2120  *	Dev_id must be globally unique. Normally the address of the
2121  *	device data structure is used as the cookie. Since the handler
2122  *	receives this value it makes sense to use it.
2123  *
2124  *	If the interrupt line cannot be used to deliver NMIs, function
2125  *	will fail and return a negative value.
2126  */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2127 int request_nmi(unsigned int irq, irq_handler_t handler,
2128 		unsigned long irqflags, const char *name, void *dev_id)
2129 {
2130 	struct irqaction *action;
2131 	struct irq_desc *desc;
2132 	unsigned long flags;
2133 	int retval;
2134 
2135 	if (irq == IRQ_NOTCONNECTED)
2136 		return -ENOTCONN;
2137 
2138 	/* NMI cannot be shared, used for Polling */
2139 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2140 		return -EINVAL;
2141 
2142 	if (!(irqflags & IRQF_PERCPU))
2143 		return -EINVAL;
2144 
2145 	if (!handler)
2146 		return -EINVAL;
2147 
2148 	desc = irq_to_desc(irq);
2149 
2150 	if (!desc || irq_settings_can_autoenable(desc) ||
2151 	    !irq_settings_can_request(desc) ||
2152 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2153 	    !irq_supports_nmi(desc))
2154 		return -EINVAL;
2155 
2156 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2157 	if (!action)
2158 		return -ENOMEM;
2159 
2160 	action->handler = handler;
2161 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2162 	action->name = name;
2163 	action->dev_id = dev_id;
2164 
2165 	retval = irq_chip_pm_get(&desc->irq_data);
2166 	if (retval < 0)
2167 		goto err_out;
2168 
2169 	retval = __setup_irq(irq, desc, action);
2170 	if (retval)
2171 		goto err_irq_setup;
2172 
2173 	raw_spin_lock_irqsave(&desc->lock, flags);
2174 
2175 	/* Setup NMI state */
2176 	desc->istate |= IRQS_NMI;
2177 	retval = irq_nmi_setup(desc);
2178 	if (retval) {
2179 		__cleanup_nmi(irq, desc);
2180 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2181 		return -EINVAL;
2182 	}
2183 
2184 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2185 
2186 	return 0;
2187 
2188 err_irq_setup:
2189 	irq_chip_pm_put(&desc->irq_data);
2190 err_out:
2191 	kfree(action);
2192 
2193 	return retval;
2194 }
2195 
enable_percpu_irq(unsigned int irq,unsigned int type)2196 void enable_percpu_irq(unsigned int irq, unsigned int type)
2197 {
2198 	unsigned int cpu = smp_processor_id();
2199 	unsigned long flags;
2200 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2201 
2202 	if (!desc)
2203 		return;
2204 
2205 	/*
2206 	 * If the trigger type is not specified by the caller, then
2207 	 * use the default for this interrupt.
2208 	 */
2209 	type &= IRQ_TYPE_SENSE_MASK;
2210 	if (type == IRQ_TYPE_NONE)
2211 		type = irqd_get_trigger_type(&desc->irq_data);
2212 
2213 	if (type != IRQ_TYPE_NONE) {
2214 		int ret;
2215 
2216 		ret = __irq_set_trigger(desc, type);
2217 
2218 		if (ret) {
2219 			WARN(1, "failed to set type for IRQ%d\n", irq);
2220 			goto out;
2221 		}
2222 	}
2223 
2224 	irq_percpu_enable(desc, cpu);
2225 out:
2226 	irq_put_desc_unlock(desc, flags);
2227 }
2228 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2229 
enable_percpu_nmi(unsigned int irq,unsigned int type)2230 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2231 {
2232 	enable_percpu_irq(irq, type);
2233 }
2234 
2235 /**
2236  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2237  * @irq:	Linux irq number to check for
2238  *
2239  * Must be called from a non migratable context. Returns the enable
2240  * state of a per cpu interrupt on the current cpu.
2241  */
irq_percpu_is_enabled(unsigned int irq)2242 bool irq_percpu_is_enabled(unsigned int irq)
2243 {
2244 	unsigned int cpu = smp_processor_id();
2245 	struct irq_desc *desc;
2246 	unsigned long flags;
2247 	bool is_enabled;
2248 
2249 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2250 	if (!desc)
2251 		return false;
2252 
2253 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2254 	irq_put_desc_unlock(desc, flags);
2255 
2256 	return is_enabled;
2257 }
2258 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2259 
disable_percpu_irq(unsigned int irq)2260 void disable_percpu_irq(unsigned int irq)
2261 {
2262 	unsigned int cpu = smp_processor_id();
2263 	unsigned long flags;
2264 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2265 
2266 	if (!desc)
2267 		return;
2268 
2269 	irq_percpu_disable(desc, cpu);
2270 	irq_put_desc_unlock(desc, flags);
2271 }
2272 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2273 
disable_percpu_nmi(unsigned int irq)2274 void disable_percpu_nmi(unsigned int irq)
2275 {
2276 	disable_percpu_irq(irq);
2277 }
2278 
2279 /*
2280  * Internal function to unregister a percpu irqaction.
2281  */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2282 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2283 {
2284 	struct irq_desc *desc = irq_to_desc(irq);
2285 	struct irqaction *action;
2286 	unsigned long flags;
2287 
2288 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2289 
2290 	if (!desc)
2291 		return NULL;
2292 
2293 	raw_spin_lock_irqsave(&desc->lock, flags);
2294 
2295 	action = desc->action;
2296 	if (!action || action->percpu_dev_id != dev_id) {
2297 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2298 		goto bad;
2299 	}
2300 
2301 	if (!cpumask_empty(desc->percpu_enabled)) {
2302 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2303 		     irq, cpumask_first(desc->percpu_enabled));
2304 		goto bad;
2305 	}
2306 
2307 	/* Found it - now remove it from the list of entries: */
2308 	desc->action = NULL;
2309 
2310 	desc->istate &= ~IRQS_NMI;
2311 
2312 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2313 
2314 	unregister_handler_proc(irq, action);
2315 
2316 	irq_chip_pm_put(&desc->irq_data);
2317 	module_put(desc->owner);
2318 	return action;
2319 
2320 bad:
2321 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2322 	return NULL;
2323 }
2324 
2325 /**
2326  *	remove_percpu_irq - free a per-cpu interrupt
2327  *	@irq: Interrupt line to free
2328  *	@act: irqaction for the interrupt
2329  *
2330  * Used to remove interrupts statically setup by the early boot process.
2331  */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2332 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2333 {
2334 	struct irq_desc *desc = irq_to_desc(irq);
2335 
2336 	if (desc && irq_settings_is_per_cpu_devid(desc))
2337 	    __free_percpu_irq(irq, act->percpu_dev_id);
2338 }
2339 
2340 /**
2341  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2342  *	@irq: Interrupt line to free
2343  *	@dev_id: Device identity to free
2344  *
2345  *	Remove a percpu interrupt handler. The handler is removed, but
2346  *	the interrupt line is not disabled. This must be done on each
2347  *	CPU before calling this function. The function does not return
2348  *	until any executing interrupts for this IRQ have completed.
2349  *
2350  *	This function must not be called from interrupt context.
2351  */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2352 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2353 {
2354 	struct irq_desc *desc = irq_to_desc(irq);
2355 
2356 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2357 		return;
2358 
2359 	chip_bus_lock(desc);
2360 	kfree(__free_percpu_irq(irq, dev_id));
2361 	chip_bus_sync_unlock(desc);
2362 }
2363 EXPORT_SYMBOL_GPL(free_percpu_irq);
2364 
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2365 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2366 {
2367 	struct irq_desc *desc = irq_to_desc(irq);
2368 
2369 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2370 		return;
2371 
2372 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2373 		return;
2374 
2375 	kfree(__free_percpu_irq(irq, dev_id));
2376 }
2377 
2378 /**
2379  *	setup_percpu_irq - setup a per-cpu interrupt
2380  *	@irq: Interrupt line to setup
2381  *	@act: irqaction for the interrupt
2382  *
2383  * Used to statically setup per-cpu interrupts in the early boot process.
2384  */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2385 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2386 {
2387 	struct irq_desc *desc = irq_to_desc(irq);
2388 	int retval;
2389 
2390 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2391 		return -EINVAL;
2392 
2393 	retval = irq_chip_pm_get(&desc->irq_data);
2394 	if (retval < 0)
2395 		return retval;
2396 
2397 	retval = __setup_irq(irq, desc, act);
2398 
2399 	if (retval)
2400 		irq_chip_pm_put(&desc->irq_data);
2401 
2402 	return retval;
2403 }
2404 
2405 /**
2406  *	__request_percpu_irq - allocate a percpu interrupt line
2407  *	@irq: Interrupt line to allocate
2408  *	@handler: Function to be called when the IRQ occurs.
2409  *	@flags: Interrupt type flags (IRQF_TIMER only)
2410  *	@devname: An ascii name for the claiming device
2411  *	@dev_id: A percpu cookie passed back to the handler function
2412  *
2413  *	This call allocates interrupt resources and enables the
2414  *	interrupt on the local CPU. If the interrupt is supposed to be
2415  *	enabled on other CPUs, it has to be done on each CPU using
2416  *	enable_percpu_irq().
2417  *
2418  *	Dev_id must be globally unique. It is a per-cpu variable, and
2419  *	the handler gets called with the interrupted CPU's instance of
2420  *	that variable.
2421  */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2422 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2423 			 unsigned long flags, const char *devname,
2424 			 void __percpu *dev_id)
2425 {
2426 	struct irqaction *action;
2427 	struct irq_desc *desc;
2428 	int retval;
2429 
2430 	if (!dev_id)
2431 		return -EINVAL;
2432 
2433 	desc = irq_to_desc(irq);
2434 	if (!desc || !irq_settings_can_request(desc) ||
2435 	    !irq_settings_is_per_cpu_devid(desc))
2436 		return -EINVAL;
2437 
2438 	if (flags && flags != IRQF_TIMER)
2439 		return -EINVAL;
2440 
2441 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2442 	if (!action)
2443 		return -ENOMEM;
2444 
2445 	action->handler = handler;
2446 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2447 	action->name = devname;
2448 	action->percpu_dev_id = dev_id;
2449 
2450 	retval = irq_chip_pm_get(&desc->irq_data);
2451 	if (retval < 0) {
2452 		kfree(action);
2453 		return retval;
2454 	}
2455 
2456 	retval = __setup_irq(irq, desc, action);
2457 
2458 	if (retval) {
2459 		irq_chip_pm_put(&desc->irq_data);
2460 		kfree(action);
2461 	}
2462 
2463 	return retval;
2464 }
2465 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2466 
2467 /**
2468  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2469  *	@irq: Interrupt line to allocate
2470  *	@handler: Function to be called when the IRQ occurs.
2471  *	@name: An ascii name for the claiming device
2472  *	@dev_id: A percpu cookie passed back to the handler function
2473  *
2474  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2475  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2476  *	being enabled on the same CPU by using enable_percpu_nmi().
2477  *
2478  *	Dev_id must be globally unique. It is a per-cpu variable, and
2479  *	the handler gets called with the interrupted CPU's instance of
2480  *	that variable.
2481  *
2482  *	Interrupt lines requested for NMI delivering should have auto enabling
2483  *	setting disabled.
2484  *
2485  *	If the interrupt line cannot be used to deliver NMIs, function
2486  *	will fail returning a negative value.
2487  */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2488 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2489 		       const char *name, void __percpu *dev_id)
2490 {
2491 	struct irqaction *action;
2492 	struct irq_desc *desc;
2493 	unsigned long flags;
2494 	int retval;
2495 
2496 	if (!handler)
2497 		return -EINVAL;
2498 
2499 	desc = irq_to_desc(irq);
2500 
2501 	if (!desc || !irq_settings_can_request(desc) ||
2502 	    !irq_settings_is_per_cpu_devid(desc) ||
2503 	    irq_settings_can_autoenable(desc) ||
2504 	    !irq_supports_nmi(desc))
2505 		return -EINVAL;
2506 
2507 	/* The line cannot already be NMI */
2508 	if (desc->istate & IRQS_NMI)
2509 		return -EINVAL;
2510 
2511 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2512 	if (!action)
2513 		return -ENOMEM;
2514 
2515 	action->handler = handler;
2516 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2517 		| IRQF_NOBALANCING;
2518 	action->name = name;
2519 	action->percpu_dev_id = dev_id;
2520 
2521 	retval = irq_chip_pm_get(&desc->irq_data);
2522 	if (retval < 0)
2523 		goto err_out;
2524 
2525 	retval = __setup_irq(irq, desc, action);
2526 	if (retval)
2527 		goto err_irq_setup;
2528 
2529 	raw_spin_lock_irqsave(&desc->lock, flags);
2530 	desc->istate |= IRQS_NMI;
2531 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2532 
2533 	return 0;
2534 
2535 err_irq_setup:
2536 	irq_chip_pm_put(&desc->irq_data);
2537 err_out:
2538 	kfree(action);
2539 
2540 	return retval;
2541 }
2542 
2543 /**
2544  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2545  *	@irq: Interrupt line to prepare for NMI delivery
2546  *
2547  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2548  *	before that interrupt line gets enabled with enable_percpu_nmi().
2549  *
2550  *	As a CPU local operation, this should be called from non-preemptible
2551  *	context.
2552  *
2553  *	If the interrupt line cannot be used to deliver NMIs, function
2554  *	will fail returning a negative value.
2555  */
prepare_percpu_nmi(unsigned int irq)2556 int prepare_percpu_nmi(unsigned int irq)
2557 {
2558 	unsigned long flags;
2559 	struct irq_desc *desc;
2560 	int ret = 0;
2561 
2562 	WARN_ON(preemptible());
2563 
2564 	desc = irq_get_desc_lock(irq, &flags,
2565 				 IRQ_GET_DESC_CHECK_PERCPU);
2566 	if (!desc)
2567 		return -EINVAL;
2568 
2569 	if (WARN(!(desc->istate & IRQS_NMI),
2570 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2571 		 irq)) {
2572 		ret = -EINVAL;
2573 		goto out;
2574 	}
2575 
2576 	ret = irq_nmi_setup(desc);
2577 	if (ret) {
2578 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2579 		goto out;
2580 	}
2581 
2582 out:
2583 	irq_put_desc_unlock(desc, flags);
2584 	return ret;
2585 }
2586 
2587 /**
2588  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2589  *	@irq: Interrupt line from which CPU local NMI configuration should be
2590  *	      removed
2591  *
2592  *	This call undoes the setup done by prepare_percpu_nmi().
2593  *
2594  *	IRQ line should not be enabled for the current CPU.
2595  *
2596  *	As a CPU local operation, this should be called from non-preemptible
2597  *	context.
2598  */
teardown_percpu_nmi(unsigned int irq)2599 void teardown_percpu_nmi(unsigned int irq)
2600 {
2601 	unsigned long flags;
2602 	struct irq_desc *desc;
2603 
2604 	WARN_ON(preemptible());
2605 
2606 	desc = irq_get_desc_lock(irq, &flags,
2607 				 IRQ_GET_DESC_CHECK_PERCPU);
2608 	if (!desc)
2609 		return;
2610 
2611 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2612 		goto out;
2613 
2614 	irq_nmi_teardown(desc);
2615 out:
2616 	irq_put_desc_unlock(desc, flags);
2617 }
2618 
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2619 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2620 			    bool *state)
2621 {
2622 	struct irq_chip *chip;
2623 	int err = -EINVAL;
2624 
2625 	do {
2626 		chip = irq_data_get_irq_chip(data);
2627 		if (chip->irq_get_irqchip_state)
2628 			break;
2629 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2630 		data = data->parent_data;
2631 #else
2632 		data = NULL;
2633 #endif
2634 	} while (data);
2635 
2636 	if (data)
2637 		err = chip->irq_get_irqchip_state(data, which, state);
2638 	return err;
2639 }
2640 
2641 /**
2642  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2643  *	@irq: Interrupt line that is forwarded to a VM
2644  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2645  *	@state: a pointer to a boolean where the state is to be storeed
2646  *
2647  *	This call snapshots the internal irqchip state of an
2648  *	interrupt, returning into @state the bit corresponding to
2649  *	stage @which
2650  *
2651  *	This function should be called with preemption disabled if the
2652  *	interrupt controller has per-cpu registers.
2653  */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2654 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2655 			  bool *state)
2656 {
2657 	struct irq_desc *desc;
2658 	struct irq_data *data;
2659 	unsigned long flags;
2660 	int err = -EINVAL;
2661 
2662 	desc = irq_get_desc_buslock(irq, &flags, 0);
2663 	if (!desc)
2664 		return err;
2665 
2666 	data = irq_desc_get_irq_data(desc);
2667 
2668 	err = __irq_get_irqchip_state(data, which, state);
2669 
2670 	irq_put_desc_busunlock(desc, flags);
2671 	return err;
2672 }
2673 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2674 
2675 /**
2676  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2677  *	@irq: Interrupt line that is forwarded to a VM
2678  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2679  *	@val: Value corresponding to @which
2680  *
2681  *	This call sets the internal irqchip state of an interrupt,
2682  *	depending on the value of @which.
2683  *
2684  *	This function should be called with preemption disabled if the
2685  *	interrupt controller has per-cpu registers.
2686  */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2687 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2688 			  bool val)
2689 {
2690 	struct irq_desc *desc;
2691 	struct irq_data *data;
2692 	struct irq_chip *chip;
2693 	unsigned long flags;
2694 	int err = -EINVAL;
2695 
2696 	desc = irq_get_desc_buslock(irq, &flags, 0);
2697 	if (!desc)
2698 		return err;
2699 
2700 	data = irq_desc_get_irq_data(desc);
2701 
2702 	do {
2703 		chip = irq_data_get_irq_chip(data);
2704 		if (chip->irq_set_irqchip_state)
2705 			break;
2706 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2707 		data = data->parent_data;
2708 #else
2709 		data = NULL;
2710 #endif
2711 	} while (data);
2712 
2713 	if (data)
2714 		err = chip->irq_set_irqchip_state(data, which, val);
2715 
2716 	irq_put_desc_busunlock(desc, flags);
2717 	return err;
2718 }
2719 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2720