1 /*
2 * Universal Flash Storage Host controller driver Core
3 *
4 * This code is based on drivers/scsi/ufs/ufshcd.c
5 * Copyright (C) 2011-2013 Samsung India Software Operations
6 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
7 *
8 * Authors:
9 * Santosh Yaraganavi <santosh.sy@samsung.com>
10 * Vinayak Holikatti <h.vinayak@samsung.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
16 * See the COPYING file in the top-level directory or visit
17 * <http://www.gnu.org/licenses/gpl-2.0.html>
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * This program is provided "AS IS" and "WITH ALL FAULTS" and
25 * without warranty of any kind. You are solely responsible for
26 * determining the appropriateness of using and distributing
27 * the program and assume all risks associated with your exercise
28 * of rights with respect to the program, including but not limited
29 * to infringement of third party rights, the risks and costs of
30 * program errors, damage to or loss of data, programs or equipment,
31 * and unavailability or interruption of operations. Under no
32 * circumstances will the contributor of this Program be liable for
33 * any damages of any kind arising from your use or distribution of
34 * this program.
35 *
36 * The Linux Foundation chooses to take subject only to the GPLv2
37 * license terms, and distributes only under these terms.
38 */
39
40 #include <linux/async.h>
41 #include <linux/devfreq.h>
42 #include <linux/nls.h>
43 #include <linux/of.h>
44 #include <linux/bitfield.h>
45 #include "ufshcd.h"
46 #include "ufs_quirks.h"
47 #include "unipro.h"
48 #include "ufs-sysfs.h"
49 #include "ufs_bsg.h"
50 #include "ufshcd-crypto.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ufs.h>
54
55 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
56 UTP_TASK_REQ_COMPL |\
57 UFSHCD_ERROR_MASK)
58 /* UIC command timeout, unit: ms */
59 #define UIC_CMD_TIMEOUT 500
60
61 /* NOP OUT retries waiting for NOP IN response */
62 #define NOP_OUT_RETRIES 10
63 /* Timeout after 30 msecs if NOP OUT hangs without response */
64 #define NOP_OUT_TIMEOUT 30 /* msecs */
65
66 /* Query request retries */
67 #define QUERY_REQ_RETRIES 3
68 /* Query request timeout */
69 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
70
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT 100 /* msecs */
73
74 /* maximum number of retries for a general UIC command */
75 #define UFS_UIC_COMMAND_RETRIES 3
76
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79
80 /* Maximum retries for Hibern8 enter */
81 #define UIC_HIBERN8_ENTER_RETRIES 3
82
83 /* maximum number of reset retries before giving up */
84 #define MAX_HOST_RESET_RETRIES 5
85
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO 0x02
91
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97
98 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
99 ({ \
100 int _ret; \
101 if (_on) \
102 _ret = ufshcd_enable_vreg(_dev, _vreg); \
103 else \
104 _ret = ufshcd_disable_vreg(_dev, _vreg); \
105 _ret; \
106 })
107
108 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
109 size_t __len = (len); \
110 print_hex_dump(KERN_ERR, prefix_str, \
111 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
112 16, 4, buf, __len, false); \
113 } while (0)
114
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)115 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
116 const char *prefix)
117 {
118 u32 *regs;
119 size_t pos;
120
121 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
122 return -EINVAL;
123
124 regs = kzalloc(len, GFP_KERNEL);
125 if (!regs)
126 return -ENOMEM;
127
128 for (pos = 0; pos < len; pos += 4)
129 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
130
131 ufshcd_hex_dump(prefix, regs, len);
132 kfree(regs);
133
134 return 0;
135 }
136 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
137
138 enum {
139 UFSHCD_MAX_CHANNEL = 0,
140 UFSHCD_MAX_ID = 1,
141 UFSHCD_CMD_PER_LUN = 32,
142 UFSHCD_CAN_QUEUE = 32,
143 };
144
145 /* UFSHCD states */
146 enum {
147 UFSHCD_STATE_RESET,
148 UFSHCD_STATE_ERROR,
149 UFSHCD_STATE_OPERATIONAL,
150 UFSHCD_STATE_EH_SCHEDULED,
151 };
152
153 /* UFSHCD error handling flags */
154 enum {
155 UFSHCD_EH_IN_PROGRESS = (1 << 0),
156 };
157
158 /* UFSHCD UIC layer error flags */
159 enum {
160 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
161 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
162 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
163 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
164 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
165 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
166 };
167
168 #define ufshcd_set_eh_in_progress(h) \
169 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
170 #define ufshcd_eh_in_progress(h) \
171 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
172 #define ufshcd_clear_eh_in_progress(h) \
173 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
174
175 #define ufshcd_set_ufs_dev_active(h) \
176 ((h)->curr_dev_pwr_mode = UFS_ACTIVE_PWR_MODE)
177 #define ufshcd_set_ufs_dev_sleep(h) \
178 ((h)->curr_dev_pwr_mode = UFS_SLEEP_PWR_MODE)
179 #define ufshcd_set_ufs_dev_poweroff(h) \
180 ((h)->curr_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE)
181 #define ufshcd_is_ufs_dev_active(h) \
182 ((h)->curr_dev_pwr_mode == UFS_ACTIVE_PWR_MODE)
183 #define ufshcd_is_ufs_dev_sleep(h) \
184 ((h)->curr_dev_pwr_mode == UFS_SLEEP_PWR_MODE)
185 #define ufshcd_is_ufs_dev_poweroff(h) \
186 ((h)->curr_dev_pwr_mode == UFS_POWERDOWN_PWR_MODE)
187
188 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
189 {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
190 {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
191 {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
192 {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
193 {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
194 {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
195 };
196
197 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)198 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
199 {
200 return ufs_pm_lvl_states[lvl].dev_state;
201 }
202
203 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)204 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
205 {
206 return ufs_pm_lvl_states[lvl].link_state;
207 }
208
209 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)210 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
211 enum uic_link_state link_state)
212 {
213 enum ufs_pm_level lvl;
214
215 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
216 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
217 (ufs_pm_lvl_states[lvl].link_state == link_state))
218 return lvl;
219 }
220
221 /* if no match found, return the level 0 */
222 return UFS_PM_LVL_0;
223 }
224
225 static struct ufs_dev_fix ufs_fixups[] = {
226 /* UFS cards deviations table */
227 UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
228 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
229 UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
230 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
231 UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
232 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE),
233 UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
234 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
235 UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
236 UFS_DEVICE_QUIRK_PA_TACTIVATE),
237 UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
238 UFS_DEVICE_QUIRK_PA_TACTIVATE),
239 UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
240 UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
241 UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
242 UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
243
244 END_FIX
245 };
246
247 static void ufshcd_tmc_handler(struct ufs_hba *hba);
248 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
249 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
250 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
251 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
252 static void ufshcd_hba_exit(struct ufs_hba *hba);
253 static int ufshcd_probe_hba(struct ufs_hba *hba);
254 static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
255 bool skip_ref_clk);
256 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
257 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
258 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
259 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
260 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
261 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
262 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
263 static irqreturn_t ufshcd_intr(int irq, void *__hba);
264 static int ufshcd_change_power_mode(struct ufs_hba *hba,
265 struct ufs_pa_layer_attr *pwr_mode);
ufshcd_valid_tag(struct ufs_hba * hba,int tag)266 static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag)
267 {
268 return tag >= 0 && tag < hba->nutrs;
269 }
270
ufshcd_enable_irq(struct ufs_hba * hba)271 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
272 {
273 if (!hba->is_irq_enabled) {
274 enable_irq(hba->irq);
275 hba->is_irq_enabled = true;
276 }
277 }
278
ufshcd_disable_irq(struct ufs_hba * hba)279 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
280 {
281 if (hba->is_irq_enabled) {
282 disable_irq(hba->irq);
283 hba->is_irq_enabled = false;
284 }
285 }
286
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)287 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
288 {
289 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
290 scsi_unblock_requests(hba->host);
291 }
292
ufshcd_scsi_block_requests(struct ufs_hba * hba)293 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
294 {
295 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
296 scsi_block_requests(hba->host);
297 }
298
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)299 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
300 const char *str)
301 {
302 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
303
304 trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->sc.cdb);
305 }
306
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)307 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, unsigned int tag,
308 const char *str)
309 {
310 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
311
312 trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->qr);
313 }
314
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)315 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
316 const char *str)
317 {
318 int off = (int)tag - hba->nutrs;
319 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[off];
320
321 trace_ufshcd_upiu(dev_name(hba->dev), str, &descp->req_header,
322 &descp->input_param1);
323 }
324
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,const char * str)325 static void ufshcd_add_command_trace(struct ufs_hba *hba,
326 unsigned int tag, const char *str)
327 {
328 sector_t lba = -1;
329 u8 opcode = 0;
330 u32 intr, doorbell;
331 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
332 int transfer_len = -1;
333
334 if (!trace_ufshcd_command_enabled()) {
335 /* trace UPIU W/O tracing command */
336 if (lrbp->cmd)
337 ufshcd_add_cmd_upiu_trace(hba, tag, str);
338 return;
339 }
340
341 if (lrbp->cmd) { /* data phase exists */
342 /* trace UPIU also */
343 ufshcd_add_cmd_upiu_trace(hba, tag, str);
344 opcode = (u8)(*lrbp->cmd->cmnd);
345 if ((opcode == READ_10) || (opcode == WRITE_10)) {
346 /*
347 * Currently we only fully trace read(10) and write(10)
348 * commands
349 */
350 if (lrbp->cmd->request && lrbp->cmd->request->bio)
351 lba =
352 lrbp->cmd->request->bio->bi_iter.bi_sector;
353 transfer_len = be32_to_cpu(
354 lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
355 }
356 }
357
358 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
359 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
360 trace_ufshcd_command(dev_name(hba->dev), str, tag,
361 doorbell, transfer_len, intr, lba, opcode);
362 }
363
ufshcd_print_clk_freqs(struct ufs_hba * hba)364 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
365 {
366 struct ufs_clk_info *clki;
367 struct list_head *head = &hba->clk_list_head;
368
369 if (list_empty(head))
370 return;
371
372 list_for_each_entry(clki, head, list) {
373 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
374 clki->max_freq)
375 dev_err(hba->dev, "clk: %s, rate: %u\n",
376 clki->name, clki->curr_freq);
377 }
378 }
379
ufshcd_print_err_hist(struct ufs_hba * hba,struct ufs_err_reg_hist * err_hist,char * err_name)380 static void ufshcd_print_err_hist(struct ufs_hba *hba,
381 struct ufs_err_reg_hist *err_hist,
382 char *err_name)
383 {
384 int i;
385 bool found = false;
386
387 for (i = 0; i < UFS_ERR_REG_HIST_LENGTH; i++) {
388 int p = (i + err_hist->pos) % UFS_ERR_REG_HIST_LENGTH;
389
390 if (err_hist->reg[p] == 0)
391 continue;
392 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
393 err_hist->reg[p], ktime_to_us(err_hist->tstamp[p]));
394 found = true;
395 }
396
397 if (!found)
398 dev_err(hba->dev, "No record of %s errors\n", err_name);
399 }
400
ufshcd_print_host_regs(struct ufs_hba * hba)401 static void ufshcd_print_host_regs(struct ufs_hba *hba)
402 {
403 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
404 dev_err(hba->dev, "hba->ufs_version = 0x%x, hba->capabilities = 0x%x\n",
405 hba->ufs_version, hba->capabilities);
406 dev_err(hba->dev,
407 "hba->outstanding_reqs = 0x%x, hba->outstanding_tasks = 0x%x\n",
408 (u32)hba->outstanding_reqs, (u32)hba->outstanding_tasks);
409 dev_err(hba->dev,
410 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt = %d\n",
411 ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
412 hba->ufs_stats.hibern8_exit_cnt);
413
414 ufshcd_print_err_hist(hba, &hba->ufs_stats.pa_err, "pa_err");
415 ufshcd_print_err_hist(hba, &hba->ufs_stats.dl_err, "dl_err");
416 ufshcd_print_err_hist(hba, &hba->ufs_stats.nl_err, "nl_err");
417 ufshcd_print_err_hist(hba, &hba->ufs_stats.tl_err, "tl_err");
418 ufshcd_print_err_hist(hba, &hba->ufs_stats.dme_err, "dme_err");
419 ufshcd_print_err_hist(hba, &hba->ufs_stats.auto_hibern8_err,
420 "auto_hibern8_err");
421 ufshcd_print_err_hist(hba, &hba->ufs_stats.fatal_err, "fatal_err");
422 ufshcd_print_err_hist(hba, &hba->ufs_stats.link_startup_err,
423 "link_startup_fail");
424 ufshcd_print_err_hist(hba, &hba->ufs_stats.resume_err, "resume_fail");
425 ufshcd_print_err_hist(hba, &hba->ufs_stats.suspend_err,
426 "suspend_fail");
427 ufshcd_print_err_hist(hba, &hba->ufs_stats.dev_reset, "dev_reset");
428 ufshcd_print_err_hist(hba, &hba->ufs_stats.host_reset, "host_reset");
429 ufshcd_print_err_hist(hba, &hba->ufs_stats.task_abort, "task_abort");
430
431 ufshcd_print_clk_freqs(hba);
432
433 if (hba->vops && hba->vops->dbg_register_dump)
434 hba->vops->dbg_register_dump(hba);
435
436 ufshcd_crypto_debug(hba);
437 }
438
439 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)440 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
441 {
442 struct ufshcd_lrb *lrbp;
443 int prdt_length;
444 int tag;
445
446 for_each_set_bit(tag, &bitmap, hba->nutrs) {
447 lrbp = &hba->lrb[tag];
448
449 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
450 tag, ktime_to_us(lrbp->issue_time_stamp));
451 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
452 tag, ktime_to_us(lrbp->compl_time_stamp));
453 dev_err(hba->dev,
454 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
455 tag, (u64)lrbp->utrd_dma_addr);
456
457 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
458 sizeof(struct utp_transfer_req_desc));
459 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
460 (u64)lrbp->ucd_req_dma_addr);
461 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
462 sizeof(struct utp_upiu_req));
463 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
464 (u64)lrbp->ucd_rsp_dma_addr);
465 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
466 sizeof(struct utp_upiu_rsp));
467
468 prdt_length = le16_to_cpu(
469 lrbp->utr_descriptor_ptr->prd_table_length);
470 dev_err(hba->dev,
471 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
472 tag, prdt_length,
473 (u64)lrbp->ucd_prdt_dma_addr);
474
475 if (pr_prdt)
476 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
477 sizeof(struct ufshcd_sg_entry) * prdt_length);
478 }
479 }
480
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)481 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
482 {
483 int tag;
484
485 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
486 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
487
488 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
489 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
490 }
491 }
492
ufshcd_print_host_state(struct ufs_hba * hba)493 static void ufshcd_print_host_state(struct ufs_hba *hba)
494 {
495 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
496 dev_err(hba->dev, "lrb in use=0x%lx, outstanding reqs=0x%lx tasks=0x%lx\n",
497 hba->lrb_in_use, hba->outstanding_reqs, hba->outstanding_tasks);
498 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
499 hba->saved_err, hba->saved_uic_err);
500 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
501 hba->curr_dev_pwr_mode, hba->uic_link_state);
502 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
503 hba->pm_op_in_progress, hba->is_sys_suspended);
504 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
505 hba->auto_bkops_enabled, hba->host->host_self_blocked);
506 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
507 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
508 hba->eh_flags, hba->req_abort_count);
509 dev_err(hba->dev, "Host capabilities=0x%x, caps=0x%x\n",
510 hba->capabilities, hba->caps);
511 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
512 hba->dev_quirks);
513 }
514
515 /**
516 * ufshcd_print_pwr_info - print power params as saved in hba
517 * power info
518 * @hba: per-adapter instance
519 */
ufshcd_print_pwr_info(struct ufs_hba * hba)520 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
521 {
522 static const char * const names[] = {
523 "INVALID MODE",
524 "FAST MODE",
525 "SLOW_MODE",
526 "INVALID MODE",
527 "FASTAUTO_MODE",
528 "SLOWAUTO_MODE",
529 "INVALID MODE",
530 };
531
532 dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
533 __func__,
534 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
535 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
536 names[hba->pwr_info.pwr_rx],
537 names[hba->pwr_info.pwr_tx],
538 hba->pwr_info.hs_rate);
539 }
540
541 /*
542 * ufshcd_wait_for_register - wait for register value to change
543 * @hba - per-adapter interface
544 * @reg - mmio register offset
545 * @mask - mask to apply to read register value
546 * @val - wait condition
547 * @interval_us - polling interval in microsecs
548 * @timeout_ms - timeout in millisecs
549 * @can_sleep - perform sleep or just spin
550 *
551 * Returns -ETIMEDOUT on error, zero on success
552 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms,bool can_sleep)553 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
554 u32 val, unsigned long interval_us,
555 unsigned long timeout_ms, bool can_sleep)
556 {
557 int err = 0;
558 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
559
560 /* ignore bits that we don't intend to wait on */
561 val = val & mask;
562
563 while ((ufshcd_readl(hba, reg) & mask) != val) {
564 if (can_sleep)
565 usleep_range(interval_us, interval_us + 50);
566 else
567 udelay(interval_us);
568 if (time_after(jiffies, timeout)) {
569 if ((ufshcd_readl(hba, reg) & mask) != val)
570 err = -ETIMEDOUT;
571 break;
572 }
573 }
574
575 return err;
576 }
577
578 /**
579 * ufshcd_get_intr_mask - Get the interrupt bit mask
580 * @hba: Pointer to adapter instance
581 *
582 * Returns interrupt bit mask per version
583 */
ufshcd_get_intr_mask(struct ufs_hba * hba)584 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
585 {
586 u32 intr_mask = 0;
587
588 switch (hba->ufs_version) {
589 case UFSHCI_VERSION_10:
590 intr_mask = INTERRUPT_MASK_ALL_VER_10;
591 break;
592 case UFSHCI_VERSION_11:
593 case UFSHCI_VERSION_20:
594 intr_mask = INTERRUPT_MASK_ALL_VER_11;
595 break;
596 case UFSHCI_VERSION_21:
597 default:
598 intr_mask = INTERRUPT_MASK_ALL_VER_21;
599 break;
600 }
601
602 return intr_mask;
603 }
604
605 /**
606 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
607 * @hba: Pointer to adapter instance
608 *
609 * Returns UFSHCI version supported by the controller
610 */
ufshcd_get_ufs_version(struct ufs_hba * hba)611 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
612 {
613 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
614 return ufshcd_vops_get_ufs_hci_version(hba);
615
616 return ufshcd_readl(hba, REG_UFS_VERSION);
617 }
618
619 /**
620 * ufshcd_is_device_present - Check if any device connected to
621 * the host controller
622 * @hba: pointer to adapter instance
623 *
624 * Returns true if device present, false if no device detected
625 */
ufshcd_is_device_present(struct ufs_hba * hba)626 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
627 {
628 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
629 DEVICE_PRESENT) ? true : false;
630 }
631
632 /**
633 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
634 * @lrbp: pointer to local command reference block
635 *
636 * This function is used to get the OCS field from UTRD
637 * Returns the OCS field in the UTRD
638 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)639 static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
640 {
641 return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
642 }
643
644 /**
645 * ufshcd_get_tm_free_slot - get a free slot for task management request
646 * @hba: per adapter instance
647 * @free_slot: pointer to variable with available slot value
648 *
649 * Get a free tag and lock it until ufshcd_put_tm_slot() is called.
650 * Returns 0 if free slot is not available, else return 1 with tag value
651 * in @free_slot.
652 */
ufshcd_get_tm_free_slot(struct ufs_hba * hba,int * free_slot)653 static bool ufshcd_get_tm_free_slot(struct ufs_hba *hba, int *free_slot)
654 {
655 int tag;
656 bool ret = false;
657
658 if (!free_slot)
659 goto out;
660
661 do {
662 tag = find_first_zero_bit(&hba->tm_slots_in_use, hba->nutmrs);
663 if (tag >= hba->nutmrs)
664 goto out;
665 } while (test_and_set_bit_lock(tag, &hba->tm_slots_in_use));
666
667 *free_slot = tag;
668 ret = true;
669 out:
670 return ret;
671 }
672
ufshcd_put_tm_slot(struct ufs_hba * hba,int slot)673 static inline void ufshcd_put_tm_slot(struct ufs_hba *hba, int slot)
674 {
675 clear_bit_unlock(slot, &hba->tm_slots_in_use);
676 }
677
678 /**
679 * ufshcd_utrl_clear - Clear a bit in UTRLCLR register
680 * @hba: per adapter instance
681 * @pos: position of the bit to be cleared
682 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)683 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
684 {
685 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
686 ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
687 else
688 ufshcd_writel(hba, ~(1 << pos),
689 REG_UTP_TRANSFER_REQ_LIST_CLEAR);
690 }
691
692 /**
693 * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
694 * @hba: per adapter instance
695 * @pos: position of the bit to be cleared
696 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)697 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
698 {
699 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
700 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
701 else
702 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
703 }
704
705 /**
706 * ufshcd_outstanding_req_clear - Clear a bit in outstanding request field
707 * @hba: per adapter instance
708 * @tag: position of the bit to be cleared
709 */
ufshcd_outstanding_req_clear(struct ufs_hba * hba,int tag)710 static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag)
711 {
712 __clear_bit(tag, &hba->outstanding_reqs);
713 }
714
715 /**
716 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
717 * @reg: Register value of host controller status
718 *
719 * Returns integer, 0 on Success and positive value if failed
720 */
ufshcd_get_lists_status(u32 reg)721 static inline int ufshcd_get_lists_status(u32 reg)
722 {
723 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
724 }
725
726 /**
727 * ufshcd_get_uic_cmd_result - Get the UIC command result
728 * @hba: Pointer to adapter instance
729 *
730 * This function gets the result of UIC command completion
731 * Returns 0 on success, non zero value on error
732 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)733 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
734 {
735 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
736 MASK_UIC_COMMAND_RESULT;
737 }
738
739 /**
740 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
741 * @hba: Pointer to adapter instance
742 *
743 * This function gets UIC command argument3
744 * Returns 0 on success, non zero value on error
745 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)746 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
747 {
748 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
749 }
750
751 /**
752 * ufshcd_get_req_rsp - returns the TR response transaction type
753 * @ucd_rsp_ptr: pointer to response UPIU
754 */
755 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)756 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
757 {
758 return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
759 }
760
761 /**
762 * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
763 * @ucd_rsp_ptr: pointer to response UPIU
764 *
765 * This function gets the response status and scsi_status from response UPIU
766 * Returns the response result code.
767 */
768 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)769 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
770 {
771 return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
772 }
773
774 /*
775 * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
776 * from response UPIU
777 * @ucd_rsp_ptr: pointer to response UPIU
778 *
779 * Return the data segment length.
780 */
781 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)782 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
783 {
784 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
785 MASK_RSP_UPIU_DATA_SEG_LEN;
786 }
787
788 /**
789 * ufshcd_is_exception_event - Check if the device raised an exception event
790 * @ucd_rsp_ptr: pointer to response UPIU
791 *
792 * The function checks if the device raised an exception event indicated in
793 * the Device Information field of response UPIU.
794 *
795 * Returns true if exception is raised, false otherwise.
796 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)797 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
798 {
799 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
800 MASK_RSP_EXCEPTION_EVENT ? true : false;
801 }
802
803 /**
804 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
805 * @hba: per adapter instance
806 */
807 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)808 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
809 {
810 ufshcd_writel(hba, INT_AGGR_ENABLE |
811 INT_AGGR_COUNTER_AND_TIMER_RESET,
812 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
813 }
814
815 /**
816 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
817 * @hba: per adapter instance
818 * @cnt: Interrupt aggregation counter threshold
819 * @tmout: Interrupt aggregation timeout value
820 */
821 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)822 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
823 {
824 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
825 INT_AGGR_COUNTER_THLD_VAL(cnt) |
826 INT_AGGR_TIMEOUT_VAL(tmout),
827 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
828 }
829
830 /**
831 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
832 * @hba: per adapter instance
833 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)834 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
835 {
836 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
837 }
838
839 /**
840 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
841 * When run-stop registers are set to 1, it indicates the
842 * host controller that it can process the requests
843 * @hba: per adapter instance
844 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)845 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
846 {
847 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
848 REG_UTP_TASK_REQ_LIST_RUN_STOP);
849 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
850 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
851 }
852
853 /**
854 * ufshcd_hba_start - Start controller initialization sequence
855 * @hba: per adapter instance
856 */
ufshcd_hba_start(struct ufs_hba * hba)857 static inline void ufshcd_hba_start(struct ufs_hba *hba)
858 {
859 u32 val = CONTROLLER_ENABLE;
860
861 if (ufshcd_hba_is_crypto_supported(hba)) {
862 ufshcd_crypto_enable(hba);
863 val |= CRYPTO_GENERAL_ENABLE;
864 }
865
866 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
867 }
868
869 /**
870 * ufshcd_is_hba_active - Get controller state
871 * @hba: per adapter instance
872 *
873 * Returns false if controller is active, true otherwise
874 */
ufshcd_is_hba_active(struct ufs_hba * hba)875 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
876 {
877 return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
878 ? false : true;
879 }
880
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)881 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
882 {
883 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */
884 if ((hba->ufs_version == UFSHCI_VERSION_10) ||
885 (hba->ufs_version == UFSHCI_VERSION_11))
886 return UFS_UNIPRO_VER_1_41;
887 else
888 return UFS_UNIPRO_VER_1_6;
889 }
890 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
891
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)892 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
893 {
894 /*
895 * If both host and device support UniPro ver1.6 or later, PA layer
896 * parameters tuning happens during link startup itself.
897 *
898 * We can manually tune PA layer parameters if either host or device
899 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
900 * logic simple, we will only do manual tuning if local unipro version
901 * doesn't support ver1.6 or later.
902 */
903 if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
904 return true;
905 else
906 return false;
907 }
908
909 /**
910 * ufshcd_set_clk_freq - set UFS controller clock frequencies
911 * @hba: per adapter instance
912 * @scale_up: If True, set max possible frequency othewise set low frequency
913 *
914 * Returns 0 if successful
915 * Returns < 0 for any other errors
916 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)917 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
918 {
919 int ret = 0;
920 struct ufs_clk_info *clki;
921 struct list_head *head = &hba->clk_list_head;
922
923 if (list_empty(head))
924 goto out;
925
926 list_for_each_entry(clki, head, list) {
927 if (!IS_ERR_OR_NULL(clki->clk)) {
928 if (scale_up && clki->max_freq) {
929 if (clki->curr_freq == clki->max_freq)
930 continue;
931
932 ret = clk_set_rate(clki->clk, clki->max_freq);
933 if (ret) {
934 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
935 __func__, clki->name,
936 clki->max_freq, ret);
937 break;
938 }
939 trace_ufshcd_clk_scaling(dev_name(hba->dev),
940 "scaled up", clki->name,
941 clki->curr_freq,
942 clki->max_freq);
943
944 clki->curr_freq = clki->max_freq;
945
946 } else if (!scale_up && clki->min_freq) {
947 if (clki->curr_freq == clki->min_freq)
948 continue;
949
950 ret = clk_set_rate(clki->clk, clki->min_freq);
951 if (ret) {
952 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
953 __func__, clki->name,
954 clki->min_freq, ret);
955 break;
956 }
957 trace_ufshcd_clk_scaling(dev_name(hba->dev),
958 "scaled down", clki->name,
959 clki->curr_freq,
960 clki->min_freq);
961 clki->curr_freq = clki->min_freq;
962 }
963 }
964 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
965 clki->name, clk_get_rate(clki->clk));
966 }
967
968 out:
969 return ret;
970 }
971
972 /**
973 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
974 * @hba: per adapter instance
975 * @scale_up: True if scaling up and false if scaling down
976 *
977 * Returns 0 if successful
978 * Returns < 0 for any other errors
979 */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)980 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
981 {
982 int ret = 0;
983
984 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
985 if (ret)
986 return ret;
987
988 ret = ufshcd_set_clk_freq(hba, scale_up);
989 if (ret)
990 return ret;
991
992 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
993 if (ret) {
994 ufshcd_set_clk_freq(hba, !scale_up);
995 return ret;
996 }
997
998 return ret;
999 }
1000
1001 /**
1002 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1003 * @hba: per adapter instance
1004 * @scale_up: True if scaling up and false if scaling down
1005 *
1006 * Returns true if scaling is required, false otherwise.
1007 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1008 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1009 bool scale_up)
1010 {
1011 struct ufs_clk_info *clki;
1012 struct list_head *head = &hba->clk_list_head;
1013
1014 if (list_empty(head))
1015 return false;
1016
1017 list_for_each_entry(clki, head, list) {
1018 if (!IS_ERR_OR_NULL(clki->clk)) {
1019 if (scale_up && clki->max_freq) {
1020 if (clki->curr_freq == clki->max_freq)
1021 continue;
1022 return true;
1023 } else if (!scale_up && clki->min_freq) {
1024 if (clki->curr_freq == clki->min_freq)
1025 continue;
1026 return true;
1027 }
1028 }
1029 }
1030
1031 return false;
1032 }
1033
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1034 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1035 u64 wait_timeout_us)
1036 {
1037 unsigned long flags;
1038 int ret = 0;
1039 u32 tm_doorbell;
1040 u32 tr_doorbell;
1041 bool timeout = false, do_last_check = false;
1042 ktime_t start;
1043
1044 ufshcd_hold(hba, false);
1045 spin_lock_irqsave(hba->host->host_lock, flags);
1046 /*
1047 * Wait for all the outstanding tasks/transfer requests.
1048 * Verify by checking the doorbell registers are clear.
1049 */
1050 start = ktime_get();
1051 do {
1052 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1053 ret = -EBUSY;
1054 goto out;
1055 }
1056
1057 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1058 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1059 if (!tm_doorbell && !tr_doorbell) {
1060 timeout = false;
1061 break;
1062 } else if (do_last_check) {
1063 break;
1064 }
1065
1066 spin_unlock_irqrestore(hba->host->host_lock, flags);
1067 schedule();
1068 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1069 wait_timeout_us) {
1070 timeout = true;
1071 /*
1072 * We might have scheduled out for long time so make
1073 * sure to check if doorbells are cleared by this time
1074 * or not.
1075 */
1076 do_last_check = true;
1077 }
1078 spin_lock_irqsave(hba->host->host_lock, flags);
1079 } while (tm_doorbell || tr_doorbell);
1080
1081 if (timeout) {
1082 dev_err(hba->dev,
1083 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1084 __func__, tm_doorbell, tr_doorbell);
1085 ret = -EBUSY;
1086 }
1087 out:
1088 spin_unlock_irqrestore(hba->host->host_lock, flags);
1089 ufshcd_release(hba);
1090 return ret;
1091 }
1092
1093 /**
1094 * ufshcd_scale_gear - scale up/down UFS gear
1095 * @hba: per adapter instance
1096 * @scale_up: True for scaling up gear and false for scaling down
1097 *
1098 * Returns 0 for success,
1099 * Returns -EBUSY if scaling can't happen at this time
1100 * Returns non-zero for any other errors
1101 */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1102 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1103 {
1104 #define UFS_MIN_GEAR_TO_SCALE_DOWN UFS_HS_G1
1105 int ret = 0;
1106 struct ufs_pa_layer_attr new_pwr_info;
1107
1108 if (scale_up) {
1109 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1110 sizeof(struct ufs_pa_layer_attr));
1111 } else {
1112 memcpy(&new_pwr_info, &hba->pwr_info,
1113 sizeof(struct ufs_pa_layer_attr));
1114
1115 if (hba->pwr_info.gear_tx > UFS_MIN_GEAR_TO_SCALE_DOWN
1116 || hba->pwr_info.gear_rx > UFS_MIN_GEAR_TO_SCALE_DOWN) {
1117 /* save the current power mode */
1118 memcpy(&hba->clk_scaling.saved_pwr_info.info,
1119 &hba->pwr_info,
1120 sizeof(struct ufs_pa_layer_attr));
1121
1122 /* scale down gear */
1123 new_pwr_info.gear_tx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1124 new_pwr_info.gear_rx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1125 }
1126 }
1127
1128 /* check if the power mode needs to be changed or not? */
1129 ret = ufshcd_change_power_mode(hba, &new_pwr_info);
1130
1131 if (ret)
1132 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1133 __func__, ret,
1134 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1135 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1136
1137 return ret;
1138 }
1139
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1140 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1141 {
1142 #define DOORBELL_CLR_TOUT_US (1000 * 1000) /* 1 sec */
1143 int ret = 0;
1144 /*
1145 * make sure that there are no outstanding requests when
1146 * clock scaling is in progress
1147 */
1148 ufshcd_scsi_block_requests(hba);
1149 down_write(&hba->clk_scaling_lock);
1150 if (ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1151 ret = -EBUSY;
1152 up_write(&hba->clk_scaling_lock);
1153 ufshcd_scsi_unblock_requests(hba);
1154 }
1155
1156 return ret;
1157 }
1158
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba)1159 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba)
1160 {
1161 up_write(&hba->clk_scaling_lock);
1162 ufshcd_scsi_unblock_requests(hba);
1163 }
1164
1165 /**
1166 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1167 * @hba: per adapter instance
1168 * @scale_up: True for scaling up and false for scalin down
1169 *
1170 * Returns 0 for success,
1171 * Returns -EBUSY if scaling can't happen at this time
1172 * Returns non-zero for any other errors
1173 */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1174 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1175 {
1176 int ret = 0;
1177
1178 /* let's not get into low power until clock scaling is completed */
1179 ufshcd_hold(hba, false);
1180
1181 ret = ufshcd_clock_scaling_prepare(hba);
1182 if (ret)
1183 goto out;
1184
1185 /* scale down the gear before scaling down clocks */
1186 if (!scale_up) {
1187 ret = ufshcd_scale_gear(hba, false);
1188 if (ret)
1189 goto clk_scaling_unprepare;
1190 }
1191
1192 ret = ufshcd_scale_clks(hba, scale_up);
1193 if (ret)
1194 goto scale_up_gear;
1195
1196 /* scale up the gear after scaling up clocks */
1197 if (scale_up) {
1198 ret = ufshcd_scale_gear(hba, true);
1199 if (ret) {
1200 ufshcd_scale_clks(hba, false);
1201 goto clk_scaling_unprepare;
1202 }
1203 }
1204
1205 goto clk_scaling_unprepare;
1206
1207 scale_up_gear:
1208 if (!scale_up)
1209 ufshcd_scale_gear(hba, true);
1210 clk_scaling_unprepare:
1211 ufshcd_clock_scaling_unprepare(hba);
1212 out:
1213 ufshcd_release(hba);
1214 return ret;
1215 }
1216
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1217 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1218 {
1219 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1220 clk_scaling.suspend_work);
1221 unsigned long irq_flags;
1222
1223 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1224 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1225 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1226 return;
1227 }
1228 hba->clk_scaling.is_suspended = true;
1229 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1230
1231 __ufshcd_suspend_clkscaling(hba);
1232 }
1233
ufshcd_clk_scaling_resume_work(struct work_struct * work)1234 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1235 {
1236 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1237 clk_scaling.resume_work);
1238 unsigned long irq_flags;
1239
1240 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1241 if (!hba->clk_scaling.is_suspended) {
1242 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1243 return;
1244 }
1245 hba->clk_scaling.is_suspended = false;
1246 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1247
1248 devfreq_resume_device(hba->devfreq);
1249 }
1250
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1251 static int ufshcd_devfreq_target(struct device *dev,
1252 unsigned long *freq, u32 flags)
1253 {
1254 int ret = 0;
1255 struct ufs_hba *hba = dev_get_drvdata(dev);
1256 ktime_t start;
1257 bool scale_up, sched_clk_scaling_suspend_work = false;
1258 struct list_head *clk_list = &hba->clk_list_head;
1259 struct ufs_clk_info *clki;
1260 unsigned long irq_flags;
1261
1262 if (!ufshcd_is_clkscaling_supported(hba))
1263 return -EINVAL;
1264
1265 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1266 if (ufshcd_eh_in_progress(hba)) {
1267 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1268 return 0;
1269 }
1270
1271 if (!hba->clk_scaling.active_reqs)
1272 sched_clk_scaling_suspend_work = true;
1273
1274 if (list_empty(clk_list)) {
1275 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1276 goto out;
1277 }
1278
1279 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1280 scale_up = (*freq == clki->max_freq) ? true : false;
1281 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1282 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1283 ret = 0;
1284 goto out; /* no state change required */
1285 }
1286 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1287
1288 start = ktime_get();
1289 ret = ufshcd_devfreq_scale(hba, scale_up);
1290
1291 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1292 (scale_up ? "up" : "down"),
1293 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1294
1295 out:
1296 if (sched_clk_scaling_suspend_work)
1297 queue_work(hba->clk_scaling.workq,
1298 &hba->clk_scaling.suspend_work);
1299
1300 return ret;
1301 }
1302
1303
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1304 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1305 struct devfreq_dev_status *stat)
1306 {
1307 struct ufs_hba *hba = dev_get_drvdata(dev);
1308 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1309 unsigned long flags;
1310
1311 if (!ufshcd_is_clkscaling_supported(hba))
1312 return -EINVAL;
1313
1314 memset(stat, 0, sizeof(*stat));
1315
1316 spin_lock_irqsave(hba->host->host_lock, flags);
1317 if (!scaling->window_start_t)
1318 goto start_window;
1319
1320 if (scaling->is_busy_started)
1321 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1322 scaling->busy_start_t));
1323
1324 stat->total_time = jiffies_to_usecs((long)jiffies -
1325 (long)scaling->window_start_t);
1326 stat->busy_time = scaling->tot_busy_t;
1327 start_window:
1328 scaling->window_start_t = jiffies;
1329 scaling->tot_busy_t = 0;
1330
1331 if (hba->outstanding_reqs) {
1332 scaling->busy_start_t = ktime_get();
1333 scaling->is_busy_started = true;
1334 } else {
1335 scaling->busy_start_t = 0;
1336 scaling->is_busy_started = false;
1337 }
1338 spin_unlock_irqrestore(hba->host->host_lock, flags);
1339 return 0;
1340 }
1341
1342 static struct devfreq_dev_profile ufs_devfreq_profile = {
1343 .polling_ms = 100,
1344 .target = ufshcd_devfreq_target,
1345 .get_dev_status = ufshcd_devfreq_get_dev_status,
1346 };
1347
ufshcd_devfreq_init(struct ufs_hba * hba)1348 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1349 {
1350 struct list_head *clk_list = &hba->clk_list_head;
1351 struct ufs_clk_info *clki;
1352 struct devfreq *devfreq;
1353 int ret;
1354
1355 /* Skip devfreq if we don't have any clocks in the list */
1356 if (list_empty(clk_list))
1357 return 0;
1358
1359 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1360 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1361 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1362
1363 devfreq = devfreq_add_device(hba->dev,
1364 &ufs_devfreq_profile,
1365 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1366 NULL);
1367 if (IS_ERR(devfreq)) {
1368 ret = PTR_ERR(devfreq);
1369 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1370
1371 dev_pm_opp_remove(hba->dev, clki->min_freq);
1372 dev_pm_opp_remove(hba->dev, clki->max_freq);
1373 return ret;
1374 }
1375
1376 hba->devfreq = devfreq;
1377
1378 return 0;
1379 }
1380
ufshcd_devfreq_remove(struct ufs_hba * hba)1381 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1382 {
1383 struct list_head *clk_list = &hba->clk_list_head;
1384 struct ufs_clk_info *clki;
1385
1386 if (!hba->devfreq)
1387 return;
1388
1389 devfreq_remove_device(hba->devfreq);
1390 hba->devfreq = NULL;
1391
1392 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1393 dev_pm_opp_remove(hba->dev, clki->min_freq);
1394 dev_pm_opp_remove(hba->dev, clki->max_freq);
1395 }
1396
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1397 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1398 {
1399 unsigned long flags;
1400
1401 devfreq_suspend_device(hba->devfreq);
1402 spin_lock_irqsave(hba->host->host_lock, flags);
1403 hba->clk_scaling.window_start_t = 0;
1404 spin_unlock_irqrestore(hba->host->host_lock, flags);
1405 }
1406
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1407 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1408 {
1409 unsigned long flags;
1410 bool suspend = false;
1411
1412 if (!ufshcd_is_clkscaling_supported(hba))
1413 return;
1414
1415 spin_lock_irqsave(hba->host->host_lock, flags);
1416 if (!hba->clk_scaling.is_suspended) {
1417 suspend = true;
1418 hba->clk_scaling.is_suspended = true;
1419 }
1420 spin_unlock_irqrestore(hba->host->host_lock, flags);
1421
1422 if (suspend)
1423 __ufshcd_suspend_clkscaling(hba);
1424 }
1425
ufshcd_resume_clkscaling(struct ufs_hba * hba)1426 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1427 {
1428 unsigned long flags;
1429 bool resume = false;
1430
1431 if (!ufshcd_is_clkscaling_supported(hba))
1432 return;
1433
1434 spin_lock_irqsave(hba->host->host_lock, flags);
1435 if (hba->clk_scaling.is_suspended) {
1436 resume = true;
1437 hba->clk_scaling.is_suspended = false;
1438 }
1439 spin_unlock_irqrestore(hba->host->host_lock, flags);
1440
1441 if (resume)
1442 devfreq_resume_device(hba->devfreq);
1443 }
1444
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1445 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1446 struct device_attribute *attr, char *buf)
1447 {
1448 struct ufs_hba *hba = dev_get_drvdata(dev);
1449
1450 return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_allowed);
1451 }
1452
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1453 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1454 struct device_attribute *attr, const char *buf, size_t count)
1455 {
1456 struct ufs_hba *hba = dev_get_drvdata(dev);
1457 u32 value;
1458 int err;
1459
1460 if (kstrtou32(buf, 0, &value))
1461 return -EINVAL;
1462
1463 value = !!value;
1464 if (value == hba->clk_scaling.is_allowed)
1465 goto out;
1466
1467 pm_runtime_get_sync(hba->dev);
1468 ufshcd_hold(hba, false);
1469
1470 cancel_work_sync(&hba->clk_scaling.suspend_work);
1471 cancel_work_sync(&hba->clk_scaling.resume_work);
1472
1473 hba->clk_scaling.is_allowed = value;
1474
1475 if (value) {
1476 ufshcd_resume_clkscaling(hba);
1477 } else {
1478 ufshcd_suspend_clkscaling(hba);
1479 err = ufshcd_devfreq_scale(hba, true);
1480 if (err)
1481 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1482 __func__, err);
1483 }
1484
1485 ufshcd_release(hba);
1486 pm_runtime_put_sync(hba->dev);
1487 out:
1488 return count;
1489 }
1490
ufshcd_clkscaling_init_sysfs(struct ufs_hba * hba)1491 static void ufshcd_clkscaling_init_sysfs(struct ufs_hba *hba)
1492 {
1493 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1494 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1495 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1496 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1497 hba->clk_scaling.enable_attr.attr.mode = 0644;
1498 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1499 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1500 }
1501
ufshcd_ungate_work(struct work_struct * work)1502 static void ufshcd_ungate_work(struct work_struct *work)
1503 {
1504 int ret;
1505 unsigned long flags;
1506 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1507 clk_gating.ungate_work);
1508
1509 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1510
1511 spin_lock_irqsave(hba->host->host_lock, flags);
1512 if (hba->clk_gating.state == CLKS_ON) {
1513 spin_unlock_irqrestore(hba->host->host_lock, flags);
1514 goto unblock_reqs;
1515 }
1516
1517 spin_unlock_irqrestore(hba->host->host_lock, flags);
1518 ufshcd_setup_clocks(hba, true);
1519
1520 /* Exit from hibern8 */
1521 if (ufshcd_can_hibern8_during_gating(hba)) {
1522 /* Prevent gating in this path */
1523 hba->clk_gating.is_suspended = true;
1524 if (ufshcd_is_link_hibern8(hba)) {
1525 ret = ufshcd_uic_hibern8_exit(hba);
1526 if (ret)
1527 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1528 __func__, ret);
1529 else
1530 ufshcd_set_link_active(hba);
1531 }
1532 hba->clk_gating.is_suspended = false;
1533 }
1534 unblock_reqs:
1535 ufshcd_scsi_unblock_requests(hba);
1536 }
1537
1538 /**
1539 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1540 * Also, exit from hibern8 mode and set the link as active.
1541 * @hba: per adapter instance
1542 * @async: This indicates whether caller should ungate clocks asynchronously.
1543 */
ufshcd_hold(struct ufs_hba * hba,bool async)1544 int ufshcd_hold(struct ufs_hba *hba, bool async)
1545 {
1546 int rc = 0;
1547 unsigned long flags;
1548
1549 if (!ufshcd_is_clkgating_allowed(hba))
1550 goto out;
1551 spin_lock_irqsave(hba->host->host_lock, flags);
1552 hba->clk_gating.active_reqs++;
1553
1554 if (ufshcd_eh_in_progress(hba)) {
1555 spin_unlock_irqrestore(hba->host->host_lock, flags);
1556 return 0;
1557 }
1558
1559 start:
1560 switch (hba->clk_gating.state) {
1561 case CLKS_ON:
1562 /*
1563 * Wait for the ungate work to complete if in progress.
1564 * Though the clocks may be in ON state, the link could
1565 * still be in hibner8 state if hibern8 is allowed
1566 * during clock gating.
1567 * Make sure we exit hibern8 state also in addition to
1568 * clocks being ON.
1569 */
1570 if (ufshcd_can_hibern8_during_gating(hba) &&
1571 ufshcd_is_link_hibern8(hba)) {
1572 if (async) {
1573 rc = -EAGAIN;
1574 hba->clk_gating.active_reqs--;
1575 break;
1576 }
1577 spin_unlock_irqrestore(hba->host->host_lock, flags);
1578 flush_work(&hba->clk_gating.ungate_work);
1579 spin_lock_irqsave(hba->host->host_lock, flags);
1580 goto start;
1581 }
1582 break;
1583 case REQ_CLKS_OFF:
1584 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1585 hba->clk_gating.state = CLKS_ON;
1586 trace_ufshcd_clk_gating(dev_name(hba->dev),
1587 hba->clk_gating.state);
1588 break;
1589 }
1590 /*
1591 * If we are here, it means gating work is either done or
1592 * currently running. Hence, fall through to cancel gating
1593 * work and to enable clocks.
1594 */
1595 /* fallthrough */
1596 case CLKS_OFF:
1597 ufshcd_scsi_block_requests(hba);
1598 hba->clk_gating.state = REQ_CLKS_ON;
1599 trace_ufshcd_clk_gating(dev_name(hba->dev),
1600 hba->clk_gating.state);
1601 queue_work(hba->clk_gating.clk_gating_workq,
1602 &hba->clk_gating.ungate_work);
1603 /*
1604 * fall through to check if we should wait for this
1605 * work to be done or not.
1606 */
1607 /* fallthrough */
1608 case REQ_CLKS_ON:
1609 if (async) {
1610 rc = -EAGAIN;
1611 hba->clk_gating.active_reqs--;
1612 break;
1613 }
1614
1615 spin_unlock_irqrestore(hba->host->host_lock, flags);
1616 flush_work(&hba->clk_gating.ungate_work);
1617 /* Make sure state is CLKS_ON before returning */
1618 spin_lock_irqsave(hba->host->host_lock, flags);
1619 goto start;
1620 default:
1621 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1622 __func__, hba->clk_gating.state);
1623 break;
1624 }
1625 spin_unlock_irqrestore(hba->host->host_lock, flags);
1626 out:
1627 return rc;
1628 }
1629 EXPORT_SYMBOL_GPL(ufshcd_hold);
1630
ufshcd_gate_work(struct work_struct * work)1631 static void ufshcd_gate_work(struct work_struct *work)
1632 {
1633 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1634 clk_gating.gate_work.work);
1635 unsigned long flags;
1636
1637 spin_lock_irqsave(hba->host->host_lock, flags);
1638 /*
1639 * In case you are here to cancel this work the gating state
1640 * would be marked as REQ_CLKS_ON. In this case save time by
1641 * skipping the gating work and exit after changing the clock
1642 * state to CLKS_ON.
1643 */
1644 if (hba->clk_gating.is_suspended ||
1645 (hba->clk_gating.state == REQ_CLKS_ON)) {
1646 hba->clk_gating.state = CLKS_ON;
1647 trace_ufshcd_clk_gating(dev_name(hba->dev),
1648 hba->clk_gating.state);
1649 goto rel_lock;
1650 }
1651
1652 if (hba->clk_gating.active_reqs
1653 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1654 || hba->lrb_in_use || hba->outstanding_tasks
1655 || hba->active_uic_cmd || hba->uic_async_done)
1656 goto rel_lock;
1657
1658 spin_unlock_irqrestore(hba->host->host_lock, flags);
1659
1660 /* put the link into hibern8 mode before turning off clocks */
1661 if (ufshcd_can_hibern8_during_gating(hba)) {
1662 if (ufshcd_uic_hibern8_enter(hba)) {
1663 hba->clk_gating.state = CLKS_ON;
1664 trace_ufshcd_clk_gating(dev_name(hba->dev),
1665 hba->clk_gating.state);
1666 goto out;
1667 }
1668 ufshcd_set_link_hibern8(hba);
1669 }
1670
1671 if (!ufshcd_is_link_active(hba))
1672 ufshcd_setup_clocks(hba, false);
1673 else
1674 /* If link is active, device ref_clk can't be switched off */
1675 __ufshcd_setup_clocks(hba, false, true);
1676
1677 /*
1678 * In case you are here to cancel this work the gating state
1679 * would be marked as REQ_CLKS_ON. In this case keep the state
1680 * as REQ_CLKS_ON which would anyway imply that clocks are off
1681 * and a request to turn them on is pending. By doing this way,
1682 * we keep the state machine in tact and this would ultimately
1683 * prevent from doing cancel work multiple times when there are
1684 * new requests arriving before the current cancel work is done.
1685 */
1686 spin_lock_irqsave(hba->host->host_lock, flags);
1687 if (hba->clk_gating.state == REQ_CLKS_OFF) {
1688 hba->clk_gating.state = CLKS_OFF;
1689 trace_ufshcd_clk_gating(dev_name(hba->dev),
1690 hba->clk_gating.state);
1691 }
1692 rel_lock:
1693 spin_unlock_irqrestore(hba->host->host_lock, flags);
1694 out:
1695 return;
1696 }
1697
1698 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1699 static void __ufshcd_release(struct ufs_hba *hba)
1700 {
1701 if (!ufshcd_is_clkgating_allowed(hba))
1702 return;
1703
1704 hba->clk_gating.active_reqs--;
1705
1706 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended
1707 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1708 || hba->lrb_in_use || hba->outstanding_tasks
1709 || hba->active_uic_cmd || hba->uic_async_done
1710 || ufshcd_eh_in_progress(hba))
1711 return;
1712
1713 hba->clk_gating.state = REQ_CLKS_OFF;
1714 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1715 queue_delayed_work(hba->clk_gating.clk_gating_workq,
1716 &hba->clk_gating.gate_work,
1717 msecs_to_jiffies(hba->clk_gating.delay_ms));
1718 }
1719
ufshcd_release(struct ufs_hba * hba)1720 void ufshcd_release(struct ufs_hba *hba)
1721 {
1722 unsigned long flags;
1723
1724 spin_lock_irqsave(hba->host->host_lock, flags);
1725 __ufshcd_release(hba);
1726 spin_unlock_irqrestore(hba->host->host_lock, flags);
1727 }
1728 EXPORT_SYMBOL_GPL(ufshcd_release);
1729
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1730 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1731 struct device_attribute *attr, char *buf)
1732 {
1733 struct ufs_hba *hba = dev_get_drvdata(dev);
1734
1735 return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms);
1736 }
1737
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1738 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1739 struct device_attribute *attr, const char *buf, size_t count)
1740 {
1741 struct ufs_hba *hba = dev_get_drvdata(dev);
1742 unsigned long flags, value;
1743
1744 if (kstrtoul(buf, 0, &value))
1745 return -EINVAL;
1746
1747 spin_lock_irqsave(hba->host->host_lock, flags);
1748 hba->clk_gating.delay_ms = value;
1749 spin_unlock_irqrestore(hba->host->host_lock, flags);
1750 return count;
1751 }
1752
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1753 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1754 struct device_attribute *attr, char *buf)
1755 {
1756 struct ufs_hba *hba = dev_get_drvdata(dev);
1757
1758 return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled);
1759 }
1760
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1761 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1762 struct device_attribute *attr, const char *buf, size_t count)
1763 {
1764 struct ufs_hba *hba = dev_get_drvdata(dev);
1765 unsigned long flags;
1766 u32 value;
1767
1768 if (kstrtou32(buf, 0, &value))
1769 return -EINVAL;
1770
1771 value = !!value;
1772 if (value == hba->clk_gating.is_enabled)
1773 goto out;
1774
1775 if (value) {
1776 ufshcd_release(hba);
1777 } else {
1778 spin_lock_irqsave(hba->host->host_lock, flags);
1779 hba->clk_gating.active_reqs++;
1780 spin_unlock_irqrestore(hba->host->host_lock, flags);
1781 }
1782
1783 hba->clk_gating.is_enabled = value;
1784 out:
1785 return count;
1786 }
1787
ufshcd_init_clk_scaling(struct ufs_hba * hba)1788 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1789 {
1790 char wq_name[sizeof("ufs_clkscaling_00")];
1791
1792 if (!ufshcd_is_clkscaling_supported(hba))
1793 return;
1794
1795 INIT_WORK(&hba->clk_scaling.suspend_work,
1796 ufshcd_clk_scaling_suspend_work);
1797 INIT_WORK(&hba->clk_scaling.resume_work,
1798 ufshcd_clk_scaling_resume_work);
1799
1800 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1801 hba->host->host_no);
1802 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1803
1804 ufshcd_clkscaling_init_sysfs(hba);
1805 }
1806
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1807 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1808 {
1809 if (!ufshcd_is_clkscaling_supported(hba))
1810 return;
1811
1812 destroy_workqueue(hba->clk_scaling.workq);
1813 ufshcd_devfreq_remove(hba);
1814 }
1815
ufshcd_init_clk_gating(struct ufs_hba * hba)1816 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1817 {
1818 char wq_name[sizeof("ufs_clk_gating_00")];
1819
1820 if (!ufshcd_is_clkgating_allowed(hba))
1821 return;
1822
1823 hba->clk_gating.delay_ms = 150;
1824 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1825 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1826
1827 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1828 hba->host->host_no);
1829 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1830 WQ_MEM_RECLAIM);
1831
1832 hba->clk_gating.is_enabled = true;
1833
1834 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1835 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1836 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1837 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1838 hba->clk_gating.delay_attr.attr.mode = 0644;
1839 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1840 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1841
1842 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1843 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1844 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1845 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1846 hba->clk_gating.enable_attr.attr.mode = 0644;
1847 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1848 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1849 }
1850
ufshcd_exit_clk_gating(struct ufs_hba * hba)1851 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
1852 {
1853 if (!ufshcd_is_clkgating_allowed(hba))
1854 return;
1855 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1856 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1857 cancel_work_sync(&hba->clk_gating.ungate_work);
1858 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1859 destroy_workqueue(hba->clk_gating.clk_gating_workq);
1860 }
1861
1862 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)1863 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
1864 {
1865 bool queue_resume_work = false;
1866
1867 if (!ufshcd_is_clkscaling_supported(hba))
1868 return;
1869
1870 if (!hba->clk_scaling.active_reqs++)
1871 queue_resume_work = true;
1872
1873 if (!hba->clk_scaling.is_allowed || hba->pm_op_in_progress)
1874 return;
1875
1876 if (queue_resume_work)
1877 queue_work(hba->clk_scaling.workq,
1878 &hba->clk_scaling.resume_work);
1879
1880 if (!hba->clk_scaling.window_start_t) {
1881 hba->clk_scaling.window_start_t = jiffies;
1882 hba->clk_scaling.tot_busy_t = 0;
1883 hba->clk_scaling.is_busy_started = false;
1884 }
1885
1886 if (!hba->clk_scaling.is_busy_started) {
1887 hba->clk_scaling.busy_start_t = ktime_get();
1888 hba->clk_scaling.is_busy_started = true;
1889 }
1890 }
1891
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)1892 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
1893 {
1894 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1895
1896 if (!ufshcd_is_clkscaling_supported(hba))
1897 return;
1898
1899 if (!hba->outstanding_reqs && scaling->is_busy_started) {
1900 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1901 scaling->busy_start_t));
1902 scaling->busy_start_t = 0;
1903 scaling->is_busy_started = false;
1904 }
1905 }
1906 /**
1907 * ufshcd_send_command - Send SCSI or device management commands
1908 * @hba: per adapter instance
1909 * @task_tag: Task tag of the command
1910 */
1911 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)1912 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
1913 {
1914 hba->lrb[task_tag].issue_time_stamp = ktime_get();
1915 hba->lrb[task_tag].compl_time_stamp = ktime_set(0, 0);
1916 ufshcd_clk_scaling_start_busy(hba);
1917 __set_bit(task_tag, &hba->outstanding_reqs);
1918 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1919 /* Make sure that doorbell is committed immediately */
1920 wmb();
1921 ufshcd_add_command_trace(hba, task_tag, "send");
1922 }
1923
1924 /**
1925 * ufshcd_copy_sense_data - Copy sense data in case of check condition
1926 * @lrbp: pointer to local reference block
1927 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)1928 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
1929 {
1930 int len;
1931 if (lrbp->sense_buffer &&
1932 ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
1933 int len_to_copy;
1934
1935 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
1936 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
1937
1938 memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
1939 len_to_copy);
1940 }
1941 }
1942
1943 /**
1944 * ufshcd_copy_query_response() - Copy the Query Response and the data
1945 * descriptor
1946 * @hba: per adapter instance
1947 * @lrbp: pointer to local reference block
1948 */
1949 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)1950 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
1951 {
1952 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
1953
1954 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
1955
1956 /* Get the descriptor */
1957 if (hba->dev_cmd.query.descriptor &&
1958 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
1959 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
1960 GENERAL_UPIU_REQUEST_SIZE;
1961 u16 resp_len;
1962 u16 buf_len;
1963
1964 /* data segment length */
1965 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
1966 MASK_QUERY_DATA_SEG_LEN;
1967 buf_len = be16_to_cpu(
1968 hba->dev_cmd.query.request.upiu_req.length);
1969 if (likely(buf_len >= resp_len)) {
1970 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
1971 } else {
1972 dev_warn(hba->dev,
1973 "%s: Response size is bigger than buffer",
1974 __func__);
1975 return -EINVAL;
1976 }
1977 }
1978
1979 return 0;
1980 }
1981
1982 /**
1983 * ufshcd_hba_capabilities - Read controller capabilities
1984 * @hba: per adapter instance
1985 */
ufshcd_hba_capabilities(struct ufs_hba * hba)1986 static inline void ufshcd_hba_capabilities(struct ufs_hba *hba)
1987 {
1988 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
1989
1990 /* nutrs and nutmrs are 0 based values */
1991 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
1992 hba->nutmrs =
1993 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
1994 }
1995
1996 /**
1997 * ufshcd_ready_for_uic_cmd - Check if controller is ready
1998 * to accept UIC commands
1999 * @hba: per adapter instance
2000 * Return true on success, else false
2001 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2002 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2003 {
2004 if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
2005 return true;
2006 else
2007 return false;
2008 }
2009
2010 /**
2011 * ufshcd_get_upmcrs - Get the power mode change request status
2012 * @hba: Pointer to adapter instance
2013 *
2014 * This function gets the UPMCRS field of HCS register
2015 * Returns value of UPMCRS field
2016 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2017 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2018 {
2019 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2020 }
2021
2022 /**
2023 * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers
2024 * @hba: per adapter instance
2025 * @uic_cmd: UIC command
2026 *
2027 * Mutex must be held.
2028 */
2029 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2030 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2031 {
2032 WARN_ON(hba->active_uic_cmd);
2033
2034 hba->active_uic_cmd = uic_cmd;
2035
2036 /* Write Args */
2037 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2038 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2039 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2040
2041 /* Write UIC Cmd */
2042 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2043 REG_UIC_COMMAND);
2044 }
2045
2046 /**
2047 * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command
2048 * @hba: per adapter instance
2049 * @uic_cmd: UIC command
2050 *
2051 * Must be called with mutex held.
2052 * Returns 0 only if success.
2053 */
2054 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2055 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2056 {
2057 int ret;
2058 unsigned long flags;
2059
2060 if (wait_for_completion_timeout(&uic_cmd->done,
2061 msecs_to_jiffies(UIC_CMD_TIMEOUT)))
2062 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2063 else
2064 ret = -ETIMEDOUT;
2065
2066 spin_lock_irqsave(hba->host->host_lock, flags);
2067 hba->active_uic_cmd = NULL;
2068 spin_unlock_irqrestore(hba->host->host_lock, flags);
2069
2070 return ret;
2071 }
2072
2073 /**
2074 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2075 * @hba: per adapter instance
2076 * @uic_cmd: UIC command
2077 * @completion: initialize the completion only if this is set to true
2078 *
2079 * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called
2080 * with mutex held and host_lock locked.
2081 * Returns 0 only if success.
2082 */
2083 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2084 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2085 bool completion)
2086 {
2087 if (!ufshcd_ready_for_uic_cmd(hba)) {
2088 dev_err(hba->dev,
2089 "Controller not ready to accept UIC commands\n");
2090 return -EIO;
2091 }
2092
2093 if (completion)
2094 init_completion(&uic_cmd->done);
2095
2096 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2097
2098 return 0;
2099 }
2100
2101 /**
2102 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2103 * @hba: per adapter instance
2104 * @uic_cmd: UIC command
2105 *
2106 * Returns 0 only if success.
2107 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2108 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2109 {
2110 int ret;
2111 unsigned long flags;
2112
2113 ufshcd_hold(hba, false);
2114 mutex_lock(&hba->uic_cmd_mutex);
2115 ufshcd_add_delay_before_dme_cmd(hba);
2116
2117 spin_lock_irqsave(hba->host->host_lock, flags);
2118 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2119 spin_unlock_irqrestore(hba->host->host_lock, flags);
2120 if (!ret)
2121 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2122
2123 mutex_unlock(&hba->uic_cmd_mutex);
2124
2125 ufshcd_release(hba);
2126 return ret;
2127 }
2128
2129 /**
2130 * ufshcd_map_sg - Map scatter-gather list to prdt
2131 * @hba: per adapter instance
2132 * @lrbp: pointer to local reference block
2133 *
2134 * Returns 0 in case of success, non-zero value in case of failure
2135 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2136 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2137 {
2138 struct ufshcd_sg_entry *prd_table;
2139 struct scatterlist *sg;
2140 struct scsi_cmnd *cmd;
2141 int sg_segments;
2142 int i;
2143
2144 cmd = lrbp->cmd;
2145 sg_segments = scsi_dma_map(cmd);
2146 if (sg_segments < 0)
2147 return sg_segments;
2148
2149 if (sg_segments) {
2150 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2151 lrbp->utr_descriptor_ptr->prd_table_length =
2152 cpu_to_le16((u16)(sg_segments *
2153 sizeof(struct ufshcd_sg_entry)));
2154 else
2155 lrbp->utr_descriptor_ptr->prd_table_length =
2156 cpu_to_le16((u16) (sg_segments));
2157
2158 prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
2159
2160 scsi_for_each_sg(cmd, sg, sg_segments, i) {
2161 prd_table[i].size =
2162 cpu_to_le32(((u32) sg_dma_len(sg))-1);
2163 prd_table[i].base_addr =
2164 cpu_to_le32(lower_32_bits(sg->dma_address));
2165 prd_table[i].upper_addr =
2166 cpu_to_le32(upper_32_bits(sg->dma_address));
2167 prd_table[i].reserved = 0;
2168 }
2169 } else {
2170 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2171 }
2172
2173 return 0;
2174 }
2175
2176 /**
2177 * ufshcd_enable_intr - enable interrupts
2178 * @hba: per adapter instance
2179 * @intrs: interrupt bits
2180 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2181 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2182 {
2183 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2184
2185 if (hba->ufs_version == UFSHCI_VERSION_10) {
2186 u32 rw;
2187 rw = set & INTERRUPT_MASK_RW_VER_10;
2188 set = rw | ((set ^ intrs) & intrs);
2189 } else {
2190 set |= intrs;
2191 }
2192
2193 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2194 }
2195
2196 /**
2197 * ufshcd_disable_intr - disable interrupts
2198 * @hba: per adapter instance
2199 * @intrs: interrupt bits
2200 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2201 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2202 {
2203 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2204
2205 if (hba->ufs_version == UFSHCI_VERSION_10) {
2206 u32 rw;
2207 rw = (set & INTERRUPT_MASK_RW_VER_10) &
2208 ~(intrs & INTERRUPT_MASK_RW_VER_10);
2209 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2210
2211 } else {
2212 set &= ~intrs;
2213 }
2214
2215 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2216 }
2217
2218 /**
2219 * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2220 * descriptor according to request
2221 * @lrbp: pointer to local reference block
2222 * @upiu_flags: flags required in the header
2223 * @cmd_dir: requests data direction
2224 */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u32 * upiu_flags,enum dma_data_direction cmd_dir)2225 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2226 u32 *upiu_flags, enum dma_data_direction cmd_dir)
2227 {
2228 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2229 u32 data_direction;
2230 u32 dword_0;
2231
2232 if (cmd_dir == DMA_FROM_DEVICE) {
2233 data_direction = UTP_DEVICE_TO_HOST;
2234 *upiu_flags = UPIU_CMD_FLAGS_READ;
2235 } else if (cmd_dir == DMA_TO_DEVICE) {
2236 data_direction = UTP_HOST_TO_DEVICE;
2237 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2238 } else {
2239 data_direction = UTP_NO_DATA_TRANSFER;
2240 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2241 }
2242
2243 dword_0 = data_direction | (lrbp->command_type
2244 << UPIU_COMMAND_TYPE_OFFSET);
2245 if (lrbp->intr_cmd)
2246 dword_0 |= UTP_REQ_DESC_INT_CMD;
2247
2248 /* Transfer request descriptor header fields */
2249 if (ufshcd_lrbp_crypto_enabled(lrbp)) {
2250 #if IS_ENABLED(CONFIG_SCSI_UFS_CRYPTO)
2251 dword_0 |= UTP_REQ_DESC_CRYPTO_ENABLE_CMD;
2252 dword_0 |= lrbp->crypto_key_slot;
2253 req_desc->header.dword_1 =
2254 cpu_to_le32(lower_32_bits(lrbp->data_unit_num));
2255 req_desc->header.dword_3 =
2256 cpu_to_le32(upper_32_bits(lrbp->data_unit_num));
2257 #endif /* CONFIG_SCSI_UFS_CRYPTO */
2258 } else {
2259 /* dword_1 and dword_3 are reserved, hence they are set to 0 */
2260 req_desc->header.dword_1 = 0;
2261 req_desc->header.dword_3 = 0;
2262 }
2263
2264 req_desc->header.dword_0 = cpu_to_le32(dword_0);
2265
2266 /*
2267 * assigning invalid value for command status. Controller
2268 * updates OCS on command completion, with the command
2269 * status
2270 */
2271 req_desc->header.dword_2 =
2272 cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2273
2274 req_desc->prd_table_length = 0;
2275 }
2276
2277 /**
2278 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2279 * for scsi commands
2280 * @lrbp: local reference block pointer
2281 * @upiu_flags: flags
2282 */
2283 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u32 upiu_flags)2284 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u32 upiu_flags)
2285 {
2286 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2287 unsigned short cdb_len;
2288
2289 /* command descriptor fields */
2290 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2291 UPIU_TRANSACTION_COMMAND, upiu_flags,
2292 lrbp->lun, lrbp->task_tag);
2293 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2294 UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2295
2296 /* Total EHS length and Data segment length will be zero */
2297 ucd_req_ptr->header.dword_2 = 0;
2298
2299 ucd_req_ptr->sc.exp_data_transfer_len =
2300 cpu_to_be32(lrbp->cmd->sdb.length);
2301
2302 cdb_len = min_t(unsigned short, lrbp->cmd->cmd_len, UFS_CDB_SIZE);
2303 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2304 memcpy(ucd_req_ptr->sc.cdb, lrbp->cmd->cmnd, cdb_len);
2305
2306 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2307 }
2308
2309 /**
2310 * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2311 * for query requsts
2312 * @hba: UFS hba
2313 * @lrbp: local reference block pointer
2314 * @upiu_flags: flags
2315 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u32 upiu_flags)2316 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2317 struct ufshcd_lrb *lrbp, u32 upiu_flags)
2318 {
2319 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2320 struct ufs_query *query = &hba->dev_cmd.query;
2321 u16 len = be16_to_cpu(query->request.upiu_req.length);
2322
2323 /* Query request header */
2324 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2325 UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2326 lrbp->lun, lrbp->task_tag);
2327 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2328 0, query->request.query_func, 0, 0);
2329
2330 /* Data segment length only need for WRITE_DESC */
2331 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2332 ucd_req_ptr->header.dword_2 =
2333 UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2334 else
2335 ucd_req_ptr->header.dword_2 = 0;
2336
2337 /* Copy the Query Request buffer as is */
2338 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2339 QUERY_OSF_SIZE);
2340
2341 /* Copy the Descriptor */
2342 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2343 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2344
2345 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2346 }
2347
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2348 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2349 {
2350 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2351
2352 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2353
2354 /* command descriptor fields */
2355 ucd_req_ptr->header.dword_0 =
2356 UPIU_HEADER_DWORD(
2357 UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2358 /* clear rest of the fields of basic header */
2359 ucd_req_ptr->header.dword_1 = 0;
2360 ucd_req_ptr->header.dword_2 = 0;
2361
2362 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2363 }
2364
2365 /**
2366 * ufshcd_comp_devman_upiu - UFS Protocol Information Unit(UPIU)
2367 * for Device Management Purposes
2368 * @hba: per adapter instance
2369 * @lrbp: pointer to local reference block
2370 */
ufshcd_comp_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2371 static int ufshcd_comp_devman_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2372 {
2373 u32 upiu_flags;
2374 int ret = 0;
2375
2376 if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2377 (hba->ufs_version == UFSHCI_VERSION_11))
2378 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2379 else
2380 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2381
2382 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2383 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2384 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2385 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2386 ufshcd_prepare_utp_nop_upiu(lrbp);
2387 else
2388 ret = -EINVAL;
2389
2390 return ret;
2391 }
2392
2393 /**
2394 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2395 * for SCSI Purposes
2396 * @hba: per adapter instance
2397 * @lrbp: pointer to local reference block
2398 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2399 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2400 {
2401 u32 upiu_flags;
2402 int ret = 0;
2403
2404 if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2405 (hba->ufs_version == UFSHCI_VERSION_11))
2406 lrbp->command_type = UTP_CMD_TYPE_SCSI;
2407 else
2408 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2409
2410 if (likely(lrbp->cmd)) {
2411 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2412 lrbp->cmd->sc_data_direction);
2413 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2414 } else {
2415 ret = -EINVAL;
2416 }
2417
2418 return ret;
2419 }
2420
2421 /**
2422 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2423 * @upiu_wlun_id: UPIU W-LUN id
2424 *
2425 * Returns SCSI W-LUN id
2426 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2427 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2428 {
2429 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2430 }
2431
2432 /**
2433 * ufshcd_queuecommand - main entry point for SCSI requests
2434 * @host: SCSI host pointer
2435 * @cmd: command from SCSI Midlayer
2436 *
2437 * Returns 0 for success, non-zero in case of failure
2438 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2439 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2440 {
2441 struct ufshcd_lrb *lrbp;
2442 struct ufs_hba *hba;
2443 unsigned long flags;
2444 int tag;
2445 int err = 0;
2446
2447 hba = shost_priv(host);
2448
2449 tag = cmd->request->tag;
2450 if (!ufshcd_valid_tag(hba, tag)) {
2451 dev_err(hba->dev,
2452 "%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
2453 __func__, tag, cmd, cmd->request);
2454 BUG();
2455 }
2456
2457 if (!down_read_trylock(&hba->clk_scaling_lock))
2458 return SCSI_MLQUEUE_HOST_BUSY;
2459
2460 spin_lock_irqsave(hba->host->host_lock, flags);
2461 switch (hba->ufshcd_state) {
2462 case UFSHCD_STATE_OPERATIONAL:
2463 break;
2464 case UFSHCD_STATE_EH_SCHEDULED:
2465 case UFSHCD_STATE_RESET:
2466 err = SCSI_MLQUEUE_HOST_BUSY;
2467 goto out_unlock;
2468 case UFSHCD_STATE_ERROR:
2469 set_host_byte(cmd, DID_ERROR);
2470 cmd->scsi_done(cmd);
2471 goto out_unlock;
2472 default:
2473 dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n",
2474 __func__, hba->ufshcd_state);
2475 set_host_byte(cmd, DID_BAD_TARGET);
2476 cmd->scsi_done(cmd);
2477 goto out_unlock;
2478 }
2479
2480 /* if error handling is in progress, don't issue commands */
2481 if (ufshcd_eh_in_progress(hba)) {
2482 set_host_byte(cmd, DID_ERROR);
2483 cmd->scsi_done(cmd);
2484 goto out_unlock;
2485 }
2486 spin_unlock_irqrestore(hba->host->host_lock, flags);
2487
2488 hba->req_abort_count = 0;
2489
2490 /* acquire the tag to make sure device cmds don't use it */
2491 if (test_and_set_bit_lock(tag, &hba->lrb_in_use)) {
2492 /*
2493 * Dev manage command in progress, requeue the command.
2494 * Requeuing the command helps in cases where the request *may*
2495 * find different tag instead of waiting for dev manage command
2496 * completion.
2497 */
2498 err = SCSI_MLQUEUE_HOST_BUSY;
2499 goto out;
2500 }
2501
2502 err = ufshcd_hold(hba, true);
2503 if (err) {
2504 err = SCSI_MLQUEUE_HOST_BUSY;
2505 clear_bit_unlock(tag, &hba->lrb_in_use);
2506 goto out;
2507 }
2508 WARN_ON(hba->clk_gating.state != CLKS_ON);
2509
2510 lrbp = &hba->lrb[tag];
2511
2512 WARN_ON(lrbp->cmd);
2513 lrbp->cmd = cmd;
2514 lrbp->sense_bufflen = UFS_SENSE_SIZE;
2515 lrbp->sense_buffer = cmd->sense_buffer;
2516 lrbp->task_tag = tag;
2517 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2518 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2519
2520 err = ufshcd_prepare_lrbp_crypto(hba, cmd, lrbp);
2521 if (err) {
2522 lrbp->cmd = NULL;
2523 clear_bit_unlock(tag, &hba->lrb_in_use);
2524 goto out;
2525 }
2526 lrbp->req_abort_skip = false;
2527
2528 ufshcd_comp_scsi_upiu(hba, lrbp);
2529
2530 err = ufshcd_map_sg(hba, lrbp);
2531 if (err) {
2532 ufshcd_release(hba);
2533 lrbp->cmd = NULL;
2534 clear_bit_unlock(tag, &hba->lrb_in_use);
2535 goto out;
2536 }
2537 /* Make sure descriptors are ready before ringing the doorbell */
2538 wmb();
2539
2540 /* issue command to the controller */
2541 spin_lock_irqsave(hba->host->host_lock, flags);
2542 ufshcd_vops_setup_xfer_req(hba, tag, (lrbp->cmd ? true : false));
2543 ufshcd_send_command(hba, tag);
2544 out_unlock:
2545 spin_unlock_irqrestore(hba->host->host_lock, flags);
2546 out:
2547 up_read(&hba->clk_scaling_lock);
2548 return err;
2549 }
2550
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2551 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2552 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2553 {
2554 lrbp->cmd = NULL;
2555 lrbp->sense_bufflen = 0;
2556 lrbp->sense_buffer = NULL;
2557 lrbp->task_tag = tag;
2558 lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2559 lrbp->intr_cmd = true; /* No interrupt aggregation */
2560 #if IS_ENABLED(CONFIG_SCSI_UFS_CRYPTO)
2561 lrbp->crypto_enable = false; /* No crypto operations */
2562 #endif
2563 hba->dev_cmd.type = cmd_type;
2564
2565 return ufshcd_comp_devman_upiu(hba, lrbp);
2566 }
2567
2568 static int
ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2569 ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
2570 {
2571 int err = 0;
2572 unsigned long flags;
2573 u32 mask = 1 << tag;
2574
2575 /* clear outstanding transaction before retry */
2576 spin_lock_irqsave(hba->host->host_lock, flags);
2577 ufshcd_utrl_clear(hba, tag);
2578 spin_unlock_irqrestore(hba->host->host_lock, flags);
2579
2580 /*
2581 * wait for for h/w to clear corresponding bit in door-bell.
2582 * max. wait is 1 sec.
2583 */
2584 err = ufshcd_wait_for_register(hba,
2585 REG_UTP_TRANSFER_REQ_DOOR_BELL,
2586 mask, ~mask, 1000, 1000, true);
2587
2588 return err;
2589 }
2590
2591 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2592 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2593 {
2594 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2595
2596 /* Get the UPIU response */
2597 query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2598 UPIU_RSP_CODE_OFFSET;
2599 return query_res->response;
2600 }
2601
2602 /**
2603 * ufshcd_dev_cmd_completion() - handles device management command responses
2604 * @hba: per adapter instance
2605 * @lrbp: pointer to local reference block
2606 */
2607 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2608 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2609 {
2610 int resp;
2611 int err = 0;
2612
2613 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2614 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2615
2616 switch (resp) {
2617 case UPIU_TRANSACTION_NOP_IN:
2618 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2619 err = -EINVAL;
2620 dev_err(hba->dev, "%s: unexpected response %x\n",
2621 __func__, resp);
2622 }
2623 break;
2624 case UPIU_TRANSACTION_QUERY_RSP:
2625 err = ufshcd_check_query_response(hba, lrbp);
2626 if (!err)
2627 err = ufshcd_copy_query_response(hba, lrbp);
2628 break;
2629 case UPIU_TRANSACTION_REJECT_UPIU:
2630 /* TODO: handle Reject UPIU Response */
2631 err = -EPERM;
2632 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2633 __func__);
2634 break;
2635 default:
2636 err = -EINVAL;
2637 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2638 __func__, resp);
2639 break;
2640 }
2641
2642 return err;
2643 }
2644
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2645 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2646 struct ufshcd_lrb *lrbp, int max_timeout)
2647 {
2648 int err = 0;
2649 unsigned long time_left;
2650 unsigned long flags;
2651
2652 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2653 msecs_to_jiffies(max_timeout));
2654
2655 /* Make sure descriptors are ready before ringing the doorbell */
2656 wmb();
2657 spin_lock_irqsave(hba->host->host_lock, flags);
2658 hba->dev_cmd.complete = NULL;
2659 if (likely(time_left)) {
2660 err = ufshcd_get_tr_ocs(lrbp);
2661 if (!err)
2662 err = ufshcd_dev_cmd_completion(hba, lrbp);
2663 }
2664 spin_unlock_irqrestore(hba->host->host_lock, flags);
2665
2666 if (!time_left) {
2667 err = -ETIMEDOUT;
2668 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2669 __func__, lrbp->task_tag);
2670 if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
2671 /* successfully cleared the command, retry if needed */
2672 err = -EAGAIN;
2673 /*
2674 * in case of an error, after clearing the doorbell,
2675 * we also need to clear the outstanding_request
2676 * field in hba
2677 */
2678 ufshcd_outstanding_req_clear(hba, lrbp->task_tag);
2679 }
2680
2681 return err;
2682 }
2683
2684 /**
2685 * ufshcd_get_dev_cmd_tag - Get device management command tag
2686 * @hba: per-adapter instance
2687 * @tag_out: pointer to variable with available slot value
2688 *
2689 * Get a free slot and lock it until device management command
2690 * completes.
2691 *
2692 * Returns false if free slot is unavailable for locking, else
2693 * return true with tag value in @tag.
2694 */
ufshcd_get_dev_cmd_tag(struct ufs_hba * hba,int * tag_out)2695 static bool ufshcd_get_dev_cmd_tag(struct ufs_hba *hba, int *tag_out)
2696 {
2697 int tag;
2698 bool ret = false;
2699 unsigned long tmp;
2700
2701 if (!tag_out)
2702 goto out;
2703
2704 do {
2705 tmp = ~hba->lrb_in_use;
2706 tag = find_last_bit(&tmp, hba->nutrs);
2707 if (tag >= hba->nutrs)
2708 goto out;
2709 } while (test_and_set_bit_lock(tag, &hba->lrb_in_use));
2710
2711 *tag_out = tag;
2712 ret = true;
2713 out:
2714 return ret;
2715 }
2716
ufshcd_put_dev_cmd_tag(struct ufs_hba * hba,int tag)2717 static inline void ufshcd_put_dev_cmd_tag(struct ufs_hba *hba, int tag)
2718 {
2719 clear_bit_unlock(tag, &hba->lrb_in_use);
2720 }
2721
2722 /**
2723 * ufshcd_exec_dev_cmd - API for sending device management requests
2724 * @hba: UFS hba
2725 * @cmd_type: specifies the type (NOP, Query...)
2726 * @timeout: time in seconds
2727 *
2728 * NOTE: Since there is only one available tag for device management commands,
2729 * it is expected you hold the hba->dev_cmd.lock mutex.
2730 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)2731 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
2732 enum dev_cmd_type cmd_type, int timeout)
2733 {
2734 struct ufshcd_lrb *lrbp;
2735 int err;
2736 int tag;
2737 struct completion wait;
2738 unsigned long flags;
2739
2740 down_read(&hba->clk_scaling_lock);
2741
2742 /*
2743 * Get free slot, sleep if slots are unavailable.
2744 * Even though we use wait_event() which sleeps indefinitely,
2745 * the maximum wait time is bounded by SCSI request timeout.
2746 */
2747 wait_event(hba->dev_cmd.tag_wq, ufshcd_get_dev_cmd_tag(hba, &tag));
2748
2749 init_completion(&wait);
2750 lrbp = &hba->lrb[tag];
2751 WARN_ON(lrbp->cmd);
2752 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
2753 if (unlikely(err))
2754 goto out_put_tag;
2755
2756 hba->dev_cmd.complete = &wait;
2757
2758 ufshcd_add_query_upiu_trace(hba, tag, "query_send");
2759 /* Make sure descriptors are ready before ringing the doorbell */
2760 wmb();
2761 spin_lock_irqsave(hba->host->host_lock, flags);
2762 ufshcd_vops_setup_xfer_req(hba, tag, (lrbp->cmd ? true : false));
2763 ufshcd_send_command(hba, tag);
2764 spin_unlock_irqrestore(hba->host->host_lock, flags);
2765
2766 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
2767
2768 ufshcd_add_query_upiu_trace(hba, tag,
2769 err ? "query_complete_err" : "query_complete");
2770
2771 out_put_tag:
2772 ufshcd_put_dev_cmd_tag(hba, tag);
2773 wake_up(&hba->dev_cmd.tag_wq);
2774 up_read(&hba->clk_scaling_lock);
2775 return err;
2776 }
2777
2778 /**
2779 * ufshcd_init_query() - init the query response and request parameters
2780 * @hba: per-adapter instance
2781 * @request: address of the request pointer to be initialized
2782 * @response: address of the response pointer to be initialized
2783 * @opcode: operation to perform
2784 * @idn: flag idn to access
2785 * @index: LU number to access
2786 * @selector: query/flag/descriptor further identification
2787 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)2788 static inline void ufshcd_init_query(struct ufs_hba *hba,
2789 struct ufs_query_req **request, struct ufs_query_res **response,
2790 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
2791 {
2792 *request = &hba->dev_cmd.query.request;
2793 *response = &hba->dev_cmd.query.response;
2794 memset(*request, 0, sizeof(struct ufs_query_req));
2795 memset(*response, 0, sizeof(struct ufs_query_res));
2796 (*request)->upiu_req.opcode = opcode;
2797 (*request)->upiu_req.idn = idn;
2798 (*request)->upiu_req.index = index;
2799 (*request)->upiu_req.selector = selector;
2800 }
2801
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,bool * flag_res)2802 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
2803 enum query_opcode opcode, enum flag_idn idn, bool *flag_res)
2804 {
2805 int ret;
2806 int retries;
2807
2808 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
2809 ret = ufshcd_query_flag(hba, opcode, idn, flag_res);
2810 if (ret)
2811 dev_dbg(hba->dev,
2812 "%s: failed with error %d, retries %d\n",
2813 __func__, ret, retries);
2814 else
2815 break;
2816 }
2817
2818 if (ret)
2819 dev_err(hba->dev,
2820 "%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
2821 __func__, opcode, idn, ret, retries);
2822 return ret;
2823 }
2824
2825 /**
2826 * ufshcd_query_flag() - API function for sending flag query requests
2827 * @hba: per-adapter instance
2828 * @opcode: flag query to perform
2829 * @idn: flag idn to access
2830 * @flag_res: the flag value after the query request completes
2831 *
2832 * Returns 0 for success, non-zero in case of failure
2833 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,bool * flag_res)2834 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
2835 enum flag_idn idn, bool *flag_res)
2836 {
2837 struct ufs_query_req *request = NULL;
2838 struct ufs_query_res *response = NULL;
2839 int err, index = 0, selector = 0;
2840 int timeout = QUERY_REQ_TIMEOUT;
2841
2842 BUG_ON(!hba);
2843
2844 ufshcd_hold(hba, false);
2845 mutex_lock(&hba->dev_cmd.lock);
2846 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2847 selector);
2848
2849 switch (opcode) {
2850 case UPIU_QUERY_OPCODE_SET_FLAG:
2851 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
2852 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
2853 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2854 break;
2855 case UPIU_QUERY_OPCODE_READ_FLAG:
2856 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2857 if (!flag_res) {
2858 /* No dummy reads */
2859 dev_err(hba->dev, "%s: Invalid argument for read request\n",
2860 __func__);
2861 err = -EINVAL;
2862 goto out_unlock;
2863 }
2864 break;
2865 default:
2866 dev_err(hba->dev,
2867 "%s: Expected query flag opcode but got = %d\n",
2868 __func__, opcode);
2869 err = -EINVAL;
2870 goto out_unlock;
2871 }
2872
2873 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
2874
2875 if (err) {
2876 dev_err(hba->dev,
2877 "%s: Sending flag query for idn %d failed, err = %d\n",
2878 __func__, idn, err);
2879 goto out_unlock;
2880 }
2881
2882 if (flag_res)
2883 *flag_res = (be32_to_cpu(response->upiu_res.value) &
2884 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
2885
2886 out_unlock:
2887 mutex_unlock(&hba->dev_cmd.lock);
2888 ufshcd_release(hba);
2889 return err;
2890 }
2891 EXPORT_SYMBOL_GPL(ufshcd_query_flag);
2892
2893 /**
2894 * ufshcd_query_attr - API function for sending attribute requests
2895 * @hba: per-adapter instance
2896 * @opcode: attribute opcode
2897 * @idn: attribute idn to access
2898 * @index: index field
2899 * @selector: selector field
2900 * @attr_val: the attribute value after the query request completes
2901 *
2902 * Returns 0 for success, non-zero in case of failure
2903 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2904 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
2905 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
2906 {
2907 struct ufs_query_req *request = NULL;
2908 struct ufs_query_res *response = NULL;
2909 int err;
2910
2911 BUG_ON(!hba);
2912
2913 ufshcd_hold(hba, false);
2914 if (!attr_val) {
2915 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
2916 __func__, opcode);
2917 err = -EINVAL;
2918 goto out;
2919 }
2920
2921 mutex_lock(&hba->dev_cmd.lock);
2922 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2923 selector);
2924
2925 switch (opcode) {
2926 case UPIU_QUERY_OPCODE_WRITE_ATTR:
2927 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2928 request->upiu_req.value = cpu_to_be32(*attr_val);
2929 break;
2930 case UPIU_QUERY_OPCODE_READ_ATTR:
2931 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2932 break;
2933 default:
2934 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
2935 __func__, opcode);
2936 err = -EINVAL;
2937 goto out_unlock;
2938 }
2939
2940 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
2941
2942 if (err) {
2943 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
2944 __func__, opcode, idn, index, err);
2945 goto out_unlock;
2946 }
2947
2948 *attr_val = be32_to_cpu(response->upiu_res.value);
2949
2950 out_unlock:
2951 mutex_unlock(&hba->dev_cmd.lock);
2952 out:
2953 ufshcd_release(hba);
2954 return err;
2955 }
2956 EXPORT_SYMBOL_GPL(ufshcd_query_attr);
2957
2958 /**
2959 * ufshcd_query_attr_retry() - API function for sending query
2960 * attribute with retries
2961 * @hba: per-adapter instance
2962 * @opcode: attribute opcode
2963 * @idn: attribute idn to access
2964 * @index: index field
2965 * @selector: selector field
2966 * @attr_val: the attribute value after the query request
2967 * completes
2968 *
2969 * Returns 0 for success, non-zero in case of failure
2970 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2971 static int ufshcd_query_attr_retry(struct ufs_hba *hba,
2972 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
2973 u32 *attr_val)
2974 {
2975 int ret = 0;
2976 u32 retries;
2977
2978 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
2979 ret = ufshcd_query_attr(hba, opcode, idn, index,
2980 selector, attr_val);
2981 if (ret)
2982 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
2983 __func__, ret, retries);
2984 else
2985 break;
2986 }
2987
2988 if (ret)
2989 dev_err(hba->dev,
2990 "%s: query attribute, idn %d, failed with error %d after %d retires\n",
2991 __func__, idn, ret, QUERY_REQ_RETRIES);
2992 return ret;
2993 }
2994
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)2995 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
2996 enum query_opcode opcode, enum desc_idn idn, u8 index,
2997 u8 selector, u8 *desc_buf, int *buf_len)
2998 {
2999 struct ufs_query_req *request = NULL;
3000 struct ufs_query_res *response = NULL;
3001 int err;
3002
3003 BUG_ON(!hba);
3004
3005 ufshcd_hold(hba, false);
3006 if (!desc_buf) {
3007 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3008 __func__, opcode);
3009 err = -EINVAL;
3010 goto out;
3011 }
3012
3013 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3014 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3015 __func__, *buf_len);
3016 err = -EINVAL;
3017 goto out;
3018 }
3019
3020 mutex_lock(&hba->dev_cmd.lock);
3021 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3022 selector);
3023 hba->dev_cmd.query.descriptor = desc_buf;
3024 request->upiu_req.length = cpu_to_be16(*buf_len);
3025
3026 switch (opcode) {
3027 case UPIU_QUERY_OPCODE_WRITE_DESC:
3028 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3029 break;
3030 case UPIU_QUERY_OPCODE_READ_DESC:
3031 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3032 break;
3033 default:
3034 dev_err(hba->dev,
3035 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3036 __func__, opcode);
3037 err = -EINVAL;
3038 goto out_unlock;
3039 }
3040
3041 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3042
3043 if (err) {
3044 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3045 __func__, opcode, idn, index, err);
3046 goto out_unlock;
3047 }
3048
3049 *buf_len = be16_to_cpu(response->upiu_res.length);
3050
3051 out_unlock:
3052 hba->dev_cmd.query.descriptor = NULL;
3053 mutex_unlock(&hba->dev_cmd.lock);
3054 out:
3055 ufshcd_release(hba);
3056 return err;
3057 }
3058
3059 /**
3060 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3061 * @hba: per-adapter instance
3062 * @opcode: attribute opcode
3063 * @idn: attribute idn to access
3064 * @index: index field
3065 * @selector: selector field
3066 * @desc_buf: the buffer that contains the descriptor
3067 * @buf_len: length parameter passed to the device
3068 *
3069 * Returns 0 for success, non-zero in case of failure.
3070 * The buf_len parameter will contain, on return, the length parameter
3071 * received on the response.
3072 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3073 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3074 enum query_opcode opcode,
3075 enum desc_idn idn, u8 index,
3076 u8 selector,
3077 u8 *desc_buf, int *buf_len)
3078 {
3079 int err;
3080 int retries;
3081
3082 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3083 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3084 selector, desc_buf, buf_len);
3085 if (!err || err == -EINVAL)
3086 break;
3087 }
3088
3089 return err;
3090 }
3091 EXPORT_SYMBOL_GPL(ufshcd_query_descriptor_retry);
3092
3093 /**
3094 * ufshcd_read_desc_length - read the specified descriptor length from header
3095 * @hba: Pointer to adapter instance
3096 * @desc_id: descriptor idn value
3097 * @desc_index: descriptor index
3098 * @desc_length: pointer to variable to read the length of descriptor
3099 *
3100 * Return 0 in case of success, non-zero otherwise
3101 */
ufshcd_read_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,int * desc_length)3102 static int ufshcd_read_desc_length(struct ufs_hba *hba,
3103 enum desc_idn desc_id,
3104 int desc_index,
3105 int *desc_length)
3106 {
3107 int ret;
3108 u8 header[QUERY_DESC_HDR_SIZE];
3109 int header_len = QUERY_DESC_HDR_SIZE;
3110
3111 if (desc_id >= QUERY_DESC_IDN_MAX)
3112 return -EINVAL;
3113
3114 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3115 desc_id, desc_index, 0, header,
3116 &header_len);
3117
3118 if (ret) {
3119 dev_err(hba->dev, "%s: Failed to get descriptor header id %d",
3120 __func__, desc_id);
3121 return ret;
3122 } else if (desc_id != header[QUERY_DESC_DESC_TYPE_OFFSET]) {
3123 dev_warn(hba->dev, "%s: descriptor header id %d and desc_id %d mismatch",
3124 __func__, header[QUERY_DESC_DESC_TYPE_OFFSET],
3125 desc_id);
3126 ret = -EINVAL;
3127 }
3128
3129 *desc_length = header[QUERY_DESC_LENGTH_OFFSET];
3130 return ret;
3131
3132 }
3133
3134 /**
3135 * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3136 * @hba: Pointer to adapter instance
3137 * @desc_id: descriptor idn value
3138 * @desc_len: mapped desc length (out)
3139 *
3140 * Return 0 in case of success, non-zero otherwise
3141 */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3142 int ufshcd_map_desc_id_to_length(struct ufs_hba *hba,
3143 enum desc_idn desc_id, int *desc_len)
3144 {
3145 switch (desc_id) {
3146 case QUERY_DESC_IDN_DEVICE:
3147 *desc_len = hba->desc_size.dev_desc;
3148 break;
3149 case QUERY_DESC_IDN_POWER:
3150 *desc_len = hba->desc_size.pwr_desc;
3151 break;
3152 case QUERY_DESC_IDN_GEOMETRY:
3153 *desc_len = hba->desc_size.geom_desc;
3154 break;
3155 case QUERY_DESC_IDN_CONFIGURATION:
3156 *desc_len = hba->desc_size.conf_desc;
3157 break;
3158 case QUERY_DESC_IDN_UNIT:
3159 *desc_len = hba->desc_size.unit_desc;
3160 break;
3161 case QUERY_DESC_IDN_INTERCONNECT:
3162 *desc_len = hba->desc_size.interc_desc;
3163 break;
3164 case QUERY_DESC_IDN_STRING:
3165 *desc_len = QUERY_DESC_MAX_SIZE;
3166 break;
3167 case QUERY_DESC_IDN_HEALTH:
3168 *desc_len = hba->desc_size.hlth_desc;
3169 break;
3170 case QUERY_DESC_IDN_RFU_0:
3171 case QUERY_DESC_IDN_RFU_1:
3172 *desc_len = 0;
3173 break;
3174 default:
3175 *desc_len = 0;
3176 return -EINVAL;
3177 }
3178 return 0;
3179 }
3180 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3181
3182 /**
3183 * ufshcd_read_desc_param - read the specified descriptor parameter
3184 * @hba: Pointer to adapter instance
3185 * @desc_id: descriptor idn value
3186 * @desc_index: descriptor index
3187 * @param_offset: offset of the parameter to read
3188 * @param_read_buf: pointer to buffer where parameter would be read
3189 * @param_size: sizeof(param_read_buf)
3190 *
3191 * Return 0 in case of success, non-zero otherwise
3192 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3193 int ufshcd_read_desc_param(struct ufs_hba *hba,
3194 enum desc_idn desc_id,
3195 int desc_index,
3196 u8 param_offset,
3197 u8 *param_read_buf,
3198 u8 param_size)
3199 {
3200 int ret;
3201 u8 *desc_buf;
3202 int buff_len;
3203 bool is_kmalloc = true;
3204
3205 /* Safety check */
3206 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3207 return -EINVAL;
3208
3209 /* Get the max length of descriptor from structure filled up at probe
3210 * time.
3211 */
3212 ret = ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3213
3214 /* Sanity checks */
3215 if (ret || !buff_len) {
3216 dev_err(hba->dev, "%s: Failed to get full descriptor length",
3217 __func__);
3218 return ret;
3219 }
3220
3221 /* Check whether we need temp memory */
3222 if (param_offset != 0 || param_size < buff_len) {
3223 desc_buf = kmalloc(buff_len, GFP_KERNEL);
3224 if (!desc_buf)
3225 return -ENOMEM;
3226 } else {
3227 desc_buf = param_read_buf;
3228 is_kmalloc = false;
3229 }
3230
3231 /* Request for full descriptor */
3232 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3233 desc_id, desc_index, 0,
3234 desc_buf, &buff_len);
3235
3236 if (ret) {
3237 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d",
3238 __func__, desc_id, desc_index, param_offset, ret);
3239 goto out;
3240 }
3241
3242 /* Sanity check */
3243 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3244 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header",
3245 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3246 ret = -EINVAL;
3247 goto out;
3248 }
3249
3250 /* Check wherher we will not copy more data, than available */
3251 if (is_kmalloc && param_size > buff_len)
3252 param_size = buff_len;
3253
3254 if (is_kmalloc)
3255 memcpy(param_read_buf, &desc_buf[param_offset], param_size);
3256 out:
3257 if (is_kmalloc)
3258 kfree(desc_buf);
3259 return ret;
3260 }
3261
ufshcd_read_desc(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,void * buf,u32 size)3262 static inline int ufshcd_read_desc(struct ufs_hba *hba,
3263 enum desc_idn desc_id,
3264 int desc_index,
3265 void *buf,
3266 u32 size)
3267 {
3268 return ufshcd_read_desc_param(hba, desc_id, desc_index, 0, buf, size);
3269 }
3270
ufshcd_read_power_desc(struct ufs_hba * hba,u8 * buf,u32 size)3271 static inline int ufshcd_read_power_desc(struct ufs_hba *hba,
3272 u8 *buf,
3273 u32 size)
3274 {
3275 return ufshcd_read_desc(hba, QUERY_DESC_IDN_POWER, 0, buf, size);
3276 }
3277
ufshcd_read_device_desc(struct ufs_hba * hba,u8 * buf,u32 size)3278 static int ufshcd_read_device_desc(struct ufs_hba *hba, u8 *buf, u32 size)
3279 {
3280 return ufshcd_read_desc(hba, QUERY_DESC_IDN_DEVICE, 0, buf, size);
3281 }
3282
3283 /**
3284 * struct uc_string_id - unicode string
3285 *
3286 * @len: size of this descriptor inclusive
3287 * @type: descriptor type
3288 * @uc: unicode string character
3289 */
3290 struct uc_string_id {
3291 u8 len;
3292 u8 type;
3293 wchar_t uc[0];
3294 } __packed;
3295
3296 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3297 static inline char ufshcd_remove_non_printable(u8 ch)
3298 {
3299 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3300 }
3301
3302 /**
3303 * ufshcd_read_string_desc - read string descriptor
3304 * @hba: pointer to adapter instance
3305 * @desc_index: descriptor index
3306 * @buf: pointer to buffer where descriptor would be read,
3307 * the caller should free the memory.
3308 * @ascii: if true convert from unicode to ascii characters
3309 * null terminated string.
3310 *
3311 * Return:
3312 * * string size on success.
3313 * * -ENOMEM: on allocation failure
3314 * * -EINVAL: on a wrong parameter
3315 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3316 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3317 u8 **buf, bool ascii)
3318 {
3319 struct uc_string_id *uc_str;
3320 u8 *str;
3321 int ret;
3322
3323 if (!buf)
3324 return -EINVAL;
3325
3326 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3327 if (!uc_str)
3328 return -ENOMEM;
3329
3330 ret = ufshcd_read_desc(hba, QUERY_DESC_IDN_STRING,
3331 desc_index, uc_str,
3332 QUERY_DESC_MAX_SIZE);
3333 if (ret < 0) {
3334 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3335 QUERY_REQ_RETRIES, ret);
3336 str = NULL;
3337 goto out;
3338 }
3339
3340 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3341 dev_dbg(hba->dev, "String Desc is of zero length\n");
3342 str = NULL;
3343 ret = 0;
3344 goto out;
3345 }
3346
3347 if (ascii) {
3348 ssize_t ascii_len;
3349 int i;
3350 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3351 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3352 str = kzalloc(ascii_len, GFP_KERNEL);
3353 if (!str) {
3354 ret = -ENOMEM;
3355 goto out;
3356 }
3357
3358 /*
3359 * the descriptor contains string in UTF16 format
3360 * we need to convert to utf-8 so it can be displayed
3361 */
3362 ret = utf16s_to_utf8s(uc_str->uc,
3363 uc_str->len - QUERY_DESC_HDR_SIZE,
3364 UTF16_BIG_ENDIAN, str, ascii_len);
3365
3366 /* replace non-printable or non-ASCII characters with spaces */
3367 for (i = 0; i < ret; i++)
3368 str[i] = ufshcd_remove_non_printable(str[i]);
3369
3370 str[ret++] = '\0';
3371
3372 } else {
3373 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3374 if (!str) {
3375 ret = -ENOMEM;
3376 goto out;
3377 }
3378 ret = uc_str->len;
3379 }
3380 out:
3381 *buf = str;
3382 kfree(uc_str);
3383 return ret;
3384 }
3385
3386 /**
3387 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3388 * @hba: Pointer to adapter instance
3389 * @lun: lun id
3390 * @param_offset: offset of the parameter to read
3391 * @param_read_buf: pointer to buffer where parameter would be read
3392 * @param_size: sizeof(param_read_buf)
3393 *
3394 * Return 0 in case of success, non-zero otherwise
3395 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3396 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3397 int lun,
3398 enum unit_desc_param param_offset,
3399 u8 *param_read_buf,
3400 u32 param_size)
3401 {
3402 /*
3403 * Unit descriptors are only available for general purpose LUs (LUN id
3404 * from 0 to 7) and RPMB Well known LU.
3405 */
3406 if (!ufs_is_valid_unit_desc_lun(lun))
3407 return -EOPNOTSUPP;
3408
3409 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3410 param_offset, param_read_buf, param_size);
3411 }
3412
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3413 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3414 {
3415 int err = 0;
3416 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3417
3418 if (hba->dev_info.spec_version >= 0x300) {
3419 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3420 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3421 &gating_wait);
3422 if (err)
3423 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3424 err, gating_wait);
3425
3426 if (gating_wait == 0) {
3427 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3428 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3429 gating_wait);
3430 }
3431
3432 /*
3433 * bRefClkGatingWaitTime defines the minimum time for which the
3434 * reference clock is required by device during transition from
3435 * HS-MODE to LS-MODE or HIBERN8 state. Give it more time to be
3436 * on the safe side.
3437 */
3438 hba->dev_info.clk_gating_wait_us = gating_wait + 50;
3439 }
3440
3441 return err;
3442 }
3443
3444 /**
3445 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3446 * @hba: per adapter instance
3447 *
3448 * 1. Allocate DMA memory for Command Descriptor array
3449 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3450 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3451 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3452 * (UTMRDL)
3453 * 4. Allocate memory for local reference block(lrb).
3454 *
3455 * Returns 0 for success, non-zero in case of failure
3456 */
ufshcd_memory_alloc(struct ufs_hba * hba)3457 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3458 {
3459 size_t utmrdl_size, utrdl_size, ucdl_size;
3460
3461 /* Allocate memory for UTP command descriptors */
3462 ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3463 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3464 ucdl_size,
3465 &hba->ucdl_dma_addr,
3466 GFP_KERNEL);
3467
3468 /*
3469 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3470 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3471 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3472 * be aligned to 128 bytes as well
3473 */
3474 if (!hba->ucdl_base_addr ||
3475 WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3476 dev_err(hba->dev,
3477 "Command Descriptor Memory allocation failed\n");
3478 goto out;
3479 }
3480
3481 /*
3482 * Allocate memory for UTP Transfer descriptors
3483 * UFSHCI requires 1024 byte alignment of UTRD
3484 */
3485 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3486 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3487 utrdl_size,
3488 &hba->utrdl_dma_addr,
3489 GFP_KERNEL);
3490 if (!hba->utrdl_base_addr ||
3491 WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3492 dev_err(hba->dev,
3493 "Transfer Descriptor Memory allocation failed\n");
3494 goto out;
3495 }
3496
3497 /*
3498 * Allocate memory for UTP Task Management descriptors
3499 * UFSHCI requires 1024 byte alignment of UTMRD
3500 */
3501 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3502 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3503 utmrdl_size,
3504 &hba->utmrdl_dma_addr,
3505 GFP_KERNEL);
3506 if (!hba->utmrdl_base_addr ||
3507 WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3508 dev_err(hba->dev,
3509 "Task Management Descriptor Memory allocation failed\n");
3510 goto out;
3511 }
3512
3513 /* Allocate memory for local reference block */
3514 hba->lrb = devm_kcalloc(hba->dev,
3515 hba->nutrs, sizeof(struct ufshcd_lrb),
3516 GFP_KERNEL);
3517 if (!hba->lrb) {
3518 dev_err(hba->dev, "LRB Memory allocation failed\n");
3519 goto out;
3520 }
3521 return 0;
3522 out:
3523 return -ENOMEM;
3524 }
3525
3526 /**
3527 * ufshcd_host_memory_configure - configure local reference block with
3528 * memory offsets
3529 * @hba: per adapter instance
3530 *
3531 * Configure Host memory space
3532 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3533 * address.
3534 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3535 * and PRDT offset.
3536 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3537 * into local reference block.
3538 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3539 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3540 {
3541 struct utp_transfer_cmd_desc *cmd_descp;
3542 struct utp_transfer_req_desc *utrdlp;
3543 dma_addr_t cmd_desc_dma_addr;
3544 dma_addr_t cmd_desc_element_addr;
3545 u16 response_offset;
3546 u16 prdt_offset;
3547 int cmd_desc_size;
3548 int i;
3549
3550 utrdlp = hba->utrdl_base_addr;
3551 cmd_descp = hba->ucdl_base_addr;
3552
3553 response_offset =
3554 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3555 prdt_offset =
3556 offsetof(struct utp_transfer_cmd_desc, prd_table);
3557
3558 cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3559 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3560
3561 for (i = 0; i < hba->nutrs; i++) {
3562 /* Configure UTRD with command descriptor base address */
3563 cmd_desc_element_addr =
3564 (cmd_desc_dma_addr + (cmd_desc_size * i));
3565 utrdlp[i].command_desc_base_addr_lo =
3566 cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3567 utrdlp[i].command_desc_base_addr_hi =
3568 cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3569
3570 /* Response upiu and prdt offset should be in double words */
3571 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3572 utrdlp[i].response_upiu_offset =
3573 cpu_to_le16(response_offset);
3574 utrdlp[i].prd_table_offset =
3575 cpu_to_le16(prdt_offset);
3576 utrdlp[i].response_upiu_length =
3577 cpu_to_le16(ALIGNED_UPIU_SIZE);
3578 } else {
3579 utrdlp[i].response_upiu_offset =
3580 cpu_to_le16((response_offset >> 2));
3581 utrdlp[i].prd_table_offset =
3582 cpu_to_le16((prdt_offset >> 2));
3583 utrdlp[i].response_upiu_length =
3584 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3585 }
3586
3587 hba->lrb[i].utr_descriptor_ptr = (utrdlp + i);
3588 hba->lrb[i].utrd_dma_addr = hba->utrdl_dma_addr +
3589 (i * sizeof(struct utp_transfer_req_desc));
3590 hba->lrb[i].ucd_req_ptr =
3591 (struct utp_upiu_req *)(cmd_descp + i);
3592 hba->lrb[i].ucd_req_dma_addr = cmd_desc_element_addr;
3593 hba->lrb[i].ucd_rsp_ptr =
3594 (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
3595 hba->lrb[i].ucd_rsp_dma_addr = cmd_desc_element_addr +
3596 response_offset;
3597 hba->lrb[i].ucd_prdt_ptr =
3598 (struct ufshcd_sg_entry *)cmd_descp[i].prd_table;
3599 hba->lrb[i].ucd_prdt_dma_addr = cmd_desc_element_addr +
3600 prdt_offset;
3601 }
3602 }
3603
3604 /**
3605 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3606 * @hba: per adapter instance
3607 *
3608 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3609 * in order to initialize the Unipro link startup procedure.
3610 * Once the Unipro links are up, the device connected to the controller
3611 * is detected.
3612 *
3613 * Returns 0 on success, non-zero value on failure
3614 */
ufshcd_dme_link_startup(struct ufs_hba * hba)3615 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3616 {
3617 struct uic_command uic_cmd = {0};
3618 int ret;
3619
3620 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3621
3622 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3623 if (ret)
3624 dev_dbg(hba->dev,
3625 "dme-link-startup: error code %d\n", ret);
3626 return ret;
3627 }
3628 /**
3629 * ufshcd_dme_reset - UIC command for DME_RESET
3630 * @hba: per adapter instance
3631 *
3632 * DME_RESET command is issued in order to reset UniPro stack.
3633 * This function now deal with cold reset.
3634 *
3635 * Returns 0 on success, non-zero value on failure
3636 */
ufshcd_dme_reset(struct ufs_hba * hba)3637 static int ufshcd_dme_reset(struct ufs_hba *hba)
3638 {
3639 struct uic_command uic_cmd = {0};
3640 int ret;
3641
3642 uic_cmd.command = UIC_CMD_DME_RESET;
3643
3644 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3645 if (ret)
3646 dev_err(hba->dev,
3647 "dme-reset: error code %d\n", ret);
3648
3649 return ret;
3650 }
3651
3652 /**
3653 * ufshcd_dme_enable - UIC command for DME_ENABLE
3654 * @hba: per adapter instance
3655 *
3656 * DME_ENABLE command is issued in order to enable UniPro stack.
3657 *
3658 * Returns 0 on success, non-zero value on failure
3659 */
ufshcd_dme_enable(struct ufs_hba * hba)3660 static int ufshcd_dme_enable(struct ufs_hba *hba)
3661 {
3662 struct uic_command uic_cmd = {0};
3663 int ret;
3664
3665 uic_cmd.command = UIC_CMD_DME_ENABLE;
3666
3667 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3668 if (ret)
3669 dev_err(hba->dev,
3670 "dme-reset: error code %d\n", ret);
3671
3672 return ret;
3673 }
3674
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3675 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3676 {
3677 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
3678 unsigned long min_sleep_time_us;
3679
3680 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3681 return;
3682
3683 /*
3684 * last_dme_cmd_tstamp will be 0 only for 1st call to
3685 * this function
3686 */
3687 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3688 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3689 } else {
3690 unsigned long delta =
3691 (unsigned long) ktime_to_us(
3692 ktime_sub(ktime_get(),
3693 hba->last_dme_cmd_tstamp));
3694
3695 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3696 min_sleep_time_us =
3697 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3698 else
3699 return; /* no more delay required */
3700 }
3701
3702 /* allow sleep for extra 50us if needed */
3703 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3704 }
3705
3706 /**
3707 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3708 * @hba: per adapter instance
3709 * @attr_sel: uic command argument1
3710 * @attr_set: attribute set type as uic command argument2
3711 * @mib_val: setting value as uic command argument3
3712 * @peer: indicate whether peer or local
3713 *
3714 * Returns 0 on success, non-zero value on failure
3715 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3716 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3717 u8 attr_set, u32 mib_val, u8 peer)
3718 {
3719 struct uic_command uic_cmd = {0};
3720 static const char *const action[] = {
3721 "dme-set",
3722 "dme-peer-set"
3723 };
3724 const char *set = action[!!peer];
3725 int ret;
3726 int retries = UFS_UIC_COMMAND_RETRIES;
3727
3728 uic_cmd.command = peer ?
3729 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3730 uic_cmd.argument1 = attr_sel;
3731 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3732 uic_cmd.argument3 = mib_val;
3733
3734 do {
3735 /* for peer attributes we retry upon failure */
3736 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3737 if (ret)
3738 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3739 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3740 } while (ret && peer && --retries);
3741
3742 if (ret)
3743 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3744 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3745 UFS_UIC_COMMAND_RETRIES - retries);
3746
3747 return ret;
3748 }
3749 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3750
3751 /**
3752 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3753 * @hba: per adapter instance
3754 * @attr_sel: uic command argument1
3755 * @mib_val: the value of the attribute as returned by the UIC command
3756 * @peer: indicate whether peer or local
3757 *
3758 * Returns 0 on success, non-zero value on failure
3759 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3760 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3761 u32 *mib_val, u8 peer)
3762 {
3763 struct uic_command uic_cmd = {0};
3764 static const char *const action[] = {
3765 "dme-get",
3766 "dme-peer-get"
3767 };
3768 const char *get = action[!!peer];
3769 int ret;
3770 int retries = UFS_UIC_COMMAND_RETRIES;
3771 struct ufs_pa_layer_attr orig_pwr_info;
3772 struct ufs_pa_layer_attr temp_pwr_info;
3773 bool pwr_mode_change = false;
3774
3775 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3776 orig_pwr_info = hba->pwr_info;
3777 temp_pwr_info = orig_pwr_info;
3778
3779 if (orig_pwr_info.pwr_tx == FAST_MODE ||
3780 orig_pwr_info.pwr_rx == FAST_MODE) {
3781 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3782 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3783 pwr_mode_change = true;
3784 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3785 orig_pwr_info.pwr_rx == SLOW_MODE) {
3786 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3787 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3788 pwr_mode_change = true;
3789 }
3790 if (pwr_mode_change) {
3791 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3792 if (ret)
3793 goto out;
3794 }
3795 }
3796
3797 uic_cmd.command = peer ?
3798 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3799 uic_cmd.argument1 = attr_sel;
3800
3801 do {
3802 /* for peer attributes we retry upon failure */
3803 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3804 if (ret)
3805 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
3806 get, UIC_GET_ATTR_ID(attr_sel), ret);
3807 } while (ret && peer && --retries);
3808
3809 if (ret)
3810 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
3811 get, UIC_GET_ATTR_ID(attr_sel),
3812 UFS_UIC_COMMAND_RETRIES - retries);
3813
3814 if (mib_val && !ret)
3815 *mib_val = uic_cmd.argument3;
3816
3817 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
3818 && pwr_mode_change)
3819 ufshcd_change_power_mode(hba, &orig_pwr_info);
3820 out:
3821 return ret;
3822 }
3823 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
3824
3825 /**
3826 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
3827 * state) and waits for it to take effect.
3828 *
3829 * @hba: per adapter instance
3830 * @cmd: UIC command to execute
3831 *
3832 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
3833 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
3834 * and device UniPro link and hence it's final completion would be indicated by
3835 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
3836 * addition to normal UIC command completion Status (UCCS). This function only
3837 * returns after the relevant status bits indicate the completion.
3838 *
3839 * Returns 0 on success, non-zero value on failure
3840 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)3841 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
3842 {
3843 struct completion uic_async_done;
3844 unsigned long flags;
3845 u8 status;
3846 int ret;
3847 bool reenable_intr = false;
3848
3849 mutex_lock(&hba->uic_cmd_mutex);
3850 init_completion(&uic_async_done);
3851 ufshcd_add_delay_before_dme_cmd(hba);
3852
3853 spin_lock_irqsave(hba->host->host_lock, flags);
3854 hba->uic_async_done = &uic_async_done;
3855 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
3856 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
3857 /*
3858 * Make sure UIC command completion interrupt is disabled before
3859 * issuing UIC command.
3860 */
3861 wmb();
3862 reenable_intr = true;
3863 }
3864 ret = __ufshcd_send_uic_cmd(hba, cmd, false);
3865 spin_unlock_irqrestore(hba->host->host_lock, flags);
3866 if (ret) {
3867 dev_err(hba->dev,
3868 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
3869 cmd->command, cmd->argument3, ret);
3870 goto out;
3871 }
3872
3873 if (!wait_for_completion_timeout(hba->uic_async_done,
3874 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
3875 dev_err(hba->dev,
3876 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
3877 cmd->command, cmd->argument3);
3878 ret = -ETIMEDOUT;
3879 goto out;
3880 }
3881
3882 status = ufshcd_get_upmcrs(hba);
3883 if (status != PWR_LOCAL) {
3884 dev_err(hba->dev,
3885 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
3886 cmd->command, status);
3887 ret = (status != PWR_OK) ? status : -1;
3888 }
3889 out:
3890 if (ret) {
3891 ufshcd_print_host_state(hba);
3892 ufshcd_print_pwr_info(hba);
3893 ufshcd_print_host_regs(hba);
3894 }
3895
3896 spin_lock_irqsave(hba->host->host_lock, flags);
3897 hba->active_uic_cmd = NULL;
3898 hba->uic_async_done = NULL;
3899 if (reenable_intr)
3900 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
3901 spin_unlock_irqrestore(hba->host->host_lock, flags);
3902 mutex_unlock(&hba->uic_cmd_mutex);
3903
3904 return ret;
3905 }
3906
3907 /**
3908 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
3909 * using DME_SET primitives.
3910 * @hba: per adapter instance
3911 * @mode: powr mode value
3912 *
3913 * Returns 0 on success, non-zero value on failure
3914 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)3915 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
3916 {
3917 struct uic_command uic_cmd = {0};
3918 int ret;
3919
3920 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
3921 ret = ufshcd_dme_set(hba,
3922 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
3923 if (ret) {
3924 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
3925 __func__, ret);
3926 goto out;
3927 }
3928 }
3929
3930 uic_cmd.command = UIC_CMD_DME_SET;
3931 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
3932 uic_cmd.argument3 = mode;
3933 ufshcd_hold(hba, false);
3934 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3935 ufshcd_release(hba);
3936
3937 out:
3938 return ret;
3939 }
3940
ufshcd_link_recovery(struct ufs_hba * hba)3941 static int ufshcd_link_recovery(struct ufs_hba *hba)
3942 {
3943 int ret;
3944 unsigned long flags;
3945
3946 spin_lock_irqsave(hba->host->host_lock, flags);
3947 hba->ufshcd_state = UFSHCD_STATE_RESET;
3948 ufshcd_set_eh_in_progress(hba);
3949 spin_unlock_irqrestore(hba->host->host_lock, flags);
3950
3951 ret = ufshcd_host_reset_and_restore(hba);
3952
3953 spin_lock_irqsave(hba->host->host_lock, flags);
3954 if (ret)
3955 hba->ufshcd_state = UFSHCD_STATE_ERROR;
3956 ufshcd_clear_eh_in_progress(hba);
3957 spin_unlock_irqrestore(hba->host->host_lock, flags);
3958
3959 if (ret)
3960 dev_err(hba->dev, "%s: link recovery failed, err %d",
3961 __func__, ret);
3962
3963 return ret;
3964 }
3965
__ufshcd_uic_hibern8_enter(struct ufs_hba * hba)3966 static int __ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
3967 {
3968 int ret;
3969 struct uic_command uic_cmd = {0};
3970 ktime_t start = ktime_get();
3971
3972 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
3973
3974 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
3975 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3976 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
3977 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3978
3979 if (ret) {
3980 int err;
3981
3982 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
3983 __func__, ret);
3984
3985 /*
3986 * If link recovery fails then return error code returned from
3987 * ufshcd_link_recovery().
3988 * If link recovery succeeds then return -EAGAIN to attempt
3989 * hibern8 enter retry again.
3990 */
3991 err = ufshcd_link_recovery(hba);
3992 if (err) {
3993 dev_err(hba->dev, "%s: link recovery failed", __func__);
3994 ret = err;
3995 } else {
3996 ret = -EAGAIN;
3997 }
3998 } else
3999 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4000 POST_CHANGE);
4001
4002 return ret;
4003 }
4004
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4005 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4006 {
4007 int ret = 0, retries;
4008
4009 for (retries = UIC_HIBERN8_ENTER_RETRIES; retries > 0; retries--) {
4010 ret = __ufshcd_uic_hibern8_enter(hba);
4011 if (!ret)
4012 goto out;
4013 }
4014 out:
4015 return ret;
4016 }
4017 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4018
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4019 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4020 {
4021 struct uic_command uic_cmd = {0};
4022 int ret;
4023 ktime_t start = ktime_get();
4024
4025 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4026
4027 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4028 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4029 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4030 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4031
4032 if (ret) {
4033 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4034 __func__, ret);
4035 ret = ufshcd_link_recovery(hba);
4036 } else {
4037 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4038 POST_CHANGE);
4039 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
4040 hba->ufs_stats.hibern8_exit_cnt++;
4041 }
4042
4043 return ret;
4044 }
4045 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4046
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4047 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4048 {
4049 unsigned long flags;
4050
4051 if (!ufshcd_is_auto_hibern8_supported(hba) || !hba->ahit)
4052 return;
4053
4054 spin_lock_irqsave(hba->host->host_lock, flags);
4055 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4056 spin_unlock_irqrestore(hba->host->host_lock, flags);
4057 }
4058
4059 /**
4060 * ufshcd_init_pwr_info - setting the POR (power on reset)
4061 * values in hba power info
4062 * @hba: per-adapter instance
4063 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4064 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4065 {
4066 hba->pwr_info.gear_rx = UFS_PWM_G1;
4067 hba->pwr_info.gear_tx = UFS_PWM_G1;
4068 hba->pwr_info.lane_rx = 1;
4069 hba->pwr_info.lane_tx = 1;
4070 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4071 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4072 hba->pwr_info.hs_rate = 0;
4073 }
4074
4075 /**
4076 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4077 * @hba: per-adapter instance
4078 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4079 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4080 {
4081 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4082
4083 if (hba->max_pwr_info.is_valid)
4084 return 0;
4085
4086 pwr_info->pwr_tx = FAST_MODE;
4087 pwr_info->pwr_rx = FAST_MODE;
4088 pwr_info->hs_rate = PA_HS_MODE_B;
4089
4090 /* Get the connected lane count */
4091 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4092 &pwr_info->lane_rx);
4093 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4094 &pwr_info->lane_tx);
4095
4096 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4097 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4098 __func__,
4099 pwr_info->lane_rx,
4100 pwr_info->lane_tx);
4101 return -EINVAL;
4102 }
4103
4104 /*
4105 * First, get the maximum gears of HS speed.
4106 * If a zero value, it means there is no HSGEAR capability.
4107 * Then, get the maximum gears of PWM speed.
4108 */
4109 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4110 if (!pwr_info->gear_rx) {
4111 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4112 &pwr_info->gear_rx);
4113 if (!pwr_info->gear_rx) {
4114 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4115 __func__, pwr_info->gear_rx);
4116 return -EINVAL;
4117 }
4118 pwr_info->pwr_rx = SLOW_MODE;
4119 }
4120
4121 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4122 &pwr_info->gear_tx);
4123 if (!pwr_info->gear_tx) {
4124 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4125 &pwr_info->gear_tx);
4126 if (!pwr_info->gear_tx) {
4127 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4128 __func__, pwr_info->gear_tx);
4129 return -EINVAL;
4130 }
4131 pwr_info->pwr_tx = SLOW_MODE;
4132 }
4133
4134 hba->max_pwr_info.is_valid = true;
4135 return 0;
4136 }
4137
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4138 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4139 struct ufs_pa_layer_attr *pwr_mode)
4140 {
4141 int ret;
4142
4143 /* if already configured to the requested pwr_mode */
4144 if (pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4145 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4146 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4147 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4148 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4149 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4150 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4151 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4152 return 0;
4153 }
4154
4155 /*
4156 * Configure attributes for power mode change with below.
4157 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4158 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4159 * - PA_HSSERIES
4160 */
4161 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4162 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4163 pwr_mode->lane_rx);
4164 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4165 pwr_mode->pwr_rx == FAST_MODE)
4166 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4167 else
4168 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4169
4170 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4171 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4172 pwr_mode->lane_tx);
4173 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4174 pwr_mode->pwr_tx == FAST_MODE)
4175 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4176 else
4177 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4178
4179 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4180 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4181 pwr_mode->pwr_rx == FAST_MODE ||
4182 pwr_mode->pwr_tx == FAST_MODE)
4183 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4184 pwr_mode->hs_rate);
4185
4186 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4187 DL_FC0ProtectionTimeOutVal_Default);
4188 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4189 DL_TC0ReplayTimeOutVal_Default);
4190 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4191 DL_AFC0ReqTimeOutVal_Default);
4192 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4193 DL_FC1ProtectionTimeOutVal_Default);
4194 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4195 DL_TC1ReplayTimeOutVal_Default);
4196 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4197 DL_AFC1ReqTimeOutVal_Default);
4198
4199 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4200 DL_FC0ProtectionTimeOutVal_Default);
4201 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4202 DL_TC0ReplayTimeOutVal_Default);
4203 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4204 DL_AFC0ReqTimeOutVal_Default);
4205
4206 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4207 | pwr_mode->pwr_tx);
4208
4209 if (ret) {
4210 dev_err(hba->dev,
4211 "%s: power mode change failed %d\n", __func__, ret);
4212 } else {
4213 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4214 pwr_mode);
4215
4216 memcpy(&hba->pwr_info, pwr_mode,
4217 sizeof(struct ufs_pa_layer_attr));
4218 }
4219
4220 return ret;
4221 }
4222
4223 /**
4224 * ufshcd_config_pwr_mode - configure a new power mode
4225 * @hba: per-adapter instance
4226 * @desired_pwr_mode: desired power configuration
4227 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4228 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4229 struct ufs_pa_layer_attr *desired_pwr_mode)
4230 {
4231 struct ufs_pa_layer_attr final_params = { 0 };
4232 int ret;
4233
4234 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4235 desired_pwr_mode, &final_params);
4236
4237 if (ret)
4238 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4239
4240 ret = ufshcd_change_power_mode(hba, &final_params);
4241 if (!ret)
4242 ufshcd_print_pwr_info(hba);
4243
4244 return ret;
4245 }
4246 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4247
4248 /**
4249 * ufshcd_complete_dev_init() - checks device readiness
4250 * @hba: per-adapter instance
4251 *
4252 * Set fDeviceInit flag and poll until device toggles it.
4253 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4254 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4255 {
4256 int i;
4257 int err;
4258 bool flag_res = 1;
4259
4260 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4261 QUERY_FLAG_IDN_FDEVICEINIT, NULL);
4262 if (err) {
4263 dev_err(hba->dev,
4264 "%s setting fDeviceInit flag failed with error %d\n",
4265 __func__, err);
4266 goto out;
4267 }
4268
4269 /* poll for max. 1000 iterations for fDeviceInit flag to clear */
4270 for (i = 0; i < 1000 && !err && flag_res; i++)
4271 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4272 QUERY_FLAG_IDN_FDEVICEINIT, &flag_res);
4273
4274 if (err)
4275 dev_err(hba->dev,
4276 "%s reading fDeviceInit flag failed with error %d\n",
4277 __func__, err);
4278 else if (flag_res)
4279 dev_err(hba->dev,
4280 "%s fDeviceInit was not cleared by the device\n",
4281 __func__);
4282
4283 out:
4284 return err;
4285 }
4286
4287 /**
4288 * ufshcd_make_hba_operational - Make UFS controller operational
4289 * @hba: per adapter instance
4290 *
4291 * To bring UFS host controller to operational state,
4292 * 1. Enable required interrupts
4293 * 2. Configure interrupt aggregation
4294 * 3. Program UTRL and UTMRL base address
4295 * 4. Configure run-stop-registers
4296 *
4297 * Returns 0 on success, non-zero value on failure
4298 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4299 static int ufshcd_make_hba_operational(struct ufs_hba *hba)
4300 {
4301 int err = 0;
4302 u32 reg;
4303
4304 /* Enable required interrupts */
4305 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4306
4307 /* Configure interrupt aggregation */
4308 if (ufshcd_is_intr_aggr_allowed(hba))
4309 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4310 else
4311 ufshcd_disable_intr_aggr(hba);
4312
4313 /* Configure UTRL and UTMRL base address registers */
4314 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4315 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4316 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4317 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4318 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4319 REG_UTP_TASK_REQ_LIST_BASE_L);
4320 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4321 REG_UTP_TASK_REQ_LIST_BASE_H);
4322
4323 /*
4324 * Make sure base address and interrupt setup are updated before
4325 * enabling the run/stop registers below.
4326 */
4327 wmb();
4328
4329 /*
4330 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4331 */
4332 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4333 if (!(ufshcd_get_lists_status(reg))) {
4334 ufshcd_enable_run_stop_reg(hba);
4335 } else {
4336 dev_err(hba->dev,
4337 "Host controller not ready to process requests");
4338 err = -EIO;
4339 goto out;
4340 }
4341
4342 out:
4343 return err;
4344 }
4345
4346 /**
4347 * ufshcd_hba_stop - Send controller to reset state
4348 * @hba: per adapter instance
4349 * @can_sleep: perform sleep or just spin
4350 */
ufshcd_hba_stop(struct ufs_hba * hba,bool can_sleep)4351 static inline void ufshcd_hba_stop(struct ufs_hba *hba, bool can_sleep)
4352 {
4353 int err;
4354
4355 ufshcd_crypto_disable(hba);
4356
4357 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4358 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4359 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4360 10, 1, can_sleep);
4361 if (err)
4362 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4363 }
4364
4365 /**
4366 * ufshcd_hba_execute_hce - initialize the controller
4367 * @hba: per adapter instance
4368 *
4369 * The controller resets itself and controller firmware initialization
4370 * sequence kicks off. When controller is ready it will set
4371 * the Host Controller Enable bit to 1.
4372 *
4373 * Returns 0 on success, non-zero value on failure
4374 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4375 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4376 {
4377 int retry;
4378
4379 if (!ufshcd_is_hba_active(hba))
4380 /* change controller state to "reset state" */
4381 ufshcd_hba_stop(hba, true);
4382
4383 /* UniPro link is disabled at this point */
4384 ufshcd_set_link_off(hba);
4385
4386 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4387
4388 /* start controller initialization sequence */
4389 ufshcd_hba_start(hba);
4390
4391 /*
4392 * To initialize a UFS host controller HCE bit must be set to 1.
4393 * During initialization the HCE bit value changes from 1->0->1.
4394 * When the host controller completes initialization sequence
4395 * it sets the value of HCE bit to 1. The same HCE bit is read back
4396 * to check if the controller has completed initialization sequence.
4397 * So without this delay the value HCE = 1, set in the previous
4398 * instruction might be read back.
4399 * This delay can be changed based on the controller.
4400 */
4401 usleep_range(1000, 1100);
4402
4403 /* wait for the host controller to complete initialization */
4404 retry = 10;
4405 while (ufshcd_is_hba_active(hba)) {
4406 if (retry) {
4407 retry--;
4408 } else {
4409 dev_err(hba->dev,
4410 "Controller enable failed\n");
4411 return -EIO;
4412 }
4413 usleep_range(5000, 5100);
4414 }
4415
4416 /* enable UIC related interrupts */
4417 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4418
4419 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4420
4421 return 0;
4422 }
4423
ufshcd_hba_enable(struct ufs_hba * hba)4424 static int ufshcd_hba_enable(struct ufs_hba *hba)
4425 {
4426 int ret;
4427
4428 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4429 ufshcd_set_link_off(hba);
4430 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4431
4432 /* enable UIC related interrupts */
4433 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4434 ret = ufshcd_dme_reset(hba);
4435 if (!ret) {
4436 ret = ufshcd_dme_enable(hba);
4437 if (!ret)
4438 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4439 if (ret)
4440 dev_err(hba->dev,
4441 "Host controller enable failed with non-hce\n");
4442 }
4443 } else {
4444 ret = ufshcd_hba_execute_hce(hba);
4445 }
4446
4447 return ret;
4448 }
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4449 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4450 {
4451 int tx_lanes, i, err = 0;
4452
4453 if (!peer)
4454 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4455 &tx_lanes);
4456 else
4457 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4458 &tx_lanes);
4459 for (i = 0; i < tx_lanes; i++) {
4460 if (!peer)
4461 err = ufshcd_dme_set(hba,
4462 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4463 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4464 0);
4465 else
4466 err = ufshcd_dme_peer_set(hba,
4467 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4468 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4469 0);
4470 if (err) {
4471 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4472 __func__, peer, i, err);
4473 break;
4474 }
4475 }
4476
4477 return err;
4478 }
4479
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4480 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4481 {
4482 return ufshcd_disable_tx_lcc(hba, true);
4483 }
4484
ufshcd_update_reg_hist(struct ufs_err_reg_hist * reg_hist,u32 reg)4485 static void ufshcd_update_reg_hist(struct ufs_err_reg_hist *reg_hist,
4486 u32 reg)
4487 {
4488 reg_hist->reg[reg_hist->pos] = reg;
4489 reg_hist->tstamp[reg_hist->pos] = ktime_get();
4490 reg_hist->pos = (reg_hist->pos + 1) % UFS_ERR_REG_HIST_LENGTH;
4491 }
4492
4493 /**
4494 * ufshcd_link_startup - Initialize unipro link startup
4495 * @hba: per adapter instance
4496 *
4497 * Returns 0 for success, non-zero in case of failure
4498 */
ufshcd_link_startup(struct ufs_hba * hba)4499 static int ufshcd_link_startup(struct ufs_hba *hba)
4500 {
4501 int ret;
4502 int retries = DME_LINKSTARTUP_RETRIES;
4503 bool link_startup_again = false;
4504
4505 /*
4506 * If UFS device isn't active then we will have to issue link startup
4507 * 2 times to make sure the device state move to active.
4508 */
4509 if (!ufshcd_is_ufs_dev_active(hba))
4510 link_startup_again = true;
4511
4512 link_startup:
4513 do {
4514 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4515
4516 ret = ufshcd_dme_link_startup(hba);
4517
4518 /* check if device is detected by inter-connect layer */
4519 if (!ret && !ufshcd_is_device_present(hba)) {
4520 ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4521 0);
4522 dev_err(hba->dev, "%s: Device not present\n", __func__);
4523 ret = -ENXIO;
4524 goto out;
4525 }
4526
4527 /*
4528 * DME link lost indication is only received when link is up,
4529 * but we can't be sure if the link is up until link startup
4530 * succeeds. So reset the local Uni-Pro and try again.
4531 */
4532 if (ret && ufshcd_hba_enable(hba)) {
4533 ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4534 (u32)ret);
4535 goto out;
4536 }
4537 } while (ret && retries--);
4538
4539 if (ret) {
4540 /* failed to get the link up... retire */
4541 ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4542 (u32)ret);
4543 goto out;
4544 }
4545
4546 if (link_startup_again) {
4547 link_startup_again = false;
4548 retries = DME_LINKSTARTUP_RETRIES;
4549 goto link_startup;
4550 }
4551
4552 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4553 ufshcd_init_pwr_info(hba);
4554 ufshcd_print_pwr_info(hba);
4555
4556 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4557 ret = ufshcd_disable_device_tx_lcc(hba);
4558 if (ret)
4559 goto out;
4560 }
4561
4562 /* Include any host controller configuration via UIC commands */
4563 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4564 if (ret)
4565 goto out;
4566
4567 ret = ufshcd_make_hba_operational(hba);
4568 out:
4569 if (ret) {
4570 dev_err(hba->dev, "link startup failed %d\n", ret);
4571 ufshcd_print_host_state(hba);
4572 ufshcd_print_pwr_info(hba);
4573 ufshcd_print_host_regs(hba);
4574 }
4575 return ret;
4576 }
4577
4578 /**
4579 * ufshcd_verify_dev_init() - Verify device initialization
4580 * @hba: per-adapter instance
4581 *
4582 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4583 * device Transport Protocol (UTP) layer is ready after a reset.
4584 * If the UTP layer at the device side is not initialized, it may
4585 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4586 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4587 */
ufshcd_verify_dev_init(struct ufs_hba * hba)4588 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4589 {
4590 int err = 0;
4591 int retries;
4592
4593 ufshcd_hold(hba, false);
4594 mutex_lock(&hba->dev_cmd.lock);
4595 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4596 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4597 NOP_OUT_TIMEOUT);
4598
4599 if (!err || err == -ETIMEDOUT)
4600 break;
4601
4602 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4603 }
4604 mutex_unlock(&hba->dev_cmd.lock);
4605 ufshcd_release(hba);
4606
4607 if (err)
4608 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4609 return err;
4610 }
4611
4612 /**
4613 * ufshcd_set_queue_depth - set lun queue depth
4614 * @sdev: pointer to SCSI device
4615 *
4616 * Read bLUQueueDepth value and activate scsi tagged command
4617 * queueing. For WLUN, queue depth is set to 1. For best-effort
4618 * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4619 * value that host can queue.
4620 */
ufshcd_set_queue_depth(struct scsi_device * sdev)4621 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4622 {
4623 int ret = 0;
4624 u8 lun_qdepth;
4625 struct ufs_hba *hba;
4626
4627 hba = shost_priv(sdev->host);
4628
4629 lun_qdepth = hba->nutrs;
4630 ret = ufshcd_read_unit_desc_param(hba,
4631 ufshcd_scsi_to_upiu_lun(sdev->lun),
4632 UNIT_DESC_PARAM_LU_Q_DEPTH,
4633 &lun_qdepth,
4634 sizeof(lun_qdepth));
4635
4636 /* Some WLUN doesn't support unit descriptor */
4637 if (ret == -EOPNOTSUPP)
4638 lun_qdepth = 1;
4639 else if (!lun_qdepth)
4640 /* eventually, we can figure out the real queue depth */
4641 lun_qdepth = hba->nutrs;
4642 else
4643 lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4644
4645 dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4646 __func__, lun_qdepth);
4647 scsi_change_queue_depth(sdev, lun_qdepth);
4648 }
4649
4650 /*
4651 * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4652 * @hba: per-adapter instance
4653 * @lun: UFS device lun id
4654 * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4655 *
4656 * Returns 0 in case of success and b_lu_write_protect status would be returned
4657 * @b_lu_write_protect parameter.
4658 * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4659 * Returns -EINVAL in case of invalid parameters passed to this function.
4660 */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4661 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4662 u8 lun,
4663 u8 *b_lu_write_protect)
4664 {
4665 int ret;
4666
4667 if (!b_lu_write_protect)
4668 ret = -EINVAL;
4669 /*
4670 * According to UFS device spec, RPMB LU can't be write
4671 * protected so skip reading bLUWriteProtect parameter for
4672 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4673 */
4674 else if (lun >= UFS_UPIU_MAX_GENERAL_LUN)
4675 ret = -ENOTSUPP;
4676 else
4677 ret = ufshcd_read_unit_desc_param(hba,
4678 lun,
4679 UNIT_DESC_PARAM_LU_WR_PROTECT,
4680 b_lu_write_protect,
4681 sizeof(*b_lu_write_protect));
4682 return ret;
4683 }
4684
4685 /**
4686 * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4687 * status
4688 * @hba: per-adapter instance
4689 * @sdev: pointer to SCSI device
4690 *
4691 */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4692 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4693 struct scsi_device *sdev)
4694 {
4695 if (hba->dev_info.f_power_on_wp_en &&
4696 !hba->dev_info.is_lu_power_on_wp) {
4697 u8 b_lu_write_protect;
4698
4699 if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4700 &b_lu_write_protect) &&
4701 (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4702 hba->dev_info.is_lu_power_on_wp = true;
4703 }
4704 }
4705
4706 /**
4707 * ufshcd_slave_alloc - handle initial SCSI device configurations
4708 * @sdev: pointer to SCSI device
4709 *
4710 * Returns success
4711 */
ufshcd_slave_alloc(struct scsi_device * sdev)4712 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4713 {
4714 struct ufs_hba *hba;
4715
4716 hba = shost_priv(sdev->host);
4717
4718 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
4719 sdev->use_10_for_ms = 1;
4720
4721 /* DBD field should be set to 1 in mode sense(10) */
4722 sdev->set_dbd_for_ms = 1;
4723
4724 /* allow SCSI layer to restart the device in case of errors */
4725 sdev->allow_restart = 1;
4726
4727 /* REPORT SUPPORTED OPERATION CODES is not supported */
4728 sdev->no_report_opcodes = 1;
4729
4730 /* WRITE_SAME command is not supported */
4731 sdev->no_write_same = 1;
4732
4733 ufshcd_set_queue_depth(sdev);
4734
4735 ufshcd_get_lu_power_on_wp_status(hba, sdev);
4736
4737 return 0;
4738 }
4739
4740 /**
4741 * ufshcd_change_queue_depth - change queue depth
4742 * @sdev: pointer to SCSI device
4743 * @depth: required depth to set
4744 *
4745 * Change queue depth and make sure the max. limits are not crossed.
4746 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)4747 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
4748 {
4749 struct ufs_hba *hba = shost_priv(sdev->host);
4750
4751 if (depth > hba->nutrs)
4752 depth = hba->nutrs;
4753 return scsi_change_queue_depth(sdev, depth);
4754 }
4755
4756 /**
4757 * ufshcd_slave_configure - adjust SCSI device configurations
4758 * @sdev: pointer to SCSI device
4759 */
ufshcd_slave_configure(struct scsi_device * sdev)4760 static int ufshcd_slave_configure(struct scsi_device *sdev)
4761 {
4762 struct request_queue *q = sdev->request_queue;
4763 struct ufs_hba *hba = shost_priv(sdev->host);
4764
4765 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
4766
4767 ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
4768
4769 if (ufshcd_is_rpm_autosuspend_allowed(hba))
4770 sdev->rpm_autosuspend = 1;
4771
4772 return 0;
4773 }
4774
4775 /**
4776 * ufshcd_slave_destroy - remove SCSI device configurations
4777 * @sdev: pointer to SCSI device
4778 */
ufshcd_slave_destroy(struct scsi_device * sdev)4779 static void ufshcd_slave_destroy(struct scsi_device *sdev)
4780 {
4781 struct ufs_hba *hba;
4782 struct request_queue *q = sdev->request_queue;
4783
4784 hba = shost_priv(sdev->host);
4785 /* Drop the reference as it won't be needed anymore */
4786 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
4787 unsigned long flags;
4788
4789 spin_lock_irqsave(hba->host->host_lock, flags);
4790 hba->sdev_ufs_device = NULL;
4791 spin_unlock_irqrestore(hba->host->host_lock, flags);
4792 }
4793
4794 ufshcd_crypto_destroy_rq_keyslot_manager(hba, q);
4795 }
4796
4797 /**
4798 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
4799 * @lrbp: pointer to local reference block of completed command
4800 * @scsi_status: SCSI command status
4801 *
4802 * Returns value base on SCSI command status
4803 */
4804 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)4805 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
4806 {
4807 int result = 0;
4808
4809 switch (scsi_status) {
4810 case SAM_STAT_CHECK_CONDITION:
4811 ufshcd_copy_sense_data(lrbp);
4812 /* fallthrough */
4813 case SAM_STAT_GOOD:
4814 result |= DID_OK << 16 |
4815 COMMAND_COMPLETE << 8 |
4816 scsi_status;
4817 break;
4818 case SAM_STAT_TASK_SET_FULL:
4819 case SAM_STAT_BUSY:
4820 case SAM_STAT_TASK_ABORTED:
4821 ufshcd_copy_sense_data(lrbp);
4822 result |= scsi_status;
4823 break;
4824 default:
4825 result |= DID_ERROR << 16;
4826 break;
4827 } /* end of switch */
4828
4829 return result;
4830 }
4831
4832 /**
4833 * ufshcd_transfer_rsp_status - Get overall status of the response
4834 * @hba: per adapter instance
4835 * @lrbp: pointer to local reference block of completed command
4836 *
4837 * Returns result of the command to notify SCSI midlayer
4838 */
4839 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)4840 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
4841 {
4842 int result = 0;
4843 int scsi_status;
4844 int ocs;
4845
4846 /* overall command status of utrd */
4847 ocs = ufshcd_get_tr_ocs(lrbp);
4848
4849 switch (ocs) {
4850 case OCS_SUCCESS:
4851 result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
4852 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
4853 switch (result) {
4854 case UPIU_TRANSACTION_RESPONSE:
4855 /*
4856 * get the response UPIU result to extract
4857 * the SCSI command status
4858 */
4859 result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
4860
4861 /*
4862 * get the result based on SCSI status response
4863 * to notify the SCSI midlayer of the command status
4864 */
4865 scsi_status = result & MASK_SCSI_STATUS;
4866 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
4867
4868 /*
4869 * Currently we are only supporting BKOPs exception
4870 * events hence we can ignore BKOPs exception event
4871 * during power management callbacks. BKOPs exception
4872 * event is not expected to be raised in runtime suspend
4873 * callback as it allows the urgent bkops.
4874 * During system suspend, we are anyway forcefully
4875 * disabling the bkops and if urgent bkops is needed
4876 * it will be enabled on system resume. Long term
4877 * solution could be to abort the system suspend if
4878 * UFS device needs urgent BKOPs.
4879 */
4880 if (!hba->pm_op_in_progress &&
4881 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) {
4882 /*
4883 * Prevent suspend once eeh_work is scheduled
4884 * to avoid deadlock between ufshcd_suspend
4885 * and exception event handler.
4886 */
4887 if (schedule_work(&hba->eeh_work))
4888 pm_runtime_get_noresume(hba->dev);
4889 }
4890 break;
4891 case UPIU_TRANSACTION_REJECT_UPIU:
4892 /* TODO: handle Reject UPIU Response */
4893 result = DID_ERROR << 16;
4894 dev_err(hba->dev,
4895 "Reject UPIU not fully implemented\n");
4896 break;
4897 default:
4898 dev_err(hba->dev,
4899 "Unexpected request response code = %x\n",
4900 result);
4901 result = DID_ERROR << 16;
4902 break;
4903 }
4904 break;
4905 case OCS_ABORTED:
4906 result |= DID_ABORT << 16;
4907 break;
4908 case OCS_INVALID_COMMAND_STATUS:
4909 result |= DID_REQUEUE << 16;
4910 break;
4911 case OCS_INVALID_CMD_TABLE_ATTR:
4912 case OCS_INVALID_PRDT_ATTR:
4913 case OCS_MISMATCH_DATA_BUF_SIZE:
4914 case OCS_MISMATCH_RESP_UPIU_SIZE:
4915 case OCS_PEER_COMM_FAILURE:
4916 case OCS_FATAL_ERROR:
4917 case OCS_INVALID_CRYPTO_CONFIG:
4918 case OCS_GENERAL_CRYPTO_ERROR:
4919 default:
4920 result |= DID_ERROR << 16;
4921 dev_err(hba->dev,
4922 "OCS error from controller = %x for tag %d\n",
4923 ocs, lrbp->task_tag);
4924 ufshcd_print_host_regs(hba);
4925 ufshcd_print_host_state(hba);
4926 break;
4927 } /* end of switch */
4928
4929 if ((host_byte(result) != DID_OK) && !hba->silence_err_logs)
4930 ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
4931 return result;
4932 }
4933
4934 /**
4935 * ufshcd_uic_cmd_compl - handle completion of uic command
4936 * @hba: per adapter instance
4937 * @intr_status: interrupt status generated by the controller
4938 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)4939 static void ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
4940 {
4941 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
4942 hba->active_uic_cmd->argument2 |=
4943 ufshcd_get_uic_cmd_result(hba);
4944 hba->active_uic_cmd->argument3 =
4945 ufshcd_get_dme_attr_val(hba);
4946 complete(&hba->active_uic_cmd->done);
4947 }
4948
4949 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done)
4950 complete(hba->uic_async_done);
4951 }
4952
4953 /**
4954 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
4955 * @hba: per adapter instance
4956 * @completed_reqs: requests to complete
4957 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)4958 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
4959 unsigned long completed_reqs)
4960 {
4961 struct ufshcd_lrb *lrbp;
4962 struct scsi_cmnd *cmd;
4963 int result;
4964 int index;
4965
4966 for_each_set_bit(index, &completed_reqs, hba->nutrs) {
4967 lrbp = &hba->lrb[index];
4968 cmd = lrbp->cmd;
4969 if (cmd) {
4970 ufshcd_add_command_trace(hba, index, "complete");
4971 result = ufshcd_transfer_rsp_status(hba, lrbp);
4972 scsi_dma_unmap(cmd);
4973 cmd->result = result;
4974 ufshcd_complete_lrbp_crypto(hba, cmd, lrbp);
4975 /* Mark completed command as NULL in LRB */
4976 lrbp->cmd = NULL;
4977 lrbp->compl_time_stamp = ktime_get();
4978 clear_bit_unlock(index, &hba->lrb_in_use);
4979 /* Do not touch lrbp after scsi done */
4980 cmd->scsi_done(cmd);
4981 __ufshcd_release(hba);
4982 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
4983 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
4984 lrbp->compl_time_stamp = ktime_get();
4985 if (hba->dev_cmd.complete) {
4986 ufshcd_add_command_trace(hba, index,
4987 "dev_complete");
4988 complete(hba->dev_cmd.complete);
4989 }
4990 }
4991 if (ufshcd_is_clkscaling_supported(hba))
4992 hba->clk_scaling.active_reqs--;
4993 }
4994
4995 /* clear corresponding bits of completed commands */
4996 hba->outstanding_reqs ^= completed_reqs;
4997
4998 ufshcd_clk_scaling_update_busy(hba);
4999
5000 /* we might have free'd some tags above */
5001 wake_up(&hba->dev_cmd.tag_wq);
5002 }
5003
5004 /**
5005 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5006 * @hba: per adapter instance
5007 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5008 static void ufshcd_transfer_req_compl(struct ufs_hba *hba)
5009 {
5010 unsigned long completed_reqs;
5011 u32 tr_doorbell;
5012
5013 /* Resetting interrupt aggregation counters first and reading the
5014 * DOOR_BELL afterward allows us to handle all the completed requests.
5015 * In order to prevent other interrupts starvation the DB is read once
5016 * after reset. The down side of this solution is the possibility of
5017 * false interrupt if device completes another request after resetting
5018 * aggregation and before reading the DB.
5019 */
5020 if (ufshcd_is_intr_aggr_allowed(hba) &&
5021 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5022 ufshcd_reset_intr_aggr(hba);
5023
5024 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5025 completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
5026
5027 __ufshcd_transfer_req_compl(hba, completed_reqs);
5028 }
5029
5030 /**
5031 * ufshcd_disable_ee - disable exception event
5032 * @hba: per-adapter instance
5033 * @mask: exception event to disable
5034 *
5035 * Disables exception event in the device so that the EVENT_ALERT
5036 * bit is not set.
5037 *
5038 * Returns zero on success, non-zero error value on failure.
5039 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5040 static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5041 {
5042 int err = 0;
5043 u32 val;
5044
5045 if (!(hba->ee_ctrl_mask & mask))
5046 goto out;
5047
5048 val = hba->ee_ctrl_mask & ~mask;
5049 val &= MASK_EE_STATUS;
5050 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5051 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5052 if (!err)
5053 hba->ee_ctrl_mask &= ~mask;
5054 out:
5055 return err;
5056 }
5057
5058 /**
5059 * ufshcd_enable_ee - enable exception event
5060 * @hba: per-adapter instance
5061 * @mask: exception event to enable
5062 *
5063 * Enable corresponding exception event in the device to allow
5064 * device to alert host in critical scenarios.
5065 *
5066 * Returns zero on success, non-zero error value on failure.
5067 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5068 static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5069 {
5070 int err = 0;
5071 u32 val;
5072
5073 if (hba->ee_ctrl_mask & mask)
5074 goto out;
5075
5076 val = hba->ee_ctrl_mask | mask;
5077 val &= MASK_EE_STATUS;
5078 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5079 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5080 if (!err)
5081 hba->ee_ctrl_mask |= mask;
5082 out:
5083 return err;
5084 }
5085
5086 /**
5087 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5088 * @hba: per-adapter instance
5089 *
5090 * Allow device to manage background operations on its own. Enabling
5091 * this might lead to inconsistent latencies during normal data transfers
5092 * as the device is allowed to manage its own way of handling background
5093 * operations.
5094 *
5095 * Returns zero on success, non-zero on failure.
5096 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5097 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5098 {
5099 int err = 0;
5100
5101 if (hba->auto_bkops_enabled)
5102 goto out;
5103
5104 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5105 QUERY_FLAG_IDN_BKOPS_EN, NULL);
5106 if (err) {
5107 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5108 __func__, err);
5109 goto out;
5110 }
5111
5112 hba->auto_bkops_enabled = true;
5113 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5114
5115 /* No need of URGENT_BKOPS exception from the device */
5116 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5117 if (err)
5118 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5119 __func__, err);
5120 out:
5121 return err;
5122 }
5123
5124 /**
5125 * ufshcd_disable_auto_bkops - block device in doing background operations
5126 * @hba: per-adapter instance
5127 *
5128 * Disabling background operations improves command response latency but
5129 * has drawback of device moving into critical state where the device is
5130 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5131 * host is idle so that BKOPS are managed effectively without any negative
5132 * impacts.
5133 *
5134 * Returns zero on success, non-zero on failure.
5135 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5136 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5137 {
5138 int err = 0;
5139
5140 if (!hba->auto_bkops_enabled)
5141 goto out;
5142
5143 /*
5144 * If host assisted BKOPs is to be enabled, make sure
5145 * urgent bkops exception is allowed.
5146 */
5147 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5148 if (err) {
5149 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5150 __func__, err);
5151 goto out;
5152 }
5153
5154 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5155 QUERY_FLAG_IDN_BKOPS_EN, NULL);
5156 if (err) {
5157 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5158 __func__, err);
5159 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5160 goto out;
5161 }
5162
5163 hba->auto_bkops_enabled = false;
5164 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5165 hba->is_urgent_bkops_lvl_checked = false;
5166 out:
5167 return err;
5168 }
5169
5170 /**
5171 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5172 * @hba: per adapter instance
5173 *
5174 * After a device reset the device may toggle the BKOPS_EN flag
5175 * to default value. The s/w tracking variables should be updated
5176 * as well. This function would change the auto-bkops state based on
5177 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5178 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5179 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5180 {
5181 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5182 hba->auto_bkops_enabled = false;
5183 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5184 ufshcd_enable_auto_bkops(hba);
5185 } else {
5186 hba->auto_bkops_enabled = true;
5187 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5188 ufshcd_disable_auto_bkops(hba);
5189 }
5190 hba->is_urgent_bkops_lvl_checked = false;
5191 }
5192
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5193 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5194 {
5195 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5196 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5197 }
5198
5199 /**
5200 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5201 * @hba: per-adapter instance
5202 * @status: bkops_status value
5203 *
5204 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5205 * flag in the device to permit background operations if the device
5206 * bkops_status is greater than or equal to "status" argument passed to
5207 * this function, disable otherwise.
5208 *
5209 * Returns 0 for success, non-zero in case of failure.
5210 *
5211 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5212 * to know whether auto bkops is enabled or disabled after this function
5213 * returns control to it.
5214 */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5215 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5216 enum bkops_status status)
5217 {
5218 int err;
5219 u32 curr_status = 0;
5220
5221 err = ufshcd_get_bkops_status(hba, &curr_status);
5222 if (err) {
5223 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5224 __func__, err);
5225 goto out;
5226 } else if (curr_status > BKOPS_STATUS_MAX) {
5227 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5228 __func__, curr_status);
5229 err = -EINVAL;
5230 goto out;
5231 }
5232
5233 if (curr_status >= status)
5234 err = ufshcd_enable_auto_bkops(hba);
5235 else
5236 err = ufshcd_disable_auto_bkops(hba);
5237 hba->urgent_bkops_lvl = curr_status;
5238 out:
5239 return err;
5240 }
5241
5242 /**
5243 * ufshcd_urgent_bkops - handle urgent bkops exception event
5244 * @hba: per-adapter instance
5245 *
5246 * Enable fBackgroundOpsEn flag in the device to permit background
5247 * operations.
5248 *
5249 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5250 * and negative error value for any other failure.
5251 */
ufshcd_urgent_bkops(struct ufs_hba * hba)5252 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5253 {
5254 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5255 }
5256
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5257 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5258 {
5259 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5260 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5261 }
5262
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5263 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5264 {
5265 int err;
5266 u32 curr_status = 0;
5267
5268 if (hba->is_urgent_bkops_lvl_checked)
5269 goto enable_auto_bkops;
5270
5271 err = ufshcd_get_bkops_status(hba, &curr_status);
5272 if (err) {
5273 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5274 __func__, err);
5275 goto out;
5276 }
5277
5278 /*
5279 * We are seeing that some devices are raising the urgent bkops
5280 * exception events even when BKOPS status doesn't indicate performace
5281 * impacted or critical. Handle these device by determining their urgent
5282 * bkops status at runtime.
5283 */
5284 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5285 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5286 __func__, curr_status);
5287 /* update the current status as the urgent bkops level */
5288 hba->urgent_bkops_lvl = curr_status;
5289 hba->is_urgent_bkops_lvl_checked = true;
5290 }
5291
5292 enable_auto_bkops:
5293 err = ufshcd_enable_auto_bkops(hba);
5294 out:
5295 if (err < 0)
5296 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5297 __func__, err);
5298 }
5299
5300 /**
5301 * ufshcd_exception_event_handler - handle exceptions raised by device
5302 * @work: pointer to work data
5303 *
5304 * Read bExceptionEventStatus attribute from the device and handle the
5305 * exception event accordingly.
5306 */
ufshcd_exception_event_handler(struct work_struct * work)5307 static void ufshcd_exception_event_handler(struct work_struct *work)
5308 {
5309 struct ufs_hba *hba;
5310 int err;
5311 u32 status = 0;
5312 hba = container_of(work, struct ufs_hba, eeh_work);
5313
5314 pm_runtime_get_sync(hba->dev);
5315 scsi_block_requests(hba->host);
5316 err = ufshcd_get_ee_status(hba, &status);
5317 if (err) {
5318 dev_err(hba->dev, "%s: failed to get exception status %d\n",
5319 __func__, err);
5320 goto out;
5321 }
5322
5323 status &= hba->ee_ctrl_mask;
5324
5325 if (status & MASK_EE_URGENT_BKOPS)
5326 ufshcd_bkops_exception_event_handler(hba);
5327
5328 out:
5329 scsi_unblock_requests(hba->host);
5330 /*
5331 * pm_runtime_get_noresume is called while scheduling
5332 * eeh_work to avoid suspend racing with exception work.
5333 * Hence decrement usage counter using pm_runtime_put_noidle
5334 * to allow suspend on completion of exception event handler.
5335 */
5336 pm_runtime_put_noidle(hba->dev);
5337 pm_runtime_put(hba->dev);
5338 return;
5339 }
5340
5341 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5342 static void ufshcd_complete_requests(struct ufs_hba *hba)
5343 {
5344 ufshcd_transfer_req_compl(hba);
5345 ufshcd_tmc_handler(hba);
5346 }
5347
5348 /**
5349 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5350 * to recover from the DL NAC errors or not.
5351 * @hba: per-adapter instance
5352 *
5353 * Returns true if error handling is required, false otherwise
5354 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5355 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5356 {
5357 unsigned long flags;
5358 bool err_handling = true;
5359
5360 spin_lock_irqsave(hba->host->host_lock, flags);
5361 /*
5362 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5363 * device fatal error and/or DL NAC & REPLAY timeout errors.
5364 */
5365 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5366 goto out;
5367
5368 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5369 ((hba->saved_err & UIC_ERROR) &&
5370 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5371 goto out;
5372
5373 if ((hba->saved_err & UIC_ERROR) &&
5374 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5375 int err;
5376 /*
5377 * wait for 50ms to see if we can get any other errors or not.
5378 */
5379 spin_unlock_irqrestore(hba->host->host_lock, flags);
5380 msleep(50);
5381 spin_lock_irqsave(hba->host->host_lock, flags);
5382
5383 /*
5384 * now check if we have got any other severe errors other than
5385 * DL NAC error?
5386 */
5387 if ((hba->saved_err & INT_FATAL_ERRORS) ||
5388 ((hba->saved_err & UIC_ERROR) &&
5389 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
5390 goto out;
5391
5392 /*
5393 * As DL NAC is the only error received so far, send out NOP
5394 * command to confirm if link is still active or not.
5395 * - If we don't get any response then do error recovery.
5396 * - If we get response then clear the DL NAC error bit.
5397 */
5398
5399 spin_unlock_irqrestore(hba->host->host_lock, flags);
5400 err = ufshcd_verify_dev_init(hba);
5401 spin_lock_irqsave(hba->host->host_lock, flags);
5402
5403 if (err)
5404 goto out;
5405
5406 /* Link seems to be alive hence ignore the DL NAC errors */
5407 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
5408 hba->saved_err &= ~UIC_ERROR;
5409 /* clear NAC error */
5410 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5411 if (!hba->saved_uic_err) {
5412 err_handling = false;
5413 goto out;
5414 }
5415 }
5416 out:
5417 spin_unlock_irqrestore(hba->host->host_lock, flags);
5418 return err_handling;
5419 }
5420
5421 /**
5422 * ufshcd_err_handler - handle UFS errors that require s/w attention
5423 * @work: pointer to work structure
5424 */
ufshcd_err_handler(struct work_struct * work)5425 static void ufshcd_err_handler(struct work_struct *work)
5426 {
5427 struct ufs_hba *hba;
5428 unsigned long flags;
5429 u32 err_xfer = 0;
5430 u32 err_tm = 0;
5431 int err = 0;
5432 int tag;
5433 bool needs_reset = false;
5434
5435 hba = container_of(work, struct ufs_hba, eh_work);
5436
5437 pm_runtime_get_sync(hba->dev);
5438 ufshcd_hold(hba, false);
5439
5440 spin_lock_irqsave(hba->host->host_lock, flags);
5441 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
5442 goto out;
5443
5444 hba->ufshcd_state = UFSHCD_STATE_RESET;
5445 ufshcd_set_eh_in_progress(hba);
5446
5447 /* Complete requests that have door-bell cleared by h/w */
5448 ufshcd_complete_requests(hba);
5449
5450 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5451 bool ret;
5452
5453 spin_unlock_irqrestore(hba->host->host_lock, flags);
5454 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
5455 ret = ufshcd_quirk_dl_nac_errors(hba);
5456 spin_lock_irqsave(hba->host->host_lock, flags);
5457 if (!ret)
5458 goto skip_err_handling;
5459 }
5460 if ((hba->saved_err & INT_FATAL_ERRORS) ||
5461 (hba->saved_err & UFSHCD_UIC_HIBERN8_MASK) ||
5462 ((hba->saved_err & UIC_ERROR) &&
5463 (hba->saved_uic_err & (UFSHCD_UIC_DL_PA_INIT_ERROR |
5464 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
5465 UFSHCD_UIC_DL_TCx_REPLAY_ERROR))))
5466 needs_reset = true;
5467
5468 /*
5469 * if host reset is required then skip clearing the pending
5470 * transfers forcefully because they will get cleared during
5471 * host reset and restore
5472 */
5473 if (needs_reset)
5474 goto skip_pending_xfer_clear;
5475
5476 /* release lock as clear command might sleep */
5477 spin_unlock_irqrestore(hba->host->host_lock, flags);
5478 /* Clear pending transfer requests */
5479 for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
5480 if (ufshcd_clear_cmd(hba, tag)) {
5481 err_xfer = true;
5482 goto lock_skip_pending_xfer_clear;
5483 }
5484 }
5485
5486 /* Clear pending task management requests */
5487 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
5488 if (ufshcd_clear_tm_cmd(hba, tag)) {
5489 err_tm = true;
5490 goto lock_skip_pending_xfer_clear;
5491 }
5492 }
5493
5494 lock_skip_pending_xfer_clear:
5495 spin_lock_irqsave(hba->host->host_lock, flags);
5496
5497 /* Complete the requests that are cleared by s/w */
5498 ufshcd_complete_requests(hba);
5499
5500 if (err_xfer || err_tm)
5501 needs_reset = true;
5502
5503 skip_pending_xfer_clear:
5504 /* Fatal errors need reset */
5505 if (needs_reset) {
5506 unsigned long max_doorbells = (1UL << hba->nutrs) - 1;
5507
5508 /*
5509 * ufshcd_reset_and_restore() does the link reinitialization
5510 * which will need atleast one empty doorbell slot to send the
5511 * device management commands (NOP and query commands).
5512 * If there is no slot empty at this moment then free up last
5513 * slot forcefully.
5514 */
5515 if (hba->outstanding_reqs == max_doorbells)
5516 __ufshcd_transfer_req_compl(hba,
5517 (1UL << (hba->nutrs - 1)));
5518
5519 spin_unlock_irqrestore(hba->host->host_lock, flags);
5520 err = ufshcd_reset_and_restore(hba);
5521 spin_lock_irqsave(hba->host->host_lock, flags);
5522 if (err) {
5523 dev_err(hba->dev, "%s: reset and restore failed\n",
5524 __func__);
5525 hba->ufshcd_state = UFSHCD_STATE_ERROR;
5526 }
5527 /*
5528 * Inform scsi mid-layer that we did reset and allow to handle
5529 * Unit Attention properly.
5530 */
5531 scsi_report_bus_reset(hba->host, 0);
5532 hba->saved_err = 0;
5533 hba->saved_uic_err = 0;
5534 }
5535
5536 skip_err_handling:
5537 if (!needs_reset) {
5538 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5539 if (hba->saved_err || hba->saved_uic_err)
5540 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
5541 __func__, hba->saved_err, hba->saved_uic_err);
5542 }
5543
5544 ufshcd_clear_eh_in_progress(hba);
5545
5546 out:
5547 spin_unlock_irqrestore(hba->host->host_lock, flags);
5548 ufshcd_scsi_unblock_requests(hba);
5549 ufshcd_release(hba);
5550 pm_runtime_put_sync(hba->dev);
5551 }
5552
5553 /**
5554 * ufshcd_update_uic_error - check and set fatal UIC error flags.
5555 * @hba: per-adapter instance
5556 */
ufshcd_update_uic_error(struct ufs_hba * hba)5557 static void ufshcd_update_uic_error(struct ufs_hba *hba)
5558 {
5559 u32 reg;
5560
5561 /* PHY layer lane error */
5562 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5563 /* Ignore LINERESET indication, as this is not an error */
5564 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
5565 (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)) {
5566 /*
5567 * To know whether this error is fatal or not, DB timeout
5568 * must be checked but this error is handled separately.
5569 */
5570 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", __func__);
5571 ufshcd_update_reg_hist(&hba->ufs_stats.pa_err, reg);
5572 }
5573
5574 /* PA_INIT_ERROR is fatal and needs UIC reset */
5575 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
5576 if (reg)
5577 ufshcd_update_reg_hist(&hba->ufs_stats.dl_err, reg);
5578
5579 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
5580 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
5581 else if (hba->dev_quirks &
5582 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5583 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
5584 hba->uic_error |=
5585 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5586 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
5587 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
5588 }
5589
5590 /* UIC NL/TL/DME errors needs software retry */
5591 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
5592 if (reg) {
5593 ufshcd_update_reg_hist(&hba->ufs_stats.nl_err, reg);
5594 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
5595 }
5596
5597 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
5598 if (reg) {
5599 ufshcd_update_reg_hist(&hba->ufs_stats.tl_err, reg);
5600 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
5601 }
5602
5603 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
5604 if (reg) {
5605 ufshcd_update_reg_hist(&hba->ufs_stats.dme_err, reg);
5606 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
5607 }
5608
5609 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
5610 __func__, hba->uic_error);
5611 }
5612
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5613 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5614 u32 intr_mask)
5615 {
5616 if (!ufshcd_is_auto_hibern8_supported(hba))
5617 return false;
5618
5619 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5620 return false;
5621
5622 if (hba->active_uic_cmd &&
5623 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5624 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5625 return false;
5626
5627 return true;
5628 }
5629
5630 /**
5631 * ufshcd_check_errors - Check for errors that need s/w attention
5632 * @hba: per-adapter instance
5633 */
ufshcd_check_errors(struct ufs_hba * hba)5634 static void ufshcd_check_errors(struct ufs_hba *hba)
5635 {
5636 bool queue_eh_work = false;
5637
5638 if (hba->errors & INT_FATAL_ERRORS) {
5639 ufshcd_update_reg_hist(&hba->ufs_stats.fatal_err, hba->errors);
5640 queue_eh_work = true;
5641 }
5642
5643 if (hba->errors & UIC_ERROR) {
5644 hba->uic_error = 0;
5645 ufshcd_update_uic_error(hba);
5646 if (hba->uic_error)
5647 queue_eh_work = true;
5648 }
5649
5650 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
5651 dev_err(hba->dev,
5652 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
5653 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
5654 "Enter" : "Exit",
5655 hba->errors, ufshcd_get_upmcrs(hba));
5656 ufshcd_update_reg_hist(&hba->ufs_stats.auto_hibern8_err,
5657 hba->errors);
5658 queue_eh_work = true;
5659 }
5660
5661 if (queue_eh_work) {
5662 /*
5663 * update the transfer error masks to sticky bits, let's do this
5664 * irrespective of current ufshcd_state.
5665 */
5666 hba->saved_err |= hba->errors;
5667 hba->saved_uic_err |= hba->uic_error;
5668
5669 /* handle fatal errors only when link is functional */
5670 if (hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) {
5671 /* block commands from scsi mid-layer */
5672 ufshcd_scsi_block_requests(hba);
5673
5674 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED;
5675
5676 /* dump controller state before resetting */
5677 if (hba->saved_err & (INT_FATAL_ERRORS | UIC_ERROR)) {
5678 bool pr_prdt = !!(hba->saved_err &
5679 SYSTEM_BUS_FATAL_ERROR);
5680
5681 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
5682 __func__, hba->saved_err,
5683 hba->saved_uic_err);
5684
5685 ufshcd_print_host_regs(hba);
5686 ufshcd_print_pwr_info(hba);
5687 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
5688 ufshcd_print_trs(hba, hba->outstanding_reqs,
5689 pr_prdt);
5690 }
5691 schedule_work(&hba->eh_work);
5692 }
5693 }
5694 /*
5695 * if (!queue_eh_work) -
5696 * Other errors are either non-fatal where host recovers
5697 * itself without s/w intervention or errors that will be
5698 * handled by the SCSI core layer.
5699 */
5700 }
5701
5702 /**
5703 * ufshcd_tmc_handler - handle task management function completion
5704 * @hba: per adapter instance
5705 */
ufshcd_tmc_handler(struct ufs_hba * hba)5706 static void ufshcd_tmc_handler(struct ufs_hba *hba)
5707 {
5708 u32 tm_doorbell;
5709
5710 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
5711 hba->tm_condition = tm_doorbell ^ hba->outstanding_tasks;
5712 wake_up(&hba->tm_wq);
5713 }
5714
5715 /**
5716 * ufshcd_sl_intr - Interrupt service routine
5717 * @hba: per adapter instance
5718 * @intr_status: contains interrupts generated by the controller
5719 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)5720 static void ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
5721 {
5722 hba->errors = UFSHCD_ERROR_MASK & intr_status;
5723
5724 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5725 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5726
5727 if (hba->errors)
5728 ufshcd_check_errors(hba);
5729
5730 if (intr_status & UFSHCD_UIC_MASK)
5731 ufshcd_uic_cmd_compl(hba, intr_status);
5732
5733 if (intr_status & UTP_TASK_REQ_COMPL)
5734 ufshcd_tmc_handler(hba);
5735
5736 if (intr_status & UTP_TRANSFER_REQ_COMPL)
5737 ufshcd_transfer_req_compl(hba);
5738 }
5739
5740 /**
5741 * ufshcd_intr - Main interrupt service routine
5742 * @irq: irq number
5743 * @__hba: pointer to adapter instance
5744 *
5745 * Returns IRQ_HANDLED - If interrupt is valid
5746 * IRQ_NONE - If invalid interrupt
5747 */
ufshcd_intr(int irq,void * __hba)5748 static irqreturn_t ufshcd_intr(int irq, void *__hba)
5749 {
5750 u32 intr_status, enabled_intr_status;
5751 irqreturn_t retval = IRQ_NONE;
5752 struct ufs_hba *hba = __hba;
5753 int retries = hba->nutrs;
5754
5755 spin_lock(hba->host->host_lock);
5756 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
5757
5758 /*
5759 * There could be max of hba->nutrs reqs in flight and in worst case
5760 * if the reqs get finished 1 by 1 after the interrupt status is
5761 * read, make sure we handle them by checking the interrupt status
5762 * again in a loop until we process all of the reqs before returning.
5763 */
5764 do {
5765 enabled_intr_status =
5766 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
5767 if (intr_status)
5768 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
5769 if (enabled_intr_status) {
5770 ufshcd_sl_intr(hba, enabled_intr_status);
5771 retval = IRQ_HANDLED;
5772 }
5773
5774 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
5775 } while (intr_status && --retries);
5776
5777 spin_unlock(hba->host->host_lock);
5778 return retval;
5779 }
5780
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)5781 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
5782 {
5783 int err = 0;
5784 u32 mask = 1 << tag;
5785 unsigned long flags;
5786
5787 if (!test_bit(tag, &hba->outstanding_tasks))
5788 goto out;
5789
5790 spin_lock_irqsave(hba->host->host_lock, flags);
5791 ufshcd_utmrl_clear(hba, tag);
5792 spin_unlock_irqrestore(hba->host->host_lock, flags);
5793
5794 /* poll for max. 1 sec to clear door bell register by h/w */
5795 err = ufshcd_wait_for_register(hba,
5796 REG_UTP_TASK_REQ_DOOR_BELL,
5797 mask, 0, 1000, 1000, true);
5798 out:
5799 return err;
5800 }
5801
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)5802 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
5803 struct utp_task_req_desc *treq, u8 tm_function)
5804 {
5805 struct Scsi_Host *host = hba->host;
5806 unsigned long flags;
5807 int free_slot, task_tag, err;
5808
5809 /*
5810 * Get free slot, sleep if slots are unavailable.
5811 * Even though we use wait_event() which sleeps indefinitely,
5812 * the maximum wait time is bounded by %TM_CMD_TIMEOUT.
5813 */
5814 wait_event(hba->tm_tag_wq, ufshcd_get_tm_free_slot(hba, &free_slot));
5815 ufshcd_hold(hba, false);
5816
5817 spin_lock_irqsave(host->host_lock, flags);
5818 task_tag = hba->nutrs + free_slot;
5819
5820 treq->req_header.dword_0 |= cpu_to_be32(task_tag);
5821
5822 memcpy(hba->utmrdl_base_addr + free_slot, treq, sizeof(*treq));
5823 ufshcd_vops_setup_task_mgmt(hba, free_slot, tm_function);
5824
5825 /* send command to the controller */
5826 __set_bit(free_slot, &hba->outstanding_tasks);
5827
5828 /* Make sure descriptors are ready before ringing the task doorbell */
5829 wmb();
5830
5831 ufshcd_writel(hba, 1 << free_slot, REG_UTP_TASK_REQ_DOOR_BELL);
5832 /* Make sure that doorbell is committed immediately */
5833 wmb();
5834
5835 spin_unlock_irqrestore(host->host_lock, flags);
5836
5837 ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_send");
5838
5839 /* wait until the task management command is completed */
5840 err = wait_event_timeout(hba->tm_wq,
5841 test_bit(free_slot, &hba->tm_condition),
5842 msecs_to_jiffies(TM_CMD_TIMEOUT));
5843 if (!err) {
5844 ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete_err");
5845 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
5846 __func__, tm_function);
5847 if (ufshcd_clear_tm_cmd(hba, free_slot))
5848 dev_WARN(hba->dev, "%s: unable clear tm cmd (slot %d) after timeout\n",
5849 __func__, free_slot);
5850 err = -ETIMEDOUT;
5851 } else {
5852 err = 0;
5853 memcpy(treq, hba->utmrdl_base_addr + free_slot, sizeof(*treq));
5854
5855 ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete");
5856 }
5857
5858 spin_lock_irqsave(hba->host->host_lock, flags);
5859 __clear_bit(free_slot, &hba->outstanding_tasks);
5860 spin_unlock_irqrestore(hba->host->host_lock, flags);
5861
5862 clear_bit(free_slot, &hba->tm_condition);
5863 ufshcd_put_tm_slot(hba, free_slot);
5864 wake_up(&hba->tm_tag_wq);
5865
5866 ufshcd_release(hba);
5867 return err;
5868 }
5869
5870 /**
5871 * ufshcd_issue_tm_cmd - issues task management commands to controller
5872 * @hba: per adapter instance
5873 * @lun_id: LUN ID to which TM command is sent
5874 * @task_id: task ID to which the TM command is applicable
5875 * @tm_function: task management function opcode
5876 * @tm_response: task management service response return value
5877 *
5878 * Returns non-zero value on error, zero on success.
5879 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)5880 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
5881 u8 tm_function, u8 *tm_response)
5882 {
5883 struct utp_task_req_desc treq = { { 0 }, };
5884 int ocs_value, err;
5885
5886 /* Configure task request descriptor */
5887 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
5888 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
5889
5890 /* Configure task request UPIU */
5891 treq.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
5892 cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
5893 treq.req_header.dword_1 = cpu_to_be32(tm_function << 16);
5894
5895 /*
5896 * The host shall provide the same value for LUN field in the basic
5897 * header and for Input Parameter.
5898 */
5899 treq.input_param1 = cpu_to_be32(lun_id);
5900 treq.input_param2 = cpu_to_be32(task_id);
5901
5902 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
5903 if (err == -ETIMEDOUT)
5904 return err;
5905
5906 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
5907 if (ocs_value != OCS_SUCCESS)
5908 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
5909 __func__, ocs_value);
5910 else if (tm_response)
5911 *tm_response = be32_to_cpu(treq.output_param1) &
5912 MASK_TM_SERVICE_RESP;
5913 return err;
5914 }
5915
5916 /**
5917 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
5918 * @hba: per-adapter instance
5919 * @req_upiu: upiu request
5920 * @rsp_upiu: upiu reply
5921 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
5922 * @desc_buff: pointer to descriptor buffer, NULL if NA
5923 * @buff_len: descriptor size, 0 if NA
5924 * @desc_op: descriptor operation
5925 *
5926 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
5927 * Therefore, it "rides" the device management infrastructure: uses its tag and
5928 * tasks work queues.
5929 *
5930 * Since there is only one available tag for device management commands,
5931 * the caller is expected to hold the hba->dev_cmd.lock mutex.
5932 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,int cmd_type,enum query_opcode desc_op)5933 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
5934 struct utp_upiu_req *req_upiu,
5935 struct utp_upiu_req *rsp_upiu,
5936 u8 *desc_buff, int *buff_len,
5937 int cmd_type,
5938 enum query_opcode desc_op)
5939 {
5940 struct ufshcd_lrb *lrbp;
5941 int err = 0;
5942 int tag;
5943 struct completion wait;
5944 unsigned long flags;
5945 u32 upiu_flags;
5946
5947 down_read(&hba->clk_scaling_lock);
5948
5949 wait_event(hba->dev_cmd.tag_wq, ufshcd_get_dev_cmd_tag(hba, &tag));
5950
5951 init_completion(&wait);
5952 lrbp = &hba->lrb[tag];
5953 WARN_ON(lrbp->cmd);
5954
5955 lrbp->cmd = NULL;
5956 lrbp->sense_bufflen = 0;
5957 lrbp->sense_buffer = NULL;
5958 lrbp->task_tag = tag;
5959 lrbp->lun = 0;
5960 lrbp->intr_cmd = true;
5961 hba->dev_cmd.type = cmd_type;
5962
5963 switch (hba->ufs_version) {
5964 case UFSHCI_VERSION_10:
5965 case UFSHCI_VERSION_11:
5966 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
5967 break;
5968 default:
5969 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
5970 break;
5971 }
5972
5973 /* update the task tag in the request upiu */
5974 req_upiu->header.dword_0 |= cpu_to_be32(tag);
5975
5976 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
5977
5978 /* just copy the upiu request as it is */
5979 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
5980 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
5981 /* The Data Segment Area is optional depending upon the query
5982 * function value. for WRITE DESCRIPTOR, the data segment
5983 * follows right after the tsf.
5984 */
5985 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
5986 *buff_len = 0;
5987 }
5988
5989 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
5990
5991 hba->dev_cmd.complete = &wait;
5992
5993 /* Make sure descriptors are ready before ringing the doorbell */
5994 wmb();
5995 spin_lock_irqsave(hba->host->host_lock, flags);
5996 ufshcd_send_command(hba, tag);
5997 spin_unlock_irqrestore(hba->host->host_lock, flags);
5998
5999 /*
6000 * ignore the returning value here - ufshcd_check_query_response is
6001 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6002 * read the response directly ignoring all errors.
6003 */
6004 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6005
6006 /* just copy the upiu response as it is */
6007 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6008 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6009 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6010 u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6011 MASK_QUERY_DATA_SEG_LEN;
6012
6013 if (*buff_len >= resp_len) {
6014 memcpy(desc_buff, descp, resp_len);
6015 *buff_len = resp_len;
6016 } else {
6017 dev_warn(hba->dev, "rsp size is bigger than buffer");
6018 *buff_len = 0;
6019 err = -EINVAL;
6020 }
6021 }
6022
6023 ufshcd_put_dev_cmd_tag(hba, tag);
6024 wake_up(&hba->dev_cmd.tag_wq);
6025 up_read(&hba->clk_scaling_lock);
6026 return err;
6027 }
6028
6029 /**
6030 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6031 * @hba: per-adapter instance
6032 * @req_upiu: upiu request
6033 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
6034 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
6035 * @desc_buff: pointer to descriptor buffer, NULL if NA
6036 * @buff_len: descriptor size, 0 if NA
6037 * @desc_op: descriptor operation
6038 *
6039 * Supports UTP Transfer requests (nop and query), and UTP Task
6040 * Management requests.
6041 * It is up to the caller to fill the upiu conent properly, as it will
6042 * be copied without any further input validations.
6043 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6044 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6045 struct utp_upiu_req *req_upiu,
6046 struct utp_upiu_req *rsp_upiu,
6047 int msgcode,
6048 u8 *desc_buff, int *buff_len,
6049 enum query_opcode desc_op)
6050 {
6051 int err;
6052 int cmd_type = DEV_CMD_TYPE_QUERY;
6053 struct utp_task_req_desc treq = { { 0 }, };
6054 int ocs_value;
6055 u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6056
6057 switch (msgcode) {
6058 case UPIU_TRANSACTION_NOP_OUT:
6059 cmd_type = DEV_CMD_TYPE_NOP;
6060 /* fall through */
6061 case UPIU_TRANSACTION_QUERY_REQ:
6062 ufshcd_hold(hba, false);
6063 mutex_lock(&hba->dev_cmd.lock);
6064 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6065 desc_buff, buff_len,
6066 cmd_type, desc_op);
6067 mutex_unlock(&hba->dev_cmd.lock);
6068 ufshcd_release(hba);
6069
6070 break;
6071 case UPIU_TRANSACTION_TASK_REQ:
6072 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6073 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6074
6075 memcpy(&treq.req_header, req_upiu, sizeof(*req_upiu));
6076
6077 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6078 if (err == -ETIMEDOUT)
6079 break;
6080
6081 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6082 if (ocs_value != OCS_SUCCESS) {
6083 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6084 ocs_value);
6085 break;
6086 }
6087
6088 memcpy(rsp_upiu, &treq.rsp_header, sizeof(*rsp_upiu));
6089
6090 break;
6091 default:
6092 err = -EINVAL;
6093
6094 break;
6095 }
6096
6097 return err;
6098 }
6099
6100 /**
6101 * ufshcd_eh_device_reset_handler - device reset handler registered to
6102 * scsi layer.
6103 * @cmd: SCSI command pointer
6104 *
6105 * Returns SUCCESS/FAILED
6106 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)6107 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
6108 {
6109 struct Scsi_Host *host;
6110 struct ufs_hba *hba;
6111 unsigned int tag;
6112 u32 pos;
6113 int err;
6114 u8 resp = 0xF;
6115 struct ufshcd_lrb *lrbp;
6116 unsigned long flags;
6117
6118 host = cmd->device->host;
6119 hba = shost_priv(host);
6120 tag = cmd->request->tag;
6121
6122 lrbp = &hba->lrb[tag];
6123 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, 0, UFS_LOGICAL_RESET, &resp);
6124 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6125 if (!err)
6126 err = resp;
6127 goto out;
6128 }
6129
6130 /* clear the commands that were pending for corresponding LUN */
6131 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
6132 if (hba->lrb[pos].lun == lrbp->lun) {
6133 err = ufshcd_clear_cmd(hba, pos);
6134 if (err)
6135 break;
6136 }
6137 }
6138 spin_lock_irqsave(host->host_lock, flags);
6139 ufshcd_transfer_req_compl(hba);
6140 spin_unlock_irqrestore(host->host_lock, flags);
6141
6142 out:
6143 hba->req_abort_count = 0;
6144 ufshcd_update_reg_hist(&hba->ufs_stats.dev_reset, (u32)err);
6145 if (!err) {
6146 err = SUCCESS;
6147 } else {
6148 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6149 err = FAILED;
6150 }
6151 return err;
6152 }
6153
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)6154 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
6155 {
6156 struct ufshcd_lrb *lrbp;
6157 int tag;
6158
6159 for_each_set_bit(tag, &bitmap, hba->nutrs) {
6160 lrbp = &hba->lrb[tag];
6161 lrbp->req_abort_skip = true;
6162 }
6163 }
6164
6165 /**
6166 * ufshcd_abort - abort a specific command
6167 * @cmd: SCSI command pointer
6168 *
6169 * Abort the pending command in device by sending UFS_ABORT_TASK task management
6170 * command, and in host controller by clearing the door-bell register. There can
6171 * be race between controller sending the command to the device while abort is
6172 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
6173 * really issued and then try to abort it.
6174 *
6175 * Returns SUCCESS/FAILED
6176 */
ufshcd_abort(struct scsi_cmnd * cmd)6177 static int ufshcd_abort(struct scsi_cmnd *cmd)
6178 {
6179 struct Scsi_Host *host;
6180 struct ufs_hba *hba;
6181 unsigned long flags;
6182 unsigned int tag;
6183 int err = 0;
6184 int poll_cnt;
6185 u8 resp = 0xF;
6186 struct ufshcd_lrb *lrbp;
6187 u32 reg;
6188
6189 host = cmd->device->host;
6190 hba = shost_priv(host);
6191 tag = cmd->request->tag;
6192 lrbp = &hba->lrb[tag];
6193 if (!ufshcd_valid_tag(hba, tag)) {
6194 dev_err(hba->dev,
6195 "%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
6196 __func__, tag, cmd, cmd->request);
6197 BUG();
6198 }
6199
6200 /*
6201 * Task abort to the device W-LUN is illegal. When this command
6202 * will fail, due to spec violation, scsi err handling next step
6203 * will be to send LU reset which, again, is a spec violation.
6204 * To avoid these unnecessary/illegal step we skip to the last error
6205 * handling stage: reset and restore.
6206 */
6207 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN)
6208 return ufshcd_eh_host_reset_handler(cmd);
6209
6210 ufshcd_hold(hba, false);
6211 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6212 /* If command is already aborted/completed, return SUCCESS */
6213 if (!(test_bit(tag, &hba->outstanding_reqs))) {
6214 dev_err(hba->dev,
6215 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
6216 __func__, tag, hba->outstanding_reqs, reg);
6217 goto out;
6218 }
6219
6220 if (!(reg & (1 << tag))) {
6221 dev_err(hba->dev,
6222 "%s: cmd was completed, but without a notifying intr, tag = %d",
6223 __func__, tag);
6224 }
6225
6226 /* Print Transfer Request of aborted task */
6227 dev_err(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
6228
6229 /*
6230 * Print detailed info about aborted request.
6231 * As more than one request might get aborted at the same time,
6232 * print full information only for the first aborted request in order
6233 * to reduce repeated printouts. For other aborted requests only print
6234 * basic details.
6235 */
6236 scsi_print_command(hba->lrb[tag].cmd);
6237 if (!hba->req_abort_count) {
6238 ufshcd_update_reg_hist(&hba->ufs_stats.task_abort, 0);
6239 ufshcd_print_host_regs(hba);
6240 ufshcd_print_host_state(hba);
6241 ufshcd_print_pwr_info(hba);
6242 ufshcd_print_trs(hba, 1 << tag, true);
6243 } else {
6244 ufshcd_print_trs(hba, 1 << tag, false);
6245 }
6246 hba->req_abort_count++;
6247
6248 /* Skip task abort in case previous aborts failed and report failure */
6249 if (lrbp->req_abort_skip) {
6250 err = -EIO;
6251 goto out;
6252 }
6253
6254 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
6255 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6256 UFS_QUERY_TASK, &resp);
6257 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
6258 /* cmd pending in the device */
6259 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
6260 __func__, tag);
6261 break;
6262 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6263 /*
6264 * cmd not pending in the device, check if it is
6265 * in transition.
6266 */
6267 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
6268 __func__, tag);
6269 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6270 if (reg & (1 << tag)) {
6271 /* sleep for max. 200us to stabilize */
6272 usleep_range(100, 200);
6273 continue;
6274 }
6275 /* command completed already */
6276 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
6277 __func__, tag);
6278 goto out;
6279 } else {
6280 dev_err(hba->dev,
6281 "%s: no response from device. tag = %d, err %d\n",
6282 __func__, tag, err);
6283 if (!err)
6284 err = resp; /* service response error */
6285 goto out;
6286 }
6287 }
6288
6289 if (!poll_cnt) {
6290 err = -EBUSY;
6291 goto out;
6292 }
6293
6294 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6295 UFS_ABORT_TASK, &resp);
6296 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6297 if (!err) {
6298 err = resp; /* service response error */
6299 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
6300 __func__, tag, err);
6301 }
6302 goto out;
6303 }
6304
6305 err = ufshcd_clear_cmd(hba, tag);
6306 if (err) {
6307 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
6308 __func__, tag, err);
6309 goto out;
6310 }
6311
6312 scsi_dma_unmap(cmd);
6313
6314 spin_lock_irqsave(host->host_lock, flags);
6315 ufshcd_outstanding_req_clear(hba, tag);
6316 hba->lrb[tag].cmd = NULL;
6317 spin_unlock_irqrestore(host->host_lock, flags);
6318
6319 clear_bit_unlock(tag, &hba->lrb_in_use);
6320 wake_up(&hba->dev_cmd.tag_wq);
6321
6322 out:
6323 if (!err) {
6324 err = SUCCESS;
6325 } else {
6326 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6327 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
6328 err = FAILED;
6329 }
6330
6331 /*
6332 * This ufshcd_release() corresponds to the original scsi cmd that got
6333 * aborted here (as we won't get any IRQ for it).
6334 */
6335 ufshcd_release(hba);
6336 return err;
6337 }
6338
6339 /**
6340 * ufshcd_host_reset_and_restore - reset and restore host controller
6341 * @hba: per-adapter instance
6342 *
6343 * Note that host controller reset may issue DME_RESET to
6344 * local and remote (device) Uni-Pro stack and the attributes
6345 * are reset to default state.
6346 *
6347 * Returns zero on success, non-zero on failure
6348 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)6349 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
6350 {
6351 int err;
6352 unsigned long flags;
6353
6354 /*
6355 * Stop the host controller and complete the requests
6356 * cleared by h/w
6357 */
6358 spin_lock_irqsave(hba->host->host_lock, flags);
6359 ufshcd_hba_stop(hba, false);
6360 hba->silence_err_logs = true;
6361 ufshcd_complete_requests(hba);
6362 hba->silence_err_logs = false;
6363 spin_unlock_irqrestore(hba->host->host_lock, flags);
6364
6365 /* scale up clocks to max frequency before full reinitialization */
6366 ufshcd_set_clk_freq(hba, true);
6367
6368 err = ufshcd_hba_enable(hba);
6369 if (err)
6370 goto out;
6371
6372 /* Establish the link again and restore the device */
6373 err = ufshcd_probe_hba(hba);
6374
6375 if (!err && (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL))
6376 err = -EIO;
6377 out:
6378 if (err)
6379 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
6380 ufshcd_update_reg_hist(&hba->ufs_stats.host_reset, (u32)err);
6381 return err;
6382 }
6383
6384 /**
6385 * ufshcd_reset_and_restore - reset and re-initialize host/device
6386 * @hba: per-adapter instance
6387 *
6388 * Reset and recover device, host and re-establish link. This
6389 * is helpful to recover the communication in fatal error conditions.
6390 *
6391 * Returns zero on success, non-zero on failure
6392 */
ufshcd_reset_and_restore(struct ufs_hba * hba)6393 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
6394 {
6395 int err = 0;
6396 int retries = MAX_HOST_RESET_RETRIES;
6397
6398 do {
6399 /* Reset the attached device */
6400 ufshcd_vops_device_reset(hba);
6401
6402 err = ufshcd_host_reset_and_restore(hba);
6403 } while (err && --retries);
6404
6405 return err;
6406 }
6407
6408 /**
6409 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
6410 * @cmd: SCSI command pointer
6411 *
6412 * Returns SUCCESS/FAILED
6413 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)6414 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
6415 {
6416 int err;
6417 unsigned long flags;
6418 struct ufs_hba *hba;
6419
6420 hba = shost_priv(cmd->device->host);
6421
6422 ufshcd_hold(hba, false);
6423 /*
6424 * Check if there is any race with fatal error handling.
6425 * If so, wait for it to complete. Even though fatal error
6426 * handling does reset and restore in some cases, don't assume
6427 * anything out of it. We are just avoiding race here.
6428 */
6429 do {
6430 spin_lock_irqsave(hba->host->host_lock, flags);
6431 if (!(work_pending(&hba->eh_work) ||
6432 hba->ufshcd_state == UFSHCD_STATE_RESET ||
6433 hba->ufshcd_state == UFSHCD_STATE_EH_SCHEDULED))
6434 break;
6435 spin_unlock_irqrestore(hba->host->host_lock, flags);
6436 dev_dbg(hba->dev, "%s: reset in progress\n", __func__);
6437 flush_work(&hba->eh_work);
6438 } while (1);
6439
6440 hba->ufshcd_state = UFSHCD_STATE_RESET;
6441 ufshcd_set_eh_in_progress(hba);
6442 spin_unlock_irqrestore(hba->host->host_lock, flags);
6443
6444 err = ufshcd_reset_and_restore(hba);
6445
6446 spin_lock_irqsave(hba->host->host_lock, flags);
6447 if (!err) {
6448 err = SUCCESS;
6449 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6450 } else {
6451 err = FAILED;
6452 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6453 }
6454 ufshcd_clear_eh_in_progress(hba);
6455 spin_unlock_irqrestore(hba->host->host_lock, flags);
6456
6457 ufshcd_release(hba);
6458 return err;
6459 }
6460
6461 /**
6462 * ufshcd_get_max_icc_level - calculate the ICC level
6463 * @sup_curr_uA: max. current supported by the regulator
6464 * @start_scan: row at the desc table to start scan from
6465 * @buff: power descriptor buffer
6466 *
6467 * Returns calculated max ICC level for specific regulator
6468 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)6469 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
6470 {
6471 int i;
6472 int curr_uA;
6473 u16 data;
6474 u16 unit;
6475
6476 for (i = start_scan; i >= 0; i--) {
6477 data = be16_to_cpup((__be16 *)&buff[2 * i]);
6478 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
6479 ATTR_ICC_LVL_UNIT_OFFSET;
6480 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
6481 switch (unit) {
6482 case UFSHCD_NANO_AMP:
6483 curr_uA = curr_uA / 1000;
6484 break;
6485 case UFSHCD_MILI_AMP:
6486 curr_uA = curr_uA * 1000;
6487 break;
6488 case UFSHCD_AMP:
6489 curr_uA = curr_uA * 1000 * 1000;
6490 break;
6491 case UFSHCD_MICRO_AMP:
6492 default:
6493 break;
6494 }
6495 if (sup_curr_uA >= curr_uA)
6496 break;
6497 }
6498 if (i < 0) {
6499 i = 0;
6500 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
6501 }
6502
6503 return (u32)i;
6504 }
6505
6506 /**
6507 * ufshcd_calc_icc_level - calculate the max ICC level
6508 * In case regulators are not initialized we'll return 0
6509 * @hba: per-adapter instance
6510 * @desc_buf: power descriptor buffer to extract ICC levels from.
6511 * @len: length of desc_buff
6512 *
6513 * Returns calculated ICC level
6514 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)6515 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
6516 u8 *desc_buf, int len)
6517 {
6518 u32 icc_level = 0;
6519
6520 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
6521 !hba->vreg_info.vccq2) {
6522 dev_err(hba->dev,
6523 "%s: Regulator capability was not set, actvIccLevel=%d",
6524 __func__, icc_level);
6525 goto out;
6526 }
6527
6528 if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA)
6529 icc_level = ufshcd_get_max_icc_level(
6530 hba->vreg_info.vcc->max_uA,
6531 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
6532 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
6533
6534 if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA)
6535 icc_level = ufshcd_get_max_icc_level(
6536 hba->vreg_info.vccq->max_uA,
6537 icc_level,
6538 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
6539
6540 if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA)
6541 icc_level = ufshcd_get_max_icc_level(
6542 hba->vreg_info.vccq2->max_uA,
6543 icc_level,
6544 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
6545 out:
6546 return icc_level;
6547 }
6548
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)6549 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
6550 {
6551 int ret;
6552 int buff_len = hba->desc_size.pwr_desc;
6553 u8 *desc_buf;
6554 u32 icc_level;
6555
6556 desc_buf = kmalloc(buff_len, GFP_KERNEL);
6557 if (!desc_buf)
6558 return;
6559
6560 ret = ufshcd_read_power_desc(hba, desc_buf, buff_len);
6561 if (ret) {
6562 dev_err(hba->dev,
6563 "%s: Failed reading power descriptor.len = %d ret = %d",
6564 __func__, buff_len, ret);
6565 goto out;
6566 }
6567
6568 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
6569 buff_len);
6570 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
6571
6572 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6573 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
6574
6575 if (ret)
6576 dev_err(hba->dev,
6577 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
6578 __func__, icc_level, ret);
6579
6580 out:
6581 kfree(desc_buf);
6582 }
6583
6584 /**
6585 * ufshcd_scsi_add_wlus - Adds required W-LUs
6586 * @hba: per-adapter instance
6587 *
6588 * UFS device specification requires the UFS devices to support 4 well known
6589 * logical units:
6590 * "REPORT_LUNS" (address: 01h)
6591 * "UFS Device" (address: 50h)
6592 * "RPMB" (address: 44h)
6593 * "BOOT" (address: 30h)
6594 * UFS device's power management needs to be controlled by "POWER CONDITION"
6595 * field of SSU (START STOP UNIT) command. But this "power condition" field
6596 * will take effect only when its sent to "UFS device" well known logical unit
6597 * hence we require the scsi_device instance to represent this logical unit in
6598 * order for the UFS host driver to send the SSU command for power management.
6599 *
6600 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
6601 * Block) LU so user space process can control this LU. User space may also
6602 * want to have access to BOOT LU.
6603 *
6604 * This function adds scsi device instances for each of all well known LUs
6605 * (except "REPORT LUNS" LU).
6606 *
6607 * Returns zero on success (all required W-LUs are added successfully),
6608 * non-zero error value on failure (if failed to add any of the required W-LU).
6609 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)6610 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
6611 {
6612 int ret = 0;
6613 struct scsi_device *sdev_rpmb;
6614 struct scsi_device *sdev_boot;
6615
6616 hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
6617 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
6618 if (IS_ERR(hba->sdev_ufs_device)) {
6619 ret = PTR_ERR(hba->sdev_ufs_device);
6620 hba->sdev_ufs_device = NULL;
6621 goto out;
6622 }
6623 scsi_device_put(hba->sdev_ufs_device);
6624
6625 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
6626 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
6627 if (IS_ERR(sdev_rpmb)) {
6628 ret = PTR_ERR(sdev_rpmb);
6629 goto remove_sdev_ufs_device;
6630 }
6631 scsi_device_put(sdev_rpmb);
6632
6633 sdev_boot = __scsi_add_device(hba->host, 0, 0,
6634 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
6635 if (IS_ERR(sdev_boot))
6636 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
6637 else
6638 scsi_device_put(sdev_boot);
6639 goto out;
6640
6641 remove_sdev_ufs_device:
6642 scsi_remove_device(hba->sdev_ufs_device);
6643 out:
6644 return ret;
6645 }
6646
ufs_get_device_desc(struct ufs_hba * hba,struct ufs_dev_desc * dev_desc)6647 static int ufs_get_device_desc(struct ufs_hba *hba,
6648 struct ufs_dev_desc *dev_desc)
6649 {
6650 int err;
6651 size_t buff_len;
6652 u8 model_index;
6653 u8 *desc_buf;
6654
6655 if (!dev_desc)
6656 return -EINVAL;
6657
6658 buff_len = max_t(size_t, hba->desc_size.dev_desc,
6659 QUERY_DESC_MAX_SIZE + 1);
6660 desc_buf = kmalloc(buff_len, GFP_KERNEL);
6661 if (!desc_buf) {
6662 err = -ENOMEM;
6663 goto out;
6664 }
6665
6666 err = ufshcd_read_device_desc(hba, desc_buf, hba->desc_size.dev_desc);
6667 if (err) {
6668 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
6669 __func__, err);
6670 goto out;
6671 }
6672
6673 /*
6674 * getting vendor (manufacturerID) and Bank Index in big endian
6675 * format
6676 */
6677 dev_desc->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
6678 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
6679
6680 /* getting Specification Version in big endian format */
6681 hba->dev_info.spec_version = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
6682 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
6683
6684 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
6685 err = ufshcd_read_string_desc(hba, model_index,
6686 &dev_desc->model, SD_ASCII_STD);
6687 if (err < 0) {
6688 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
6689 __func__, err);
6690 goto out;
6691 }
6692
6693 /*
6694 * ufshcd_read_string_desc returns size of the string
6695 * reset the error value
6696 */
6697 err = 0;
6698
6699 out:
6700 kfree(desc_buf);
6701 return err;
6702 }
6703
ufs_put_device_desc(struct ufs_dev_desc * dev_desc)6704 static void ufs_put_device_desc(struct ufs_dev_desc *dev_desc)
6705 {
6706 kfree(dev_desc->model);
6707 dev_desc->model = NULL;
6708 }
6709
ufs_fixup_device_setup(struct ufs_hba * hba,struct ufs_dev_desc * dev_desc)6710 static void ufs_fixup_device_setup(struct ufs_hba *hba,
6711 struct ufs_dev_desc *dev_desc)
6712 {
6713 struct ufs_dev_fix *f;
6714
6715 for (f = ufs_fixups; f->quirk; f++) {
6716 if ((f->card.wmanufacturerid == dev_desc->wmanufacturerid ||
6717 f->card.wmanufacturerid == UFS_ANY_VENDOR) &&
6718 ((dev_desc->model &&
6719 STR_PRFX_EQUAL(f->card.model, dev_desc->model)) ||
6720 !strcmp(f->card.model, UFS_ANY_MODEL)))
6721 hba->dev_quirks |= f->quirk;
6722 }
6723 }
6724
6725 /**
6726 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
6727 * @hba: per-adapter instance
6728 *
6729 * PA_TActivate parameter can be tuned manually if UniPro version is less than
6730 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
6731 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
6732 * the hibern8 exit latency.
6733 *
6734 * Returns zero on success, non-zero error value on failure.
6735 */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)6736 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
6737 {
6738 int ret = 0;
6739 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
6740
6741 ret = ufshcd_dme_peer_get(hba,
6742 UIC_ARG_MIB_SEL(
6743 RX_MIN_ACTIVATETIME_CAPABILITY,
6744 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
6745 &peer_rx_min_activatetime);
6746 if (ret)
6747 goto out;
6748
6749 /* make sure proper unit conversion is applied */
6750 tuned_pa_tactivate =
6751 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
6752 / PA_TACTIVATE_TIME_UNIT_US);
6753 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
6754 tuned_pa_tactivate);
6755
6756 out:
6757 return ret;
6758 }
6759
6760 /**
6761 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
6762 * @hba: per-adapter instance
6763 *
6764 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
6765 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
6766 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
6767 * This optimal value can help reduce the hibern8 exit latency.
6768 *
6769 * Returns zero on success, non-zero error value on failure.
6770 */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)6771 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
6772 {
6773 int ret = 0;
6774 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
6775 u32 max_hibern8_time, tuned_pa_hibern8time;
6776
6777 ret = ufshcd_dme_get(hba,
6778 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
6779 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
6780 &local_tx_hibern8_time_cap);
6781 if (ret)
6782 goto out;
6783
6784 ret = ufshcd_dme_peer_get(hba,
6785 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
6786 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
6787 &peer_rx_hibern8_time_cap);
6788 if (ret)
6789 goto out;
6790
6791 max_hibern8_time = max(local_tx_hibern8_time_cap,
6792 peer_rx_hibern8_time_cap);
6793 /* make sure proper unit conversion is applied */
6794 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
6795 / PA_HIBERN8_TIME_UNIT_US);
6796 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
6797 tuned_pa_hibern8time);
6798 out:
6799 return ret;
6800 }
6801
6802 /**
6803 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
6804 * less than device PA_TACTIVATE time.
6805 * @hba: per-adapter instance
6806 *
6807 * Some UFS devices require host PA_TACTIVATE to be lower than device
6808 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
6809 * for such devices.
6810 *
6811 * Returns zero on success, non-zero error value on failure.
6812 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)6813 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
6814 {
6815 int ret = 0;
6816 u32 granularity, peer_granularity;
6817 u32 pa_tactivate, peer_pa_tactivate;
6818 u32 pa_tactivate_us, peer_pa_tactivate_us;
6819 u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
6820
6821 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
6822 &granularity);
6823 if (ret)
6824 goto out;
6825
6826 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
6827 &peer_granularity);
6828 if (ret)
6829 goto out;
6830
6831 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
6832 (granularity > PA_GRANULARITY_MAX_VAL)) {
6833 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
6834 __func__, granularity);
6835 return -EINVAL;
6836 }
6837
6838 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
6839 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
6840 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
6841 __func__, peer_granularity);
6842 return -EINVAL;
6843 }
6844
6845 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
6846 if (ret)
6847 goto out;
6848
6849 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
6850 &peer_pa_tactivate);
6851 if (ret)
6852 goto out;
6853
6854 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
6855 peer_pa_tactivate_us = peer_pa_tactivate *
6856 gran_to_us_table[peer_granularity - 1];
6857
6858 if (pa_tactivate_us > peer_pa_tactivate_us) {
6859 u32 new_peer_pa_tactivate;
6860
6861 new_peer_pa_tactivate = pa_tactivate_us /
6862 gran_to_us_table[peer_granularity - 1];
6863 new_peer_pa_tactivate++;
6864 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
6865 new_peer_pa_tactivate);
6866 }
6867
6868 out:
6869 return ret;
6870 }
6871
ufshcd_tune_unipro_params(struct ufs_hba * hba)6872 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
6873 {
6874 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
6875 ufshcd_tune_pa_tactivate(hba);
6876 ufshcd_tune_pa_hibern8time(hba);
6877 }
6878
6879 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
6880 /* set 1ms timeout for PA_TACTIVATE */
6881 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
6882
6883 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
6884 ufshcd_quirk_tune_host_pa_tactivate(hba);
6885
6886 ufshcd_vops_apply_dev_quirks(hba);
6887 }
6888
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)6889 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
6890 {
6891 hba->ufs_stats.hibern8_exit_cnt = 0;
6892 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
6893 hba->req_abort_count = 0;
6894 }
6895
ufshcd_init_desc_sizes(struct ufs_hba * hba)6896 static void ufshcd_init_desc_sizes(struct ufs_hba *hba)
6897 {
6898 int err;
6899
6900 err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_DEVICE, 0,
6901 &hba->desc_size.dev_desc);
6902 if (err)
6903 hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE;
6904
6905 err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_POWER, 0,
6906 &hba->desc_size.pwr_desc);
6907 if (err)
6908 hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE;
6909
6910 err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_INTERCONNECT, 0,
6911 &hba->desc_size.interc_desc);
6912 if (err)
6913 hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE;
6914
6915 err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_CONFIGURATION, 0,
6916 &hba->desc_size.conf_desc);
6917 if (err)
6918 hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE;
6919
6920 err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_UNIT, 0,
6921 &hba->desc_size.unit_desc);
6922 if (err)
6923 hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE;
6924
6925 err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_GEOMETRY, 0,
6926 &hba->desc_size.geom_desc);
6927 if (err)
6928 hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE;
6929
6930 err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_HEALTH, 0,
6931 &hba->desc_size.hlth_desc);
6932 if (err)
6933 hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE;
6934 }
6935
6936 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
6937 {19200000, REF_CLK_FREQ_19_2_MHZ},
6938 {26000000, REF_CLK_FREQ_26_MHZ},
6939 {38400000, REF_CLK_FREQ_38_4_MHZ},
6940 {52000000, REF_CLK_FREQ_52_MHZ},
6941 {0, REF_CLK_FREQ_INVAL},
6942 };
6943
6944 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)6945 ufs_get_bref_clk_from_hz(unsigned long freq)
6946 {
6947 int i;
6948
6949 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
6950 if (ufs_ref_clk_freqs[i].freq_hz == freq)
6951 return ufs_ref_clk_freqs[i].val;
6952
6953 return REF_CLK_FREQ_INVAL;
6954 }
6955
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)6956 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
6957 {
6958 unsigned long freq;
6959
6960 freq = clk_get_rate(refclk);
6961
6962 hba->dev_ref_clk_freq =
6963 ufs_get_bref_clk_from_hz(freq);
6964
6965 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
6966 dev_err(hba->dev,
6967 "invalid ref_clk setting = %ld\n", freq);
6968 }
6969
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)6970 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
6971 {
6972 int err;
6973 u32 ref_clk;
6974 u32 freq = hba->dev_ref_clk_freq;
6975
6976 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6977 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
6978
6979 if (err) {
6980 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
6981 err);
6982 goto out;
6983 }
6984
6985 if (ref_clk == freq)
6986 goto out; /* nothing to update */
6987
6988 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6989 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
6990
6991 if (err) {
6992 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
6993 ufs_ref_clk_freqs[freq].freq_hz);
6994 goto out;
6995 }
6996
6997 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
6998 ufs_ref_clk_freqs[freq].freq_hz);
6999
7000 out:
7001 return err;
7002 }
7003
7004 /**
7005 * ufshcd_probe_hba - probe hba to detect device and initialize
7006 * @hba: per-adapter instance
7007 *
7008 * Execute link-startup and verify device initialization
7009 */
ufshcd_probe_hba(struct ufs_hba * hba)7010 static int ufshcd_probe_hba(struct ufs_hba *hba)
7011 {
7012 struct ufs_dev_desc card = {0};
7013 int ret;
7014 ktime_t start = ktime_get();
7015
7016 ret = ufshcd_link_startup(hba);
7017 if (ret)
7018 goto out;
7019
7020 /* set the default level for urgent bkops */
7021 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
7022 hba->is_urgent_bkops_lvl_checked = false;
7023
7024 /* Debug counters initialization */
7025 ufshcd_clear_dbg_ufs_stats(hba);
7026
7027 /* UniPro link is active now */
7028 ufshcd_set_link_active(hba);
7029
7030 ret = ufshcd_verify_dev_init(hba);
7031 if (ret)
7032 goto out;
7033
7034 ret = ufshcd_complete_dev_init(hba);
7035 if (ret)
7036 goto out;
7037
7038 /* Init check for device descriptor sizes */
7039 ufshcd_init_desc_sizes(hba);
7040
7041 ret = ufs_get_device_desc(hba, &card);
7042 if (ret) {
7043 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
7044 __func__, ret);
7045 goto out;
7046 }
7047
7048 ufs_fixup_device_setup(hba, &card);
7049 ufs_put_device_desc(&card);
7050
7051 ufshcd_tune_unipro_params(hba);
7052
7053 /* UFS device is also active now */
7054 ufshcd_set_ufs_dev_active(hba);
7055 ufshcd_force_reset_auto_bkops(hba);
7056 hba->wlun_dev_clr_ua = true;
7057
7058 if (ufshcd_get_max_pwr_mode(hba)) {
7059 dev_err(hba->dev,
7060 "%s: Failed getting max supported power mode\n",
7061 __func__);
7062 } else {
7063 /*
7064 * Set the right value to bRefClkFreq before attempting to
7065 * switch to HS gears.
7066 */
7067 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
7068 ufshcd_set_dev_ref_clk(hba);
7069 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
7070 if (ret) {
7071 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
7072 __func__, ret);
7073 goto out;
7074 }
7075 }
7076
7077 /*
7078 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
7079 * and for removable UFS card as well, hence always set the parameter.
7080 * Note: Error handler may issue the device reset hence resetting
7081 * bActiveICCLevel as well so it is always safe to set this here.
7082 */
7083 ufshcd_set_active_icc_lvl(hba);
7084
7085 /* set the state as operational after switching to desired gear */
7086 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7087
7088 /* Enable Auto-Hibernate if configured */
7089 ufshcd_auto_hibern8_enable(hba);
7090
7091 /*
7092 * If we are in error handling context or in power management callbacks
7093 * context, no need to scan the host
7094 */
7095 if (!ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress) {
7096 bool flag;
7097
7098 /* clear any previous UFS device information */
7099 memset(&hba->dev_info, 0, sizeof(hba->dev_info));
7100
7101 ufshcd_get_ref_clk_gating_wait(hba);
7102
7103 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
7104 QUERY_FLAG_IDN_PWR_ON_WPE, &flag))
7105 hba->dev_info.f_power_on_wp_en = flag;
7106
7107 /* Add required well known logical units to scsi mid layer */
7108 if (ufshcd_scsi_add_wlus(hba))
7109 goto out;
7110
7111 /* Initialize devfreq after UFS device is detected */
7112 if (ufshcd_is_clkscaling_supported(hba)) {
7113 memcpy(&hba->clk_scaling.saved_pwr_info.info,
7114 &hba->pwr_info,
7115 sizeof(struct ufs_pa_layer_attr));
7116 hba->clk_scaling.saved_pwr_info.is_valid = true;
7117 if (!hba->devfreq) {
7118 ret = ufshcd_devfreq_init(hba);
7119 if (ret)
7120 goto out;
7121 }
7122 hba->clk_scaling.is_allowed = true;
7123 }
7124
7125 ufs_bsg_probe(hba);
7126
7127 scsi_scan_host(hba->host);
7128 pm_runtime_put_sync(hba->dev);
7129 }
7130
7131 out:
7132 /*
7133 * If we failed to initialize the device or the device is not
7134 * present, turn off the power/clocks etc.
7135 */
7136 if (ret && !ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress) {
7137 pm_runtime_put_sync(hba->dev);
7138 ufshcd_exit_clk_scaling(hba);
7139 ufshcd_hba_exit(hba);
7140 }
7141
7142 trace_ufshcd_init(dev_name(hba->dev), ret,
7143 ktime_to_us(ktime_sub(ktime_get(), start)),
7144 hba->curr_dev_pwr_mode, hba->uic_link_state);
7145 return ret;
7146 }
7147
7148 /**
7149 * ufshcd_async_scan - asynchronous execution for probing hba
7150 * @data: data pointer to pass to this function
7151 * @cookie: cookie data
7152 */
ufshcd_async_scan(void * data,async_cookie_t cookie)7153 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
7154 {
7155 struct ufs_hba *hba = (struct ufs_hba *)data;
7156
7157 ufshcd_probe_hba(hba);
7158 }
7159
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)7160 static enum blk_eh_timer_return ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
7161 {
7162 unsigned long flags;
7163 struct Scsi_Host *host;
7164 struct ufs_hba *hba;
7165 int index;
7166 bool found = false;
7167
7168 if (!scmd || !scmd->device || !scmd->device->host)
7169 return BLK_EH_DONE;
7170
7171 host = scmd->device->host;
7172 hba = shost_priv(host);
7173 if (!hba)
7174 return BLK_EH_DONE;
7175
7176 spin_lock_irqsave(host->host_lock, flags);
7177
7178 for_each_set_bit(index, &hba->outstanding_reqs, hba->nutrs) {
7179 if (hba->lrb[index].cmd == scmd) {
7180 found = true;
7181 break;
7182 }
7183 }
7184
7185 spin_unlock_irqrestore(host->host_lock, flags);
7186
7187 /*
7188 * Bypass SCSI error handling and reset the block layer timer if this
7189 * SCSI command was not actually dispatched to UFS driver, otherwise
7190 * let SCSI layer handle the error as usual.
7191 */
7192 return found ? BLK_EH_DONE : BLK_EH_RESET_TIMER;
7193 }
7194
7195 static const struct attribute_group *ufshcd_driver_groups[] = {
7196 &ufs_sysfs_unit_descriptor_group,
7197 &ufs_sysfs_lun_attributes_group,
7198 NULL,
7199 };
7200
7201 static struct scsi_host_template ufshcd_driver_template = {
7202 .module = THIS_MODULE,
7203 .name = UFSHCD,
7204 .proc_name = UFSHCD,
7205 .queuecommand = ufshcd_queuecommand,
7206 .slave_alloc = ufshcd_slave_alloc,
7207 .slave_configure = ufshcd_slave_configure,
7208 .slave_destroy = ufshcd_slave_destroy,
7209 .change_queue_depth = ufshcd_change_queue_depth,
7210 .eh_abort_handler = ufshcd_abort,
7211 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
7212 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
7213 .eh_timed_out = ufshcd_eh_timed_out,
7214 .this_id = -1,
7215 .sg_tablesize = SG_ALL,
7216 .cmd_per_lun = UFSHCD_CMD_PER_LUN,
7217 .can_queue = UFSHCD_CAN_QUEUE,
7218 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
7219 .max_host_blocked = 1,
7220 .track_queue_depth = 1,
7221 .sdev_groups = ufshcd_driver_groups,
7222 .dma_boundary = PAGE_SIZE - 1,
7223 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS,
7224 };
7225
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)7226 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
7227 int ua)
7228 {
7229 int ret;
7230
7231 if (!vreg)
7232 return 0;
7233
7234 /*
7235 * "set_load" operation shall be required on those regulators
7236 * which specifically configured current limitation. Otherwise
7237 * zero max_uA may cause unexpected behavior when regulator is
7238 * enabled or set as high power mode.
7239 */
7240 if (!vreg->max_uA)
7241 return 0;
7242
7243 ret = regulator_set_load(vreg->reg, ua);
7244 if (ret < 0) {
7245 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
7246 __func__, vreg->name, ua, ret);
7247 }
7248
7249 return ret;
7250 }
7251
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7252 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
7253 struct ufs_vreg *vreg)
7254 {
7255 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
7256 }
7257
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7258 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
7259 struct ufs_vreg *vreg)
7260 {
7261 if (!vreg)
7262 return 0;
7263
7264 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
7265 }
7266
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)7267 static int ufshcd_config_vreg(struct device *dev,
7268 struct ufs_vreg *vreg, bool on)
7269 {
7270 int ret = 0;
7271 struct regulator *reg;
7272 const char *name;
7273 int min_uV, uA_load;
7274
7275 BUG_ON(!vreg);
7276
7277 reg = vreg->reg;
7278 name = vreg->name;
7279
7280 if (regulator_count_voltages(reg) > 0) {
7281 uA_load = on ? vreg->max_uA : 0;
7282 ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
7283 if (ret)
7284 goto out;
7285
7286 if (vreg->min_uV && vreg->max_uV) {
7287 min_uV = on ? vreg->min_uV : 0;
7288 ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
7289 if (ret) {
7290 dev_err(dev,
7291 "%s: %s set voltage failed, err=%d\n",
7292 __func__, name, ret);
7293 goto out;
7294 }
7295 }
7296 }
7297 out:
7298 return ret;
7299 }
7300
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)7301 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
7302 {
7303 int ret = 0;
7304
7305 if (!vreg || vreg->enabled)
7306 goto out;
7307
7308 ret = ufshcd_config_vreg(dev, vreg, true);
7309 if (!ret)
7310 ret = regulator_enable(vreg->reg);
7311
7312 if (!ret)
7313 vreg->enabled = true;
7314 else
7315 dev_err(dev, "%s: %s enable failed, err=%d\n",
7316 __func__, vreg->name, ret);
7317 out:
7318 return ret;
7319 }
7320
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)7321 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
7322 {
7323 int ret = 0;
7324
7325 if (!vreg || !vreg->enabled)
7326 goto out;
7327
7328 ret = regulator_disable(vreg->reg);
7329
7330 if (!ret) {
7331 /* ignore errors on applying disable config */
7332 ufshcd_config_vreg(dev, vreg, false);
7333 vreg->enabled = false;
7334 } else {
7335 dev_err(dev, "%s: %s disable failed, err=%d\n",
7336 __func__, vreg->name, ret);
7337 }
7338 out:
7339 return ret;
7340 }
7341
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)7342 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
7343 {
7344 int ret = 0;
7345 struct device *dev = hba->dev;
7346 struct ufs_vreg_info *info = &hba->vreg_info;
7347
7348 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
7349 if (ret)
7350 goto out;
7351
7352 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
7353 if (ret)
7354 goto out;
7355
7356 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
7357 if (ret)
7358 goto out;
7359
7360 out:
7361 if (ret) {
7362 ufshcd_toggle_vreg(dev, info->vccq2, false);
7363 ufshcd_toggle_vreg(dev, info->vccq, false);
7364 ufshcd_toggle_vreg(dev, info->vcc, false);
7365 }
7366 return ret;
7367 }
7368
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)7369 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
7370 {
7371 struct ufs_vreg_info *info = &hba->vreg_info;
7372
7373 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
7374 }
7375
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)7376 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
7377 {
7378 int ret = 0;
7379
7380 if (!vreg)
7381 goto out;
7382
7383 vreg->reg = devm_regulator_get(dev, vreg->name);
7384 if (IS_ERR(vreg->reg)) {
7385 ret = PTR_ERR(vreg->reg);
7386 dev_err(dev, "%s: %s get failed, err=%d\n",
7387 __func__, vreg->name, ret);
7388 }
7389 out:
7390 return ret;
7391 }
7392
ufshcd_init_vreg(struct ufs_hba * hba)7393 static int ufshcd_init_vreg(struct ufs_hba *hba)
7394 {
7395 int ret = 0;
7396 struct device *dev = hba->dev;
7397 struct ufs_vreg_info *info = &hba->vreg_info;
7398
7399 ret = ufshcd_get_vreg(dev, info->vcc);
7400 if (ret)
7401 goto out;
7402
7403 ret = ufshcd_get_vreg(dev, info->vccq);
7404 if (ret)
7405 goto out;
7406
7407 ret = ufshcd_get_vreg(dev, info->vccq2);
7408 out:
7409 return ret;
7410 }
7411
ufshcd_init_hba_vreg(struct ufs_hba * hba)7412 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
7413 {
7414 struct ufs_vreg_info *info = &hba->vreg_info;
7415
7416 if (info)
7417 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
7418
7419 return 0;
7420 }
7421
__ufshcd_setup_clocks(struct ufs_hba * hba,bool on,bool skip_ref_clk)7422 static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
7423 bool skip_ref_clk)
7424 {
7425 int ret = 0;
7426 struct ufs_clk_info *clki;
7427 struct list_head *head = &hba->clk_list_head;
7428 unsigned long flags;
7429 unsigned long gating_wait;
7430 ktime_t start = ktime_get();
7431 bool clk_state_changed = false;
7432
7433 if (list_empty(head))
7434 goto out;
7435
7436 gating_wait = (unsigned long)hba->dev_info.clk_gating_wait_us;
7437 if (!on && !skip_ref_clk && !!gating_wait)
7438 usleep_range(gating_wait, gating_wait + 10);
7439
7440 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
7441 if (ret)
7442 return ret;
7443
7444 list_for_each_entry(clki, head, list) {
7445 if (!IS_ERR_OR_NULL(clki->clk)) {
7446 if (skip_ref_clk && !strcmp(clki->name, "ref_clk"))
7447 continue;
7448
7449 clk_state_changed = on ^ clki->enabled;
7450 if (on && !clki->enabled) {
7451 ret = clk_prepare_enable(clki->clk);
7452 if (ret) {
7453 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
7454 __func__, clki->name, ret);
7455 goto out;
7456 }
7457 } else if (!on && clki->enabled) {
7458 clk_disable_unprepare(clki->clk);
7459 }
7460 clki->enabled = on;
7461 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
7462 clki->name, on ? "en" : "dis");
7463 }
7464 }
7465
7466 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
7467 if (ret)
7468 return ret;
7469
7470 out:
7471 if (ret) {
7472 list_for_each_entry(clki, head, list) {
7473 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
7474 clk_disable_unprepare(clki->clk);
7475 }
7476 } else if (!ret && on) {
7477 spin_lock_irqsave(hba->host->host_lock, flags);
7478 hba->clk_gating.state = CLKS_ON;
7479 trace_ufshcd_clk_gating(dev_name(hba->dev),
7480 hba->clk_gating.state);
7481 spin_unlock_irqrestore(hba->host->host_lock, flags);
7482 }
7483
7484 if (clk_state_changed)
7485 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
7486 (on ? "on" : "off"),
7487 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
7488 return ret;
7489 }
7490
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)7491 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
7492 {
7493 return __ufshcd_setup_clocks(hba, on, false);
7494 }
7495
ufshcd_init_clocks(struct ufs_hba * hba)7496 static int ufshcd_init_clocks(struct ufs_hba *hba)
7497 {
7498 int ret = 0;
7499 struct ufs_clk_info *clki;
7500 struct device *dev = hba->dev;
7501 struct list_head *head = &hba->clk_list_head;
7502
7503 if (list_empty(head))
7504 goto out;
7505
7506 list_for_each_entry(clki, head, list) {
7507 if (!clki->name)
7508 continue;
7509
7510 clki->clk = devm_clk_get(dev, clki->name);
7511 if (IS_ERR(clki->clk)) {
7512 ret = PTR_ERR(clki->clk);
7513 dev_err(dev, "%s: %s clk get failed, %d\n",
7514 __func__, clki->name, ret);
7515 goto out;
7516 }
7517
7518 /*
7519 * Parse device ref clk freq as per device tree "ref_clk".
7520 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
7521 * in ufshcd_alloc_host().
7522 */
7523 if (!strcmp(clki->name, "ref_clk"))
7524 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
7525
7526 if (clki->max_freq) {
7527 ret = clk_set_rate(clki->clk, clki->max_freq);
7528 if (ret) {
7529 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
7530 __func__, clki->name,
7531 clki->max_freq, ret);
7532 goto out;
7533 }
7534 clki->curr_freq = clki->max_freq;
7535 }
7536 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
7537 clki->name, clk_get_rate(clki->clk));
7538 }
7539 out:
7540 return ret;
7541 }
7542
ufshcd_variant_hba_init(struct ufs_hba * hba)7543 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
7544 {
7545 int err = 0;
7546
7547 if (!hba->vops)
7548 goto out;
7549
7550 err = ufshcd_vops_init(hba);
7551 if (err)
7552 goto out;
7553
7554 err = ufshcd_vops_setup_regulators(hba, true);
7555 if (err)
7556 goto out_exit;
7557
7558 goto out;
7559
7560 out_exit:
7561 ufshcd_vops_exit(hba);
7562 out:
7563 if (err)
7564 dev_err(hba->dev, "%s: variant %s init failed err %d\n",
7565 __func__, ufshcd_get_var_name(hba), err);
7566 return err;
7567 }
7568
ufshcd_variant_hba_exit(struct ufs_hba * hba)7569 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
7570 {
7571 if (!hba->vops)
7572 return;
7573
7574 ufshcd_vops_setup_regulators(hba, false);
7575
7576 ufshcd_vops_exit(hba);
7577 }
7578
ufshcd_hba_init(struct ufs_hba * hba)7579 static int ufshcd_hba_init(struct ufs_hba *hba)
7580 {
7581 int err;
7582
7583 /*
7584 * Handle host controller power separately from the UFS device power
7585 * rails as it will help controlling the UFS host controller power
7586 * collapse easily which is different than UFS device power collapse.
7587 * Also, enable the host controller power before we go ahead with rest
7588 * of the initialization here.
7589 */
7590 err = ufshcd_init_hba_vreg(hba);
7591 if (err)
7592 goto out;
7593
7594 err = ufshcd_setup_hba_vreg(hba, true);
7595 if (err)
7596 goto out;
7597
7598 err = ufshcd_init_clocks(hba);
7599 if (err)
7600 goto out_disable_hba_vreg;
7601
7602 err = ufshcd_setup_clocks(hba, true);
7603 if (err)
7604 goto out_disable_hba_vreg;
7605
7606 err = ufshcd_init_vreg(hba);
7607 if (err)
7608 goto out_disable_clks;
7609
7610 err = ufshcd_setup_vreg(hba, true);
7611 if (err)
7612 goto out_disable_clks;
7613
7614 err = ufshcd_variant_hba_init(hba);
7615 if (err)
7616 goto out_disable_vreg;
7617
7618 hba->is_powered = true;
7619 goto out;
7620
7621 out_disable_vreg:
7622 ufshcd_setup_vreg(hba, false);
7623 out_disable_clks:
7624 ufshcd_setup_clocks(hba, false);
7625 out_disable_hba_vreg:
7626 ufshcd_setup_hba_vreg(hba, false);
7627 out:
7628 return err;
7629 }
7630
ufshcd_hba_exit(struct ufs_hba * hba)7631 static void ufshcd_hba_exit(struct ufs_hba *hba)
7632 {
7633 if (hba->is_powered) {
7634 ufshcd_variant_hba_exit(hba);
7635 ufshcd_setup_vreg(hba, false);
7636 ufshcd_suspend_clkscaling(hba);
7637 if (ufshcd_is_clkscaling_supported(hba))
7638 if (hba->devfreq)
7639 ufshcd_suspend_clkscaling(hba);
7640 ufshcd_setup_clocks(hba, false);
7641 ufshcd_setup_hba_vreg(hba, false);
7642 hba->is_powered = false;
7643 }
7644 }
7645
7646 static int
ufshcd_send_request_sense(struct ufs_hba * hba,struct scsi_device * sdp)7647 ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp)
7648 {
7649 unsigned char cmd[6] = {REQUEST_SENSE,
7650 0,
7651 0,
7652 0,
7653 UFS_SENSE_SIZE,
7654 0};
7655 char *buffer;
7656 int ret;
7657
7658 buffer = kzalloc(UFS_SENSE_SIZE, GFP_KERNEL);
7659 if (!buffer) {
7660 ret = -ENOMEM;
7661 goto out;
7662 }
7663
7664 ret = scsi_execute(sdp, cmd, DMA_FROM_DEVICE, buffer,
7665 UFS_SENSE_SIZE, NULL, NULL,
7666 msecs_to_jiffies(1000), 3, 0, RQF_PM, NULL);
7667 if (ret)
7668 pr_err("%s: failed with err %d\n", __func__, ret);
7669
7670 kfree(buffer);
7671 out:
7672 return ret;
7673 }
7674
7675 /**
7676 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
7677 * power mode
7678 * @hba: per adapter instance
7679 * @pwr_mode: device power mode to set
7680 *
7681 * Returns 0 if requested power mode is set successfully
7682 * Returns non-zero if failed to set the requested power mode
7683 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)7684 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
7685 enum ufs_dev_pwr_mode pwr_mode)
7686 {
7687 unsigned char cmd[6] = { START_STOP };
7688 struct scsi_sense_hdr sshdr;
7689 struct scsi_device *sdp;
7690 unsigned long flags;
7691 int ret;
7692
7693 spin_lock_irqsave(hba->host->host_lock, flags);
7694 sdp = hba->sdev_ufs_device;
7695 if (sdp) {
7696 ret = scsi_device_get(sdp);
7697 if (!ret && !scsi_device_online(sdp)) {
7698 ret = -ENODEV;
7699 scsi_device_put(sdp);
7700 }
7701 } else {
7702 ret = -ENODEV;
7703 }
7704 spin_unlock_irqrestore(hba->host->host_lock, flags);
7705
7706 if (ret)
7707 return ret;
7708
7709 /*
7710 * If scsi commands fail, the scsi mid-layer schedules scsi error-
7711 * handling, which would wait for host to be resumed. Since we know
7712 * we are functional while we are here, skip host resume in error
7713 * handling context.
7714 */
7715 hba->host->eh_noresume = 1;
7716 if (hba->wlun_dev_clr_ua) {
7717 ret = ufshcd_send_request_sense(hba, sdp);
7718 if (ret)
7719 goto out;
7720 /* Unit attention condition is cleared now */
7721 hba->wlun_dev_clr_ua = false;
7722 }
7723
7724 cmd[4] = pwr_mode << 4;
7725
7726 /*
7727 * Current function would be generally called from the power management
7728 * callbacks hence set the RQF_PM flag so that it doesn't resume the
7729 * already suspended childs.
7730 */
7731 ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
7732 START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
7733 if (ret) {
7734 sdev_printk(KERN_WARNING, sdp,
7735 "START_STOP failed for power mode: %d, result %x\n",
7736 pwr_mode, ret);
7737 if (driver_byte(ret) == DRIVER_SENSE)
7738 scsi_print_sense_hdr(sdp, NULL, &sshdr);
7739 }
7740
7741 if (!ret)
7742 hba->curr_dev_pwr_mode = pwr_mode;
7743 out:
7744 scsi_device_put(sdp);
7745 hba->host->eh_noresume = 0;
7746 return ret;
7747 }
7748
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)7749 static int ufshcd_link_state_transition(struct ufs_hba *hba,
7750 enum uic_link_state req_link_state,
7751 int check_for_bkops)
7752 {
7753 int ret = 0;
7754
7755 if (req_link_state == hba->uic_link_state)
7756 return 0;
7757
7758 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
7759 ret = ufshcd_uic_hibern8_enter(hba);
7760 if (!ret)
7761 ufshcd_set_link_hibern8(hba);
7762 else
7763 goto out;
7764 }
7765 /*
7766 * If autobkops is enabled, link can't be turned off because
7767 * turning off the link would also turn off the device.
7768 */
7769 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
7770 (!check_for_bkops || (check_for_bkops &&
7771 !hba->auto_bkops_enabled))) {
7772 /*
7773 * Let's make sure that link is in low power mode, we are doing
7774 * this currently by putting the link in Hibern8. Otherway to
7775 * put the link in low power mode is to send the DME end point
7776 * to device and then send the DME reset command to local
7777 * unipro. But putting the link in hibern8 is much faster.
7778 */
7779 ret = ufshcd_uic_hibern8_enter(hba);
7780 if (ret)
7781 goto out;
7782 /*
7783 * Change controller state to "reset state" which
7784 * should also put the link in off/reset state
7785 */
7786 ufshcd_hba_stop(hba, true);
7787 /*
7788 * TODO: Check if we need any delay to make sure that
7789 * controller is reset
7790 */
7791 ufshcd_set_link_off(hba);
7792 }
7793
7794 out:
7795 return ret;
7796 }
7797
ufshcd_vreg_set_lpm(struct ufs_hba * hba)7798 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
7799 {
7800 /*
7801 * It seems some UFS devices may keep drawing more than sleep current
7802 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
7803 * To avoid this situation, add 2ms delay before putting these UFS
7804 * rails in LPM mode.
7805 */
7806 if (!ufshcd_is_link_active(hba) &&
7807 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
7808 usleep_range(2000, 2100);
7809
7810 /*
7811 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
7812 * power.
7813 *
7814 * If UFS device and link is in OFF state, all power supplies (VCC,
7815 * VCCQ, VCCQ2) can be turned off if power on write protect is not
7816 * required. If UFS link is inactive (Hibern8 or OFF state) and device
7817 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
7818 *
7819 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
7820 * in low power state which would save some power.
7821 */
7822 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
7823 !hba->dev_info.is_lu_power_on_wp) {
7824 ufshcd_setup_vreg(hba, false);
7825 } else if (!ufshcd_is_ufs_dev_active(hba)) {
7826 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
7827 if (!ufshcd_is_link_active(hba)) {
7828 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
7829 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
7830 }
7831 }
7832 }
7833
ufshcd_vreg_set_hpm(struct ufs_hba * hba)7834 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
7835 {
7836 int ret = 0;
7837
7838 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
7839 !hba->dev_info.is_lu_power_on_wp) {
7840 ret = ufshcd_setup_vreg(hba, true);
7841 } else if (!ufshcd_is_ufs_dev_active(hba)) {
7842 if (!ret && !ufshcd_is_link_active(hba)) {
7843 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
7844 if (ret)
7845 goto vcc_disable;
7846 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
7847 if (ret)
7848 goto vccq_lpm;
7849 }
7850 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
7851 }
7852 goto out;
7853
7854 vccq_lpm:
7855 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
7856 vcc_disable:
7857 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
7858 out:
7859 return ret;
7860 }
7861
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)7862 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
7863 {
7864 if (ufshcd_is_link_off(hba))
7865 ufshcd_setup_hba_vreg(hba, false);
7866 }
7867
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)7868 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
7869 {
7870 if (ufshcd_is_link_off(hba))
7871 ufshcd_setup_hba_vreg(hba, true);
7872 }
7873
7874 /**
7875 * ufshcd_suspend - helper function for suspend operations
7876 * @hba: per adapter instance
7877 * @pm_op: desired low power operation type
7878 *
7879 * This function will try to put the UFS device and link into low power
7880 * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl"
7881 * (System PM level).
7882 *
7883 * If this function is called during shutdown, it will make sure that
7884 * both UFS device and UFS link is powered off.
7885 *
7886 * NOTE: UFS device & link must be active before we enter in this function.
7887 *
7888 * Returns 0 for success and non-zero for failure
7889 */
ufshcd_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)7890 static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
7891 {
7892 int ret = 0;
7893 enum ufs_pm_level pm_lvl;
7894 enum ufs_dev_pwr_mode req_dev_pwr_mode;
7895 enum uic_link_state req_link_state;
7896
7897 hba->pm_op_in_progress = 1;
7898 if (!ufshcd_is_shutdown_pm(pm_op)) {
7899 pm_lvl = ufshcd_is_runtime_pm(pm_op) ?
7900 hba->rpm_lvl : hba->spm_lvl;
7901 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
7902 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
7903 } else {
7904 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
7905 req_link_state = UIC_LINK_OFF_STATE;
7906 }
7907
7908 ret = ufshcd_crypto_suspend(hba, pm_op);
7909 if (ret)
7910 goto out;
7911
7912 /*
7913 * If we can't transition into any of the low power modes
7914 * just gate the clocks.
7915 */
7916 ufshcd_hold(hba, false);
7917 hba->clk_gating.is_suspended = true;
7918
7919 if (hba->clk_scaling.is_allowed) {
7920 cancel_work_sync(&hba->clk_scaling.suspend_work);
7921 cancel_work_sync(&hba->clk_scaling.resume_work);
7922 ufshcd_suspend_clkscaling(hba);
7923 }
7924
7925 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
7926 req_link_state == UIC_LINK_ACTIVE_STATE) {
7927 goto disable_clks;
7928 }
7929
7930 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
7931 (req_link_state == hba->uic_link_state))
7932 goto enable_gating;
7933
7934 /* UFS device & link must be active before we enter in this function */
7935 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
7936 ret = -EINVAL;
7937 goto enable_gating;
7938 }
7939
7940 if (ufshcd_is_runtime_pm(pm_op)) {
7941 if (ufshcd_can_autobkops_during_suspend(hba)) {
7942 /*
7943 * The device is idle with no requests in the queue,
7944 * allow background operations if bkops status shows
7945 * that performance might be impacted.
7946 */
7947 ret = ufshcd_urgent_bkops(hba);
7948 if (ret)
7949 goto enable_gating;
7950 } else {
7951 /* make sure that auto bkops is disabled */
7952 ufshcd_disable_auto_bkops(hba);
7953 }
7954 }
7955
7956 if ((req_dev_pwr_mode != hba->curr_dev_pwr_mode) &&
7957 ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) ||
7958 !ufshcd_is_runtime_pm(pm_op))) {
7959 /* ensure that bkops is disabled */
7960 ufshcd_disable_auto_bkops(hba);
7961 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
7962 if (ret)
7963 goto enable_gating;
7964 }
7965
7966 flush_work(&hba->eeh_work);
7967 ret = ufshcd_link_state_transition(hba, req_link_state, 1);
7968 if (ret)
7969 goto set_dev_active;
7970
7971 ufshcd_vreg_set_lpm(hba);
7972
7973 disable_clks:
7974 /*
7975 * Call vendor specific suspend callback. As these callbacks may access
7976 * vendor specific host controller register space call them before the
7977 * host clocks are ON.
7978 */
7979 ret = ufshcd_vops_suspend(hba, pm_op);
7980 if (ret)
7981 goto set_link_active;
7982
7983 if (!ufshcd_is_link_active(hba))
7984 ufshcd_setup_clocks(hba, false);
7985 else
7986 /* If link is active, device ref_clk can't be switched off */
7987 __ufshcd_setup_clocks(hba, false, true);
7988
7989 hba->clk_gating.state = CLKS_OFF;
7990 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
7991 /*
7992 * Disable the host irq as host controller as there won't be any
7993 * host controller transaction expected till resume.
7994 */
7995 ufshcd_disable_irq(hba);
7996 /* Put the host controller in low power mode if possible */
7997 ufshcd_hba_vreg_set_lpm(hba);
7998 goto out;
7999
8000 set_link_active:
8001 if (hba->clk_scaling.is_allowed)
8002 ufshcd_resume_clkscaling(hba);
8003 ufshcd_vreg_set_hpm(hba);
8004 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
8005 ufshcd_set_link_active(hba);
8006 else if (ufshcd_is_link_off(hba))
8007 ufshcd_host_reset_and_restore(hba);
8008 set_dev_active:
8009 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
8010 ufshcd_disable_auto_bkops(hba);
8011 enable_gating:
8012 if (hba->clk_scaling.is_allowed)
8013 ufshcd_resume_clkscaling(hba);
8014 hba->clk_gating.is_suspended = false;
8015 ufshcd_release(hba);
8016 ufshcd_crypto_resume(hba, pm_op);
8017 out:
8018 hba->pm_op_in_progress = 0;
8019 if (ret)
8020 ufshcd_update_reg_hist(&hba->ufs_stats.suspend_err, (u32)ret);
8021 return ret;
8022 }
8023
8024 /**
8025 * ufshcd_resume - helper function for resume operations
8026 * @hba: per adapter instance
8027 * @pm_op: runtime PM or system PM
8028 *
8029 * This function basically brings the UFS device, UniPro link and controller
8030 * to active state.
8031 *
8032 * Returns 0 for success and non-zero for failure
8033 */
ufshcd_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)8034 static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8035 {
8036 int ret;
8037 enum uic_link_state old_link_state;
8038 enum ufs_dev_pwr_mode old_pwr_mode;
8039
8040 hba->pm_op_in_progress = 1;
8041 old_link_state = hba->uic_link_state;
8042 old_pwr_mode = hba->curr_dev_pwr_mode;
8043
8044 ufshcd_hba_vreg_set_hpm(hba);
8045 /* Make sure clocks are enabled before accessing controller */
8046 ret = ufshcd_setup_clocks(hba, true);
8047 if (ret)
8048 goto out;
8049
8050 /* enable the host irq as host controller would be active soon */
8051 ufshcd_enable_irq(hba);
8052
8053 ret = ufshcd_vreg_set_hpm(hba);
8054 if (ret)
8055 goto disable_irq_and_vops_clks;
8056
8057 /*
8058 * Call vendor specific resume callback. As these callbacks may access
8059 * vendor specific host controller register space call them when the
8060 * host clocks are ON.
8061 */
8062 ret = ufshcd_vops_resume(hba, pm_op);
8063 if (ret)
8064 goto disable_vreg;
8065
8066 if (ufshcd_is_link_hibern8(hba)) {
8067 ret = ufshcd_uic_hibern8_exit(hba);
8068 if (!ret)
8069 ufshcd_set_link_active(hba);
8070 else
8071 goto vendor_suspend;
8072 } else if (ufshcd_is_link_off(hba)) {
8073 ret = ufshcd_host_reset_and_restore(hba);
8074 /*
8075 * ufshcd_host_reset_and_restore() should have already
8076 * set the link state as active
8077 */
8078 if (ret || !ufshcd_is_link_active(hba))
8079 goto vendor_suspend;
8080 }
8081
8082 if (!ufshcd_is_ufs_dev_active(hba)) {
8083 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
8084 if (ret)
8085 goto set_old_link_state;
8086 }
8087
8088 ret = ufshcd_crypto_resume(hba, pm_op);
8089 if (ret)
8090 goto set_old_dev_pwr_mode;
8091
8092 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
8093 ufshcd_enable_auto_bkops(hba);
8094 else
8095 /*
8096 * If BKOPs operations are urgently needed at this moment then
8097 * keep auto-bkops enabled or else disable it.
8098 */
8099 ufshcd_urgent_bkops(hba);
8100
8101 hba->clk_gating.is_suspended = false;
8102
8103 if (hba->clk_scaling.is_allowed)
8104 ufshcd_resume_clkscaling(hba);
8105
8106 /* Enable Auto-Hibernate if configured */
8107 ufshcd_auto_hibern8_enable(hba);
8108
8109 /* Schedule clock gating in case of no access to UFS device yet */
8110 ufshcd_release(hba);
8111
8112 goto out;
8113
8114 set_old_dev_pwr_mode:
8115 if (old_pwr_mode != hba->curr_dev_pwr_mode)
8116 ufshcd_set_dev_pwr_mode(hba, old_pwr_mode);
8117 set_old_link_state:
8118 ufshcd_link_state_transition(hba, old_link_state, 0);
8119 vendor_suspend:
8120 ufshcd_vops_suspend(hba, pm_op);
8121 disable_vreg:
8122 ufshcd_vreg_set_lpm(hba);
8123 disable_irq_and_vops_clks:
8124 ufshcd_disable_irq(hba);
8125 if (hba->clk_scaling.is_allowed)
8126 ufshcd_suspend_clkscaling(hba);
8127 ufshcd_setup_clocks(hba, false);
8128 out:
8129 hba->pm_op_in_progress = 0;
8130 if (ret)
8131 ufshcd_update_reg_hist(&hba->ufs_stats.resume_err, (u32)ret);
8132 return ret;
8133 }
8134
8135 /**
8136 * ufshcd_system_suspend - system suspend routine
8137 * @hba: per adapter instance
8138 *
8139 * Check the description of ufshcd_suspend() function for more details.
8140 *
8141 * Returns 0 for success and non-zero for failure
8142 */
ufshcd_system_suspend(struct ufs_hba * hba)8143 int ufshcd_system_suspend(struct ufs_hba *hba)
8144 {
8145 int ret = 0;
8146 ktime_t start = ktime_get();
8147
8148 if (!hba || !hba->is_powered)
8149 return 0;
8150
8151 if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) ==
8152 hba->curr_dev_pwr_mode) &&
8153 (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
8154 hba->uic_link_state))
8155 goto out;
8156
8157 if (pm_runtime_suspended(hba->dev)) {
8158 /*
8159 * UFS device and/or UFS link low power states during runtime
8160 * suspend seems to be different than what is expected during
8161 * system suspend. Hence runtime resume the devic & link and
8162 * let the system suspend low power states to take effect.
8163 * TODO: If resume takes longer time, we might have optimize
8164 * it in future by not resuming everything if possible.
8165 */
8166 ret = ufshcd_runtime_resume(hba);
8167 if (ret)
8168 goto out;
8169 }
8170
8171 ret = ufshcd_suspend(hba, UFS_SYSTEM_PM);
8172 out:
8173 trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
8174 ktime_to_us(ktime_sub(ktime_get(), start)),
8175 hba->curr_dev_pwr_mode, hba->uic_link_state);
8176 if (!ret)
8177 hba->is_sys_suspended = true;
8178 return ret;
8179 }
8180 EXPORT_SYMBOL(ufshcd_system_suspend);
8181
8182 /**
8183 * ufshcd_system_resume - system resume routine
8184 * @hba: per adapter instance
8185 *
8186 * Returns 0 for success and non-zero for failure
8187 */
8188
ufshcd_system_resume(struct ufs_hba * hba)8189 int ufshcd_system_resume(struct ufs_hba *hba)
8190 {
8191 int ret = 0;
8192 ktime_t start = ktime_get();
8193
8194 if (!hba)
8195 return -EINVAL;
8196
8197 if (!hba->is_powered || pm_runtime_suspended(hba->dev))
8198 /*
8199 * Let the runtime resume take care of resuming
8200 * if runtime suspended.
8201 */
8202 goto out;
8203 else
8204 ret = ufshcd_resume(hba, UFS_SYSTEM_PM);
8205 out:
8206 trace_ufshcd_system_resume(dev_name(hba->dev), ret,
8207 ktime_to_us(ktime_sub(ktime_get(), start)),
8208 hba->curr_dev_pwr_mode, hba->uic_link_state);
8209 if (!ret)
8210 hba->is_sys_suspended = false;
8211 return ret;
8212 }
8213 EXPORT_SYMBOL(ufshcd_system_resume);
8214
8215 /**
8216 * ufshcd_runtime_suspend - runtime suspend routine
8217 * @hba: per adapter instance
8218 *
8219 * Check the description of ufshcd_suspend() function for more details.
8220 *
8221 * Returns 0 for success and non-zero for failure
8222 */
ufshcd_runtime_suspend(struct ufs_hba * hba)8223 int ufshcd_runtime_suspend(struct ufs_hba *hba)
8224 {
8225 int ret = 0;
8226 ktime_t start = ktime_get();
8227
8228 if (!hba)
8229 return -EINVAL;
8230
8231 if (!hba->is_powered)
8232 goto out;
8233 else
8234 ret = ufshcd_suspend(hba, UFS_RUNTIME_PM);
8235 out:
8236 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
8237 ktime_to_us(ktime_sub(ktime_get(), start)),
8238 hba->curr_dev_pwr_mode, hba->uic_link_state);
8239 return ret;
8240 }
8241 EXPORT_SYMBOL(ufshcd_runtime_suspend);
8242
8243 /**
8244 * ufshcd_runtime_resume - runtime resume routine
8245 * @hba: per adapter instance
8246 *
8247 * This function basically brings the UFS device, UniPro link and controller
8248 * to active state. Following operations are done in this function:
8249 *
8250 * 1. Turn on all the controller related clocks
8251 * 2. Bring the UniPro link out of Hibernate state
8252 * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device
8253 * to active state.
8254 * 4. If auto-bkops is enabled on the device, disable it.
8255 *
8256 * So following would be the possible power state after this function return
8257 * successfully:
8258 * S1: UFS device in Active state with VCC rail ON
8259 * UniPro link in Active state
8260 * All the UFS/UniPro controller clocks are ON
8261 *
8262 * Returns 0 for success and non-zero for failure
8263 */
ufshcd_runtime_resume(struct ufs_hba * hba)8264 int ufshcd_runtime_resume(struct ufs_hba *hba)
8265 {
8266 int ret = 0;
8267 ktime_t start = ktime_get();
8268
8269 if (!hba)
8270 return -EINVAL;
8271
8272 if (!hba->is_powered)
8273 goto out;
8274 else
8275 ret = ufshcd_resume(hba, UFS_RUNTIME_PM);
8276 out:
8277 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
8278 ktime_to_us(ktime_sub(ktime_get(), start)),
8279 hba->curr_dev_pwr_mode, hba->uic_link_state);
8280 return ret;
8281 }
8282 EXPORT_SYMBOL(ufshcd_runtime_resume);
8283
ufshcd_runtime_idle(struct ufs_hba * hba)8284 int ufshcd_runtime_idle(struct ufs_hba *hba)
8285 {
8286 return 0;
8287 }
8288 EXPORT_SYMBOL(ufshcd_runtime_idle);
8289
8290 /**
8291 * ufshcd_shutdown - shutdown routine
8292 * @hba: per adapter instance
8293 *
8294 * This function would power off both UFS device and UFS link.
8295 *
8296 * Returns 0 always to allow force shutdown even in case of errors.
8297 */
ufshcd_shutdown(struct ufs_hba * hba)8298 int ufshcd_shutdown(struct ufs_hba *hba)
8299 {
8300 int ret = 0;
8301
8302 if (!hba->is_powered)
8303 goto out;
8304
8305 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
8306 goto out;
8307
8308 if (pm_runtime_suspended(hba->dev)) {
8309 ret = ufshcd_runtime_resume(hba);
8310 if (ret)
8311 goto out;
8312 }
8313
8314 ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM);
8315 out:
8316 if (ret)
8317 dev_err(hba->dev, "%s failed, err %d\n", __func__, ret);
8318 /* allow force shutdown even in case of errors */
8319 return 0;
8320 }
8321 EXPORT_SYMBOL(ufshcd_shutdown);
8322
8323 /**
8324 * ufshcd_remove - de-allocate SCSI host and host memory space
8325 * data structure memory
8326 * @hba: per adapter instance
8327 */
ufshcd_remove(struct ufs_hba * hba)8328 void ufshcd_remove(struct ufs_hba *hba)
8329 {
8330 ufs_bsg_remove(hba);
8331 ufs_sysfs_remove_nodes(hba->dev);
8332 scsi_remove_host(hba->host);
8333 /* disable interrupts */
8334 ufshcd_disable_intr(hba, hba->intr_mask);
8335 ufshcd_hba_stop(hba, true);
8336
8337 ufshcd_exit_clk_scaling(hba);
8338 ufshcd_exit_clk_gating(hba);
8339 if (ufshcd_is_clkscaling_supported(hba))
8340 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
8341 ufshcd_hba_exit(hba);
8342 }
8343 EXPORT_SYMBOL_GPL(ufshcd_remove);
8344
8345 /**
8346 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
8347 * @hba: pointer to Host Bus Adapter (HBA)
8348 */
ufshcd_dealloc_host(struct ufs_hba * hba)8349 void ufshcd_dealloc_host(struct ufs_hba *hba)
8350 {
8351 scsi_host_put(hba->host);
8352 }
8353 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
8354
8355 /**
8356 * ufshcd_set_dma_mask - Set dma mask based on the controller
8357 * addressing capability
8358 * @hba: per adapter instance
8359 *
8360 * Returns 0 for success, non-zero for failure
8361 */
ufshcd_set_dma_mask(struct ufs_hba * hba)8362 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
8363 {
8364 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
8365 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
8366 return 0;
8367 }
8368 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
8369 }
8370
8371 /**
8372 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
8373 * @dev: pointer to device handle
8374 * @hba_handle: driver private handle
8375 * Returns 0 on success, non-zero value on failure
8376 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)8377 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
8378 {
8379 struct Scsi_Host *host;
8380 struct ufs_hba *hba;
8381 int err = 0;
8382
8383 if (!dev) {
8384 dev_err(dev,
8385 "Invalid memory reference for dev is NULL\n");
8386 err = -ENODEV;
8387 goto out_error;
8388 }
8389
8390 host = scsi_host_alloc(&ufshcd_driver_template,
8391 sizeof(struct ufs_hba));
8392 if (!host) {
8393 dev_err(dev, "scsi_host_alloc failed\n");
8394 err = -ENOMEM;
8395 goto out_error;
8396 }
8397 hba = shost_priv(host);
8398 hba->host = host;
8399 hba->dev = dev;
8400 *hba_handle = hba;
8401 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
8402
8403 INIT_LIST_HEAD(&hba->clk_list_head);
8404
8405 out_error:
8406 return err;
8407 }
8408 EXPORT_SYMBOL(ufshcd_alloc_host);
8409
8410 /**
8411 * ufshcd_init - Driver initialization routine
8412 * @hba: per-adapter instance
8413 * @mmio_base: base register address
8414 * @irq: Interrupt line of device
8415 * Returns 0 on success, non-zero value on failure
8416 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)8417 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
8418 {
8419 int err;
8420 struct Scsi_Host *host = hba->host;
8421 struct device *dev = hba->dev;
8422
8423 if (!mmio_base) {
8424 dev_err(hba->dev,
8425 "Invalid memory reference for mmio_base is NULL\n");
8426 err = -ENODEV;
8427 goto out_error;
8428 }
8429
8430 hba->mmio_base = mmio_base;
8431 hba->irq = irq;
8432
8433 err = ufshcd_hba_init(hba);
8434 if (err)
8435 goto out_error;
8436
8437 /* Read capabilities registers */
8438 ufshcd_hba_capabilities(hba);
8439
8440 /* Get UFS version supported by the controller */
8441 hba->ufs_version = ufshcd_get_ufs_version(hba);
8442
8443 if ((hba->ufs_version != UFSHCI_VERSION_10) &&
8444 (hba->ufs_version != UFSHCI_VERSION_11) &&
8445 (hba->ufs_version != UFSHCI_VERSION_20) &&
8446 (hba->ufs_version != UFSHCI_VERSION_21))
8447 dev_err(hba->dev, "invalid UFS version 0x%x\n",
8448 hba->ufs_version);
8449
8450 /* Get Interrupt bit mask per version */
8451 hba->intr_mask = ufshcd_get_intr_mask(hba);
8452
8453 err = ufshcd_set_dma_mask(hba);
8454 if (err) {
8455 dev_err(hba->dev, "set dma mask failed\n");
8456 goto out_disable;
8457 }
8458
8459 /* Allocate memory for host memory space */
8460 err = ufshcd_memory_alloc(hba);
8461 if (err) {
8462 dev_err(hba->dev, "Memory allocation failed\n");
8463 goto out_disable;
8464 }
8465
8466 /* Configure LRB */
8467 ufshcd_host_memory_configure(hba);
8468
8469 host->can_queue = hba->nutrs;
8470 host->cmd_per_lun = hba->nutrs;
8471 host->max_id = UFSHCD_MAX_ID;
8472 host->max_lun = UFS_MAX_LUNS;
8473 host->max_channel = UFSHCD_MAX_CHANNEL;
8474 host->unique_id = host->host_no;
8475 host->max_cmd_len = UFS_CDB_SIZE;
8476
8477 hba->max_pwr_info.is_valid = false;
8478
8479 /* Initailize wait queue for task management */
8480 init_waitqueue_head(&hba->tm_wq);
8481 init_waitqueue_head(&hba->tm_tag_wq);
8482
8483 /* Initialize work queues */
8484 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
8485 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
8486
8487 /* Initialize UIC command mutex */
8488 mutex_init(&hba->uic_cmd_mutex);
8489
8490 /* Initialize mutex for device management commands */
8491 mutex_init(&hba->dev_cmd.lock);
8492
8493 init_rwsem(&hba->clk_scaling_lock);
8494
8495 /* Initialize device management tag acquire wait queue */
8496 init_waitqueue_head(&hba->dev_cmd.tag_wq);
8497
8498 ufshcd_init_clk_gating(hba);
8499
8500 ufshcd_init_clk_scaling(hba);
8501
8502 /*
8503 * In order to avoid any spurious interrupt immediately after
8504 * registering UFS controller interrupt handler, clear any pending UFS
8505 * interrupt status and disable all the UFS interrupts.
8506 */
8507 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
8508 REG_INTERRUPT_STATUS);
8509 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
8510 /*
8511 * Make sure that UFS interrupts are disabled and any pending interrupt
8512 * status is cleared before registering UFS interrupt handler.
8513 */
8514 mb();
8515
8516 /* IRQ registration */
8517 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
8518 if (err) {
8519 dev_err(hba->dev, "request irq failed\n");
8520 goto exit_gating;
8521 } else {
8522 hba->is_irq_enabled = true;
8523 }
8524
8525 err = scsi_add_host(host, hba->dev);
8526 if (err) {
8527 dev_err(hba->dev, "scsi_add_host failed\n");
8528 goto exit_gating;
8529 }
8530
8531 /* Reset the attached device */
8532 ufshcd_vops_device_reset(hba);
8533
8534 /* Init crypto */
8535 err = ufshcd_hba_init_crypto(hba);
8536 if (err) {
8537 dev_err(hba->dev, "crypto setup failed\n");
8538 goto out_remove_scsi_host;
8539 }
8540
8541 /* Host controller enable */
8542 err = ufshcd_hba_enable(hba);
8543 if (err) {
8544 dev_err(hba->dev, "Host controller enable failed\n");
8545 ufshcd_print_host_regs(hba);
8546 ufshcd_print_host_state(hba);
8547 goto out_remove_scsi_host;
8548 }
8549
8550 /*
8551 * Set the default power management level for runtime and system PM.
8552 * Default power saving mode is to keep UFS link in Hibern8 state
8553 * and UFS device in sleep state.
8554 */
8555 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
8556 UFS_SLEEP_PWR_MODE,
8557 UIC_LINK_HIBERN8_STATE);
8558 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
8559 UFS_SLEEP_PWR_MODE,
8560 UIC_LINK_HIBERN8_STATE);
8561
8562 /* Set the default auto-hiberate idle timer value to 150 ms */
8563 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
8564 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
8565 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
8566 }
8567
8568 /* Hold auto suspend until async scan completes */
8569 pm_runtime_get_sync(dev);
8570 atomic_set(&hba->scsi_block_reqs_cnt, 0);
8571 /*
8572 * We are assuming that device wasn't put in sleep/power-down
8573 * state exclusively during the boot stage before kernel.
8574 * This assumption helps avoid doing link startup twice during
8575 * ufshcd_probe_hba().
8576 */
8577 ufshcd_set_ufs_dev_active(hba);
8578
8579 async_schedule(ufshcd_async_scan, hba);
8580 ufs_sysfs_add_nodes(hba->dev);
8581
8582 return 0;
8583
8584 out_remove_scsi_host:
8585 scsi_remove_host(hba->host);
8586 exit_gating:
8587 ufshcd_exit_clk_scaling(hba);
8588 ufshcd_exit_clk_gating(hba);
8589 out_disable:
8590 hba->is_irq_enabled = false;
8591 ufshcd_hba_exit(hba);
8592 out_error:
8593 return err;
8594 }
8595 EXPORT_SYMBOL_GPL(ufshcd_init);
8596
8597 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
8598 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
8599 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
8600 MODULE_LICENSE("GPL");
8601 MODULE_VERSION(UFSHCD_DRIVER_VERSION);
8602