• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Universal Flash Storage Host controller driver Core
3  *
4  * This code is based on drivers/scsi/ufs/ufshcd.c
5  * Copyright (C) 2011-2013 Samsung India Software Operations
6  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
7  *
8  * Authors:
9  *	Santosh Yaraganavi <santosh.sy@samsung.com>
10  *	Vinayak Holikatti <h.vinayak@samsung.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  * See the COPYING file in the top-level directory or visit
17  * <http://www.gnu.org/licenses/gpl-2.0.html>
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * This program is provided "AS IS" and "WITH ALL FAULTS" and
25  * without warranty of any kind. You are solely responsible for
26  * determining the appropriateness of using and distributing
27  * the program and assume all risks associated with your exercise
28  * of rights with respect to the program, including but not limited
29  * to infringement of third party rights, the risks and costs of
30  * program errors, damage to or loss of data, programs or equipment,
31  * and unavailability or interruption of operations. Under no
32  * circumstances will the contributor of this Program be liable for
33  * any damages of any kind arising from your use or distribution of
34  * this program.
35  *
36  * The Linux Foundation chooses to take subject only to the GPLv2
37  * license terms, and distributes only under these terms.
38  */
39 
40 #include <linux/async.h>
41 #include <linux/devfreq.h>
42 #include <linux/nls.h>
43 #include <linux/of.h>
44 #include <linux/bitfield.h>
45 #include "ufshcd.h"
46 #include "ufs_quirks.h"
47 #include "unipro.h"
48 #include "ufs-sysfs.h"
49 #include "ufs_bsg.h"
50 #include "ufshcd-crypto.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ufs.h>
54 
55 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
56 				 UTP_TASK_REQ_COMPL |\
57 				 UFSHCD_ERROR_MASK)
58 /* UIC command timeout, unit: ms */
59 #define UIC_CMD_TIMEOUT	500
60 
61 /* NOP OUT retries waiting for NOP IN response */
62 #define NOP_OUT_RETRIES    10
63 /* Timeout after 30 msecs if NOP OUT hangs without response */
64 #define NOP_OUT_TIMEOUT    30 /* msecs */
65 
66 /* Query request retries */
67 #define QUERY_REQ_RETRIES 3
68 /* Query request timeout */
69 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
70 
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT	100 /* msecs */
73 
74 /* maximum number of retries for a general UIC command  */
75 #define UFS_UIC_COMMAND_RETRIES 3
76 
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79 
80 /* Maximum retries for Hibern8 enter */
81 #define UIC_HIBERN8_ENTER_RETRIES 3
82 
83 /* maximum number of reset retries before giving up */
84 #define MAX_HOST_RESET_RETRIES 5
85 
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88 
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO	0x02
91 
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
99 	({                                                              \
100 		int _ret;                                               \
101 		if (_on)                                                \
102 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
103 		else                                                    \
104 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
105 		_ret;                                                   \
106 	})
107 
108 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
109 	size_t __len = (len);                                            \
110 	print_hex_dump(KERN_ERR, prefix_str,                             \
111 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
112 		       16, 4, buf, __len, false);                        \
113 } while (0)
114 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)115 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
116 		     const char *prefix)
117 {
118 	u32 *regs;
119 	size_t pos;
120 
121 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
122 		return -EINVAL;
123 
124 	regs = kzalloc(len, GFP_KERNEL);
125 	if (!regs)
126 		return -ENOMEM;
127 
128 	for (pos = 0; pos < len; pos += 4)
129 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
130 
131 	ufshcd_hex_dump(prefix, regs, len);
132 	kfree(regs);
133 
134 	return 0;
135 }
136 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
137 
138 enum {
139 	UFSHCD_MAX_CHANNEL	= 0,
140 	UFSHCD_MAX_ID		= 1,
141 	UFSHCD_CMD_PER_LUN	= 32,
142 	UFSHCD_CAN_QUEUE	= 32,
143 };
144 
145 /* UFSHCD states */
146 enum {
147 	UFSHCD_STATE_RESET,
148 	UFSHCD_STATE_ERROR,
149 	UFSHCD_STATE_OPERATIONAL,
150 	UFSHCD_STATE_EH_SCHEDULED,
151 };
152 
153 /* UFSHCD error handling flags */
154 enum {
155 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
156 };
157 
158 /* UFSHCD UIC layer error flags */
159 enum {
160 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
161 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
162 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
163 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
164 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
165 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
166 };
167 
168 #define ufshcd_set_eh_in_progress(h) \
169 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
170 #define ufshcd_eh_in_progress(h) \
171 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
172 #define ufshcd_clear_eh_in_progress(h) \
173 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
174 
175 #define ufshcd_set_ufs_dev_active(h) \
176 	((h)->curr_dev_pwr_mode = UFS_ACTIVE_PWR_MODE)
177 #define ufshcd_set_ufs_dev_sleep(h) \
178 	((h)->curr_dev_pwr_mode = UFS_SLEEP_PWR_MODE)
179 #define ufshcd_set_ufs_dev_poweroff(h) \
180 	((h)->curr_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE)
181 #define ufshcd_is_ufs_dev_active(h) \
182 	((h)->curr_dev_pwr_mode == UFS_ACTIVE_PWR_MODE)
183 #define ufshcd_is_ufs_dev_sleep(h) \
184 	((h)->curr_dev_pwr_mode == UFS_SLEEP_PWR_MODE)
185 #define ufshcd_is_ufs_dev_poweroff(h) \
186 	((h)->curr_dev_pwr_mode == UFS_POWERDOWN_PWR_MODE)
187 
188 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
189 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
190 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
191 	{UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
192 	{UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
193 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
194 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
195 };
196 
197 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)198 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
199 {
200 	return ufs_pm_lvl_states[lvl].dev_state;
201 }
202 
203 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)204 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
205 {
206 	return ufs_pm_lvl_states[lvl].link_state;
207 }
208 
209 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)210 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
211 					enum uic_link_state link_state)
212 {
213 	enum ufs_pm_level lvl;
214 
215 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
216 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
217 			(ufs_pm_lvl_states[lvl].link_state == link_state))
218 			return lvl;
219 	}
220 
221 	/* if no match found, return the level 0 */
222 	return UFS_PM_LVL_0;
223 }
224 
225 static struct ufs_dev_fix ufs_fixups[] = {
226 	/* UFS cards deviations table */
227 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
228 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
229 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
230 		UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
231 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
232 		UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE),
233 	UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
234 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
235 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
236 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
237 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
238 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
239 	UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
240 		UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
241 	UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
242 		UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
243 
244 	END_FIX
245 };
246 
247 static void ufshcd_tmc_handler(struct ufs_hba *hba);
248 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
249 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
250 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
251 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
252 static void ufshcd_hba_exit(struct ufs_hba *hba);
253 static int ufshcd_probe_hba(struct ufs_hba *hba);
254 static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
255 				 bool skip_ref_clk);
256 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
257 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
258 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
259 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
260 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
261 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
262 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
263 static irqreturn_t ufshcd_intr(int irq, void *__hba);
264 static int ufshcd_change_power_mode(struct ufs_hba *hba,
265 			     struct ufs_pa_layer_attr *pwr_mode);
ufshcd_valid_tag(struct ufs_hba * hba,int tag)266 static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag)
267 {
268 	return tag >= 0 && tag < hba->nutrs;
269 }
270 
ufshcd_enable_irq(struct ufs_hba * hba)271 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
272 {
273 	if (!hba->is_irq_enabled) {
274 		enable_irq(hba->irq);
275 		hba->is_irq_enabled = true;
276 	}
277 }
278 
ufshcd_disable_irq(struct ufs_hba * hba)279 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
280 {
281 	if (hba->is_irq_enabled) {
282 		disable_irq(hba->irq);
283 		hba->is_irq_enabled = false;
284 	}
285 }
286 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)287 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
288 {
289 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
290 		scsi_unblock_requests(hba->host);
291 }
292 
ufshcd_scsi_block_requests(struct ufs_hba * hba)293 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
294 {
295 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
296 		scsi_block_requests(hba->host);
297 }
298 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)299 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
300 		const char *str)
301 {
302 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
303 
304 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->sc.cdb);
305 }
306 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)307 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, unsigned int tag,
308 		const char *str)
309 {
310 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
311 
312 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->qr);
313 }
314 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)315 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
316 		const char *str)
317 {
318 	int off = (int)tag - hba->nutrs;
319 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[off];
320 
321 	trace_ufshcd_upiu(dev_name(hba->dev), str, &descp->req_header,
322 			&descp->input_param1);
323 }
324 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,const char * str)325 static void ufshcd_add_command_trace(struct ufs_hba *hba,
326 		unsigned int tag, const char *str)
327 {
328 	sector_t lba = -1;
329 	u8 opcode = 0;
330 	u32 intr, doorbell;
331 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
332 	int transfer_len = -1;
333 
334 	if (!trace_ufshcd_command_enabled()) {
335 		/* trace UPIU W/O tracing command */
336 		if (lrbp->cmd)
337 			ufshcd_add_cmd_upiu_trace(hba, tag, str);
338 		return;
339 	}
340 
341 	if (lrbp->cmd) { /* data phase exists */
342 		/* trace UPIU also */
343 		ufshcd_add_cmd_upiu_trace(hba, tag, str);
344 		opcode = (u8)(*lrbp->cmd->cmnd);
345 		if ((opcode == READ_10) || (opcode == WRITE_10)) {
346 			/*
347 			 * Currently we only fully trace read(10) and write(10)
348 			 * commands
349 			 */
350 			if (lrbp->cmd->request && lrbp->cmd->request->bio)
351 				lba =
352 				  lrbp->cmd->request->bio->bi_iter.bi_sector;
353 			transfer_len = be32_to_cpu(
354 				lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
355 		}
356 	}
357 
358 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
359 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
360 	trace_ufshcd_command(dev_name(hba->dev), str, tag,
361 				doorbell, transfer_len, intr, lba, opcode);
362 }
363 
ufshcd_print_clk_freqs(struct ufs_hba * hba)364 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
365 {
366 	struct ufs_clk_info *clki;
367 	struct list_head *head = &hba->clk_list_head;
368 
369 	if (list_empty(head))
370 		return;
371 
372 	list_for_each_entry(clki, head, list) {
373 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
374 				clki->max_freq)
375 			dev_err(hba->dev, "clk: %s, rate: %u\n",
376 					clki->name, clki->curr_freq);
377 	}
378 }
379 
ufshcd_print_err_hist(struct ufs_hba * hba,struct ufs_err_reg_hist * err_hist,char * err_name)380 static void ufshcd_print_err_hist(struct ufs_hba *hba,
381 				  struct ufs_err_reg_hist *err_hist,
382 				  char *err_name)
383 {
384 	int i;
385 	bool found = false;
386 
387 	for (i = 0; i < UFS_ERR_REG_HIST_LENGTH; i++) {
388 		int p = (i + err_hist->pos) % UFS_ERR_REG_HIST_LENGTH;
389 
390 		if (err_hist->reg[p] == 0)
391 			continue;
392 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
393 			err_hist->reg[p], ktime_to_us(err_hist->tstamp[p]));
394 		found = true;
395 	}
396 
397 	if (!found)
398 		dev_err(hba->dev, "No record of %s errors\n", err_name);
399 }
400 
ufshcd_print_host_regs(struct ufs_hba * hba)401 static void ufshcd_print_host_regs(struct ufs_hba *hba)
402 {
403 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
404 	dev_err(hba->dev, "hba->ufs_version = 0x%x, hba->capabilities = 0x%x\n",
405 		hba->ufs_version, hba->capabilities);
406 	dev_err(hba->dev,
407 		"hba->outstanding_reqs = 0x%x, hba->outstanding_tasks = 0x%x\n",
408 		(u32)hba->outstanding_reqs, (u32)hba->outstanding_tasks);
409 	dev_err(hba->dev,
410 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt = %d\n",
411 		ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
412 		hba->ufs_stats.hibern8_exit_cnt);
413 
414 	ufshcd_print_err_hist(hba, &hba->ufs_stats.pa_err, "pa_err");
415 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dl_err, "dl_err");
416 	ufshcd_print_err_hist(hba, &hba->ufs_stats.nl_err, "nl_err");
417 	ufshcd_print_err_hist(hba, &hba->ufs_stats.tl_err, "tl_err");
418 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dme_err, "dme_err");
419 	ufshcd_print_err_hist(hba, &hba->ufs_stats.auto_hibern8_err,
420 			      "auto_hibern8_err");
421 	ufshcd_print_err_hist(hba, &hba->ufs_stats.fatal_err, "fatal_err");
422 	ufshcd_print_err_hist(hba, &hba->ufs_stats.link_startup_err,
423 			      "link_startup_fail");
424 	ufshcd_print_err_hist(hba, &hba->ufs_stats.resume_err, "resume_fail");
425 	ufshcd_print_err_hist(hba, &hba->ufs_stats.suspend_err,
426 			      "suspend_fail");
427 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dev_reset, "dev_reset");
428 	ufshcd_print_err_hist(hba, &hba->ufs_stats.host_reset, "host_reset");
429 	ufshcd_print_err_hist(hba, &hba->ufs_stats.task_abort, "task_abort");
430 
431 	ufshcd_print_clk_freqs(hba);
432 
433 	if (hba->vops && hba->vops->dbg_register_dump)
434 		hba->vops->dbg_register_dump(hba);
435 
436 	ufshcd_crypto_debug(hba);
437 }
438 
439 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)440 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
441 {
442 	struct ufshcd_lrb *lrbp;
443 	int prdt_length;
444 	int tag;
445 
446 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
447 		lrbp = &hba->lrb[tag];
448 
449 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
450 				tag, ktime_to_us(lrbp->issue_time_stamp));
451 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
452 				tag, ktime_to_us(lrbp->compl_time_stamp));
453 		dev_err(hba->dev,
454 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
455 			tag, (u64)lrbp->utrd_dma_addr);
456 
457 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
458 				sizeof(struct utp_transfer_req_desc));
459 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
460 			(u64)lrbp->ucd_req_dma_addr);
461 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
462 				sizeof(struct utp_upiu_req));
463 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
464 			(u64)lrbp->ucd_rsp_dma_addr);
465 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
466 				sizeof(struct utp_upiu_rsp));
467 
468 		prdt_length = le16_to_cpu(
469 			lrbp->utr_descriptor_ptr->prd_table_length);
470 		dev_err(hba->dev,
471 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
472 			tag, prdt_length,
473 			(u64)lrbp->ucd_prdt_dma_addr);
474 
475 		if (pr_prdt)
476 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
477 				sizeof(struct ufshcd_sg_entry) * prdt_length);
478 	}
479 }
480 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)481 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
482 {
483 	int tag;
484 
485 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
486 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
487 
488 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
489 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
490 	}
491 }
492 
ufshcd_print_host_state(struct ufs_hba * hba)493 static void ufshcd_print_host_state(struct ufs_hba *hba)
494 {
495 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
496 	dev_err(hba->dev, "lrb in use=0x%lx, outstanding reqs=0x%lx tasks=0x%lx\n",
497 		hba->lrb_in_use, hba->outstanding_reqs, hba->outstanding_tasks);
498 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
499 		hba->saved_err, hba->saved_uic_err);
500 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
501 		hba->curr_dev_pwr_mode, hba->uic_link_state);
502 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
503 		hba->pm_op_in_progress, hba->is_sys_suspended);
504 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
505 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
506 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
507 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
508 		hba->eh_flags, hba->req_abort_count);
509 	dev_err(hba->dev, "Host capabilities=0x%x, caps=0x%x\n",
510 		hba->capabilities, hba->caps);
511 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
512 		hba->dev_quirks);
513 }
514 
515 /**
516  * ufshcd_print_pwr_info - print power params as saved in hba
517  * power info
518  * @hba: per-adapter instance
519  */
ufshcd_print_pwr_info(struct ufs_hba * hba)520 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
521 {
522 	static const char * const names[] = {
523 		"INVALID MODE",
524 		"FAST MODE",
525 		"SLOW_MODE",
526 		"INVALID MODE",
527 		"FASTAUTO_MODE",
528 		"SLOWAUTO_MODE",
529 		"INVALID MODE",
530 	};
531 
532 	dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
533 		 __func__,
534 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
535 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
536 		 names[hba->pwr_info.pwr_rx],
537 		 names[hba->pwr_info.pwr_tx],
538 		 hba->pwr_info.hs_rate);
539 }
540 
541 /*
542  * ufshcd_wait_for_register - wait for register value to change
543  * @hba - per-adapter interface
544  * @reg - mmio register offset
545  * @mask - mask to apply to read register value
546  * @val - wait condition
547  * @interval_us - polling interval in microsecs
548  * @timeout_ms - timeout in millisecs
549  * @can_sleep - perform sleep or just spin
550  *
551  * Returns -ETIMEDOUT on error, zero on success
552  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms,bool can_sleep)553 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
554 				u32 val, unsigned long interval_us,
555 				unsigned long timeout_ms, bool can_sleep)
556 {
557 	int err = 0;
558 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
559 
560 	/* ignore bits that we don't intend to wait on */
561 	val = val & mask;
562 
563 	while ((ufshcd_readl(hba, reg) & mask) != val) {
564 		if (can_sleep)
565 			usleep_range(interval_us, interval_us + 50);
566 		else
567 			udelay(interval_us);
568 		if (time_after(jiffies, timeout)) {
569 			if ((ufshcd_readl(hba, reg) & mask) != val)
570 				err = -ETIMEDOUT;
571 			break;
572 		}
573 	}
574 
575 	return err;
576 }
577 
578 /**
579  * ufshcd_get_intr_mask - Get the interrupt bit mask
580  * @hba: Pointer to adapter instance
581  *
582  * Returns interrupt bit mask per version
583  */
ufshcd_get_intr_mask(struct ufs_hba * hba)584 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
585 {
586 	u32 intr_mask = 0;
587 
588 	switch (hba->ufs_version) {
589 	case UFSHCI_VERSION_10:
590 		intr_mask = INTERRUPT_MASK_ALL_VER_10;
591 		break;
592 	case UFSHCI_VERSION_11:
593 	case UFSHCI_VERSION_20:
594 		intr_mask = INTERRUPT_MASK_ALL_VER_11;
595 		break;
596 	case UFSHCI_VERSION_21:
597 	default:
598 		intr_mask = INTERRUPT_MASK_ALL_VER_21;
599 		break;
600 	}
601 
602 	return intr_mask;
603 }
604 
605 /**
606  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
607  * @hba: Pointer to adapter instance
608  *
609  * Returns UFSHCI version supported by the controller
610  */
ufshcd_get_ufs_version(struct ufs_hba * hba)611 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
612 {
613 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
614 		return ufshcd_vops_get_ufs_hci_version(hba);
615 
616 	return ufshcd_readl(hba, REG_UFS_VERSION);
617 }
618 
619 /**
620  * ufshcd_is_device_present - Check if any device connected to
621  *			      the host controller
622  * @hba: pointer to adapter instance
623  *
624  * Returns true if device present, false if no device detected
625  */
ufshcd_is_device_present(struct ufs_hba * hba)626 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
627 {
628 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
629 						DEVICE_PRESENT) ? true : false;
630 }
631 
632 /**
633  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
634  * @lrbp: pointer to local command reference block
635  *
636  * This function is used to get the OCS field from UTRD
637  * Returns the OCS field in the UTRD
638  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)639 static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
640 {
641 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
642 }
643 
644 /**
645  * ufshcd_get_tm_free_slot - get a free slot for task management request
646  * @hba: per adapter instance
647  * @free_slot: pointer to variable with available slot value
648  *
649  * Get a free tag and lock it until ufshcd_put_tm_slot() is called.
650  * Returns 0 if free slot is not available, else return 1 with tag value
651  * in @free_slot.
652  */
ufshcd_get_tm_free_slot(struct ufs_hba * hba,int * free_slot)653 static bool ufshcd_get_tm_free_slot(struct ufs_hba *hba, int *free_slot)
654 {
655 	int tag;
656 	bool ret = false;
657 
658 	if (!free_slot)
659 		goto out;
660 
661 	do {
662 		tag = find_first_zero_bit(&hba->tm_slots_in_use, hba->nutmrs);
663 		if (tag >= hba->nutmrs)
664 			goto out;
665 	} while (test_and_set_bit_lock(tag, &hba->tm_slots_in_use));
666 
667 	*free_slot = tag;
668 	ret = true;
669 out:
670 	return ret;
671 }
672 
ufshcd_put_tm_slot(struct ufs_hba * hba,int slot)673 static inline void ufshcd_put_tm_slot(struct ufs_hba *hba, int slot)
674 {
675 	clear_bit_unlock(slot, &hba->tm_slots_in_use);
676 }
677 
678 /**
679  * ufshcd_utrl_clear - Clear a bit in UTRLCLR register
680  * @hba: per adapter instance
681  * @pos: position of the bit to be cleared
682  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)683 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
684 {
685 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
686 		ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
687 	else
688 		ufshcd_writel(hba, ~(1 << pos),
689 				REG_UTP_TRANSFER_REQ_LIST_CLEAR);
690 }
691 
692 /**
693  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
694  * @hba: per adapter instance
695  * @pos: position of the bit to be cleared
696  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)697 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
698 {
699 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
700 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
701 	else
702 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
703 }
704 
705 /**
706  * ufshcd_outstanding_req_clear - Clear a bit in outstanding request field
707  * @hba: per adapter instance
708  * @tag: position of the bit to be cleared
709  */
ufshcd_outstanding_req_clear(struct ufs_hba * hba,int tag)710 static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag)
711 {
712 	__clear_bit(tag, &hba->outstanding_reqs);
713 }
714 
715 /**
716  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
717  * @reg: Register value of host controller status
718  *
719  * Returns integer, 0 on Success and positive value if failed
720  */
ufshcd_get_lists_status(u32 reg)721 static inline int ufshcd_get_lists_status(u32 reg)
722 {
723 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
724 }
725 
726 /**
727  * ufshcd_get_uic_cmd_result - Get the UIC command result
728  * @hba: Pointer to adapter instance
729  *
730  * This function gets the result of UIC command completion
731  * Returns 0 on success, non zero value on error
732  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)733 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
734 {
735 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
736 	       MASK_UIC_COMMAND_RESULT;
737 }
738 
739 /**
740  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
741  * @hba: Pointer to adapter instance
742  *
743  * This function gets UIC command argument3
744  * Returns 0 on success, non zero value on error
745  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)746 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
747 {
748 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
749 }
750 
751 /**
752  * ufshcd_get_req_rsp - returns the TR response transaction type
753  * @ucd_rsp_ptr: pointer to response UPIU
754  */
755 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)756 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
757 {
758 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
759 }
760 
761 /**
762  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
763  * @ucd_rsp_ptr: pointer to response UPIU
764  *
765  * This function gets the response status and scsi_status from response UPIU
766  * Returns the response result code.
767  */
768 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)769 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
770 {
771 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
772 }
773 
774 /*
775  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
776  *				from response UPIU
777  * @ucd_rsp_ptr: pointer to response UPIU
778  *
779  * Return the data segment length.
780  */
781 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)782 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
783 {
784 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
785 		MASK_RSP_UPIU_DATA_SEG_LEN;
786 }
787 
788 /**
789  * ufshcd_is_exception_event - Check if the device raised an exception event
790  * @ucd_rsp_ptr: pointer to response UPIU
791  *
792  * The function checks if the device raised an exception event indicated in
793  * the Device Information field of response UPIU.
794  *
795  * Returns true if exception is raised, false otherwise.
796  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)797 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
798 {
799 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
800 			MASK_RSP_EXCEPTION_EVENT ? true : false;
801 }
802 
803 /**
804  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
805  * @hba: per adapter instance
806  */
807 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)808 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
809 {
810 	ufshcd_writel(hba, INT_AGGR_ENABLE |
811 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
812 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
813 }
814 
815 /**
816  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
817  * @hba: per adapter instance
818  * @cnt: Interrupt aggregation counter threshold
819  * @tmout: Interrupt aggregation timeout value
820  */
821 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)822 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
823 {
824 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
825 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
826 		      INT_AGGR_TIMEOUT_VAL(tmout),
827 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
828 }
829 
830 /**
831  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
832  * @hba: per adapter instance
833  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)834 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
835 {
836 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
837 }
838 
839 /**
840  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
841  *			When run-stop registers are set to 1, it indicates the
842  *			host controller that it can process the requests
843  * @hba: per adapter instance
844  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)845 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
846 {
847 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
848 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
849 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
850 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
851 }
852 
853 /**
854  * ufshcd_hba_start - Start controller initialization sequence
855  * @hba: per adapter instance
856  */
ufshcd_hba_start(struct ufs_hba * hba)857 static inline void ufshcd_hba_start(struct ufs_hba *hba)
858 {
859 	u32 val = CONTROLLER_ENABLE;
860 
861 	if (ufshcd_hba_is_crypto_supported(hba)) {
862 		ufshcd_crypto_enable(hba);
863 		val |= CRYPTO_GENERAL_ENABLE;
864 	}
865 
866 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
867 }
868 
869 /**
870  * ufshcd_is_hba_active - Get controller state
871  * @hba: per adapter instance
872  *
873  * Returns false if controller is active, true otherwise
874  */
ufshcd_is_hba_active(struct ufs_hba * hba)875 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
876 {
877 	return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
878 		? false : true;
879 }
880 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)881 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
882 {
883 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
884 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
885 	    (hba->ufs_version == UFSHCI_VERSION_11))
886 		return UFS_UNIPRO_VER_1_41;
887 	else
888 		return UFS_UNIPRO_VER_1_6;
889 }
890 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
891 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)892 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
893 {
894 	/*
895 	 * If both host and device support UniPro ver1.6 or later, PA layer
896 	 * parameters tuning happens during link startup itself.
897 	 *
898 	 * We can manually tune PA layer parameters if either host or device
899 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
900 	 * logic simple, we will only do manual tuning if local unipro version
901 	 * doesn't support ver1.6 or later.
902 	 */
903 	if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
904 		return true;
905 	else
906 		return false;
907 }
908 
909 /**
910  * ufshcd_set_clk_freq - set UFS controller clock frequencies
911  * @hba: per adapter instance
912  * @scale_up: If True, set max possible frequency othewise set low frequency
913  *
914  * Returns 0 if successful
915  * Returns < 0 for any other errors
916  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)917 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
918 {
919 	int ret = 0;
920 	struct ufs_clk_info *clki;
921 	struct list_head *head = &hba->clk_list_head;
922 
923 	if (list_empty(head))
924 		goto out;
925 
926 	list_for_each_entry(clki, head, list) {
927 		if (!IS_ERR_OR_NULL(clki->clk)) {
928 			if (scale_up && clki->max_freq) {
929 				if (clki->curr_freq == clki->max_freq)
930 					continue;
931 
932 				ret = clk_set_rate(clki->clk, clki->max_freq);
933 				if (ret) {
934 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
935 						__func__, clki->name,
936 						clki->max_freq, ret);
937 					break;
938 				}
939 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
940 						"scaled up", clki->name,
941 						clki->curr_freq,
942 						clki->max_freq);
943 
944 				clki->curr_freq = clki->max_freq;
945 
946 			} else if (!scale_up && clki->min_freq) {
947 				if (clki->curr_freq == clki->min_freq)
948 					continue;
949 
950 				ret = clk_set_rate(clki->clk, clki->min_freq);
951 				if (ret) {
952 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
953 						__func__, clki->name,
954 						clki->min_freq, ret);
955 					break;
956 				}
957 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
958 						"scaled down", clki->name,
959 						clki->curr_freq,
960 						clki->min_freq);
961 				clki->curr_freq = clki->min_freq;
962 			}
963 		}
964 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
965 				clki->name, clk_get_rate(clki->clk));
966 	}
967 
968 out:
969 	return ret;
970 }
971 
972 /**
973  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
974  * @hba: per adapter instance
975  * @scale_up: True if scaling up and false if scaling down
976  *
977  * Returns 0 if successful
978  * Returns < 0 for any other errors
979  */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)980 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
981 {
982 	int ret = 0;
983 
984 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
985 	if (ret)
986 		return ret;
987 
988 	ret = ufshcd_set_clk_freq(hba, scale_up);
989 	if (ret)
990 		return ret;
991 
992 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
993 	if (ret) {
994 		ufshcd_set_clk_freq(hba, !scale_up);
995 		return ret;
996 	}
997 
998 	return ret;
999 }
1000 
1001 /**
1002  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1003  * @hba: per adapter instance
1004  * @scale_up: True if scaling up and false if scaling down
1005  *
1006  * Returns true if scaling is required, false otherwise.
1007  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1008 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1009 					       bool scale_up)
1010 {
1011 	struct ufs_clk_info *clki;
1012 	struct list_head *head = &hba->clk_list_head;
1013 
1014 	if (list_empty(head))
1015 		return false;
1016 
1017 	list_for_each_entry(clki, head, list) {
1018 		if (!IS_ERR_OR_NULL(clki->clk)) {
1019 			if (scale_up && clki->max_freq) {
1020 				if (clki->curr_freq == clki->max_freq)
1021 					continue;
1022 				return true;
1023 			} else if (!scale_up && clki->min_freq) {
1024 				if (clki->curr_freq == clki->min_freq)
1025 					continue;
1026 				return true;
1027 			}
1028 		}
1029 	}
1030 
1031 	return false;
1032 }
1033 
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1034 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1035 					u64 wait_timeout_us)
1036 {
1037 	unsigned long flags;
1038 	int ret = 0;
1039 	u32 tm_doorbell;
1040 	u32 tr_doorbell;
1041 	bool timeout = false, do_last_check = false;
1042 	ktime_t start;
1043 
1044 	ufshcd_hold(hba, false);
1045 	spin_lock_irqsave(hba->host->host_lock, flags);
1046 	/*
1047 	 * Wait for all the outstanding tasks/transfer requests.
1048 	 * Verify by checking the doorbell registers are clear.
1049 	 */
1050 	start = ktime_get();
1051 	do {
1052 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1053 			ret = -EBUSY;
1054 			goto out;
1055 		}
1056 
1057 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1058 		tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1059 		if (!tm_doorbell && !tr_doorbell) {
1060 			timeout = false;
1061 			break;
1062 		} else if (do_last_check) {
1063 			break;
1064 		}
1065 
1066 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1067 		schedule();
1068 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1069 		    wait_timeout_us) {
1070 			timeout = true;
1071 			/*
1072 			 * We might have scheduled out for long time so make
1073 			 * sure to check if doorbells are cleared by this time
1074 			 * or not.
1075 			 */
1076 			do_last_check = true;
1077 		}
1078 		spin_lock_irqsave(hba->host->host_lock, flags);
1079 	} while (tm_doorbell || tr_doorbell);
1080 
1081 	if (timeout) {
1082 		dev_err(hba->dev,
1083 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1084 			__func__, tm_doorbell, tr_doorbell);
1085 		ret = -EBUSY;
1086 	}
1087 out:
1088 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1089 	ufshcd_release(hba);
1090 	return ret;
1091 }
1092 
1093 /**
1094  * ufshcd_scale_gear - scale up/down UFS gear
1095  * @hba: per adapter instance
1096  * @scale_up: True for scaling up gear and false for scaling down
1097  *
1098  * Returns 0 for success,
1099  * Returns -EBUSY if scaling can't happen at this time
1100  * Returns non-zero for any other errors
1101  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1102 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1103 {
1104 	#define UFS_MIN_GEAR_TO_SCALE_DOWN	UFS_HS_G1
1105 	int ret = 0;
1106 	struct ufs_pa_layer_attr new_pwr_info;
1107 
1108 	if (scale_up) {
1109 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1110 		       sizeof(struct ufs_pa_layer_attr));
1111 	} else {
1112 		memcpy(&new_pwr_info, &hba->pwr_info,
1113 		       sizeof(struct ufs_pa_layer_attr));
1114 
1115 		if (hba->pwr_info.gear_tx > UFS_MIN_GEAR_TO_SCALE_DOWN
1116 		    || hba->pwr_info.gear_rx > UFS_MIN_GEAR_TO_SCALE_DOWN) {
1117 			/* save the current power mode */
1118 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1119 				&hba->pwr_info,
1120 				sizeof(struct ufs_pa_layer_attr));
1121 
1122 			/* scale down gear */
1123 			new_pwr_info.gear_tx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1124 			new_pwr_info.gear_rx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1125 		}
1126 	}
1127 
1128 	/* check if the power mode needs to be changed or not? */
1129 	ret = ufshcd_change_power_mode(hba, &new_pwr_info);
1130 
1131 	if (ret)
1132 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1133 			__func__, ret,
1134 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1135 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1136 
1137 	return ret;
1138 }
1139 
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1140 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1141 {
1142 	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1143 	int ret = 0;
1144 	/*
1145 	 * make sure that there are no outstanding requests when
1146 	 * clock scaling is in progress
1147 	 */
1148 	ufshcd_scsi_block_requests(hba);
1149 	down_write(&hba->clk_scaling_lock);
1150 	if (ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1151 		ret = -EBUSY;
1152 		up_write(&hba->clk_scaling_lock);
1153 		ufshcd_scsi_unblock_requests(hba);
1154 	}
1155 
1156 	return ret;
1157 }
1158 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba)1159 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba)
1160 {
1161 	up_write(&hba->clk_scaling_lock);
1162 	ufshcd_scsi_unblock_requests(hba);
1163 }
1164 
1165 /**
1166  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1167  * @hba: per adapter instance
1168  * @scale_up: True for scaling up and false for scalin down
1169  *
1170  * Returns 0 for success,
1171  * Returns -EBUSY if scaling can't happen at this time
1172  * Returns non-zero for any other errors
1173  */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1174 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1175 {
1176 	int ret = 0;
1177 
1178 	/* let's not get into low power until clock scaling is completed */
1179 	ufshcd_hold(hba, false);
1180 
1181 	ret = ufshcd_clock_scaling_prepare(hba);
1182 	if (ret)
1183 		goto out;
1184 
1185 	/* scale down the gear before scaling down clocks */
1186 	if (!scale_up) {
1187 		ret = ufshcd_scale_gear(hba, false);
1188 		if (ret)
1189 			goto clk_scaling_unprepare;
1190 	}
1191 
1192 	ret = ufshcd_scale_clks(hba, scale_up);
1193 	if (ret)
1194 		goto scale_up_gear;
1195 
1196 	/* scale up the gear after scaling up clocks */
1197 	if (scale_up) {
1198 		ret = ufshcd_scale_gear(hba, true);
1199 		if (ret) {
1200 			ufshcd_scale_clks(hba, false);
1201 			goto clk_scaling_unprepare;
1202 		}
1203 	}
1204 
1205 	goto clk_scaling_unprepare;
1206 
1207 scale_up_gear:
1208 	if (!scale_up)
1209 		ufshcd_scale_gear(hba, true);
1210 clk_scaling_unprepare:
1211 	ufshcd_clock_scaling_unprepare(hba);
1212 out:
1213 	ufshcd_release(hba);
1214 	return ret;
1215 }
1216 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1217 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1218 {
1219 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1220 					   clk_scaling.suspend_work);
1221 	unsigned long irq_flags;
1222 
1223 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1224 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1225 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1226 		return;
1227 	}
1228 	hba->clk_scaling.is_suspended = true;
1229 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1230 
1231 	__ufshcd_suspend_clkscaling(hba);
1232 }
1233 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1234 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1235 {
1236 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1237 					   clk_scaling.resume_work);
1238 	unsigned long irq_flags;
1239 
1240 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1241 	if (!hba->clk_scaling.is_suspended) {
1242 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1243 		return;
1244 	}
1245 	hba->clk_scaling.is_suspended = false;
1246 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1247 
1248 	devfreq_resume_device(hba->devfreq);
1249 }
1250 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1251 static int ufshcd_devfreq_target(struct device *dev,
1252 				unsigned long *freq, u32 flags)
1253 {
1254 	int ret = 0;
1255 	struct ufs_hba *hba = dev_get_drvdata(dev);
1256 	ktime_t start;
1257 	bool scale_up, sched_clk_scaling_suspend_work = false;
1258 	struct list_head *clk_list = &hba->clk_list_head;
1259 	struct ufs_clk_info *clki;
1260 	unsigned long irq_flags;
1261 
1262 	if (!ufshcd_is_clkscaling_supported(hba))
1263 		return -EINVAL;
1264 
1265 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1266 	if (ufshcd_eh_in_progress(hba)) {
1267 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1268 		return 0;
1269 	}
1270 
1271 	if (!hba->clk_scaling.active_reqs)
1272 		sched_clk_scaling_suspend_work = true;
1273 
1274 	if (list_empty(clk_list)) {
1275 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1276 		goto out;
1277 	}
1278 
1279 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1280 	scale_up = (*freq == clki->max_freq) ? true : false;
1281 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1282 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1283 		ret = 0;
1284 		goto out; /* no state change required */
1285 	}
1286 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1287 
1288 	start = ktime_get();
1289 	ret = ufshcd_devfreq_scale(hba, scale_up);
1290 
1291 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1292 		(scale_up ? "up" : "down"),
1293 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1294 
1295 out:
1296 	if (sched_clk_scaling_suspend_work)
1297 		queue_work(hba->clk_scaling.workq,
1298 			   &hba->clk_scaling.suspend_work);
1299 
1300 	return ret;
1301 }
1302 
1303 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1304 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1305 		struct devfreq_dev_status *stat)
1306 {
1307 	struct ufs_hba *hba = dev_get_drvdata(dev);
1308 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1309 	unsigned long flags;
1310 
1311 	if (!ufshcd_is_clkscaling_supported(hba))
1312 		return -EINVAL;
1313 
1314 	memset(stat, 0, sizeof(*stat));
1315 
1316 	spin_lock_irqsave(hba->host->host_lock, flags);
1317 	if (!scaling->window_start_t)
1318 		goto start_window;
1319 
1320 	if (scaling->is_busy_started)
1321 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1322 					scaling->busy_start_t));
1323 
1324 	stat->total_time = jiffies_to_usecs((long)jiffies -
1325 				(long)scaling->window_start_t);
1326 	stat->busy_time = scaling->tot_busy_t;
1327 start_window:
1328 	scaling->window_start_t = jiffies;
1329 	scaling->tot_busy_t = 0;
1330 
1331 	if (hba->outstanding_reqs) {
1332 		scaling->busy_start_t = ktime_get();
1333 		scaling->is_busy_started = true;
1334 	} else {
1335 		scaling->busy_start_t = 0;
1336 		scaling->is_busy_started = false;
1337 	}
1338 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1339 	return 0;
1340 }
1341 
1342 static struct devfreq_dev_profile ufs_devfreq_profile = {
1343 	.polling_ms	= 100,
1344 	.target		= ufshcd_devfreq_target,
1345 	.get_dev_status	= ufshcd_devfreq_get_dev_status,
1346 };
1347 
ufshcd_devfreq_init(struct ufs_hba * hba)1348 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1349 {
1350 	struct list_head *clk_list = &hba->clk_list_head;
1351 	struct ufs_clk_info *clki;
1352 	struct devfreq *devfreq;
1353 	int ret;
1354 
1355 	/* Skip devfreq if we don't have any clocks in the list */
1356 	if (list_empty(clk_list))
1357 		return 0;
1358 
1359 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1360 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1361 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1362 
1363 	devfreq = devfreq_add_device(hba->dev,
1364 			&ufs_devfreq_profile,
1365 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1366 			NULL);
1367 	if (IS_ERR(devfreq)) {
1368 		ret = PTR_ERR(devfreq);
1369 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1370 
1371 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1372 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1373 		return ret;
1374 	}
1375 
1376 	hba->devfreq = devfreq;
1377 
1378 	return 0;
1379 }
1380 
ufshcd_devfreq_remove(struct ufs_hba * hba)1381 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1382 {
1383 	struct list_head *clk_list = &hba->clk_list_head;
1384 	struct ufs_clk_info *clki;
1385 
1386 	if (!hba->devfreq)
1387 		return;
1388 
1389 	devfreq_remove_device(hba->devfreq);
1390 	hba->devfreq = NULL;
1391 
1392 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1393 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1394 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1395 }
1396 
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1397 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1398 {
1399 	unsigned long flags;
1400 
1401 	devfreq_suspend_device(hba->devfreq);
1402 	spin_lock_irqsave(hba->host->host_lock, flags);
1403 	hba->clk_scaling.window_start_t = 0;
1404 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1405 }
1406 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1407 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1408 {
1409 	unsigned long flags;
1410 	bool suspend = false;
1411 
1412 	if (!ufshcd_is_clkscaling_supported(hba))
1413 		return;
1414 
1415 	spin_lock_irqsave(hba->host->host_lock, flags);
1416 	if (!hba->clk_scaling.is_suspended) {
1417 		suspend = true;
1418 		hba->clk_scaling.is_suspended = true;
1419 	}
1420 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1421 
1422 	if (suspend)
1423 		__ufshcd_suspend_clkscaling(hba);
1424 }
1425 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1426 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1427 {
1428 	unsigned long flags;
1429 	bool resume = false;
1430 
1431 	if (!ufshcd_is_clkscaling_supported(hba))
1432 		return;
1433 
1434 	spin_lock_irqsave(hba->host->host_lock, flags);
1435 	if (hba->clk_scaling.is_suspended) {
1436 		resume = true;
1437 		hba->clk_scaling.is_suspended = false;
1438 	}
1439 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1440 
1441 	if (resume)
1442 		devfreq_resume_device(hba->devfreq);
1443 }
1444 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1445 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1446 		struct device_attribute *attr, char *buf)
1447 {
1448 	struct ufs_hba *hba = dev_get_drvdata(dev);
1449 
1450 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_allowed);
1451 }
1452 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1453 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1454 		struct device_attribute *attr, const char *buf, size_t count)
1455 {
1456 	struct ufs_hba *hba = dev_get_drvdata(dev);
1457 	u32 value;
1458 	int err;
1459 
1460 	if (kstrtou32(buf, 0, &value))
1461 		return -EINVAL;
1462 
1463 	value = !!value;
1464 	if (value == hba->clk_scaling.is_allowed)
1465 		goto out;
1466 
1467 	pm_runtime_get_sync(hba->dev);
1468 	ufshcd_hold(hba, false);
1469 
1470 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1471 	cancel_work_sync(&hba->clk_scaling.resume_work);
1472 
1473 	hba->clk_scaling.is_allowed = value;
1474 
1475 	if (value) {
1476 		ufshcd_resume_clkscaling(hba);
1477 	} else {
1478 		ufshcd_suspend_clkscaling(hba);
1479 		err = ufshcd_devfreq_scale(hba, true);
1480 		if (err)
1481 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1482 					__func__, err);
1483 	}
1484 
1485 	ufshcd_release(hba);
1486 	pm_runtime_put_sync(hba->dev);
1487 out:
1488 	return count;
1489 }
1490 
ufshcd_clkscaling_init_sysfs(struct ufs_hba * hba)1491 static void ufshcd_clkscaling_init_sysfs(struct ufs_hba *hba)
1492 {
1493 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1494 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1495 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1496 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1497 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1498 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1499 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1500 }
1501 
ufshcd_ungate_work(struct work_struct * work)1502 static void ufshcd_ungate_work(struct work_struct *work)
1503 {
1504 	int ret;
1505 	unsigned long flags;
1506 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1507 			clk_gating.ungate_work);
1508 
1509 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1510 
1511 	spin_lock_irqsave(hba->host->host_lock, flags);
1512 	if (hba->clk_gating.state == CLKS_ON) {
1513 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1514 		goto unblock_reqs;
1515 	}
1516 
1517 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1518 	ufshcd_setup_clocks(hba, true);
1519 
1520 	/* Exit from hibern8 */
1521 	if (ufshcd_can_hibern8_during_gating(hba)) {
1522 		/* Prevent gating in this path */
1523 		hba->clk_gating.is_suspended = true;
1524 		if (ufshcd_is_link_hibern8(hba)) {
1525 			ret = ufshcd_uic_hibern8_exit(hba);
1526 			if (ret)
1527 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1528 					__func__, ret);
1529 			else
1530 				ufshcd_set_link_active(hba);
1531 		}
1532 		hba->clk_gating.is_suspended = false;
1533 	}
1534 unblock_reqs:
1535 	ufshcd_scsi_unblock_requests(hba);
1536 }
1537 
1538 /**
1539  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1540  * Also, exit from hibern8 mode and set the link as active.
1541  * @hba: per adapter instance
1542  * @async: This indicates whether caller should ungate clocks asynchronously.
1543  */
ufshcd_hold(struct ufs_hba * hba,bool async)1544 int ufshcd_hold(struct ufs_hba *hba, bool async)
1545 {
1546 	int rc = 0;
1547 	unsigned long flags;
1548 
1549 	if (!ufshcd_is_clkgating_allowed(hba))
1550 		goto out;
1551 	spin_lock_irqsave(hba->host->host_lock, flags);
1552 	hba->clk_gating.active_reqs++;
1553 
1554 	if (ufshcd_eh_in_progress(hba)) {
1555 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1556 		return 0;
1557 	}
1558 
1559 start:
1560 	switch (hba->clk_gating.state) {
1561 	case CLKS_ON:
1562 		/*
1563 		 * Wait for the ungate work to complete if in progress.
1564 		 * Though the clocks may be in ON state, the link could
1565 		 * still be in hibner8 state if hibern8 is allowed
1566 		 * during clock gating.
1567 		 * Make sure we exit hibern8 state also in addition to
1568 		 * clocks being ON.
1569 		 */
1570 		if (ufshcd_can_hibern8_during_gating(hba) &&
1571 		    ufshcd_is_link_hibern8(hba)) {
1572 			if (async) {
1573 				rc = -EAGAIN;
1574 				hba->clk_gating.active_reqs--;
1575 				break;
1576 			}
1577 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1578 			flush_work(&hba->clk_gating.ungate_work);
1579 			spin_lock_irqsave(hba->host->host_lock, flags);
1580 			goto start;
1581 		}
1582 		break;
1583 	case REQ_CLKS_OFF:
1584 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1585 			hba->clk_gating.state = CLKS_ON;
1586 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1587 						hba->clk_gating.state);
1588 			break;
1589 		}
1590 		/*
1591 		 * If we are here, it means gating work is either done or
1592 		 * currently running. Hence, fall through to cancel gating
1593 		 * work and to enable clocks.
1594 		 */
1595 		/* fallthrough */
1596 	case CLKS_OFF:
1597 		ufshcd_scsi_block_requests(hba);
1598 		hba->clk_gating.state = REQ_CLKS_ON;
1599 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1600 					hba->clk_gating.state);
1601 		queue_work(hba->clk_gating.clk_gating_workq,
1602 			   &hba->clk_gating.ungate_work);
1603 		/*
1604 		 * fall through to check if we should wait for this
1605 		 * work to be done or not.
1606 		 */
1607 		/* fallthrough */
1608 	case REQ_CLKS_ON:
1609 		if (async) {
1610 			rc = -EAGAIN;
1611 			hba->clk_gating.active_reqs--;
1612 			break;
1613 		}
1614 
1615 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1616 		flush_work(&hba->clk_gating.ungate_work);
1617 		/* Make sure state is CLKS_ON before returning */
1618 		spin_lock_irqsave(hba->host->host_lock, flags);
1619 		goto start;
1620 	default:
1621 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1622 				__func__, hba->clk_gating.state);
1623 		break;
1624 	}
1625 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1626 out:
1627 	return rc;
1628 }
1629 EXPORT_SYMBOL_GPL(ufshcd_hold);
1630 
ufshcd_gate_work(struct work_struct * work)1631 static void ufshcd_gate_work(struct work_struct *work)
1632 {
1633 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1634 			clk_gating.gate_work.work);
1635 	unsigned long flags;
1636 
1637 	spin_lock_irqsave(hba->host->host_lock, flags);
1638 	/*
1639 	 * In case you are here to cancel this work the gating state
1640 	 * would be marked as REQ_CLKS_ON. In this case save time by
1641 	 * skipping the gating work and exit after changing the clock
1642 	 * state to CLKS_ON.
1643 	 */
1644 	if (hba->clk_gating.is_suspended ||
1645 		(hba->clk_gating.state == REQ_CLKS_ON)) {
1646 		hba->clk_gating.state = CLKS_ON;
1647 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1648 					hba->clk_gating.state);
1649 		goto rel_lock;
1650 	}
1651 
1652 	if (hba->clk_gating.active_reqs
1653 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1654 		|| hba->lrb_in_use || hba->outstanding_tasks
1655 		|| hba->active_uic_cmd || hba->uic_async_done)
1656 		goto rel_lock;
1657 
1658 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1659 
1660 	/* put the link into hibern8 mode before turning off clocks */
1661 	if (ufshcd_can_hibern8_during_gating(hba)) {
1662 		if (ufshcd_uic_hibern8_enter(hba)) {
1663 			hba->clk_gating.state = CLKS_ON;
1664 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1665 						hba->clk_gating.state);
1666 			goto out;
1667 		}
1668 		ufshcd_set_link_hibern8(hba);
1669 	}
1670 
1671 	if (!ufshcd_is_link_active(hba))
1672 		ufshcd_setup_clocks(hba, false);
1673 	else
1674 		/* If link is active, device ref_clk can't be switched off */
1675 		__ufshcd_setup_clocks(hba, false, true);
1676 
1677 	/*
1678 	 * In case you are here to cancel this work the gating state
1679 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1680 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1681 	 * and a request to turn them on is pending. By doing this way,
1682 	 * we keep the state machine in tact and this would ultimately
1683 	 * prevent from doing cancel work multiple times when there are
1684 	 * new requests arriving before the current cancel work is done.
1685 	 */
1686 	spin_lock_irqsave(hba->host->host_lock, flags);
1687 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1688 		hba->clk_gating.state = CLKS_OFF;
1689 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1690 					hba->clk_gating.state);
1691 	}
1692 rel_lock:
1693 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1694 out:
1695 	return;
1696 }
1697 
1698 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1699 static void __ufshcd_release(struct ufs_hba *hba)
1700 {
1701 	if (!ufshcd_is_clkgating_allowed(hba))
1702 		return;
1703 
1704 	hba->clk_gating.active_reqs--;
1705 
1706 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended
1707 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1708 		|| hba->lrb_in_use || hba->outstanding_tasks
1709 		|| hba->active_uic_cmd || hba->uic_async_done
1710 		|| ufshcd_eh_in_progress(hba))
1711 		return;
1712 
1713 	hba->clk_gating.state = REQ_CLKS_OFF;
1714 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1715 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1716 			   &hba->clk_gating.gate_work,
1717 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1718 }
1719 
ufshcd_release(struct ufs_hba * hba)1720 void ufshcd_release(struct ufs_hba *hba)
1721 {
1722 	unsigned long flags;
1723 
1724 	spin_lock_irqsave(hba->host->host_lock, flags);
1725 	__ufshcd_release(hba);
1726 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1727 }
1728 EXPORT_SYMBOL_GPL(ufshcd_release);
1729 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1730 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1731 		struct device_attribute *attr, char *buf)
1732 {
1733 	struct ufs_hba *hba = dev_get_drvdata(dev);
1734 
1735 	return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms);
1736 }
1737 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1738 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1739 		struct device_attribute *attr, const char *buf, size_t count)
1740 {
1741 	struct ufs_hba *hba = dev_get_drvdata(dev);
1742 	unsigned long flags, value;
1743 
1744 	if (kstrtoul(buf, 0, &value))
1745 		return -EINVAL;
1746 
1747 	spin_lock_irqsave(hba->host->host_lock, flags);
1748 	hba->clk_gating.delay_ms = value;
1749 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1750 	return count;
1751 }
1752 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1753 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1754 		struct device_attribute *attr, char *buf)
1755 {
1756 	struct ufs_hba *hba = dev_get_drvdata(dev);
1757 
1758 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled);
1759 }
1760 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1761 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1762 		struct device_attribute *attr, const char *buf, size_t count)
1763 {
1764 	struct ufs_hba *hba = dev_get_drvdata(dev);
1765 	unsigned long flags;
1766 	u32 value;
1767 
1768 	if (kstrtou32(buf, 0, &value))
1769 		return -EINVAL;
1770 
1771 	value = !!value;
1772 	if (value == hba->clk_gating.is_enabled)
1773 		goto out;
1774 
1775 	if (value) {
1776 		ufshcd_release(hba);
1777 	} else {
1778 		spin_lock_irqsave(hba->host->host_lock, flags);
1779 		hba->clk_gating.active_reqs++;
1780 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1781 	}
1782 
1783 	hba->clk_gating.is_enabled = value;
1784 out:
1785 	return count;
1786 }
1787 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1788 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1789 {
1790 	char wq_name[sizeof("ufs_clkscaling_00")];
1791 
1792 	if (!ufshcd_is_clkscaling_supported(hba))
1793 		return;
1794 
1795 	INIT_WORK(&hba->clk_scaling.suspend_work,
1796 		  ufshcd_clk_scaling_suspend_work);
1797 	INIT_WORK(&hba->clk_scaling.resume_work,
1798 		  ufshcd_clk_scaling_resume_work);
1799 
1800 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1801 		 hba->host->host_no);
1802 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1803 
1804 	ufshcd_clkscaling_init_sysfs(hba);
1805 }
1806 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1807 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1808 {
1809 	if (!ufshcd_is_clkscaling_supported(hba))
1810 		return;
1811 
1812 	destroy_workqueue(hba->clk_scaling.workq);
1813 	ufshcd_devfreq_remove(hba);
1814 }
1815 
ufshcd_init_clk_gating(struct ufs_hba * hba)1816 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1817 {
1818 	char wq_name[sizeof("ufs_clk_gating_00")];
1819 
1820 	if (!ufshcd_is_clkgating_allowed(hba))
1821 		return;
1822 
1823 	hba->clk_gating.delay_ms = 150;
1824 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1825 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1826 
1827 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1828 		 hba->host->host_no);
1829 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1830 							   WQ_MEM_RECLAIM);
1831 
1832 	hba->clk_gating.is_enabled = true;
1833 
1834 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1835 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1836 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1837 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1838 	hba->clk_gating.delay_attr.attr.mode = 0644;
1839 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1840 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1841 
1842 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1843 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1844 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1845 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1846 	hba->clk_gating.enable_attr.attr.mode = 0644;
1847 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1848 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1849 }
1850 
ufshcd_exit_clk_gating(struct ufs_hba * hba)1851 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
1852 {
1853 	if (!ufshcd_is_clkgating_allowed(hba))
1854 		return;
1855 	device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1856 	device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1857 	cancel_work_sync(&hba->clk_gating.ungate_work);
1858 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1859 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
1860 }
1861 
1862 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)1863 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
1864 {
1865 	bool queue_resume_work = false;
1866 
1867 	if (!ufshcd_is_clkscaling_supported(hba))
1868 		return;
1869 
1870 	if (!hba->clk_scaling.active_reqs++)
1871 		queue_resume_work = true;
1872 
1873 	if (!hba->clk_scaling.is_allowed || hba->pm_op_in_progress)
1874 		return;
1875 
1876 	if (queue_resume_work)
1877 		queue_work(hba->clk_scaling.workq,
1878 			   &hba->clk_scaling.resume_work);
1879 
1880 	if (!hba->clk_scaling.window_start_t) {
1881 		hba->clk_scaling.window_start_t = jiffies;
1882 		hba->clk_scaling.tot_busy_t = 0;
1883 		hba->clk_scaling.is_busy_started = false;
1884 	}
1885 
1886 	if (!hba->clk_scaling.is_busy_started) {
1887 		hba->clk_scaling.busy_start_t = ktime_get();
1888 		hba->clk_scaling.is_busy_started = true;
1889 	}
1890 }
1891 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)1892 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
1893 {
1894 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1895 
1896 	if (!ufshcd_is_clkscaling_supported(hba))
1897 		return;
1898 
1899 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
1900 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1901 					scaling->busy_start_t));
1902 		scaling->busy_start_t = 0;
1903 		scaling->is_busy_started = false;
1904 	}
1905 }
1906 /**
1907  * ufshcd_send_command - Send SCSI or device management commands
1908  * @hba: per adapter instance
1909  * @task_tag: Task tag of the command
1910  */
1911 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)1912 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
1913 {
1914 	hba->lrb[task_tag].issue_time_stamp = ktime_get();
1915 	hba->lrb[task_tag].compl_time_stamp = ktime_set(0, 0);
1916 	ufshcd_clk_scaling_start_busy(hba);
1917 	__set_bit(task_tag, &hba->outstanding_reqs);
1918 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1919 	/* Make sure that doorbell is committed immediately */
1920 	wmb();
1921 	ufshcd_add_command_trace(hba, task_tag, "send");
1922 }
1923 
1924 /**
1925  * ufshcd_copy_sense_data - Copy sense data in case of check condition
1926  * @lrbp: pointer to local reference block
1927  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)1928 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
1929 {
1930 	int len;
1931 	if (lrbp->sense_buffer &&
1932 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
1933 		int len_to_copy;
1934 
1935 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
1936 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
1937 
1938 		memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
1939 		       len_to_copy);
1940 	}
1941 }
1942 
1943 /**
1944  * ufshcd_copy_query_response() - Copy the Query Response and the data
1945  * descriptor
1946  * @hba: per adapter instance
1947  * @lrbp: pointer to local reference block
1948  */
1949 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)1950 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
1951 {
1952 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
1953 
1954 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
1955 
1956 	/* Get the descriptor */
1957 	if (hba->dev_cmd.query.descriptor &&
1958 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
1959 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
1960 				GENERAL_UPIU_REQUEST_SIZE;
1961 		u16 resp_len;
1962 		u16 buf_len;
1963 
1964 		/* data segment length */
1965 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
1966 						MASK_QUERY_DATA_SEG_LEN;
1967 		buf_len = be16_to_cpu(
1968 				hba->dev_cmd.query.request.upiu_req.length);
1969 		if (likely(buf_len >= resp_len)) {
1970 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
1971 		} else {
1972 			dev_warn(hba->dev,
1973 				"%s: Response size is bigger than buffer",
1974 				__func__);
1975 			return -EINVAL;
1976 		}
1977 	}
1978 
1979 	return 0;
1980 }
1981 
1982 /**
1983  * ufshcd_hba_capabilities - Read controller capabilities
1984  * @hba: per adapter instance
1985  */
ufshcd_hba_capabilities(struct ufs_hba * hba)1986 static inline void ufshcd_hba_capabilities(struct ufs_hba *hba)
1987 {
1988 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
1989 
1990 	/* nutrs and nutmrs are 0 based values */
1991 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
1992 	hba->nutmrs =
1993 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
1994 }
1995 
1996 /**
1997  * ufshcd_ready_for_uic_cmd - Check if controller is ready
1998  *                            to accept UIC commands
1999  * @hba: per adapter instance
2000  * Return true on success, else false
2001  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2002 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2003 {
2004 	if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
2005 		return true;
2006 	else
2007 		return false;
2008 }
2009 
2010 /**
2011  * ufshcd_get_upmcrs - Get the power mode change request status
2012  * @hba: Pointer to adapter instance
2013  *
2014  * This function gets the UPMCRS field of HCS register
2015  * Returns value of UPMCRS field
2016  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2017 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2018 {
2019 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2020 }
2021 
2022 /**
2023  * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers
2024  * @hba: per adapter instance
2025  * @uic_cmd: UIC command
2026  *
2027  * Mutex must be held.
2028  */
2029 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2030 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2031 {
2032 	WARN_ON(hba->active_uic_cmd);
2033 
2034 	hba->active_uic_cmd = uic_cmd;
2035 
2036 	/* Write Args */
2037 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2038 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2039 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2040 
2041 	/* Write UIC Cmd */
2042 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2043 		      REG_UIC_COMMAND);
2044 }
2045 
2046 /**
2047  * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command
2048  * @hba: per adapter instance
2049  * @uic_cmd: UIC command
2050  *
2051  * Must be called with mutex held.
2052  * Returns 0 only if success.
2053  */
2054 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2055 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2056 {
2057 	int ret;
2058 	unsigned long flags;
2059 
2060 	if (wait_for_completion_timeout(&uic_cmd->done,
2061 					msecs_to_jiffies(UIC_CMD_TIMEOUT)))
2062 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2063 	else
2064 		ret = -ETIMEDOUT;
2065 
2066 	spin_lock_irqsave(hba->host->host_lock, flags);
2067 	hba->active_uic_cmd = NULL;
2068 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2069 
2070 	return ret;
2071 }
2072 
2073 /**
2074  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2075  * @hba: per adapter instance
2076  * @uic_cmd: UIC command
2077  * @completion: initialize the completion only if this is set to true
2078  *
2079  * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called
2080  * with mutex held and host_lock locked.
2081  * Returns 0 only if success.
2082  */
2083 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2084 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2085 		      bool completion)
2086 {
2087 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2088 		dev_err(hba->dev,
2089 			"Controller not ready to accept UIC commands\n");
2090 		return -EIO;
2091 	}
2092 
2093 	if (completion)
2094 		init_completion(&uic_cmd->done);
2095 
2096 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2097 
2098 	return 0;
2099 }
2100 
2101 /**
2102  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2103  * @hba: per adapter instance
2104  * @uic_cmd: UIC command
2105  *
2106  * Returns 0 only if success.
2107  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2108 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2109 {
2110 	int ret;
2111 	unsigned long flags;
2112 
2113 	ufshcd_hold(hba, false);
2114 	mutex_lock(&hba->uic_cmd_mutex);
2115 	ufshcd_add_delay_before_dme_cmd(hba);
2116 
2117 	spin_lock_irqsave(hba->host->host_lock, flags);
2118 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2119 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2120 	if (!ret)
2121 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2122 
2123 	mutex_unlock(&hba->uic_cmd_mutex);
2124 
2125 	ufshcd_release(hba);
2126 	return ret;
2127 }
2128 
2129 /**
2130  * ufshcd_map_sg - Map scatter-gather list to prdt
2131  * @hba: per adapter instance
2132  * @lrbp: pointer to local reference block
2133  *
2134  * Returns 0 in case of success, non-zero value in case of failure
2135  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2136 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2137 {
2138 	struct ufshcd_sg_entry *prd_table;
2139 	struct scatterlist *sg;
2140 	struct scsi_cmnd *cmd;
2141 	int sg_segments;
2142 	int i;
2143 
2144 	cmd = lrbp->cmd;
2145 	sg_segments = scsi_dma_map(cmd);
2146 	if (sg_segments < 0)
2147 		return sg_segments;
2148 
2149 	if (sg_segments) {
2150 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2151 			lrbp->utr_descriptor_ptr->prd_table_length =
2152 				cpu_to_le16((u16)(sg_segments *
2153 					sizeof(struct ufshcd_sg_entry)));
2154 		else
2155 			lrbp->utr_descriptor_ptr->prd_table_length =
2156 				cpu_to_le16((u16) (sg_segments));
2157 
2158 		prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
2159 
2160 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2161 			prd_table[i].size  =
2162 				cpu_to_le32(((u32) sg_dma_len(sg))-1);
2163 			prd_table[i].base_addr =
2164 				cpu_to_le32(lower_32_bits(sg->dma_address));
2165 			prd_table[i].upper_addr =
2166 				cpu_to_le32(upper_32_bits(sg->dma_address));
2167 			prd_table[i].reserved = 0;
2168 		}
2169 	} else {
2170 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2171 	}
2172 
2173 	return 0;
2174 }
2175 
2176 /**
2177  * ufshcd_enable_intr - enable interrupts
2178  * @hba: per adapter instance
2179  * @intrs: interrupt bits
2180  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2181 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2182 {
2183 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2184 
2185 	if (hba->ufs_version == UFSHCI_VERSION_10) {
2186 		u32 rw;
2187 		rw = set & INTERRUPT_MASK_RW_VER_10;
2188 		set = rw | ((set ^ intrs) & intrs);
2189 	} else {
2190 		set |= intrs;
2191 	}
2192 
2193 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2194 }
2195 
2196 /**
2197  * ufshcd_disable_intr - disable interrupts
2198  * @hba: per adapter instance
2199  * @intrs: interrupt bits
2200  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2201 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2202 {
2203 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2204 
2205 	if (hba->ufs_version == UFSHCI_VERSION_10) {
2206 		u32 rw;
2207 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2208 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2209 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2210 
2211 	} else {
2212 		set &= ~intrs;
2213 	}
2214 
2215 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2216 }
2217 
2218 /**
2219  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2220  * descriptor according to request
2221  * @lrbp: pointer to local reference block
2222  * @upiu_flags: flags required in the header
2223  * @cmd_dir: requests data direction
2224  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u32 * upiu_flags,enum dma_data_direction cmd_dir)2225 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2226 			u32 *upiu_flags, enum dma_data_direction cmd_dir)
2227 {
2228 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2229 	u32 data_direction;
2230 	u32 dword_0;
2231 
2232 	if (cmd_dir == DMA_FROM_DEVICE) {
2233 		data_direction = UTP_DEVICE_TO_HOST;
2234 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2235 	} else if (cmd_dir == DMA_TO_DEVICE) {
2236 		data_direction = UTP_HOST_TO_DEVICE;
2237 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2238 	} else {
2239 		data_direction = UTP_NO_DATA_TRANSFER;
2240 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2241 	}
2242 
2243 	dword_0 = data_direction | (lrbp->command_type
2244 				<< UPIU_COMMAND_TYPE_OFFSET);
2245 	if (lrbp->intr_cmd)
2246 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2247 
2248 	/* Transfer request descriptor header fields */
2249 	if (ufshcd_lrbp_crypto_enabled(lrbp)) {
2250 #if IS_ENABLED(CONFIG_SCSI_UFS_CRYPTO)
2251 		dword_0 |= UTP_REQ_DESC_CRYPTO_ENABLE_CMD;
2252 		dword_0 |= lrbp->crypto_key_slot;
2253 		req_desc->header.dword_1 =
2254 			cpu_to_le32(lower_32_bits(lrbp->data_unit_num));
2255 		req_desc->header.dword_3 =
2256 			cpu_to_le32(upper_32_bits(lrbp->data_unit_num));
2257 #endif /* CONFIG_SCSI_UFS_CRYPTO */
2258 	} else {
2259 		/* dword_1 and dword_3 are reserved, hence they are set to 0 */
2260 		req_desc->header.dword_1 = 0;
2261 		req_desc->header.dword_3 = 0;
2262 	}
2263 
2264 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2265 
2266 	/*
2267 	 * assigning invalid value for command status. Controller
2268 	 * updates OCS on command completion, with the command
2269 	 * status
2270 	 */
2271 	req_desc->header.dword_2 =
2272 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2273 
2274 	req_desc->prd_table_length = 0;
2275 }
2276 
2277 /**
2278  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2279  * for scsi commands
2280  * @lrbp: local reference block pointer
2281  * @upiu_flags: flags
2282  */
2283 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u32 upiu_flags)2284 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u32 upiu_flags)
2285 {
2286 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2287 	unsigned short cdb_len;
2288 
2289 	/* command descriptor fields */
2290 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2291 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2292 				lrbp->lun, lrbp->task_tag);
2293 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2294 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2295 
2296 	/* Total EHS length and Data segment length will be zero */
2297 	ucd_req_ptr->header.dword_2 = 0;
2298 
2299 	ucd_req_ptr->sc.exp_data_transfer_len =
2300 		cpu_to_be32(lrbp->cmd->sdb.length);
2301 
2302 	cdb_len = min_t(unsigned short, lrbp->cmd->cmd_len, UFS_CDB_SIZE);
2303 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2304 	memcpy(ucd_req_ptr->sc.cdb, lrbp->cmd->cmnd, cdb_len);
2305 
2306 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2307 }
2308 
2309 /**
2310  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2311  * for query requsts
2312  * @hba: UFS hba
2313  * @lrbp: local reference block pointer
2314  * @upiu_flags: flags
2315  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u32 upiu_flags)2316 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2317 				struct ufshcd_lrb *lrbp, u32 upiu_flags)
2318 {
2319 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2320 	struct ufs_query *query = &hba->dev_cmd.query;
2321 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2322 
2323 	/* Query request header */
2324 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2325 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2326 			lrbp->lun, lrbp->task_tag);
2327 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2328 			0, query->request.query_func, 0, 0);
2329 
2330 	/* Data segment length only need for WRITE_DESC */
2331 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2332 		ucd_req_ptr->header.dword_2 =
2333 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2334 	else
2335 		ucd_req_ptr->header.dword_2 = 0;
2336 
2337 	/* Copy the Query Request buffer as is */
2338 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2339 			QUERY_OSF_SIZE);
2340 
2341 	/* Copy the Descriptor */
2342 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2343 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2344 
2345 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2346 }
2347 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2348 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2349 {
2350 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2351 
2352 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2353 
2354 	/* command descriptor fields */
2355 	ucd_req_ptr->header.dword_0 =
2356 		UPIU_HEADER_DWORD(
2357 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2358 	/* clear rest of the fields of basic header */
2359 	ucd_req_ptr->header.dword_1 = 0;
2360 	ucd_req_ptr->header.dword_2 = 0;
2361 
2362 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2363 }
2364 
2365 /**
2366  * ufshcd_comp_devman_upiu - UFS Protocol Information Unit(UPIU)
2367  *			     for Device Management Purposes
2368  * @hba: per adapter instance
2369  * @lrbp: pointer to local reference block
2370  */
ufshcd_comp_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2371 static int ufshcd_comp_devman_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2372 {
2373 	u32 upiu_flags;
2374 	int ret = 0;
2375 
2376 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2377 	    (hba->ufs_version == UFSHCI_VERSION_11))
2378 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2379 	else
2380 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2381 
2382 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2383 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2384 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2385 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2386 		ufshcd_prepare_utp_nop_upiu(lrbp);
2387 	else
2388 		ret = -EINVAL;
2389 
2390 	return ret;
2391 }
2392 
2393 /**
2394  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2395  *			   for SCSI Purposes
2396  * @hba: per adapter instance
2397  * @lrbp: pointer to local reference block
2398  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2399 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2400 {
2401 	u32 upiu_flags;
2402 	int ret = 0;
2403 
2404 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2405 	    (hba->ufs_version == UFSHCI_VERSION_11))
2406 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2407 	else
2408 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2409 
2410 	if (likely(lrbp->cmd)) {
2411 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2412 						lrbp->cmd->sc_data_direction);
2413 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2414 	} else {
2415 		ret = -EINVAL;
2416 	}
2417 
2418 	return ret;
2419 }
2420 
2421 /**
2422  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2423  * @upiu_wlun_id: UPIU W-LUN id
2424  *
2425  * Returns SCSI W-LUN id
2426  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2427 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2428 {
2429 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2430 }
2431 
2432 /**
2433  * ufshcd_queuecommand - main entry point for SCSI requests
2434  * @host: SCSI host pointer
2435  * @cmd: command from SCSI Midlayer
2436  *
2437  * Returns 0 for success, non-zero in case of failure
2438  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2439 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2440 {
2441 	struct ufshcd_lrb *lrbp;
2442 	struct ufs_hba *hba;
2443 	unsigned long flags;
2444 	int tag;
2445 	int err = 0;
2446 
2447 	hba = shost_priv(host);
2448 
2449 	tag = cmd->request->tag;
2450 	if (!ufshcd_valid_tag(hba, tag)) {
2451 		dev_err(hba->dev,
2452 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
2453 			__func__, tag, cmd, cmd->request);
2454 		BUG();
2455 	}
2456 
2457 	if (!down_read_trylock(&hba->clk_scaling_lock))
2458 		return SCSI_MLQUEUE_HOST_BUSY;
2459 
2460 	spin_lock_irqsave(hba->host->host_lock, flags);
2461 	switch (hba->ufshcd_state) {
2462 	case UFSHCD_STATE_OPERATIONAL:
2463 		break;
2464 	case UFSHCD_STATE_EH_SCHEDULED:
2465 	case UFSHCD_STATE_RESET:
2466 		err = SCSI_MLQUEUE_HOST_BUSY;
2467 		goto out_unlock;
2468 	case UFSHCD_STATE_ERROR:
2469 		set_host_byte(cmd, DID_ERROR);
2470 		cmd->scsi_done(cmd);
2471 		goto out_unlock;
2472 	default:
2473 		dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n",
2474 				__func__, hba->ufshcd_state);
2475 		set_host_byte(cmd, DID_BAD_TARGET);
2476 		cmd->scsi_done(cmd);
2477 		goto out_unlock;
2478 	}
2479 
2480 	/* if error handling is in progress, don't issue commands */
2481 	if (ufshcd_eh_in_progress(hba)) {
2482 		set_host_byte(cmd, DID_ERROR);
2483 		cmd->scsi_done(cmd);
2484 		goto out_unlock;
2485 	}
2486 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2487 
2488 	hba->req_abort_count = 0;
2489 
2490 	/* acquire the tag to make sure device cmds don't use it */
2491 	if (test_and_set_bit_lock(tag, &hba->lrb_in_use)) {
2492 		/*
2493 		 * Dev manage command in progress, requeue the command.
2494 		 * Requeuing the command helps in cases where the request *may*
2495 		 * find different tag instead of waiting for dev manage command
2496 		 * completion.
2497 		 */
2498 		err = SCSI_MLQUEUE_HOST_BUSY;
2499 		goto out;
2500 	}
2501 
2502 	err = ufshcd_hold(hba, true);
2503 	if (err) {
2504 		err = SCSI_MLQUEUE_HOST_BUSY;
2505 		clear_bit_unlock(tag, &hba->lrb_in_use);
2506 		goto out;
2507 	}
2508 	WARN_ON(hba->clk_gating.state != CLKS_ON);
2509 
2510 	lrbp = &hba->lrb[tag];
2511 
2512 	WARN_ON(lrbp->cmd);
2513 	lrbp->cmd = cmd;
2514 	lrbp->sense_bufflen = UFS_SENSE_SIZE;
2515 	lrbp->sense_buffer = cmd->sense_buffer;
2516 	lrbp->task_tag = tag;
2517 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2518 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2519 
2520 	err = ufshcd_prepare_lrbp_crypto(hba, cmd, lrbp);
2521 	if (err) {
2522 		lrbp->cmd = NULL;
2523 		clear_bit_unlock(tag, &hba->lrb_in_use);
2524 		goto out;
2525 	}
2526 	lrbp->req_abort_skip = false;
2527 
2528 	ufshcd_comp_scsi_upiu(hba, lrbp);
2529 
2530 	err = ufshcd_map_sg(hba, lrbp);
2531 	if (err) {
2532 		ufshcd_release(hba);
2533 		lrbp->cmd = NULL;
2534 		clear_bit_unlock(tag, &hba->lrb_in_use);
2535 		goto out;
2536 	}
2537 	/* Make sure descriptors are ready before ringing the doorbell */
2538 	wmb();
2539 
2540 	/* issue command to the controller */
2541 	spin_lock_irqsave(hba->host->host_lock, flags);
2542 	ufshcd_vops_setup_xfer_req(hba, tag, (lrbp->cmd ? true : false));
2543 	ufshcd_send_command(hba, tag);
2544 out_unlock:
2545 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2546 out:
2547 	up_read(&hba->clk_scaling_lock);
2548 	return err;
2549 }
2550 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2551 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2552 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2553 {
2554 	lrbp->cmd = NULL;
2555 	lrbp->sense_bufflen = 0;
2556 	lrbp->sense_buffer = NULL;
2557 	lrbp->task_tag = tag;
2558 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2559 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2560 #if IS_ENABLED(CONFIG_SCSI_UFS_CRYPTO)
2561 	lrbp->crypto_enable = false; /* No crypto operations */
2562 #endif
2563 	hba->dev_cmd.type = cmd_type;
2564 
2565 	return ufshcd_comp_devman_upiu(hba, lrbp);
2566 }
2567 
2568 static int
ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2569 ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
2570 {
2571 	int err = 0;
2572 	unsigned long flags;
2573 	u32 mask = 1 << tag;
2574 
2575 	/* clear outstanding transaction before retry */
2576 	spin_lock_irqsave(hba->host->host_lock, flags);
2577 	ufshcd_utrl_clear(hba, tag);
2578 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2579 
2580 	/*
2581 	 * wait for for h/w to clear corresponding bit in door-bell.
2582 	 * max. wait is 1 sec.
2583 	 */
2584 	err = ufshcd_wait_for_register(hba,
2585 			REG_UTP_TRANSFER_REQ_DOOR_BELL,
2586 			mask, ~mask, 1000, 1000, true);
2587 
2588 	return err;
2589 }
2590 
2591 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2592 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2593 {
2594 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2595 
2596 	/* Get the UPIU response */
2597 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2598 				UPIU_RSP_CODE_OFFSET;
2599 	return query_res->response;
2600 }
2601 
2602 /**
2603  * ufshcd_dev_cmd_completion() - handles device management command responses
2604  * @hba: per adapter instance
2605  * @lrbp: pointer to local reference block
2606  */
2607 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2608 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2609 {
2610 	int resp;
2611 	int err = 0;
2612 
2613 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2614 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2615 
2616 	switch (resp) {
2617 	case UPIU_TRANSACTION_NOP_IN:
2618 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2619 			err = -EINVAL;
2620 			dev_err(hba->dev, "%s: unexpected response %x\n",
2621 					__func__, resp);
2622 		}
2623 		break;
2624 	case UPIU_TRANSACTION_QUERY_RSP:
2625 		err = ufshcd_check_query_response(hba, lrbp);
2626 		if (!err)
2627 			err = ufshcd_copy_query_response(hba, lrbp);
2628 		break;
2629 	case UPIU_TRANSACTION_REJECT_UPIU:
2630 		/* TODO: handle Reject UPIU Response */
2631 		err = -EPERM;
2632 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2633 				__func__);
2634 		break;
2635 	default:
2636 		err = -EINVAL;
2637 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2638 				__func__, resp);
2639 		break;
2640 	}
2641 
2642 	return err;
2643 }
2644 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2645 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2646 		struct ufshcd_lrb *lrbp, int max_timeout)
2647 {
2648 	int err = 0;
2649 	unsigned long time_left;
2650 	unsigned long flags;
2651 
2652 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2653 			msecs_to_jiffies(max_timeout));
2654 
2655 	/* Make sure descriptors are ready before ringing the doorbell */
2656 	wmb();
2657 	spin_lock_irqsave(hba->host->host_lock, flags);
2658 	hba->dev_cmd.complete = NULL;
2659 	if (likely(time_left)) {
2660 		err = ufshcd_get_tr_ocs(lrbp);
2661 		if (!err)
2662 			err = ufshcd_dev_cmd_completion(hba, lrbp);
2663 	}
2664 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2665 
2666 	if (!time_left) {
2667 		err = -ETIMEDOUT;
2668 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2669 			__func__, lrbp->task_tag);
2670 		if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
2671 			/* successfully cleared the command, retry if needed */
2672 			err = -EAGAIN;
2673 		/*
2674 		 * in case of an error, after clearing the doorbell,
2675 		 * we also need to clear the outstanding_request
2676 		 * field in hba
2677 		 */
2678 		ufshcd_outstanding_req_clear(hba, lrbp->task_tag);
2679 	}
2680 
2681 	return err;
2682 }
2683 
2684 /**
2685  * ufshcd_get_dev_cmd_tag - Get device management command tag
2686  * @hba: per-adapter instance
2687  * @tag_out: pointer to variable with available slot value
2688  *
2689  * Get a free slot and lock it until device management command
2690  * completes.
2691  *
2692  * Returns false if free slot is unavailable for locking, else
2693  * return true with tag value in @tag.
2694  */
ufshcd_get_dev_cmd_tag(struct ufs_hba * hba,int * tag_out)2695 static bool ufshcd_get_dev_cmd_tag(struct ufs_hba *hba, int *tag_out)
2696 {
2697 	int tag;
2698 	bool ret = false;
2699 	unsigned long tmp;
2700 
2701 	if (!tag_out)
2702 		goto out;
2703 
2704 	do {
2705 		tmp = ~hba->lrb_in_use;
2706 		tag = find_last_bit(&tmp, hba->nutrs);
2707 		if (tag >= hba->nutrs)
2708 			goto out;
2709 	} while (test_and_set_bit_lock(tag, &hba->lrb_in_use));
2710 
2711 	*tag_out = tag;
2712 	ret = true;
2713 out:
2714 	return ret;
2715 }
2716 
ufshcd_put_dev_cmd_tag(struct ufs_hba * hba,int tag)2717 static inline void ufshcd_put_dev_cmd_tag(struct ufs_hba *hba, int tag)
2718 {
2719 	clear_bit_unlock(tag, &hba->lrb_in_use);
2720 }
2721 
2722 /**
2723  * ufshcd_exec_dev_cmd - API for sending device management requests
2724  * @hba: UFS hba
2725  * @cmd_type: specifies the type (NOP, Query...)
2726  * @timeout: time in seconds
2727  *
2728  * NOTE: Since there is only one available tag for device management commands,
2729  * it is expected you hold the hba->dev_cmd.lock mutex.
2730  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)2731 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
2732 		enum dev_cmd_type cmd_type, int timeout)
2733 {
2734 	struct ufshcd_lrb *lrbp;
2735 	int err;
2736 	int tag;
2737 	struct completion wait;
2738 	unsigned long flags;
2739 
2740 	down_read(&hba->clk_scaling_lock);
2741 
2742 	/*
2743 	 * Get free slot, sleep if slots are unavailable.
2744 	 * Even though we use wait_event() which sleeps indefinitely,
2745 	 * the maximum wait time is bounded by SCSI request timeout.
2746 	 */
2747 	wait_event(hba->dev_cmd.tag_wq, ufshcd_get_dev_cmd_tag(hba, &tag));
2748 
2749 	init_completion(&wait);
2750 	lrbp = &hba->lrb[tag];
2751 	WARN_ON(lrbp->cmd);
2752 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
2753 	if (unlikely(err))
2754 		goto out_put_tag;
2755 
2756 	hba->dev_cmd.complete = &wait;
2757 
2758 	ufshcd_add_query_upiu_trace(hba, tag, "query_send");
2759 	/* Make sure descriptors are ready before ringing the doorbell */
2760 	wmb();
2761 	spin_lock_irqsave(hba->host->host_lock, flags);
2762 	ufshcd_vops_setup_xfer_req(hba, tag, (lrbp->cmd ? true : false));
2763 	ufshcd_send_command(hba, tag);
2764 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2765 
2766 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
2767 
2768 	ufshcd_add_query_upiu_trace(hba, tag,
2769 			err ? "query_complete_err" : "query_complete");
2770 
2771 out_put_tag:
2772 	ufshcd_put_dev_cmd_tag(hba, tag);
2773 	wake_up(&hba->dev_cmd.tag_wq);
2774 	up_read(&hba->clk_scaling_lock);
2775 	return err;
2776 }
2777 
2778 /**
2779  * ufshcd_init_query() - init the query response and request parameters
2780  * @hba: per-adapter instance
2781  * @request: address of the request pointer to be initialized
2782  * @response: address of the response pointer to be initialized
2783  * @opcode: operation to perform
2784  * @idn: flag idn to access
2785  * @index: LU number to access
2786  * @selector: query/flag/descriptor further identification
2787  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)2788 static inline void ufshcd_init_query(struct ufs_hba *hba,
2789 		struct ufs_query_req **request, struct ufs_query_res **response,
2790 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
2791 {
2792 	*request = &hba->dev_cmd.query.request;
2793 	*response = &hba->dev_cmd.query.response;
2794 	memset(*request, 0, sizeof(struct ufs_query_req));
2795 	memset(*response, 0, sizeof(struct ufs_query_res));
2796 	(*request)->upiu_req.opcode = opcode;
2797 	(*request)->upiu_req.idn = idn;
2798 	(*request)->upiu_req.index = index;
2799 	(*request)->upiu_req.selector = selector;
2800 }
2801 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,bool * flag_res)2802 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
2803 	enum query_opcode opcode, enum flag_idn idn, bool *flag_res)
2804 {
2805 	int ret;
2806 	int retries;
2807 
2808 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
2809 		ret = ufshcd_query_flag(hba, opcode, idn, flag_res);
2810 		if (ret)
2811 			dev_dbg(hba->dev,
2812 				"%s: failed with error %d, retries %d\n",
2813 				__func__, ret, retries);
2814 		else
2815 			break;
2816 	}
2817 
2818 	if (ret)
2819 		dev_err(hba->dev,
2820 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
2821 			__func__, opcode, idn, ret, retries);
2822 	return ret;
2823 }
2824 
2825 /**
2826  * ufshcd_query_flag() - API function for sending flag query requests
2827  * @hba: per-adapter instance
2828  * @opcode: flag query to perform
2829  * @idn: flag idn to access
2830  * @flag_res: the flag value after the query request completes
2831  *
2832  * Returns 0 for success, non-zero in case of failure
2833  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,bool * flag_res)2834 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
2835 			enum flag_idn idn, bool *flag_res)
2836 {
2837 	struct ufs_query_req *request = NULL;
2838 	struct ufs_query_res *response = NULL;
2839 	int err, index = 0, selector = 0;
2840 	int timeout = QUERY_REQ_TIMEOUT;
2841 
2842 	BUG_ON(!hba);
2843 
2844 	ufshcd_hold(hba, false);
2845 	mutex_lock(&hba->dev_cmd.lock);
2846 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2847 			selector);
2848 
2849 	switch (opcode) {
2850 	case UPIU_QUERY_OPCODE_SET_FLAG:
2851 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
2852 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
2853 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2854 		break;
2855 	case UPIU_QUERY_OPCODE_READ_FLAG:
2856 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2857 		if (!flag_res) {
2858 			/* No dummy reads */
2859 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
2860 					__func__);
2861 			err = -EINVAL;
2862 			goto out_unlock;
2863 		}
2864 		break;
2865 	default:
2866 		dev_err(hba->dev,
2867 			"%s: Expected query flag opcode but got = %d\n",
2868 			__func__, opcode);
2869 		err = -EINVAL;
2870 		goto out_unlock;
2871 	}
2872 
2873 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
2874 
2875 	if (err) {
2876 		dev_err(hba->dev,
2877 			"%s: Sending flag query for idn %d failed, err = %d\n",
2878 			__func__, idn, err);
2879 		goto out_unlock;
2880 	}
2881 
2882 	if (flag_res)
2883 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
2884 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
2885 
2886 out_unlock:
2887 	mutex_unlock(&hba->dev_cmd.lock);
2888 	ufshcd_release(hba);
2889 	return err;
2890 }
2891 EXPORT_SYMBOL_GPL(ufshcd_query_flag);
2892 
2893 /**
2894  * ufshcd_query_attr - API function for sending attribute requests
2895  * @hba: per-adapter instance
2896  * @opcode: attribute opcode
2897  * @idn: attribute idn to access
2898  * @index: index field
2899  * @selector: selector field
2900  * @attr_val: the attribute value after the query request completes
2901  *
2902  * Returns 0 for success, non-zero in case of failure
2903 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2904 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
2905 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
2906 {
2907 	struct ufs_query_req *request = NULL;
2908 	struct ufs_query_res *response = NULL;
2909 	int err;
2910 
2911 	BUG_ON(!hba);
2912 
2913 	ufshcd_hold(hba, false);
2914 	if (!attr_val) {
2915 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
2916 				__func__, opcode);
2917 		err = -EINVAL;
2918 		goto out;
2919 	}
2920 
2921 	mutex_lock(&hba->dev_cmd.lock);
2922 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2923 			selector);
2924 
2925 	switch (opcode) {
2926 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
2927 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2928 		request->upiu_req.value = cpu_to_be32(*attr_val);
2929 		break;
2930 	case UPIU_QUERY_OPCODE_READ_ATTR:
2931 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2932 		break;
2933 	default:
2934 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
2935 				__func__, opcode);
2936 		err = -EINVAL;
2937 		goto out_unlock;
2938 	}
2939 
2940 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
2941 
2942 	if (err) {
2943 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
2944 				__func__, opcode, idn, index, err);
2945 		goto out_unlock;
2946 	}
2947 
2948 	*attr_val = be32_to_cpu(response->upiu_res.value);
2949 
2950 out_unlock:
2951 	mutex_unlock(&hba->dev_cmd.lock);
2952 out:
2953 	ufshcd_release(hba);
2954 	return err;
2955 }
2956 EXPORT_SYMBOL_GPL(ufshcd_query_attr);
2957 
2958 /**
2959  * ufshcd_query_attr_retry() - API function for sending query
2960  * attribute with retries
2961  * @hba: per-adapter instance
2962  * @opcode: attribute opcode
2963  * @idn: attribute idn to access
2964  * @index: index field
2965  * @selector: selector field
2966  * @attr_val: the attribute value after the query request
2967  * completes
2968  *
2969  * Returns 0 for success, non-zero in case of failure
2970 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2971 static int ufshcd_query_attr_retry(struct ufs_hba *hba,
2972 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
2973 	u32 *attr_val)
2974 {
2975 	int ret = 0;
2976 	u32 retries;
2977 
2978 	 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
2979 		ret = ufshcd_query_attr(hba, opcode, idn, index,
2980 						selector, attr_val);
2981 		if (ret)
2982 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
2983 				__func__, ret, retries);
2984 		else
2985 			break;
2986 	}
2987 
2988 	if (ret)
2989 		dev_err(hba->dev,
2990 			"%s: query attribute, idn %d, failed with error %d after %d retires\n",
2991 			__func__, idn, ret, QUERY_REQ_RETRIES);
2992 	return ret;
2993 }
2994 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)2995 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
2996 			enum query_opcode opcode, enum desc_idn idn, u8 index,
2997 			u8 selector, u8 *desc_buf, int *buf_len)
2998 {
2999 	struct ufs_query_req *request = NULL;
3000 	struct ufs_query_res *response = NULL;
3001 	int err;
3002 
3003 	BUG_ON(!hba);
3004 
3005 	ufshcd_hold(hba, false);
3006 	if (!desc_buf) {
3007 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3008 				__func__, opcode);
3009 		err = -EINVAL;
3010 		goto out;
3011 	}
3012 
3013 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3014 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3015 				__func__, *buf_len);
3016 		err = -EINVAL;
3017 		goto out;
3018 	}
3019 
3020 	mutex_lock(&hba->dev_cmd.lock);
3021 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3022 			selector);
3023 	hba->dev_cmd.query.descriptor = desc_buf;
3024 	request->upiu_req.length = cpu_to_be16(*buf_len);
3025 
3026 	switch (opcode) {
3027 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3028 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3029 		break;
3030 	case UPIU_QUERY_OPCODE_READ_DESC:
3031 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3032 		break;
3033 	default:
3034 		dev_err(hba->dev,
3035 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3036 				__func__, opcode);
3037 		err = -EINVAL;
3038 		goto out_unlock;
3039 	}
3040 
3041 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3042 
3043 	if (err) {
3044 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3045 				__func__, opcode, idn, index, err);
3046 		goto out_unlock;
3047 	}
3048 
3049 	*buf_len = be16_to_cpu(response->upiu_res.length);
3050 
3051 out_unlock:
3052 	hba->dev_cmd.query.descriptor = NULL;
3053 	mutex_unlock(&hba->dev_cmd.lock);
3054 out:
3055 	ufshcd_release(hba);
3056 	return err;
3057 }
3058 
3059 /**
3060  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3061  * @hba: per-adapter instance
3062  * @opcode: attribute opcode
3063  * @idn: attribute idn to access
3064  * @index: index field
3065  * @selector: selector field
3066  * @desc_buf: the buffer that contains the descriptor
3067  * @buf_len: length parameter passed to the device
3068  *
3069  * Returns 0 for success, non-zero in case of failure.
3070  * The buf_len parameter will contain, on return, the length parameter
3071  * received on the response.
3072  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3073 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3074 				  enum query_opcode opcode,
3075 				  enum desc_idn idn, u8 index,
3076 				  u8 selector,
3077 				  u8 *desc_buf, int *buf_len)
3078 {
3079 	int err;
3080 	int retries;
3081 
3082 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3083 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3084 						selector, desc_buf, buf_len);
3085 		if (!err || err == -EINVAL)
3086 			break;
3087 	}
3088 
3089 	return err;
3090 }
3091 EXPORT_SYMBOL_GPL(ufshcd_query_descriptor_retry);
3092 
3093 /**
3094  * ufshcd_read_desc_length - read the specified descriptor length from header
3095  * @hba: Pointer to adapter instance
3096  * @desc_id: descriptor idn value
3097  * @desc_index: descriptor index
3098  * @desc_length: pointer to variable to read the length of descriptor
3099  *
3100  * Return 0 in case of success, non-zero otherwise
3101  */
ufshcd_read_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,int * desc_length)3102 static int ufshcd_read_desc_length(struct ufs_hba *hba,
3103 	enum desc_idn desc_id,
3104 	int desc_index,
3105 	int *desc_length)
3106 {
3107 	int ret;
3108 	u8 header[QUERY_DESC_HDR_SIZE];
3109 	int header_len = QUERY_DESC_HDR_SIZE;
3110 
3111 	if (desc_id >= QUERY_DESC_IDN_MAX)
3112 		return -EINVAL;
3113 
3114 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3115 					desc_id, desc_index, 0, header,
3116 					&header_len);
3117 
3118 	if (ret) {
3119 		dev_err(hba->dev, "%s: Failed to get descriptor header id %d",
3120 			__func__, desc_id);
3121 		return ret;
3122 	} else if (desc_id != header[QUERY_DESC_DESC_TYPE_OFFSET]) {
3123 		dev_warn(hba->dev, "%s: descriptor header id %d and desc_id %d mismatch",
3124 			__func__, header[QUERY_DESC_DESC_TYPE_OFFSET],
3125 			desc_id);
3126 		ret = -EINVAL;
3127 	}
3128 
3129 	*desc_length = header[QUERY_DESC_LENGTH_OFFSET];
3130 	return ret;
3131 
3132 }
3133 
3134 /**
3135  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3136  * @hba: Pointer to adapter instance
3137  * @desc_id: descriptor idn value
3138  * @desc_len: mapped desc length (out)
3139  *
3140  * Return 0 in case of success, non-zero otherwise
3141  */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3142 int ufshcd_map_desc_id_to_length(struct ufs_hba *hba,
3143 	enum desc_idn desc_id, int *desc_len)
3144 {
3145 	switch (desc_id) {
3146 	case QUERY_DESC_IDN_DEVICE:
3147 		*desc_len = hba->desc_size.dev_desc;
3148 		break;
3149 	case QUERY_DESC_IDN_POWER:
3150 		*desc_len = hba->desc_size.pwr_desc;
3151 		break;
3152 	case QUERY_DESC_IDN_GEOMETRY:
3153 		*desc_len = hba->desc_size.geom_desc;
3154 		break;
3155 	case QUERY_DESC_IDN_CONFIGURATION:
3156 		*desc_len = hba->desc_size.conf_desc;
3157 		break;
3158 	case QUERY_DESC_IDN_UNIT:
3159 		*desc_len = hba->desc_size.unit_desc;
3160 		break;
3161 	case QUERY_DESC_IDN_INTERCONNECT:
3162 		*desc_len = hba->desc_size.interc_desc;
3163 		break;
3164 	case QUERY_DESC_IDN_STRING:
3165 		*desc_len = QUERY_DESC_MAX_SIZE;
3166 		break;
3167 	case QUERY_DESC_IDN_HEALTH:
3168 		*desc_len = hba->desc_size.hlth_desc;
3169 		break;
3170 	case QUERY_DESC_IDN_RFU_0:
3171 	case QUERY_DESC_IDN_RFU_1:
3172 		*desc_len = 0;
3173 		break;
3174 	default:
3175 		*desc_len = 0;
3176 		return -EINVAL;
3177 	}
3178 	return 0;
3179 }
3180 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3181 
3182 /**
3183  * ufshcd_read_desc_param - read the specified descriptor parameter
3184  * @hba: Pointer to adapter instance
3185  * @desc_id: descriptor idn value
3186  * @desc_index: descriptor index
3187  * @param_offset: offset of the parameter to read
3188  * @param_read_buf: pointer to buffer where parameter would be read
3189  * @param_size: sizeof(param_read_buf)
3190  *
3191  * Return 0 in case of success, non-zero otherwise
3192  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3193 int ufshcd_read_desc_param(struct ufs_hba *hba,
3194 			   enum desc_idn desc_id,
3195 			   int desc_index,
3196 			   u8 param_offset,
3197 			   u8 *param_read_buf,
3198 			   u8 param_size)
3199 {
3200 	int ret;
3201 	u8 *desc_buf;
3202 	int buff_len;
3203 	bool is_kmalloc = true;
3204 
3205 	/* Safety check */
3206 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3207 		return -EINVAL;
3208 
3209 	/* Get the max length of descriptor from structure filled up at probe
3210 	 * time.
3211 	 */
3212 	ret = ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3213 
3214 	/* Sanity checks */
3215 	if (ret || !buff_len) {
3216 		dev_err(hba->dev, "%s: Failed to get full descriptor length",
3217 			__func__);
3218 		return ret;
3219 	}
3220 
3221 	/* Check whether we need temp memory */
3222 	if (param_offset != 0 || param_size < buff_len) {
3223 		desc_buf = kmalloc(buff_len, GFP_KERNEL);
3224 		if (!desc_buf)
3225 			return -ENOMEM;
3226 	} else {
3227 		desc_buf = param_read_buf;
3228 		is_kmalloc = false;
3229 	}
3230 
3231 	/* Request for full descriptor */
3232 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3233 					desc_id, desc_index, 0,
3234 					desc_buf, &buff_len);
3235 
3236 	if (ret) {
3237 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d",
3238 			__func__, desc_id, desc_index, param_offset, ret);
3239 		goto out;
3240 	}
3241 
3242 	/* Sanity check */
3243 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3244 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header",
3245 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3246 		ret = -EINVAL;
3247 		goto out;
3248 	}
3249 
3250 	/* Check wherher we will not copy more data, than available */
3251 	if (is_kmalloc && param_size > buff_len)
3252 		param_size = buff_len;
3253 
3254 	if (is_kmalloc)
3255 		memcpy(param_read_buf, &desc_buf[param_offset], param_size);
3256 out:
3257 	if (is_kmalloc)
3258 		kfree(desc_buf);
3259 	return ret;
3260 }
3261 
ufshcd_read_desc(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,void * buf,u32 size)3262 static inline int ufshcd_read_desc(struct ufs_hba *hba,
3263 				   enum desc_idn desc_id,
3264 				   int desc_index,
3265 				   void *buf,
3266 				   u32 size)
3267 {
3268 	return ufshcd_read_desc_param(hba, desc_id, desc_index, 0, buf, size);
3269 }
3270 
ufshcd_read_power_desc(struct ufs_hba * hba,u8 * buf,u32 size)3271 static inline int ufshcd_read_power_desc(struct ufs_hba *hba,
3272 					 u8 *buf,
3273 					 u32 size)
3274 {
3275 	return ufshcd_read_desc(hba, QUERY_DESC_IDN_POWER, 0, buf, size);
3276 }
3277 
ufshcd_read_device_desc(struct ufs_hba * hba,u8 * buf,u32 size)3278 static int ufshcd_read_device_desc(struct ufs_hba *hba, u8 *buf, u32 size)
3279 {
3280 	return ufshcd_read_desc(hba, QUERY_DESC_IDN_DEVICE, 0, buf, size);
3281 }
3282 
3283 /**
3284  * struct uc_string_id - unicode string
3285  *
3286  * @len: size of this descriptor inclusive
3287  * @type: descriptor type
3288  * @uc: unicode string character
3289  */
3290 struct uc_string_id {
3291 	u8 len;
3292 	u8 type;
3293 	wchar_t uc[0];
3294 } __packed;
3295 
3296 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3297 static inline char ufshcd_remove_non_printable(u8 ch)
3298 {
3299 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3300 }
3301 
3302 /**
3303  * ufshcd_read_string_desc - read string descriptor
3304  * @hba: pointer to adapter instance
3305  * @desc_index: descriptor index
3306  * @buf: pointer to buffer where descriptor would be read,
3307  *       the caller should free the memory.
3308  * @ascii: if true convert from unicode to ascii characters
3309  *         null terminated string.
3310  *
3311  * Return:
3312  * *      string size on success.
3313  * *      -ENOMEM: on allocation failure
3314  * *      -EINVAL: on a wrong parameter
3315  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3316 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3317 			    u8 **buf, bool ascii)
3318 {
3319 	struct uc_string_id *uc_str;
3320 	u8 *str;
3321 	int ret;
3322 
3323 	if (!buf)
3324 		return -EINVAL;
3325 
3326 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3327 	if (!uc_str)
3328 		return -ENOMEM;
3329 
3330 	ret = ufshcd_read_desc(hba, QUERY_DESC_IDN_STRING,
3331 			       desc_index, uc_str,
3332 			       QUERY_DESC_MAX_SIZE);
3333 	if (ret < 0) {
3334 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3335 			QUERY_REQ_RETRIES, ret);
3336 		str = NULL;
3337 		goto out;
3338 	}
3339 
3340 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3341 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3342 		str = NULL;
3343 		ret = 0;
3344 		goto out;
3345 	}
3346 
3347 	if (ascii) {
3348 		ssize_t ascii_len;
3349 		int i;
3350 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3351 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3352 		str = kzalloc(ascii_len, GFP_KERNEL);
3353 		if (!str) {
3354 			ret = -ENOMEM;
3355 			goto out;
3356 		}
3357 
3358 		/*
3359 		 * the descriptor contains string in UTF16 format
3360 		 * we need to convert to utf-8 so it can be displayed
3361 		 */
3362 		ret = utf16s_to_utf8s(uc_str->uc,
3363 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3364 				      UTF16_BIG_ENDIAN, str, ascii_len);
3365 
3366 		/* replace non-printable or non-ASCII characters with spaces */
3367 		for (i = 0; i < ret; i++)
3368 			str[i] = ufshcd_remove_non_printable(str[i]);
3369 
3370 		str[ret++] = '\0';
3371 
3372 	} else {
3373 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3374 		if (!str) {
3375 			ret = -ENOMEM;
3376 			goto out;
3377 		}
3378 		ret = uc_str->len;
3379 	}
3380 out:
3381 	*buf = str;
3382 	kfree(uc_str);
3383 	return ret;
3384 }
3385 
3386 /**
3387  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3388  * @hba: Pointer to adapter instance
3389  * @lun: lun id
3390  * @param_offset: offset of the parameter to read
3391  * @param_read_buf: pointer to buffer where parameter would be read
3392  * @param_size: sizeof(param_read_buf)
3393  *
3394  * Return 0 in case of success, non-zero otherwise
3395  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3396 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3397 					      int lun,
3398 					      enum unit_desc_param param_offset,
3399 					      u8 *param_read_buf,
3400 					      u32 param_size)
3401 {
3402 	/*
3403 	 * Unit descriptors are only available for general purpose LUs (LUN id
3404 	 * from 0 to 7) and RPMB Well known LU.
3405 	 */
3406 	if (!ufs_is_valid_unit_desc_lun(lun))
3407 		return -EOPNOTSUPP;
3408 
3409 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3410 				      param_offset, param_read_buf, param_size);
3411 }
3412 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3413 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3414 {
3415 	int err = 0;
3416 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3417 
3418 	if (hba->dev_info.spec_version >= 0x300) {
3419 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3420 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3421 				&gating_wait);
3422 		if (err)
3423 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3424 					 err, gating_wait);
3425 
3426 		if (gating_wait == 0) {
3427 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3428 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3429 					 gating_wait);
3430 		}
3431 
3432 		/*
3433 		 * bRefClkGatingWaitTime defines the minimum time for which the
3434 		 * reference clock is required by device during transition from
3435 		 * HS-MODE to LS-MODE or HIBERN8 state. Give it more time to be
3436 		 * on the safe side.
3437 		 */
3438 		hba->dev_info.clk_gating_wait_us = gating_wait + 50;
3439 	}
3440 
3441 	return err;
3442 }
3443 
3444 /**
3445  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3446  * @hba: per adapter instance
3447  *
3448  * 1. Allocate DMA memory for Command Descriptor array
3449  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3450  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3451  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3452  *	(UTMRDL)
3453  * 4. Allocate memory for local reference block(lrb).
3454  *
3455  * Returns 0 for success, non-zero in case of failure
3456  */
ufshcd_memory_alloc(struct ufs_hba * hba)3457 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3458 {
3459 	size_t utmrdl_size, utrdl_size, ucdl_size;
3460 
3461 	/* Allocate memory for UTP command descriptors */
3462 	ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3463 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3464 						  ucdl_size,
3465 						  &hba->ucdl_dma_addr,
3466 						  GFP_KERNEL);
3467 
3468 	/*
3469 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3470 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3471 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3472 	 * be aligned to 128 bytes as well
3473 	 */
3474 	if (!hba->ucdl_base_addr ||
3475 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3476 		dev_err(hba->dev,
3477 			"Command Descriptor Memory allocation failed\n");
3478 		goto out;
3479 	}
3480 
3481 	/*
3482 	 * Allocate memory for UTP Transfer descriptors
3483 	 * UFSHCI requires 1024 byte alignment of UTRD
3484 	 */
3485 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3486 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3487 						   utrdl_size,
3488 						   &hba->utrdl_dma_addr,
3489 						   GFP_KERNEL);
3490 	if (!hba->utrdl_base_addr ||
3491 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3492 		dev_err(hba->dev,
3493 			"Transfer Descriptor Memory allocation failed\n");
3494 		goto out;
3495 	}
3496 
3497 	/*
3498 	 * Allocate memory for UTP Task Management descriptors
3499 	 * UFSHCI requires 1024 byte alignment of UTMRD
3500 	 */
3501 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3502 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3503 						    utmrdl_size,
3504 						    &hba->utmrdl_dma_addr,
3505 						    GFP_KERNEL);
3506 	if (!hba->utmrdl_base_addr ||
3507 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3508 		dev_err(hba->dev,
3509 		"Task Management Descriptor Memory allocation failed\n");
3510 		goto out;
3511 	}
3512 
3513 	/* Allocate memory for local reference block */
3514 	hba->lrb = devm_kcalloc(hba->dev,
3515 				hba->nutrs, sizeof(struct ufshcd_lrb),
3516 				GFP_KERNEL);
3517 	if (!hba->lrb) {
3518 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3519 		goto out;
3520 	}
3521 	return 0;
3522 out:
3523 	return -ENOMEM;
3524 }
3525 
3526 /**
3527  * ufshcd_host_memory_configure - configure local reference block with
3528  *				memory offsets
3529  * @hba: per adapter instance
3530  *
3531  * Configure Host memory space
3532  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3533  * address.
3534  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3535  * and PRDT offset.
3536  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3537  * into local reference block.
3538  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3539 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3540 {
3541 	struct utp_transfer_cmd_desc *cmd_descp;
3542 	struct utp_transfer_req_desc *utrdlp;
3543 	dma_addr_t cmd_desc_dma_addr;
3544 	dma_addr_t cmd_desc_element_addr;
3545 	u16 response_offset;
3546 	u16 prdt_offset;
3547 	int cmd_desc_size;
3548 	int i;
3549 
3550 	utrdlp = hba->utrdl_base_addr;
3551 	cmd_descp = hba->ucdl_base_addr;
3552 
3553 	response_offset =
3554 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3555 	prdt_offset =
3556 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3557 
3558 	cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3559 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3560 
3561 	for (i = 0; i < hba->nutrs; i++) {
3562 		/* Configure UTRD with command descriptor base address */
3563 		cmd_desc_element_addr =
3564 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3565 		utrdlp[i].command_desc_base_addr_lo =
3566 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3567 		utrdlp[i].command_desc_base_addr_hi =
3568 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3569 
3570 		/* Response upiu and prdt offset should be in double words */
3571 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3572 			utrdlp[i].response_upiu_offset =
3573 				cpu_to_le16(response_offset);
3574 			utrdlp[i].prd_table_offset =
3575 				cpu_to_le16(prdt_offset);
3576 			utrdlp[i].response_upiu_length =
3577 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3578 		} else {
3579 			utrdlp[i].response_upiu_offset =
3580 				cpu_to_le16((response_offset >> 2));
3581 			utrdlp[i].prd_table_offset =
3582 				cpu_to_le16((prdt_offset >> 2));
3583 			utrdlp[i].response_upiu_length =
3584 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3585 		}
3586 
3587 		hba->lrb[i].utr_descriptor_ptr = (utrdlp + i);
3588 		hba->lrb[i].utrd_dma_addr = hba->utrdl_dma_addr +
3589 				(i * sizeof(struct utp_transfer_req_desc));
3590 		hba->lrb[i].ucd_req_ptr =
3591 			(struct utp_upiu_req *)(cmd_descp + i);
3592 		hba->lrb[i].ucd_req_dma_addr = cmd_desc_element_addr;
3593 		hba->lrb[i].ucd_rsp_ptr =
3594 			(struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
3595 		hba->lrb[i].ucd_rsp_dma_addr = cmd_desc_element_addr +
3596 				response_offset;
3597 		hba->lrb[i].ucd_prdt_ptr =
3598 			(struct ufshcd_sg_entry *)cmd_descp[i].prd_table;
3599 		hba->lrb[i].ucd_prdt_dma_addr = cmd_desc_element_addr +
3600 				prdt_offset;
3601 	}
3602 }
3603 
3604 /**
3605  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3606  * @hba: per adapter instance
3607  *
3608  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3609  * in order to initialize the Unipro link startup procedure.
3610  * Once the Unipro links are up, the device connected to the controller
3611  * is detected.
3612  *
3613  * Returns 0 on success, non-zero value on failure
3614  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3615 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3616 {
3617 	struct uic_command uic_cmd = {0};
3618 	int ret;
3619 
3620 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3621 
3622 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3623 	if (ret)
3624 		dev_dbg(hba->dev,
3625 			"dme-link-startup: error code %d\n", ret);
3626 	return ret;
3627 }
3628 /**
3629  * ufshcd_dme_reset - UIC command for DME_RESET
3630  * @hba: per adapter instance
3631  *
3632  * DME_RESET command is issued in order to reset UniPro stack.
3633  * This function now deal with cold reset.
3634  *
3635  * Returns 0 on success, non-zero value on failure
3636  */
ufshcd_dme_reset(struct ufs_hba * hba)3637 static int ufshcd_dme_reset(struct ufs_hba *hba)
3638 {
3639 	struct uic_command uic_cmd = {0};
3640 	int ret;
3641 
3642 	uic_cmd.command = UIC_CMD_DME_RESET;
3643 
3644 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3645 	if (ret)
3646 		dev_err(hba->dev,
3647 			"dme-reset: error code %d\n", ret);
3648 
3649 	return ret;
3650 }
3651 
3652 /**
3653  * ufshcd_dme_enable - UIC command for DME_ENABLE
3654  * @hba: per adapter instance
3655  *
3656  * DME_ENABLE command is issued in order to enable UniPro stack.
3657  *
3658  * Returns 0 on success, non-zero value on failure
3659  */
ufshcd_dme_enable(struct ufs_hba * hba)3660 static int ufshcd_dme_enable(struct ufs_hba *hba)
3661 {
3662 	struct uic_command uic_cmd = {0};
3663 	int ret;
3664 
3665 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3666 
3667 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3668 	if (ret)
3669 		dev_err(hba->dev,
3670 			"dme-reset: error code %d\n", ret);
3671 
3672 	return ret;
3673 }
3674 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3675 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3676 {
3677 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3678 	unsigned long min_sleep_time_us;
3679 
3680 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3681 		return;
3682 
3683 	/*
3684 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3685 	 * this function
3686 	 */
3687 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3688 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3689 	} else {
3690 		unsigned long delta =
3691 			(unsigned long) ktime_to_us(
3692 				ktime_sub(ktime_get(),
3693 				hba->last_dme_cmd_tstamp));
3694 
3695 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3696 			min_sleep_time_us =
3697 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3698 		else
3699 			return; /* no more delay required */
3700 	}
3701 
3702 	/* allow sleep for extra 50us if needed */
3703 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3704 }
3705 
3706 /**
3707  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3708  * @hba: per adapter instance
3709  * @attr_sel: uic command argument1
3710  * @attr_set: attribute set type as uic command argument2
3711  * @mib_val: setting value as uic command argument3
3712  * @peer: indicate whether peer or local
3713  *
3714  * Returns 0 on success, non-zero value on failure
3715  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3716 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3717 			u8 attr_set, u32 mib_val, u8 peer)
3718 {
3719 	struct uic_command uic_cmd = {0};
3720 	static const char *const action[] = {
3721 		"dme-set",
3722 		"dme-peer-set"
3723 	};
3724 	const char *set = action[!!peer];
3725 	int ret;
3726 	int retries = UFS_UIC_COMMAND_RETRIES;
3727 
3728 	uic_cmd.command = peer ?
3729 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3730 	uic_cmd.argument1 = attr_sel;
3731 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3732 	uic_cmd.argument3 = mib_val;
3733 
3734 	do {
3735 		/* for peer attributes we retry upon failure */
3736 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3737 		if (ret)
3738 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3739 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3740 	} while (ret && peer && --retries);
3741 
3742 	if (ret)
3743 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3744 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3745 			UFS_UIC_COMMAND_RETRIES - retries);
3746 
3747 	return ret;
3748 }
3749 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3750 
3751 /**
3752  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3753  * @hba: per adapter instance
3754  * @attr_sel: uic command argument1
3755  * @mib_val: the value of the attribute as returned by the UIC command
3756  * @peer: indicate whether peer or local
3757  *
3758  * Returns 0 on success, non-zero value on failure
3759  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3760 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3761 			u32 *mib_val, u8 peer)
3762 {
3763 	struct uic_command uic_cmd = {0};
3764 	static const char *const action[] = {
3765 		"dme-get",
3766 		"dme-peer-get"
3767 	};
3768 	const char *get = action[!!peer];
3769 	int ret;
3770 	int retries = UFS_UIC_COMMAND_RETRIES;
3771 	struct ufs_pa_layer_attr orig_pwr_info;
3772 	struct ufs_pa_layer_attr temp_pwr_info;
3773 	bool pwr_mode_change = false;
3774 
3775 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3776 		orig_pwr_info = hba->pwr_info;
3777 		temp_pwr_info = orig_pwr_info;
3778 
3779 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3780 		    orig_pwr_info.pwr_rx == FAST_MODE) {
3781 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3782 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3783 			pwr_mode_change = true;
3784 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3785 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3786 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3787 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3788 			pwr_mode_change = true;
3789 		}
3790 		if (pwr_mode_change) {
3791 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3792 			if (ret)
3793 				goto out;
3794 		}
3795 	}
3796 
3797 	uic_cmd.command = peer ?
3798 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3799 	uic_cmd.argument1 = attr_sel;
3800 
3801 	do {
3802 		/* for peer attributes we retry upon failure */
3803 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3804 		if (ret)
3805 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
3806 				get, UIC_GET_ATTR_ID(attr_sel), ret);
3807 	} while (ret && peer && --retries);
3808 
3809 	if (ret)
3810 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
3811 			get, UIC_GET_ATTR_ID(attr_sel),
3812 			UFS_UIC_COMMAND_RETRIES - retries);
3813 
3814 	if (mib_val && !ret)
3815 		*mib_val = uic_cmd.argument3;
3816 
3817 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
3818 	    && pwr_mode_change)
3819 		ufshcd_change_power_mode(hba, &orig_pwr_info);
3820 out:
3821 	return ret;
3822 }
3823 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
3824 
3825 /**
3826  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
3827  * state) and waits for it to take effect.
3828  *
3829  * @hba: per adapter instance
3830  * @cmd: UIC command to execute
3831  *
3832  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
3833  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
3834  * and device UniPro link and hence it's final completion would be indicated by
3835  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
3836  * addition to normal UIC command completion Status (UCCS). This function only
3837  * returns after the relevant status bits indicate the completion.
3838  *
3839  * Returns 0 on success, non-zero value on failure
3840  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)3841 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
3842 {
3843 	struct completion uic_async_done;
3844 	unsigned long flags;
3845 	u8 status;
3846 	int ret;
3847 	bool reenable_intr = false;
3848 
3849 	mutex_lock(&hba->uic_cmd_mutex);
3850 	init_completion(&uic_async_done);
3851 	ufshcd_add_delay_before_dme_cmd(hba);
3852 
3853 	spin_lock_irqsave(hba->host->host_lock, flags);
3854 	hba->uic_async_done = &uic_async_done;
3855 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
3856 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
3857 		/*
3858 		 * Make sure UIC command completion interrupt is disabled before
3859 		 * issuing UIC command.
3860 		 */
3861 		wmb();
3862 		reenable_intr = true;
3863 	}
3864 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
3865 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3866 	if (ret) {
3867 		dev_err(hba->dev,
3868 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
3869 			cmd->command, cmd->argument3, ret);
3870 		goto out;
3871 	}
3872 
3873 	if (!wait_for_completion_timeout(hba->uic_async_done,
3874 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
3875 		dev_err(hba->dev,
3876 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
3877 			cmd->command, cmd->argument3);
3878 		ret = -ETIMEDOUT;
3879 		goto out;
3880 	}
3881 
3882 	status = ufshcd_get_upmcrs(hba);
3883 	if (status != PWR_LOCAL) {
3884 		dev_err(hba->dev,
3885 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
3886 			cmd->command, status);
3887 		ret = (status != PWR_OK) ? status : -1;
3888 	}
3889 out:
3890 	if (ret) {
3891 		ufshcd_print_host_state(hba);
3892 		ufshcd_print_pwr_info(hba);
3893 		ufshcd_print_host_regs(hba);
3894 	}
3895 
3896 	spin_lock_irqsave(hba->host->host_lock, flags);
3897 	hba->active_uic_cmd = NULL;
3898 	hba->uic_async_done = NULL;
3899 	if (reenable_intr)
3900 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
3901 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3902 	mutex_unlock(&hba->uic_cmd_mutex);
3903 
3904 	return ret;
3905 }
3906 
3907 /**
3908  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
3909  *				using DME_SET primitives.
3910  * @hba: per adapter instance
3911  * @mode: powr mode value
3912  *
3913  * Returns 0 on success, non-zero value on failure
3914  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)3915 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
3916 {
3917 	struct uic_command uic_cmd = {0};
3918 	int ret;
3919 
3920 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
3921 		ret = ufshcd_dme_set(hba,
3922 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
3923 		if (ret) {
3924 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
3925 						__func__, ret);
3926 			goto out;
3927 		}
3928 	}
3929 
3930 	uic_cmd.command = UIC_CMD_DME_SET;
3931 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
3932 	uic_cmd.argument3 = mode;
3933 	ufshcd_hold(hba, false);
3934 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3935 	ufshcd_release(hba);
3936 
3937 out:
3938 	return ret;
3939 }
3940 
ufshcd_link_recovery(struct ufs_hba * hba)3941 static int ufshcd_link_recovery(struct ufs_hba *hba)
3942 {
3943 	int ret;
3944 	unsigned long flags;
3945 
3946 	spin_lock_irqsave(hba->host->host_lock, flags);
3947 	hba->ufshcd_state = UFSHCD_STATE_RESET;
3948 	ufshcd_set_eh_in_progress(hba);
3949 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3950 
3951 	ret = ufshcd_host_reset_and_restore(hba);
3952 
3953 	spin_lock_irqsave(hba->host->host_lock, flags);
3954 	if (ret)
3955 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
3956 	ufshcd_clear_eh_in_progress(hba);
3957 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3958 
3959 	if (ret)
3960 		dev_err(hba->dev, "%s: link recovery failed, err %d",
3961 			__func__, ret);
3962 
3963 	return ret;
3964 }
3965 
__ufshcd_uic_hibern8_enter(struct ufs_hba * hba)3966 static int __ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
3967 {
3968 	int ret;
3969 	struct uic_command uic_cmd = {0};
3970 	ktime_t start = ktime_get();
3971 
3972 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
3973 
3974 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
3975 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3976 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
3977 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3978 
3979 	if (ret) {
3980 		int err;
3981 
3982 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
3983 			__func__, ret);
3984 
3985 		/*
3986 		 * If link recovery fails then return error code returned from
3987 		 * ufshcd_link_recovery().
3988 		 * If link recovery succeeds then return -EAGAIN to attempt
3989 		 * hibern8 enter retry again.
3990 		 */
3991 		err = ufshcd_link_recovery(hba);
3992 		if (err) {
3993 			dev_err(hba->dev, "%s: link recovery failed", __func__);
3994 			ret = err;
3995 		} else {
3996 			ret = -EAGAIN;
3997 		}
3998 	} else
3999 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4000 								POST_CHANGE);
4001 
4002 	return ret;
4003 }
4004 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4005 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4006 {
4007 	int ret = 0, retries;
4008 
4009 	for (retries = UIC_HIBERN8_ENTER_RETRIES; retries > 0; retries--) {
4010 		ret = __ufshcd_uic_hibern8_enter(hba);
4011 		if (!ret)
4012 			goto out;
4013 	}
4014 out:
4015 	return ret;
4016 }
4017 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4018 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4019 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4020 {
4021 	struct uic_command uic_cmd = {0};
4022 	int ret;
4023 	ktime_t start = ktime_get();
4024 
4025 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4026 
4027 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4028 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4029 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4030 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4031 
4032 	if (ret) {
4033 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4034 			__func__, ret);
4035 		ret = ufshcd_link_recovery(hba);
4036 	} else {
4037 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4038 								POST_CHANGE);
4039 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
4040 		hba->ufs_stats.hibern8_exit_cnt++;
4041 	}
4042 
4043 	return ret;
4044 }
4045 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4046 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4047 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4048 {
4049 	unsigned long flags;
4050 
4051 	if (!ufshcd_is_auto_hibern8_supported(hba) || !hba->ahit)
4052 		return;
4053 
4054 	spin_lock_irqsave(hba->host->host_lock, flags);
4055 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4056 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4057 }
4058 
4059  /**
4060  * ufshcd_init_pwr_info - setting the POR (power on reset)
4061  * values in hba power info
4062  * @hba: per-adapter instance
4063  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4064 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4065 {
4066 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4067 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4068 	hba->pwr_info.lane_rx = 1;
4069 	hba->pwr_info.lane_tx = 1;
4070 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4071 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4072 	hba->pwr_info.hs_rate = 0;
4073 }
4074 
4075 /**
4076  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4077  * @hba: per-adapter instance
4078  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4079 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4080 {
4081 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4082 
4083 	if (hba->max_pwr_info.is_valid)
4084 		return 0;
4085 
4086 	pwr_info->pwr_tx = FAST_MODE;
4087 	pwr_info->pwr_rx = FAST_MODE;
4088 	pwr_info->hs_rate = PA_HS_MODE_B;
4089 
4090 	/* Get the connected lane count */
4091 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4092 			&pwr_info->lane_rx);
4093 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4094 			&pwr_info->lane_tx);
4095 
4096 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4097 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4098 				__func__,
4099 				pwr_info->lane_rx,
4100 				pwr_info->lane_tx);
4101 		return -EINVAL;
4102 	}
4103 
4104 	/*
4105 	 * First, get the maximum gears of HS speed.
4106 	 * If a zero value, it means there is no HSGEAR capability.
4107 	 * Then, get the maximum gears of PWM speed.
4108 	 */
4109 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4110 	if (!pwr_info->gear_rx) {
4111 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4112 				&pwr_info->gear_rx);
4113 		if (!pwr_info->gear_rx) {
4114 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4115 				__func__, pwr_info->gear_rx);
4116 			return -EINVAL;
4117 		}
4118 		pwr_info->pwr_rx = SLOW_MODE;
4119 	}
4120 
4121 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4122 			&pwr_info->gear_tx);
4123 	if (!pwr_info->gear_tx) {
4124 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4125 				&pwr_info->gear_tx);
4126 		if (!pwr_info->gear_tx) {
4127 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4128 				__func__, pwr_info->gear_tx);
4129 			return -EINVAL;
4130 		}
4131 		pwr_info->pwr_tx = SLOW_MODE;
4132 	}
4133 
4134 	hba->max_pwr_info.is_valid = true;
4135 	return 0;
4136 }
4137 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4138 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4139 			     struct ufs_pa_layer_attr *pwr_mode)
4140 {
4141 	int ret;
4142 
4143 	/* if already configured to the requested pwr_mode */
4144 	if (pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4145 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4146 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4147 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4148 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4149 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4150 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4151 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4152 		return 0;
4153 	}
4154 
4155 	/*
4156 	 * Configure attributes for power mode change with below.
4157 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4158 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4159 	 * - PA_HSSERIES
4160 	 */
4161 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4162 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4163 			pwr_mode->lane_rx);
4164 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4165 			pwr_mode->pwr_rx == FAST_MODE)
4166 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4167 	else
4168 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4169 
4170 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4171 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4172 			pwr_mode->lane_tx);
4173 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4174 			pwr_mode->pwr_tx == FAST_MODE)
4175 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4176 	else
4177 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4178 
4179 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4180 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4181 	    pwr_mode->pwr_rx == FAST_MODE ||
4182 	    pwr_mode->pwr_tx == FAST_MODE)
4183 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4184 						pwr_mode->hs_rate);
4185 
4186 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4187 			DL_FC0ProtectionTimeOutVal_Default);
4188 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4189 			DL_TC0ReplayTimeOutVal_Default);
4190 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4191 			DL_AFC0ReqTimeOutVal_Default);
4192 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4193 			DL_FC1ProtectionTimeOutVal_Default);
4194 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4195 			DL_TC1ReplayTimeOutVal_Default);
4196 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4197 			DL_AFC1ReqTimeOutVal_Default);
4198 
4199 	ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4200 			DL_FC0ProtectionTimeOutVal_Default);
4201 	ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4202 			DL_TC0ReplayTimeOutVal_Default);
4203 	ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4204 			DL_AFC0ReqTimeOutVal_Default);
4205 
4206 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4207 			| pwr_mode->pwr_tx);
4208 
4209 	if (ret) {
4210 		dev_err(hba->dev,
4211 			"%s: power mode change failed %d\n", __func__, ret);
4212 	} else {
4213 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4214 								pwr_mode);
4215 
4216 		memcpy(&hba->pwr_info, pwr_mode,
4217 			sizeof(struct ufs_pa_layer_attr));
4218 	}
4219 
4220 	return ret;
4221 }
4222 
4223 /**
4224  * ufshcd_config_pwr_mode - configure a new power mode
4225  * @hba: per-adapter instance
4226  * @desired_pwr_mode: desired power configuration
4227  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4228 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4229 		struct ufs_pa_layer_attr *desired_pwr_mode)
4230 {
4231 	struct ufs_pa_layer_attr final_params = { 0 };
4232 	int ret;
4233 
4234 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4235 					desired_pwr_mode, &final_params);
4236 
4237 	if (ret)
4238 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4239 
4240 	ret = ufshcd_change_power_mode(hba, &final_params);
4241 	if (!ret)
4242 		ufshcd_print_pwr_info(hba);
4243 
4244 	return ret;
4245 }
4246 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4247 
4248 /**
4249  * ufshcd_complete_dev_init() - checks device readiness
4250  * @hba: per-adapter instance
4251  *
4252  * Set fDeviceInit flag and poll until device toggles it.
4253  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4254 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4255 {
4256 	int i;
4257 	int err;
4258 	bool flag_res = 1;
4259 
4260 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4261 		QUERY_FLAG_IDN_FDEVICEINIT, NULL);
4262 	if (err) {
4263 		dev_err(hba->dev,
4264 			"%s setting fDeviceInit flag failed with error %d\n",
4265 			__func__, err);
4266 		goto out;
4267 	}
4268 
4269 	/* poll for max. 1000 iterations for fDeviceInit flag to clear */
4270 	for (i = 0; i < 1000 && !err && flag_res; i++)
4271 		err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4272 			QUERY_FLAG_IDN_FDEVICEINIT, &flag_res);
4273 
4274 	if (err)
4275 		dev_err(hba->dev,
4276 			"%s reading fDeviceInit flag failed with error %d\n",
4277 			__func__, err);
4278 	else if (flag_res)
4279 		dev_err(hba->dev,
4280 			"%s fDeviceInit was not cleared by the device\n",
4281 			__func__);
4282 
4283 out:
4284 	return err;
4285 }
4286 
4287 /**
4288  * ufshcd_make_hba_operational - Make UFS controller operational
4289  * @hba: per adapter instance
4290  *
4291  * To bring UFS host controller to operational state,
4292  * 1. Enable required interrupts
4293  * 2. Configure interrupt aggregation
4294  * 3. Program UTRL and UTMRL base address
4295  * 4. Configure run-stop-registers
4296  *
4297  * Returns 0 on success, non-zero value on failure
4298  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4299 static int ufshcd_make_hba_operational(struct ufs_hba *hba)
4300 {
4301 	int err = 0;
4302 	u32 reg;
4303 
4304 	/* Enable required interrupts */
4305 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4306 
4307 	/* Configure interrupt aggregation */
4308 	if (ufshcd_is_intr_aggr_allowed(hba))
4309 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4310 	else
4311 		ufshcd_disable_intr_aggr(hba);
4312 
4313 	/* Configure UTRL and UTMRL base address registers */
4314 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4315 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4316 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4317 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4318 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4319 			REG_UTP_TASK_REQ_LIST_BASE_L);
4320 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4321 			REG_UTP_TASK_REQ_LIST_BASE_H);
4322 
4323 	/*
4324 	 * Make sure base address and interrupt setup are updated before
4325 	 * enabling the run/stop registers below.
4326 	 */
4327 	wmb();
4328 
4329 	/*
4330 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4331 	 */
4332 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4333 	if (!(ufshcd_get_lists_status(reg))) {
4334 		ufshcd_enable_run_stop_reg(hba);
4335 	} else {
4336 		dev_err(hba->dev,
4337 			"Host controller not ready to process requests");
4338 		err = -EIO;
4339 		goto out;
4340 	}
4341 
4342 out:
4343 	return err;
4344 }
4345 
4346 /**
4347  * ufshcd_hba_stop - Send controller to reset state
4348  * @hba: per adapter instance
4349  * @can_sleep: perform sleep or just spin
4350  */
ufshcd_hba_stop(struct ufs_hba * hba,bool can_sleep)4351 static inline void ufshcd_hba_stop(struct ufs_hba *hba, bool can_sleep)
4352 {
4353 	int err;
4354 
4355 	ufshcd_crypto_disable(hba);
4356 
4357 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4358 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4359 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4360 					10, 1, can_sleep);
4361 	if (err)
4362 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4363 }
4364 
4365 /**
4366  * ufshcd_hba_execute_hce - initialize the controller
4367  * @hba: per adapter instance
4368  *
4369  * The controller resets itself and controller firmware initialization
4370  * sequence kicks off. When controller is ready it will set
4371  * the Host Controller Enable bit to 1.
4372  *
4373  * Returns 0 on success, non-zero value on failure
4374  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4375 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4376 {
4377 	int retry;
4378 
4379 	if (!ufshcd_is_hba_active(hba))
4380 		/* change controller state to "reset state" */
4381 		ufshcd_hba_stop(hba, true);
4382 
4383 	/* UniPro link is disabled at this point */
4384 	ufshcd_set_link_off(hba);
4385 
4386 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4387 
4388 	/* start controller initialization sequence */
4389 	ufshcd_hba_start(hba);
4390 
4391 	/*
4392 	 * To initialize a UFS host controller HCE bit must be set to 1.
4393 	 * During initialization the HCE bit value changes from 1->0->1.
4394 	 * When the host controller completes initialization sequence
4395 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4396 	 * to check if the controller has completed initialization sequence.
4397 	 * So without this delay the value HCE = 1, set in the previous
4398 	 * instruction might be read back.
4399 	 * This delay can be changed based on the controller.
4400 	 */
4401 	usleep_range(1000, 1100);
4402 
4403 	/* wait for the host controller to complete initialization */
4404 	retry = 10;
4405 	while (ufshcd_is_hba_active(hba)) {
4406 		if (retry) {
4407 			retry--;
4408 		} else {
4409 			dev_err(hba->dev,
4410 				"Controller enable failed\n");
4411 			return -EIO;
4412 		}
4413 		usleep_range(5000, 5100);
4414 	}
4415 
4416 	/* enable UIC related interrupts */
4417 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4418 
4419 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4420 
4421 	return 0;
4422 }
4423 
ufshcd_hba_enable(struct ufs_hba * hba)4424 static int ufshcd_hba_enable(struct ufs_hba *hba)
4425 {
4426 	int ret;
4427 
4428 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4429 		ufshcd_set_link_off(hba);
4430 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4431 
4432 		/* enable UIC related interrupts */
4433 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4434 		ret = ufshcd_dme_reset(hba);
4435 		if (!ret) {
4436 			ret = ufshcd_dme_enable(hba);
4437 			if (!ret)
4438 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4439 			if (ret)
4440 				dev_err(hba->dev,
4441 					"Host controller enable failed with non-hce\n");
4442 		}
4443 	} else {
4444 		ret = ufshcd_hba_execute_hce(hba);
4445 	}
4446 
4447 	return ret;
4448 }
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4449 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4450 {
4451 	int tx_lanes, i, err = 0;
4452 
4453 	if (!peer)
4454 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4455 			       &tx_lanes);
4456 	else
4457 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4458 				    &tx_lanes);
4459 	for (i = 0; i < tx_lanes; i++) {
4460 		if (!peer)
4461 			err = ufshcd_dme_set(hba,
4462 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4463 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4464 					0);
4465 		else
4466 			err = ufshcd_dme_peer_set(hba,
4467 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4468 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4469 					0);
4470 		if (err) {
4471 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4472 				__func__, peer, i, err);
4473 			break;
4474 		}
4475 	}
4476 
4477 	return err;
4478 }
4479 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4480 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4481 {
4482 	return ufshcd_disable_tx_lcc(hba, true);
4483 }
4484 
ufshcd_update_reg_hist(struct ufs_err_reg_hist * reg_hist,u32 reg)4485 static void ufshcd_update_reg_hist(struct ufs_err_reg_hist *reg_hist,
4486 				   u32 reg)
4487 {
4488 	reg_hist->reg[reg_hist->pos] = reg;
4489 	reg_hist->tstamp[reg_hist->pos] = ktime_get();
4490 	reg_hist->pos = (reg_hist->pos + 1) % UFS_ERR_REG_HIST_LENGTH;
4491 }
4492 
4493 /**
4494  * ufshcd_link_startup - Initialize unipro link startup
4495  * @hba: per adapter instance
4496  *
4497  * Returns 0 for success, non-zero in case of failure
4498  */
ufshcd_link_startup(struct ufs_hba * hba)4499 static int ufshcd_link_startup(struct ufs_hba *hba)
4500 {
4501 	int ret;
4502 	int retries = DME_LINKSTARTUP_RETRIES;
4503 	bool link_startup_again = false;
4504 
4505 	/*
4506 	 * If UFS device isn't active then we will have to issue link startup
4507 	 * 2 times to make sure the device state move to active.
4508 	 */
4509 	if (!ufshcd_is_ufs_dev_active(hba))
4510 		link_startup_again = true;
4511 
4512 link_startup:
4513 	do {
4514 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4515 
4516 		ret = ufshcd_dme_link_startup(hba);
4517 
4518 		/* check if device is detected by inter-connect layer */
4519 		if (!ret && !ufshcd_is_device_present(hba)) {
4520 			ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4521 					       0);
4522 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4523 			ret = -ENXIO;
4524 			goto out;
4525 		}
4526 
4527 		/*
4528 		 * DME link lost indication is only received when link is up,
4529 		 * but we can't be sure if the link is up until link startup
4530 		 * succeeds. So reset the local Uni-Pro and try again.
4531 		 */
4532 		if (ret && ufshcd_hba_enable(hba)) {
4533 			ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4534 					       (u32)ret);
4535 			goto out;
4536 		}
4537 	} while (ret && retries--);
4538 
4539 	if (ret) {
4540 		/* failed to get the link up... retire */
4541 		ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4542 				       (u32)ret);
4543 		goto out;
4544 	}
4545 
4546 	if (link_startup_again) {
4547 		link_startup_again = false;
4548 		retries = DME_LINKSTARTUP_RETRIES;
4549 		goto link_startup;
4550 	}
4551 
4552 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4553 	ufshcd_init_pwr_info(hba);
4554 	ufshcd_print_pwr_info(hba);
4555 
4556 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4557 		ret = ufshcd_disable_device_tx_lcc(hba);
4558 		if (ret)
4559 			goto out;
4560 	}
4561 
4562 	/* Include any host controller configuration via UIC commands */
4563 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4564 	if (ret)
4565 		goto out;
4566 
4567 	ret = ufshcd_make_hba_operational(hba);
4568 out:
4569 	if (ret) {
4570 		dev_err(hba->dev, "link startup failed %d\n", ret);
4571 		ufshcd_print_host_state(hba);
4572 		ufshcd_print_pwr_info(hba);
4573 		ufshcd_print_host_regs(hba);
4574 	}
4575 	return ret;
4576 }
4577 
4578 /**
4579  * ufshcd_verify_dev_init() - Verify device initialization
4580  * @hba: per-adapter instance
4581  *
4582  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4583  * device Transport Protocol (UTP) layer is ready after a reset.
4584  * If the UTP layer at the device side is not initialized, it may
4585  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4586  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4587  */
ufshcd_verify_dev_init(struct ufs_hba * hba)4588 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4589 {
4590 	int err = 0;
4591 	int retries;
4592 
4593 	ufshcd_hold(hba, false);
4594 	mutex_lock(&hba->dev_cmd.lock);
4595 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4596 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4597 					       NOP_OUT_TIMEOUT);
4598 
4599 		if (!err || err == -ETIMEDOUT)
4600 			break;
4601 
4602 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4603 	}
4604 	mutex_unlock(&hba->dev_cmd.lock);
4605 	ufshcd_release(hba);
4606 
4607 	if (err)
4608 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4609 	return err;
4610 }
4611 
4612 /**
4613  * ufshcd_set_queue_depth - set lun queue depth
4614  * @sdev: pointer to SCSI device
4615  *
4616  * Read bLUQueueDepth value and activate scsi tagged command
4617  * queueing. For WLUN, queue depth is set to 1. For best-effort
4618  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4619  * value that host can queue.
4620  */
ufshcd_set_queue_depth(struct scsi_device * sdev)4621 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4622 {
4623 	int ret = 0;
4624 	u8 lun_qdepth;
4625 	struct ufs_hba *hba;
4626 
4627 	hba = shost_priv(sdev->host);
4628 
4629 	lun_qdepth = hba->nutrs;
4630 	ret = ufshcd_read_unit_desc_param(hba,
4631 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4632 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4633 					  &lun_qdepth,
4634 					  sizeof(lun_qdepth));
4635 
4636 	/* Some WLUN doesn't support unit descriptor */
4637 	if (ret == -EOPNOTSUPP)
4638 		lun_qdepth = 1;
4639 	else if (!lun_qdepth)
4640 		/* eventually, we can figure out the real queue depth */
4641 		lun_qdepth = hba->nutrs;
4642 	else
4643 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4644 
4645 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4646 			__func__, lun_qdepth);
4647 	scsi_change_queue_depth(sdev, lun_qdepth);
4648 }
4649 
4650 /*
4651  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4652  * @hba: per-adapter instance
4653  * @lun: UFS device lun id
4654  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4655  *
4656  * Returns 0 in case of success and b_lu_write_protect status would be returned
4657  * @b_lu_write_protect parameter.
4658  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4659  * Returns -EINVAL in case of invalid parameters passed to this function.
4660  */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4661 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4662 			    u8 lun,
4663 			    u8 *b_lu_write_protect)
4664 {
4665 	int ret;
4666 
4667 	if (!b_lu_write_protect)
4668 		ret = -EINVAL;
4669 	/*
4670 	 * According to UFS device spec, RPMB LU can't be write
4671 	 * protected so skip reading bLUWriteProtect parameter for
4672 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4673 	 */
4674 	else if (lun >= UFS_UPIU_MAX_GENERAL_LUN)
4675 		ret = -ENOTSUPP;
4676 	else
4677 		ret = ufshcd_read_unit_desc_param(hba,
4678 					  lun,
4679 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4680 					  b_lu_write_protect,
4681 					  sizeof(*b_lu_write_protect));
4682 	return ret;
4683 }
4684 
4685 /**
4686  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4687  * status
4688  * @hba: per-adapter instance
4689  * @sdev: pointer to SCSI device
4690  *
4691  */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4692 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4693 						    struct scsi_device *sdev)
4694 {
4695 	if (hba->dev_info.f_power_on_wp_en &&
4696 	    !hba->dev_info.is_lu_power_on_wp) {
4697 		u8 b_lu_write_protect;
4698 
4699 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4700 				      &b_lu_write_protect) &&
4701 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4702 			hba->dev_info.is_lu_power_on_wp = true;
4703 	}
4704 }
4705 
4706 /**
4707  * ufshcd_slave_alloc - handle initial SCSI device configurations
4708  * @sdev: pointer to SCSI device
4709  *
4710  * Returns success
4711  */
ufshcd_slave_alloc(struct scsi_device * sdev)4712 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4713 {
4714 	struct ufs_hba *hba;
4715 
4716 	hba = shost_priv(sdev->host);
4717 
4718 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
4719 	sdev->use_10_for_ms = 1;
4720 
4721 	/* DBD field should be set to 1 in mode sense(10) */
4722 	sdev->set_dbd_for_ms = 1;
4723 
4724 	/* allow SCSI layer to restart the device in case of errors */
4725 	sdev->allow_restart = 1;
4726 
4727 	/* REPORT SUPPORTED OPERATION CODES is not supported */
4728 	sdev->no_report_opcodes = 1;
4729 
4730 	/* WRITE_SAME command is not supported */
4731 	sdev->no_write_same = 1;
4732 
4733 	ufshcd_set_queue_depth(sdev);
4734 
4735 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
4736 
4737 	return 0;
4738 }
4739 
4740 /**
4741  * ufshcd_change_queue_depth - change queue depth
4742  * @sdev: pointer to SCSI device
4743  * @depth: required depth to set
4744  *
4745  * Change queue depth and make sure the max. limits are not crossed.
4746  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)4747 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
4748 {
4749 	struct ufs_hba *hba = shost_priv(sdev->host);
4750 
4751 	if (depth > hba->nutrs)
4752 		depth = hba->nutrs;
4753 	return scsi_change_queue_depth(sdev, depth);
4754 }
4755 
4756 /**
4757  * ufshcd_slave_configure - adjust SCSI device configurations
4758  * @sdev: pointer to SCSI device
4759  */
ufshcd_slave_configure(struct scsi_device * sdev)4760 static int ufshcd_slave_configure(struct scsi_device *sdev)
4761 {
4762 	struct request_queue *q = sdev->request_queue;
4763 	struct ufs_hba *hba = shost_priv(sdev->host);
4764 
4765 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
4766 
4767 	ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
4768 
4769 	if (ufshcd_is_rpm_autosuspend_allowed(hba))
4770 		sdev->rpm_autosuspend = 1;
4771 
4772 	return 0;
4773 }
4774 
4775 /**
4776  * ufshcd_slave_destroy - remove SCSI device configurations
4777  * @sdev: pointer to SCSI device
4778  */
ufshcd_slave_destroy(struct scsi_device * sdev)4779 static void ufshcd_slave_destroy(struct scsi_device *sdev)
4780 {
4781 	struct ufs_hba *hba;
4782 	struct request_queue *q = sdev->request_queue;
4783 
4784 	hba = shost_priv(sdev->host);
4785 	/* Drop the reference as it won't be needed anymore */
4786 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
4787 		unsigned long flags;
4788 
4789 		spin_lock_irqsave(hba->host->host_lock, flags);
4790 		hba->sdev_ufs_device = NULL;
4791 		spin_unlock_irqrestore(hba->host->host_lock, flags);
4792 	}
4793 
4794 	ufshcd_crypto_destroy_rq_keyslot_manager(hba, q);
4795 }
4796 
4797 /**
4798  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
4799  * @lrbp: pointer to local reference block of completed command
4800  * @scsi_status: SCSI command status
4801  *
4802  * Returns value base on SCSI command status
4803  */
4804 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)4805 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
4806 {
4807 	int result = 0;
4808 
4809 	switch (scsi_status) {
4810 	case SAM_STAT_CHECK_CONDITION:
4811 		ufshcd_copy_sense_data(lrbp);
4812 		/* fallthrough */
4813 	case SAM_STAT_GOOD:
4814 		result |= DID_OK << 16 |
4815 			  COMMAND_COMPLETE << 8 |
4816 			  scsi_status;
4817 		break;
4818 	case SAM_STAT_TASK_SET_FULL:
4819 	case SAM_STAT_BUSY:
4820 	case SAM_STAT_TASK_ABORTED:
4821 		ufshcd_copy_sense_data(lrbp);
4822 		result |= scsi_status;
4823 		break;
4824 	default:
4825 		result |= DID_ERROR << 16;
4826 		break;
4827 	} /* end of switch */
4828 
4829 	return result;
4830 }
4831 
4832 /**
4833  * ufshcd_transfer_rsp_status - Get overall status of the response
4834  * @hba: per adapter instance
4835  * @lrbp: pointer to local reference block of completed command
4836  *
4837  * Returns result of the command to notify SCSI midlayer
4838  */
4839 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)4840 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
4841 {
4842 	int result = 0;
4843 	int scsi_status;
4844 	int ocs;
4845 
4846 	/* overall command status of utrd */
4847 	ocs = ufshcd_get_tr_ocs(lrbp);
4848 
4849 	switch (ocs) {
4850 	case OCS_SUCCESS:
4851 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
4852 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
4853 		switch (result) {
4854 		case UPIU_TRANSACTION_RESPONSE:
4855 			/*
4856 			 * get the response UPIU result to extract
4857 			 * the SCSI command status
4858 			 */
4859 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
4860 
4861 			/*
4862 			 * get the result based on SCSI status response
4863 			 * to notify the SCSI midlayer of the command status
4864 			 */
4865 			scsi_status = result & MASK_SCSI_STATUS;
4866 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
4867 
4868 			/*
4869 			 * Currently we are only supporting BKOPs exception
4870 			 * events hence we can ignore BKOPs exception event
4871 			 * during power management callbacks. BKOPs exception
4872 			 * event is not expected to be raised in runtime suspend
4873 			 * callback as it allows the urgent bkops.
4874 			 * During system suspend, we are anyway forcefully
4875 			 * disabling the bkops and if urgent bkops is needed
4876 			 * it will be enabled on system resume. Long term
4877 			 * solution could be to abort the system suspend if
4878 			 * UFS device needs urgent BKOPs.
4879 			 */
4880 			if (!hba->pm_op_in_progress &&
4881 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) {
4882 				/*
4883 				 * Prevent suspend once eeh_work is scheduled
4884 				 * to avoid deadlock between ufshcd_suspend
4885 				 * and exception event handler.
4886 				 */
4887 				if (schedule_work(&hba->eeh_work))
4888 					pm_runtime_get_noresume(hba->dev);
4889 			}
4890 			break;
4891 		case UPIU_TRANSACTION_REJECT_UPIU:
4892 			/* TODO: handle Reject UPIU Response */
4893 			result = DID_ERROR << 16;
4894 			dev_err(hba->dev,
4895 				"Reject UPIU not fully implemented\n");
4896 			break;
4897 		default:
4898 			dev_err(hba->dev,
4899 				"Unexpected request response code = %x\n",
4900 				result);
4901 			result = DID_ERROR << 16;
4902 			break;
4903 		}
4904 		break;
4905 	case OCS_ABORTED:
4906 		result |= DID_ABORT << 16;
4907 		break;
4908 	case OCS_INVALID_COMMAND_STATUS:
4909 		result |= DID_REQUEUE << 16;
4910 		break;
4911 	case OCS_INVALID_CMD_TABLE_ATTR:
4912 	case OCS_INVALID_PRDT_ATTR:
4913 	case OCS_MISMATCH_DATA_BUF_SIZE:
4914 	case OCS_MISMATCH_RESP_UPIU_SIZE:
4915 	case OCS_PEER_COMM_FAILURE:
4916 	case OCS_FATAL_ERROR:
4917 	case OCS_INVALID_CRYPTO_CONFIG:
4918 	case OCS_GENERAL_CRYPTO_ERROR:
4919 	default:
4920 		result |= DID_ERROR << 16;
4921 		dev_err(hba->dev,
4922 				"OCS error from controller = %x for tag %d\n",
4923 				ocs, lrbp->task_tag);
4924 		ufshcd_print_host_regs(hba);
4925 		ufshcd_print_host_state(hba);
4926 		break;
4927 	} /* end of switch */
4928 
4929 	if ((host_byte(result) != DID_OK) && !hba->silence_err_logs)
4930 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
4931 	return result;
4932 }
4933 
4934 /**
4935  * ufshcd_uic_cmd_compl - handle completion of uic command
4936  * @hba: per adapter instance
4937  * @intr_status: interrupt status generated by the controller
4938  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)4939 static void ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
4940 {
4941 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
4942 		hba->active_uic_cmd->argument2 |=
4943 			ufshcd_get_uic_cmd_result(hba);
4944 		hba->active_uic_cmd->argument3 =
4945 			ufshcd_get_dme_attr_val(hba);
4946 		complete(&hba->active_uic_cmd->done);
4947 	}
4948 
4949 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done)
4950 		complete(hba->uic_async_done);
4951 }
4952 
4953 /**
4954  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
4955  * @hba: per adapter instance
4956  * @completed_reqs: requests to complete
4957  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)4958 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
4959 					unsigned long completed_reqs)
4960 {
4961 	struct ufshcd_lrb *lrbp;
4962 	struct scsi_cmnd *cmd;
4963 	int result;
4964 	int index;
4965 
4966 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
4967 		lrbp = &hba->lrb[index];
4968 		cmd = lrbp->cmd;
4969 		if (cmd) {
4970 			ufshcd_add_command_trace(hba, index, "complete");
4971 			result = ufshcd_transfer_rsp_status(hba, lrbp);
4972 			scsi_dma_unmap(cmd);
4973 			cmd->result = result;
4974 			ufshcd_complete_lrbp_crypto(hba, cmd, lrbp);
4975 			/* Mark completed command as NULL in LRB */
4976 			lrbp->cmd = NULL;
4977 			lrbp->compl_time_stamp = ktime_get();
4978 			clear_bit_unlock(index, &hba->lrb_in_use);
4979 			/* Do not touch lrbp after scsi done */
4980 			cmd->scsi_done(cmd);
4981 			__ufshcd_release(hba);
4982 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
4983 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
4984 			lrbp->compl_time_stamp = ktime_get();
4985 			if (hba->dev_cmd.complete) {
4986 				ufshcd_add_command_trace(hba, index,
4987 						"dev_complete");
4988 				complete(hba->dev_cmd.complete);
4989 			}
4990 		}
4991 		if (ufshcd_is_clkscaling_supported(hba))
4992 			hba->clk_scaling.active_reqs--;
4993 	}
4994 
4995 	/* clear corresponding bits of completed commands */
4996 	hba->outstanding_reqs ^= completed_reqs;
4997 
4998 	ufshcd_clk_scaling_update_busy(hba);
4999 
5000 	/* we might have free'd some tags above */
5001 	wake_up(&hba->dev_cmd.tag_wq);
5002 }
5003 
5004 /**
5005  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5006  * @hba: per adapter instance
5007  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5008 static void ufshcd_transfer_req_compl(struct ufs_hba *hba)
5009 {
5010 	unsigned long completed_reqs;
5011 	u32 tr_doorbell;
5012 
5013 	/* Resetting interrupt aggregation counters first and reading the
5014 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5015 	 * In order to prevent other interrupts starvation the DB is read once
5016 	 * after reset. The down side of this solution is the possibility of
5017 	 * false interrupt if device completes another request after resetting
5018 	 * aggregation and before reading the DB.
5019 	 */
5020 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5021 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5022 		ufshcd_reset_intr_aggr(hba);
5023 
5024 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5025 	completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
5026 
5027 	__ufshcd_transfer_req_compl(hba, completed_reqs);
5028 }
5029 
5030 /**
5031  * ufshcd_disable_ee - disable exception event
5032  * @hba: per-adapter instance
5033  * @mask: exception event to disable
5034  *
5035  * Disables exception event in the device so that the EVENT_ALERT
5036  * bit is not set.
5037  *
5038  * Returns zero on success, non-zero error value on failure.
5039  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5040 static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5041 {
5042 	int err = 0;
5043 	u32 val;
5044 
5045 	if (!(hba->ee_ctrl_mask & mask))
5046 		goto out;
5047 
5048 	val = hba->ee_ctrl_mask & ~mask;
5049 	val &= MASK_EE_STATUS;
5050 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5051 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5052 	if (!err)
5053 		hba->ee_ctrl_mask &= ~mask;
5054 out:
5055 	return err;
5056 }
5057 
5058 /**
5059  * ufshcd_enable_ee - enable exception event
5060  * @hba: per-adapter instance
5061  * @mask: exception event to enable
5062  *
5063  * Enable corresponding exception event in the device to allow
5064  * device to alert host in critical scenarios.
5065  *
5066  * Returns zero on success, non-zero error value on failure.
5067  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5068 static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5069 {
5070 	int err = 0;
5071 	u32 val;
5072 
5073 	if (hba->ee_ctrl_mask & mask)
5074 		goto out;
5075 
5076 	val = hba->ee_ctrl_mask | mask;
5077 	val &= MASK_EE_STATUS;
5078 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5079 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5080 	if (!err)
5081 		hba->ee_ctrl_mask |= mask;
5082 out:
5083 	return err;
5084 }
5085 
5086 /**
5087  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5088  * @hba: per-adapter instance
5089  *
5090  * Allow device to manage background operations on its own. Enabling
5091  * this might lead to inconsistent latencies during normal data transfers
5092  * as the device is allowed to manage its own way of handling background
5093  * operations.
5094  *
5095  * Returns zero on success, non-zero on failure.
5096  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5097 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5098 {
5099 	int err = 0;
5100 
5101 	if (hba->auto_bkops_enabled)
5102 		goto out;
5103 
5104 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5105 			QUERY_FLAG_IDN_BKOPS_EN, NULL);
5106 	if (err) {
5107 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5108 				__func__, err);
5109 		goto out;
5110 	}
5111 
5112 	hba->auto_bkops_enabled = true;
5113 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5114 
5115 	/* No need of URGENT_BKOPS exception from the device */
5116 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5117 	if (err)
5118 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5119 				__func__, err);
5120 out:
5121 	return err;
5122 }
5123 
5124 /**
5125  * ufshcd_disable_auto_bkops - block device in doing background operations
5126  * @hba: per-adapter instance
5127  *
5128  * Disabling background operations improves command response latency but
5129  * has drawback of device moving into critical state where the device is
5130  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5131  * host is idle so that BKOPS are managed effectively without any negative
5132  * impacts.
5133  *
5134  * Returns zero on success, non-zero on failure.
5135  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5136 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5137 {
5138 	int err = 0;
5139 
5140 	if (!hba->auto_bkops_enabled)
5141 		goto out;
5142 
5143 	/*
5144 	 * If host assisted BKOPs is to be enabled, make sure
5145 	 * urgent bkops exception is allowed.
5146 	 */
5147 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5148 	if (err) {
5149 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5150 				__func__, err);
5151 		goto out;
5152 	}
5153 
5154 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5155 			QUERY_FLAG_IDN_BKOPS_EN, NULL);
5156 	if (err) {
5157 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5158 				__func__, err);
5159 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5160 		goto out;
5161 	}
5162 
5163 	hba->auto_bkops_enabled = false;
5164 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5165 	hba->is_urgent_bkops_lvl_checked = false;
5166 out:
5167 	return err;
5168 }
5169 
5170 /**
5171  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5172  * @hba: per adapter instance
5173  *
5174  * After a device reset the device may toggle the BKOPS_EN flag
5175  * to default value. The s/w tracking variables should be updated
5176  * as well. This function would change the auto-bkops state based on
5177  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5178  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5179 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5180 {
5181 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5182 		hba->auto_bkops_enabled = false;
5183 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5184 		ufshcd_enable_auto_bkops(hba);
5185 	} else {
5186 		hba->auto_bkops_enabled = true;
5187 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5188 		ufshcd_disable_auto_bkops(hba);
5189 	}
5190 	hba->is_urgent_bkops_lvl_checked = false;
5191 }
5192 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5193 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5194 {
5195 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5196 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5197 }
5198 
5199 /**
5200  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5201  * @hba: per-adapter instance
5202  * @status: bkops_status value
5203  *
5204  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5205  * flag in the device to permit background operations if the device
5206  * bkops_status is greater than or equal to "status" argument passed to
5207  * this function, disable otherwise.
5208  *
5209  * Returns 0 for success, non-zero in case of failure.
5210  *
5211  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5212  * to know whether auto bkops is enabled or disabled after this function
5213  * returns control to it.
5214  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5215 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5216 			     enum bkops_status status)
5217 {
5218 	int err;
5219 	u32 curr_status = 0;
5220 
5221 	err = ufshcd_get_bkops_status(hba, &curr_status);
5222 	if (err) {
5223 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5224 				__func__, err);
5225 		goto out;
5226 	} else if (curr_status > BKOPS_STATUS_MAX) {
5227 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5228 				__func__, curr_status);
5229 		err = -EINVAL;
5230 		goto out;
5231 	}
5232 
5233 	if (curr_status >= status)
5234 		err = ufshcd_enable_auto_bkops(hba);
5235 	else
5236 		err = ufshcd_disable_auto_bkops(hba);
5237 	hba->urgent_bkops_lvl = curr_status;
5238 out:
5239 	return err;
5240 }
5241 
5242 /**
5243  * ufshcd_urgent_bkops - handle urgent bkops exception event
5244  * @hba: per-adapter instance
5245  *
5246  * Enable fBackgroundOpsEn flag in the device to permit background
5247  * operations.
5248  *
5249  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5250  * and negative error value for any other failure.
5251  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5252 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5253 {
5254 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5255 }
5256 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5257 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5258 {
5259 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5260 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5261 }
5262 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5263 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5264 {
5265 	int err;
5266 	u32 curr_status = 0;
5267 
5268 	if (hba->is_urgent_bkops_lvl_checked)
5269 		goto enable_auto_bkops;
5270 
5271 	err = ufshcd_get_bkops_status(hba, &curr_status);
5272 	if (err) {
5273 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5274 				__func__, err);
5275 		goto out;
5276 	}
5277 
5278 	/*
5279 	 * We are seeing that some devices are raising the urgent bkops
5280 	 * exception events even when BKOPS status doesn't indicate performace
5281 	 * impacted or critical. Handle these device by determining their urgent
5282 	 * bkops status at runtime.
5283 	 */
5284 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5285 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5286 				__func__, curr_status);
5287 		/* update the current status as the urgent bkops level */
5288 		hba->urgent_bkops_lvl = curr_status;
5289 		hba->is_urgent_bkops_lvl_checked = true;
5290 	}
5291 
5292 enable_auto_bkops:
5293 	err = ufshcd_enable_auto_bkops(hba);
5294 out:
5295 	if (err < 0)
5296 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5297 				__func__, err);
5298 }
5299 
5300 /**
5301  * ufshcd_exception_event_handler - handle exceptions raised by device
5302  * @work: pointer to work data
5303  *
5304  * Read bExceptionEventStatus attribute from the device and handle the
5305  * exception event accordingly.
5306  */
ufshcd_exception_event_handler(struct work_struct * work)5307 static void ufshcd_exception_event_handler(struct work_struct *work)
5308 {
5309 	struct ufs_hba *hba;
5310 	int err;
5311 	u32 status = 0;
5312 	hba = container_of(work, struct ufs_hba, eeh_work);
5313 
5314 	pm_runtime_get_sync(hba->dev);
5315 	scsi_block_requests(hba->host);
5316 	err = ufshcd_get_ee_status(hba, &status);
5317 	if (err) {
5318 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5319 				__func__, err);
5320 		goto out;
5321 	}
5322 
5323 	status &= hba->ee_ctrl_mask;
5324 
5325 	if (status & MASK_EE_URGENT_BKOPS)
5326 		ufshcd_bkops_exception_event_handler(hba);
5327 
5328 out:
5329 	scsi_unblock_requests(hba->host);
5330 	/*
5331 	 * pm_runtime_get_noresume is called while scheduling
5332 	 * eeh_work to avoid suspend racing with exception work.
5333 	 * Hence decrement usage counter using pm_runtime_put_noidle
5334 	 * to allow suspend on completion of exception event handler.
5335 	 */
5336 	pm_runtime_put_noidle(hba->dev);
5337 	pm_runtime_put(hba->dev);
5338 	return;
5339 }
5340 
5341 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5342 static void ufshcd_complete_requests(struct ufs_hba *hba)
5343 {
5344 	ufshcd_transfer_req_compl(hba);
5345 	ufshcd_tmc_handler(hba);
5346 }
5347 
5348 /**
5349  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5350  *				to recover from the DL NAC errors or not.
5351  * @hba: per-adapter instance
5352  *
5353  * Returns true if error handling is required, false otherwise
5354  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5355 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5356 {
5357 	unsigned long flags;
5358 	bool err_handling = true;
5359 
5360 	spin_lock_irqsave(hba->host->host_lock, flags);
5361 	/*
5362 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5363 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5364 	 */
5365 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5366 		goto out;
5367 
5368 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5369 	    ((hba->saved_err & UIC_ERROR) &&
5370 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5371 		goto out;
5372 
5373 	if ((hba->saved_err & UIC_ERROR) &&
5374 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5375 		int err;
5376 		/*
5377 		 * wait for 50ms to see if we can get any other errors or not.
5378 		 */
5379 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5380 		msleep(50);
5381 		spin_lock_irqsave(hba->host->host_lock, flags);
5382 
5383 		/*
5384 		 * now check if we have got any other severe errors other than
5385 		 * DL NAC error?
5386 		 */
5387 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
5388 		    ((hba->saved_err & UIC_ERROR) &&
5389 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
5390 			goto out;
5391 
5392 		/*
5393 		 * As DL NAC is the only error received so far, send out NOP
5394 		 * command to confirm if link is still active or not.
5395 		 *   - If we don't get any response then do error recovery.
5396 		 *   - If we get response then clear the DL NAC error bit.
5397 		 */
5398 
5399 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5400 		err = ufshcd_verify_dev_init(hba);
5401 		spin_lock_irqsave(hba->host->host_lock, flags);
5402 
5403 		if (err)
5404 			goto out;
5405 
5406 		/* Link seems to be alive hence ignore the DL NAC errors */
5407 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
5408 			hba->saved_err &= ~UIC_ERROR;
5409 		/* clear NAC error */
5410 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5411 		if (!hba->saved_uic_err) {
5412 			err_handling = false;
5413 			goto out;
5414 		}
5415 	}
5416 out:
5417 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5418 	return err_handling;
5419 }
5420 
5421 /**
5422  * ufshcd_err_handler - handle UFS errors that require s/w attention
5423  * @work: pointer to work structure
5424  */
ufshcd_err_handler(struct work_struct * work)5425 static void ufshcd_err_handler(struct work_struct *work)
5426 {
5427 	struct ufs_hba *hba;
5428 	unsigned long flags;
5429 	u32 err_xfer = 0;
5430 	u32 err_tm = 0;
5431 	int err = 0;
5432 	int tag;
5433 	bool needs_reset = false;
5434 
5435 	hba = container_of(work, struct ufs_hba, eh_work);
5436 
5437 	pm_runtime_get_sync(hba->dev);
5438 	ufshcd_hold(hba, false);
5439 
5440 	spin_lock_irqsave(hba->host->host_lock, flags);
5441 	if (hba->ufshcd_state == UFSHCD_STATE_RESET)
5442 		goto out;
5443 
5444 	hba->ufshcd_state = UFSHCD_STATE_RESET;
5445 	ufshcd_set_eh_in_progress(hba);
5446 
5447 	/* Complete requests that have door-bell cleared by h/w */
5448 	ufshcd_complete_requests(hba);
5449 
5450 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5451 		bool ret;
5452 
5453 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5454 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
5455 		ret = ufshcd_quirk_dl_nac_errors(hba);
5456 		spin_lock_irqsave(hba->host->host_lock, flags);
5457 		if (!ret)
5458 			goto skip_err_handling;
5459 	}
5460 	if ((hba->saved_err & INT_FATAL_ERRORS) ||
5461 	    (hba->saved_err & UFSHCD_UIC_HIBERN8_MASK) ||
5462 	    ((hba->saved_err & UIC_ERROR) &&
5463 	    (hba->saved_uic_err & (UFSHCD_UIC_DL_PA_INIT_ERROR |
5464 				   UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
5465 				   UFSHCD_UIC_DL_TCx_REPLAY_ERROR))))
5466 		needs_reset = true;
5467 
5468 	/*
5469 	 * if host reset is required then skip clearing the pending
5470 	 * transfers forcefully because they will get cleared during
5471 	 * host reset and restore
5472 	 */
5473 	if (needs_reset)
5474 		goto skip_pending_xfer_clear;
5475 
5476 	/* release lock as clear command might sleep */
5477 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5478 	/* Clear pending transfer requests */
5479 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
5480 		if (ufshcd_clear_cmd(hba, tag)) {
5481 			err_xfer = true;
5482 			goto lock_skip_pending_xfer_clear;
5483 		}
5484 	}
5485 
5486 	/* Clear pending task management requests */
5487 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
5488 		if (ufshcd_clear_tm_cmd(hba, tag)) {
5489 			err_tm = true;
5490 			goto lock_skip_pending_xfer_clear;
5491 		}
5492 	}
5493 
5494 lock_skip_pending_xfer_clear:
5495 	spin_lock_irqsave(hba->host->host_lock, flags);
5496 
5497 	/* Complete the requests that are cleared by s/w */
5498 	ufshcd_complete_requests(hba);
5499 
5500 	if (err_xfer || err_tm)
5501 		needs_reset = true;
5502 
5503 skip_pending_xfer_clear:
5504 	/* Fatal errors need reset */
5505 	if (needs_reset) {
5506 		unsigned long max_doorbells = (1UL << hba->nutrs) - 1;
5507 
5508 		/*
5509 		 * ufshcd_reset_and_restore() does the link reinitialization
5510 		 * which will need atleast one empty doorbell slot to send the
5511 		 * device management commands (NOP and query commands).
5512 		 * If there is no slot empty at this moment then free up last
5513 		 * slot forcefully.
5514 		 */
5515 		if (hba->outstanding_reqs == max_doorbells)
5516 			__ufshcd_transfer_req_compl(hba,
5517 						    (1UL << (hba->nutrs - 1)));
5518 
5519 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5520 		err = ufshcd_reset_and_restore(hba);
5521 		spin_lock_irqsave(hba->host->host_lock, flags);
5522 		if (err) {
5523 			dev_err(hba->dev, "%s: reset and restore failed\n",
5524 					__func__);
5525 			hba->ufshcd_state = UFSHCD_STATE_ERROR;
5526 		}
5527 		/*
5528 		 * Inform scsi mid-layer that we did reset and allow to handle
5529 		 * Unit Attention properly.
5530 		 */
5531 		scsi_report_bus_reset(hba->host, 0);
5532 		hba->saved_err = 0;
5533 		hba->saved_uic_err = 0;
5534 	}
5535 
5536 skip_err_handling:
5537 	if (!needs_reset) {
5538 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5539 		if (hba->saved_err || hba->saved_uic_err)
5540 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
5541 			    __func__, hba->saved_err, hba->saved_uic_err);
5542 	}
5543 
5544 	ufshcd_clear_eh_in_progress(hba);
5545 
5546 out:
5547 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5548 	ufshcd_scsi_unblock_requests(hba);
5549 	ufshcd_release(hba);
5550 	pm_runtime_put_sync(hba->dev);
5551 }
5552 
5553 /**
5554  * ufshcd_update_uic_error - check and set fatal UIC error flags.
5555  * @hba: per-adapter instance
5556  */
ufshcd_update_uic_error(struct ufs_hba * hba)5557 static void ufshcd_update_uic_error(struct ufs_hba *hba)
5558 {
5559 	u32 reg;
5560 
5561 	/* PHY layer lane error */
5562 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5563 	/* Ignore LINERESET indication, as this is not an error */
5564 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
5565 			(reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)) {
5566 		/*
5567 		 * To know whether this error is fatal or not, DB timeout
5568 		 * must be checked but this error is handled separately.
5569 		 */
5570 		dev_dbg(hba->dev, "%s: UIC Lane error reported\n", __func__);
5571 		ufshcd_update_reg_hist(&hba->ufs_stats.pa_err, reg);
5572 	}
5573 
5574 	/* PA_INIT_ERROR is fatal and needs UIC reset */
5575 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
5576 	if (reg)
5577 		ufshcd_update_reg_hist(&hba->ufs_stats.dl_err, reg);
5578 
5579 	if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
5580 		hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
5581 	else if (hba->dev_quirks &
5582 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5583 		if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
5584 			hba->uic_error |=
5585 				UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5586 		else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
5587 			hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
5588 	}
5589 
5590 	/* UIC NL/TL/DME errors needs software retry */
5591 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
5592 	if (reg) {
5593 		ufshcd_update_reg_hist(&hba->ufs_stats.nl_err, reg);
5594 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
5595 	}
5596 
5597 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
5598 	if (reg) {
5599 		ufshcd_update_reg_hist(&hba->ufs_stats.tl_err, reg);
5600 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
5601 	}
5602 
5603 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
5604 	if (reg) {
5605 		ufshcd_update_reg_hist(&hba->ufs_stats.dme_err, reg);
5606 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
5607 	}
5608 
5609 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
5610 			__func__, hba->uic_error);
5611 }
5612 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5613 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5614 					 u32 intr_mask)
5615 {
5616 	if (!ufshcd_is_auto_hibern8_supported(hba))
5617 		return false;
5618 
5619 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5620 		return false;
5621 
5622 	if (hba->active_uic_cmd &&
5623 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5624 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5625 		return false;
5626 
5627 	return true;
5628 }
5629 
5630 /**
5631  * ufshcd_check_errors - Check for errors that need s/w attention
5632  * @hba: per-adapter instance
5633  */
ufshcd_check_errors(struct ufs_hba * hba)5634 static void ufshcd_check_errors(struct ufs_hba *hba)
5635 {
5636 	bool queue_eh_work = false;
5637 
5638 	if (hba->errors & INT_FATAL_ERRORS) {
5639 		ufshcd_update_reg_hist(&hba->ufs_stats.fatal_err, hba->errors);
5640 		queue_eh_work = true;
5641 	}
5642 
5643 	if (hba->errors & UIC_ERROR) {
5644 		hba->uic_error = 0;
5645 		ufshcd_update_uic_error(hba);
5646 		if (hba->uic_error)
5647 			queue_eh_work = true;
5648 	}
5649 
5650 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
5651 		dev_err(hba->dev,
5652 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
5653 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
5654 			"Enter" : "Exit",
5655 			hba->errors, ufshcd_get_upmcrs(hba));
5656 		ufshcd_update_reg_hist(&hba->ufs_stats.auto_hibern8_err,
5657 				       hba->errors);
5658 		queue_eh_work = true;
5659 	}
5660 
5661 	if (queue_eh_work) {
5662 		/*
5663 		 * update the transfer error masks to sticky bits, let's do this
5664 		 * irrespective of current ufshcd_state.
5665 		 */
5666 		hba->saved_err |= hba->errors;
5667 		hba->saved_uic_err |= hba->uic_error;
5668 
5669 		/* handle fatal errors only when link is functional */
5670 		if (hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) {
5671 			/* block commands from scsi mid-layer */
5672 			ufshcd_scsi_block_requests(hba);
5673 
5674 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED;
5675 
5676 			/* dump controller state before resetting */
5677 			if (hba->saved_err & (INT_FATAL_ERRORS | UIC_ERROR)) {
5678 				bool pr_prdt = !!(hba->saved_err &
5679 						SYSTEM_BUS_FATAL_ERROR);
5680 
5681 				dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
5682 					__func__, hba->saved_err,
5683 					hba->saved_uic_err);
5684 
5685 				ufshcd_print_host_regs(hba);
5686 				ufshcd_print_pwr_info(hba);
5687 				ufshcd_print_tmrs(hba, hba->outstanding_tasks);
5688 				ufshcd_print_trs(hba, hba->outstanding_reqs,
5689 							pr_prdt);
5690 			}
5691 			schedule_work(&hba->eh_work);
5692 		}
5693 	}
5694 	/*
5695 	 * if (!queue_eh_work) -
5696 	 * Other errors are either non-fatal where host recovers
5697 	 * itself without s/w intervention or errors that will be
5698 	 * handled by the SCSI core layer.
5699 	 */
5700 }
5701 
5702 /**
5703  * ufshcd_tmc_handler - handle task management function completion
5704  * @hba: per adapter instance
5705  */
ufshcd_tmc_handler(struct ufs_hba * hba)5706 static void ufshcd_tmc_handler(struct ufs_hba *hba)
5707 {
5708 	u32 tm_doorbell;
5709 
5710 	tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
5711 	hba->tm_condition = tm_doorbell ^ hba->outstanding_tasks;
5712 	wake_up(&hba->tm_wq);
5713 }
5714 
5715 /**
5716  * ufshcd_sl_intr - Interrupt service routine
5717  * @hba: per adapter instance
5718  * @intr_status: contains interrupts generated by the controller
5719  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)5720 static void ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
5721 {
5722 	hba->errors = UFSHCD_ERROR_MASK & intr_status;
5723 
5724 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5725 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5726 
5727 	if (hba->errors)
5728 		ufshcd_check_errors(hba);
5729 
5730 	if (intr_status & UFSHCD_UIC_MASK)
5731 		ufshcd_uic_cmd_compl(hba, intr_status);
5732 
5733 	if (intr_status & UTP_TASK_REQ_COMPL)
5734 		ufshcd_tmc_handler(hba);
5735 
5736 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
5737 		ufshcd_transfer_req_compl(hba);
5738 }
5739 
5740 /**
5741  * ufshcd_intr - Main interrupt service routine
5742  * @irq: irq number
5743  * @__hba: pointer to adapter instance
5744  *
5745  * Returns IRQ_HANDLED - If interrupt is valid
5746  *		IRQ_NONE - If invalid interrupt
5747  */
ufshcd_intr(int irq,void * __hba)5748 static irqreturn_t ufshcd_intr(int irq, void *__hba)
5749 {
5750 	u32 intr_status, enabled_intr_status;
5751 	irqreturn_t retval = IRQ_NONE;
5752 	struct ufs_hba *hba = __hba;
5753 	int retries = hba->nutrs;
5754 
5755 	spin_lock(hba->host->host_lock);
5756 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
5757 
5758 	/*
5759 	 * There could be max of hba->nutrs reqs in flight and in worst case
5760 	 * if the reqs get finished 1 by 1 after the interrupt status is
5761 	 * read, make sure we handle them by checking the interrupt status
5762 	 * again in a loop until we process all of the reqs before returning.
5763 	 */
5764 	do {
5765 		enabled_intr_status =
5766 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
5767 		if (intr_status)
5768 			ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
5769 		if (enabled_intr_status) {
5770 			ufshcd_sl_intr(hba, enabled_intr_status);
5771 			retval = IRQ_HANDLED;
5772 		}
5773 
5774 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
5775 	} while (intr_status && --retries);
5776 
5777 	spin_unlock(hba->host->host_lock);
5778 	return retval;
5779 }
5780 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)5781 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
5782 {
5783 	int err = 0;
5784 	u32 mask = 1 << tag;
5785 	unsigned long flags;
5786 
5787 	if (!test_bit(tag, &hba->outstanding_tasks))
5788 		goto out;
5789 
5790 	spin_lock_irqsave(hba->host->host_lock, flags);
5791 	ufshcd_utmrl_clear(hba, tag);
5792 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5793 
5794 	/* poll for max. 1 sec to clear door bell register by h/w */
5795 	err = ufshcd_wait_for_register(hba,
5796 			REG_UTP_TASK_REQ_DOOR_BELL,
5797 			mask, 0, 1000, 1000, true);
5798 out:
5799 	return err;
5800 }
5801 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)5802 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
5803 		struct utp_task_req_desc *treq, u8 tm_function)
5804 {
5805 	struct Scsi_Host *host = hba->host;
5806 	unsigned long flags;
5807 	int free_slot, task_tag, err;
5808 
5809 	/*
5810 	 * Get free slot, sleep if slots are unavailable.
5811 	 * Even though we use wait_event() which sleeps indefinitely,
5812 	 * the maximum wait time is bounded by %TM_CMD_TIMEOUT.
5813 	 */
5814 	wait_event(hba->tm_tag_wq, ufshcd_get_tm_free_slot(hba, &free_slot));
5815 	ufshcd_hold(hba, false);
5816 
5817 	spin_lock_irqsave(host->host_lock, flags);
5818 	task_tag = hba->nutrs + free_slot;
5819 
5820 	treq->req_header.dword_0 |= cpu_to_be32(task_tag);
5821 
5822 	memcpy(hba->utmrdl_base_addr + free_slot, treq, sizeof(*treq));
5823 	ufshcd_vops_setup_task_mgmt(hba, free_slot, tm_function);
5824 
5825 	/* send command to the controller */
5826 	__set_bit(free_slot, &hba->outstanding_tasks);
5827 
5828 	/* Make sure descriptors are ready before ringing the task doorbell */
5829 	wmb();
5830 
5831 	ufshcd_writel(hba, 1 << free_slot, REG_UTP_TASK_REQ_DOOR_BELL);
5832 	/* Make sure that doorbell is committed immediately */
5833 	wmb();
5834 
5835 	spin_unlock_irqrestore(host->host_lock, flags);
5836 
5837 	ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_send");
5838 
5839 	/* wait until the task management command is completed */
5840 	err = wait_event_timeout(hba->tm_wq,
5841 			test_bit(free_slot, &hba->tm_condition),
5842 			msecs_to_jiffies(TM_CMD_TIMEOUT));
5843 	if (!err) {
5844 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete_err");
5845 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
5846 				__func__, tm_function);
5847 		if (ufshcd_clear_tm_cmd(hba, free_slot))
5848 			dev_WARN(hba->dev, "%s: unable clear tm cmd (slot %d) after timeout\n",
5849 					__func__, free_slot);
5850 		err = -ETIMEDOUT;
5851 	} else {
5852 		err = 0;
5853 		memcpy(treq, hba->utmrdl_base_addr + free_slot, sizeof(*treq));
5854 
5855 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete");
5856 	}
5857 
5858 	spin_lock_irqsave(hba->host->host_lock, flags);
5859 	__clear_bit(free_slot, &hba->outstanding_tasks);
5860 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5861 
5862 	clear_bit(free_slot, &hba->tm_condition);
5863 	ufshcd_put_tm_slot(hba, free_slot);
5864 	wake_up(&hba->tm_tag_wq);
5865 
5866 	ufshcd_release(hba);
5867 	return err;
5868 }
5869 
5870 /**
5871  * ufshcd_issue_tm_cmd - issues task management commands to controller
5872  * @hba: per adapter instance
5873  * @lun_id: LUN ID to which TM command is sent
5874  * @task_id: task ID to which the TM command is applicable
5875  * @tm_function: task management function opcode
5876  * @tm_response: task management service response return value
5877  *
5878  * Returns non-zero value on error, zero on success.
5879  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)5880 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
5881 		u8 tm_function, u8 *tm_response)
5882 {
5883 	struct utp_task_req_desc treq = { { 0 }, };
5884 	int ocs_value, err;
5885 
5886 	/* Configure task request descriptor */
5887 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
5888 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
5889 
5890 	/* Configure task request UPIU */
5891 	treq.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
5892 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
5893 	treq.req_header.dword_1 = cpu_to_be32(tm_function << 16);
5894 
5895 	/*
5896 	 * The host shall provide the same value for LUN field in the basic
5897 	 * header and for Input Parameter.
5898 	 */
5899 	treq.input_param1 = cpu_to_be32(lun_id);
5900 	treq.input_param2 = cpu_to_be32(task_id);
5901 
5902 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
5903 	if (err == -ETIMEDOUT)
5904 		return err;
5905 
5906 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
5907 	if (ocs_value != OCS_SUCCESS)
5908 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
5909 				__func__, ocs_value);
5910 	else if (tm_response)
5911 		*tm_response = be32_to_cpu(treq.output_param1) &
5912 				MASK_TM_SERVICE_RESP;
5913 	return err;
5914 }
5915 
5916 /**
5917  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
5918  * @hba:	per-adapter instance
5919  * @req_upiu:	upiu request
5920  * @rsp_upiu:	upiu reply
5921  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
5922  * @desc_buff:	pointer to descriptor buffer, NULL if NA
5923  * @buff_len:	descriptor size, 0 if NA
5924  * @desc_op:	descriptor operation
5925  *
5926  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
5927  * Therefore, it "rides" the device management infrastructure: uses its tag and
5928  * tasks work queues.
5929  *
5930  * Since there is only one available tag for device management commands,
5931  * the caller is expected to hold the hba->dev_cmd.lock mutex.
5932  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,int cmd_type,enum query_opcode desc_op)5933 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
5934 					struct utp_upiu_req *req_upiu,
5935 					struct utp_upiu_req *rsp_upiu,
5936 					u8 *desc_buff, int *buff_len,
5937 					int cmd_type,
5938 					enum query_opcode desc_op)
5939 {
5940 	struct ufshcd_lrb *lrbp;
5941 	int err = 0;
5942 	int tag;
5943 	struct completion wait;
5944 	unsigned long flags;
5945 	u32 upiu_flags;
5946 
5947 	down_read(&hba->clk_scaling_lock);
5948 
5949 	wait_event(hba->dev_cmd.tag_wq, ufshcd_get_dev_cmd_tag(hba, &tag));
5950 
5951 	init_completion(&wait);
5952 	lrbp = &hba->lrb[tag];
5953 	WARN_ON(lrbp->cmd);
5954 
5955 	lrbp->cmd = NULL;
5956 	lrbp->sense_bufflen = 0;
5957 	lrbp->sense_buffer = NULL;
5958 	lrbp->task_tag = tag;
5959 	lrbp->lun = 0;
5960 	lrbp->intr_cmd = true;
5961 	hba->dev_cmd.type = cmd_type;
5962 
5963 	switch (hba->ufs_version) {
5964 	case UFSHCI_VERSION_10:
5965 	case UFSHCI_VERSION_11:
5966 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
5967 		break;
5968 	default:
5969 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
5970 		break;
5971 	}
5972 
5973 	/* update the task tag in the request upiu */
5974 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
5975 
5976 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
5977 
5978 	/* just copy the upiu request as it is */
5979 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
5980 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
5981 		/* The Data Segment Area is optional depending upon the query
5982 		 * function value. for WRITE DESCRIPTOR, the data segment
5983 		 * follows right after the tsf.
5984 		 */
5985 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
5986 		*buff_len = 0;
5987 	}
5988 
5989 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
5990 
5991 	hba->dev_cmd.complete = &wait;
5992 
5993 	/* Make sure descriptors are ready before ringing the doorbell */
5994 	wmb();
5995 	spin_lock_irqsave(hba->host->host_lock, flags);
5996 	ufshcd_send_command(hba, tag);
5997 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5998 
5999 	/*
6000 	 * ignore the returning value here - ufshcd_check_query_response is
6001 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6002 	 * read the response directly ignoring all errors.
6003 	 */
6004 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6005 
6006 	/* just copy the upiu response as it is */
6007 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6008 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6009 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6010 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6011 			       MASK_QUERY_DATA_SEG_LEN;
6012 
6013 		if (*buff_len >= resp_len) {
6014 			memcpy(desc_buff, descp, resp_len);
6015 			*buff_len = resp_len;
6016 		} else {
6017 			dev_warn(hba->dev, "rsp size is bigger than buffer");
6018 			*buff_len = 0;
6019 			err = -EINVAL;
6020 		}
6021 	}
6022 
6023 	ufshcd_put_dev_cmd_tag(hba, tag);
6024 	wake_up(&hba->dev_cmd.tag_wq);
6025 	up_read(&hba->clk_scaling_lock);
6026 	return err;
6027 }
6028 
6029 /**
6030  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6031  * @hba:	per-adapter instance
6032  * @req_upiu:	upiu request
6033  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
6034  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
6035  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6036  * @buff_len:	descriptor size, 0 if NA
6037  * @desc_op:	descriptor operation
6038  *
6039  * Supports UTP Transfer requests (nop and query), and UTP Task
6040  * Management requests.
6041  * It is up to the caller to fill the upiu conent properly, as it will
6042  * be copied without any further input validations.
6043  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6044 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6045 			     struct utp_upiu_req *req_upiu,
6046 			     struct utp_upiu_req *rsp_upiu,
6047 			     int msgcode,
6048 			     u8 *desc_buff, int *buff_len,
6049 			     enum query_opcode desc_op)
6050 {
6051 	int err;
6052 	int cmd_type = DEV_CMD_TYPE_QUERY;
6053 	struct utp_task_req_desc treq = { { 0 }, };
6054 	int ocs_value;
6055 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6056 
6057 	switch (msgcode) {
6058 	case UPIU_TRANSACTION_NOP_OUT:
6059 		cmd_type = DEV_CMD_TYPE_NOP;
6060 		/* fall through */
6061 	case UPIU_TRANSACTION_QUERY_REQ:
6062 		ufshcd_hold(hba, false);
6063 		mutex_lock(&hba->dev_cmd.lock);
6064 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6065 						   desc_buff, buff_len,
6066 						   cmd_type, desc_op);
6067 		mutex_unlock(&hba->dev_cmd.lock);
6068 		ufshcd_release(hba);
6069 
6070 		break;
6071 	case UPIU_TRANSACTION_TASK_REQ:
6072 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6073 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6074 
6075 		memcpy(&treq.req_header, req_upiu, sizeof(*req_upiu));
6076 
6077 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6078 		if (err == -ETIMEDOUT)
6079 			break;
6080 
6081 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6082 		if (ocs_value != OCS_SUCCESS) {
6083 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6084 				ocs_value);
6085 			break;
6086 		}
6087 
6088 		memcpy(rsp_upiu, &treq.rsp_header, sizeof(*rsp_upiu));
6089 
6090 		break;
6091 	default:
6092 		err = -EINVAL;
6093 
6094 		break;
6095 	}
6096 
6097 	return err;
6098 }
6099 
6100 /**
6101  * ufshcd_eh_device_reset_handler - device reset handler registered to
6102  *                                    scsi layer.
6103  * @cmd: SCSI command pointer
6104  *
6105  * Returns SUCCESS/FAILED
6106  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)6107 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
6108 {
6109 	struct Scsi_Host *host;
6110 	struct ufs_hba *hba;
6111 	unsigned int tag;
6112 	u32 pos;
6113 	int err;
6114 	u8 resp = 0xF;
6115 	struct ufshcd_lrb *lrbp;
6116 	unsigned long flags;
6117 
6118 	host = cmd->device->host;
6119 	hba = shost_priv(host);
6120 	tag = cmd->request->tag;
6121 
6122 	lrbp = &hba->lrb[tag];
6123 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, 0, UFS_LOGICAL_RESET, &resp);
6124 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6125 		if (!err)
6126 			err = resp;
6127 		goto out;
6128 	}
6129 
6130 	/* clear the commands that were pending for corresponding LUN */
6131 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
6132 		if (hba->lrb[pos].lun == lrbp->lun) {
6133 			err = ufshcd_clear_cmd(hba, pos);
6134 			if (err)
6135 				break;
6136 		}
6137 	}
6138 	spin_lock_irqsave(host->host_lock, flags);
6139 	ufshcd_transfer_req_compl(hba);
6140 	spin_unlock_irqrestore(host->host_lock, flags);
6141 
6142 out:
6143 	hba->req_abort_count = 0;
6144 	ufshcd_update_reg_hist(&hba->ufs_stats.dev_reset, (u32)err);
6145 	if (!err) {
6146 		err = SUCCESS;
6147 	} else {
6148 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6149 		err = FAILED;
6150 	}
6151 	return err;
6152 }
6153 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)6154 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
6155 {
6156 	struct ufshcd_lrb *lrbp;
6157 	int tag;
6158 
6159 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
6160 		lrbp = &hba->lrb[tag];
6161 		lrbp->req_abort_skip = true;
6162 	}
6163 }
6164 
6165 /**
6166  * ufshcd_abort - abort a specific command
6167  * @cmd: SCSI command pointer
6168  *
6169  * Abort the pending command in device by sending UFS_ABORT_TASK task management
6170  * command, and in host controller by clearing the door-bell register. There can
6171  * be race between controller sending the command to the device while abort is
6172  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
6173  * really issued and then try to abort it.
6174  *
6175  * Returns SUCCESS/FAILED
6176  */
ufshcd_abort(struct scsi_cmnd * cmd)6177 static int ufshcd_abort(struct scsi_cmnd *cmd)
6178 {
6179 	struct Scsi_Host *host;
6180 	struct ufs_hba *hba;
6181 	unsigned long flags;
6182 	unsigned int tag;
6183 	int err = 0;
6184 	int poll_cnt;
6185 	u8 resp = 0xF;
6186 	struct ufshcd_lrb *lrbp;
6187 	u32 reg;
6188 
6189 	host = cmd->device->host;
6190 	hba = shost_priv(host);
6191 	tag = cmd->request->tag;
6192 	lrbp = &hba->lrb[tag];
6193 	if (!ufshcd_valid_tag(hba, tag)) {
6194 		dev_err(hba->dev,
6195 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
6196 			__func__, tag, cmd, cmd->request);
6197 		BUG();
6198 	}
6199 
6200 	/*
6201 	 * Task abort to the device W-LUN is illegal. When this command
6202 	 * will fail, due to spec violation, scsi err handling next step
6203 	 * will be to send LU reset which, again, is a spec violation.
6204 	 * To avoid these unnecessary/illegal step we skip to the last error
6205 	 * handling stage: reset and restore.
6206 	 */
6207 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN)
6208 		return ufshcd_eh_host_reset_handler(cmd);
6209 
6210 	ufshcd_hold(hba, false);
6211 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6212 	/* If command is already aborted/completed, return SUCCESS */
6213 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
6214 		dev_err(hba->dev,
6215 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
6216 			__func__, tag, hba->outstanding_reqs, reg);
6217 		goto out;
6218 	}
6219 
6220 	if (!(reg & (1 << tag))) {
6221 		dev_err(hba->dev,
6222 		"%s: cmd was completed, but without a notifying intr, tag = %d",
6223 		__func__, tag);
6224 	}
6225 
6226 	/* Print Transfer Request of aborted task */
6227 	dev_err(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
6228 
6229 	/*
6230 	 * Print detailed info about aborted request.
6231 	 * As more than one request might get aborted at the same time,
6232 	 * print full information only for the first aborted request in order
6233 	 * to reduce repeated printouts. For other aborted requests only print
6234 	 * basic details.
6235 	 */
6236 	scsi_print_command(hba->lrb[tag].cmd);
6237 	if (!hba->req_abort_count) {
6238 		ufshcd_update_reg_hist(&hba->ufs_stats.task_abort, 0);
6239 		ufshcd_print_host_regs(hba);
6240 		ufshcd_print_host_state(hba);
6241 		ufshcd_print_pwr_info(hba);
6242 		ufshcd_print_trs(hba, 1 << tag, true);
6243 	} else {
6244 		ufshcd_print_trs(hba, 1 << tag, false);
6245 	}
6246 	hba->req_abort_count++;
6247 
6248 	/* Skip task abort in case previous aborts failed and report failure */
6249 	if (lrbp->req_abort_skip) {
6250 		err = -EIO;
6251 		goto out;
6252 	}
6253 
6254 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
6255 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6256 				UFS_QUERY_TASK, &resp);
6257 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
6258 			/* cmd pending in the device */
6259 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
6260 				__func__, tag);
6261 			break;
6262 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6263 			/*
6264 			 * cmd not pending in the device, check if it is
6265 			 * in transition.
6266 			 */
6267 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
6268 				__func__, tag);
6269 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6270 			if (reg & (1 << tag)) {
6271 				/* sleep for max. 200us to stabilize */
6272 				usleep_range(100, 200);
6273 				continue;
6274 			}
6275 			/* command completed already */
6276 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
6277 				__func__, tag);
6278 			goto out;
6279 		} else {
6280 			dev_err(hba->dev,
6281 				"%s: no response from device. tag = %d, err %d\n",
6282 				__func__, tag, err);
6283 			if (!err)
6284 				err = resp; /* service response error */
6285 			goto out;
6286 		}
6287 	}
6288 
6289 	if (!poll_cnt) {
6290 		err = -EBUSY;
6291 		goto out;
6292 	}
6293 
6294 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6295 			UFS_ABORT_TASK, &resp);
6296 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6297 		if (!err) {
6298 			err = resp; /* service response error */
6299 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
6300 				__func__, tag, err);
6301 		}
6302 		goto out;
6303 	}
6304 
6305 	err = ufshcd_clear_cmd(hba, tag);
6306 	if (err) {
6307 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
6308 			__func__, tag, err);
6309 		goto out;
6310 	}
6311 
6312 	scsi_dma_unmap(cmd);
6313 
6314 	spin_lock_irqsave(host->host_lock, flags);
6315 	ufshcd_outstanding_req_clear(hba, tag);
6316 	hba->lrb[tag].cmd = NULL;
6317 	spin_unlock_irqrestore(host->host_lock, flags);
6318 
6319 	clear_bit_unlock(tag, &hba->lrb_in_use);
6320 	wake_up(&hba->dev_cmd.tag_wq);
6321 
6322 out:
6323 	if (!err) {
6324 		err = SUCCESS;
6325 	} else {
6326 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6327 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
6328 		err = FAILED;
6329 	}
6330 
6331 	/*
6332 	 * This ufshcd_release() corresponds to the original scsi cmd that got
6333 	 * aborted here (as we won't get any IRQ for it).
6334 	 */
6335 	ufshcd_release(hba);
6336 	return err;
6337 }
6338 
6339 /**
6340  * ufshcd_host_reset_and_restore - reset and restore host controller
6341  * @hba: per-adapter instance
6342  *
6343  * Note that host controller reset may issue DME_RESET to
6344  * local and remote (device) Uni-Pro stack and the attributes
6345  * are reset to default state.
6346  *
6347  * Returns zero on success, non-zero on failure
6348  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)6349 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
6350 {
6351 	int err;
6352 	unsigned long flags;
6353 
6354 	/*
6355 	 * Stop the host controller and complete the requests
6356 	 * cleared by h/w
6357 	 */
6358 	spin_lock_irqsave(hba->host->host_lock, flags);
6359 	ufshcd_hba_stop(hba, false);
6360 	hba->silence_err_logs = true;
6361 	ufshcd_complete_requests(hba);
6362 	hba->silence_err_logs = false;
6363 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6364 
6365 	/* scale up clocks to max frequency before full reinitialization */
6366 	ufshcd_set_clk_freq(hba, true);
6367 
6368 	err = ufshcd_hba_enable(hba);
6369 	if (err)
6370 		goto out;
6371 
6372 	/* Establish the link again and restore the device */
6373 	err = ufshcd_probe_hba(hba);
6374 
6375 	if (!err && (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL))
6376 		err = -EIO;
6377 out:
6378 	if (err)
6379 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
6380 	ufshcd_update_reg_hist(&hba->ufs_stats.host_reset, (u32)err);
6381 	return err;
6382 }
6383 
6384 /**
6385  * ufshcd_reset_and_restore - reset and re-initialize host/device
6386  * @hba: per-adapter instance
6387  *
6388  * Reset and recover device, host and re-establish link. This
6389  * is helpful to recover the communication in fatal error conditions.
6390  *
6391  * Returns zero on success, non-zero on failure
6392  */
ufshcd_reset_and_restore(struct ufs_hba * hba)6393 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
6394 {
6395 	int err = 0;
6396 	int retries = MAX_HOST_RESET_RETRIES;
6397 
6398 	do {
6399 		/* Reset the attached device */
6400 		ufshcd_vops_device_reset(hba);
6401 
6402 		err = ufshcd_host_reset_and_restore(hba);
6403 	} while (err && --retries);
6404 
6405 	return err;
6406 }
6407 
6408 /**
6409  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
6410  * @cmd: SCSI command pointer
6411  *
6412  * Returns SUCCESS/FAILED
6413  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)6414 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
6415 {
6416 	int err;
6417 	unsigned long flags;
6418 	struct ufs_hba *hba;
6419 
6420 	hba = shost_priv(cmd->device->host);
6421 
6422 	ufshcd_hold(hba, false);
6423 	/*
6424 	 * Check if there is any race with fatal error handling.
6425 	 * If so, wait for it to complete. Even though fatal error
6426 	 * handling does reset and restore in some cases, don't assume
6427 	 * anything out of it. We are just avoiding race here.
6428 	 */
6429 	do {
6430 		spin_lock_irqsave(hba->host->host_lock, flags);
6431 		if (!(work_pending(&hba->eh_work) ||
6432 			    hba->ufshcd_state == UFSHCD_STATE_RESET ||
6433 			    hba->ufshcd_state == UFSHCD_STATE_EH_SCHEDULED))
6434 			break;
6435 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6436 		dev_dbg(hba->dev, "%s: reset in progress\n", __func__);
6437 		flush_work(&hba->eh_work);
6438 	} while (1);
6439 
6440 	hba->ufshcd_state = UFSHCD_STATE_RESET;
6441 	ufshcd_set_eh_in_progress(hba);
6442 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6443 
6444 	err = ufshcd_reset_and_restore(hba);
6445 
6446 	spin_lock_irqsave(hba->host->host_lock, flags);
6447 	if (!err) {
6448 		err = SUCCESS;
6449 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6450 	} else {
6451 		err = FAILED;
6452 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6453 	}
6454 	ufshcd_clear_eh_in_progress(hba);
6455 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6456 
6457 	ufshcd_release(hba);
6458 	return err;
6459 }
6460 
6461 /**
6462  * ufshcd_get_max_icc_level - calculate the ICC level
6463  * @sup_curr_uA: max. current supported by the regulator
6464  * @start_scan: row at the desc table to start scan from
6465  * @buff: power descriptor buffer
6466  *
6467  * Returns calculated max ICC level for specific regulator
6468  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)6469 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
6470 {
6471 	int i;
6472 	int curr_uA;
6473 	u16 data;
6474 	u16 unit;
6475 
6476 	for (i = start_scan; i >= 0; i--) {
6477 		data = be16_to_cpup((__be16 *)&buff[2 * i]);
6478 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
6479 						ATTR_ICC_LVL_UNIT_OFFSET;
6480 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
6481 		switch (unit) {
6482 		case UFSHCD_NANO_AMP:
6483 			curr_uA = curr_uA / 1000;
6484 			break;
6485 		case UFSHCD_MILI_AMP:
6486 			curr_uA = curr_uA * 1000;
6487 			break;
6488 		case UFSHCD_AMP:
6489 			curr_uA = curr_uA * 1000 * 1000;
6490 			break;
6491 		case UFSHCD_MICRO_AMP:
6492 		default:
6493 			break;
6494 		}
6495 		if (sup_curr_uA >= curr_uA)
6496 			break;
6497 	}
6498 	if (i < 0) {
6499 		i = 0;
6500 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
6501 	}
6502 
6503 	return (u32)i;
6504 }
6505 
6506 /**
6507  * ufshcd_calc_icc_level - calculate the max ICC level
6508  * In case regulators are not initialized we'll return 0
6509  * @hba: per-adapter instance
6510  * @desc_buf: power descriptor buffer to extract ICC levels from.
6511  * @len: length of desc_buff
6512  *
6513  * Returns calculated ICC level
6514  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)6515 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
6516 							u8 *desc_buf, int len)
6517 {
6518 	u32 icc_level = 0;
6519 
6520 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
6521 						!hba->vreg_info.vccq2) {
6522 		dev_err(hba->dev,
6523 			"%s: Regulator capability was not set, actvIccLevel=%d",
6524 							__func__, icc_level);
6525 		goto out;
6526 	}
6527 
6528 	if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA)
6529 		icc_level = ufshcd_get_max_icc_level(
6530 				hba->vreg_info.vcc->max_uA,
6531 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
6532 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
6533 
6534 	if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA)
6535 		icc_level = ufshcd_get_max_icc_level(
6536 				hba->vreg_info.vccq->max_uA,
6537 				icc_level,
6538 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
6539 
6540 	if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA)
6541 		icc_level = ufshcd_get_max_icc_level(
6542 				hba->vreg_info.vccq2->max_uA,
6543 				icc_level,
6544 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
6545 out:
6546 	return icc_level;
6547 }
6548 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)6549 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
6550 {
6551 	int ret;
6552 	int buff_len = hba->desc_size.pwr_desc;
6553 	u8 *desc_buf;
6554 	u32 icc_level;
6555 
6556 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
6557 	if (!desc_buf)
6558 		return;
6559 
6560 	ret = ufshcd_read_power_desc(hba, desc_buf, buff_len);
6561 	if (ret) {
6562 		dev_err(hba->dev,
6563 			"%s: Failed reading power descriptor.len = %d ret = %d",
6564 			__func__, buff_len, ret);
6565 		goto out;
6566 	}
6567 
6568 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
6569 							 buff_len);
6570 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
6571 
6572 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6573 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
6574 
6575 	if (ret)
6576 		dev_err(hba->dev,
6577 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
6578 			__func__, icc_level, ret);
6579 
6580 out:
6581 	kfree(desc_buf);
6582 }
6583 
6584 /**
6585  * ufshcd_scsi_add_wlus - Adds required W-LUs
6586  * @hba: per-adapter instance
6587  *
6588  * UFS device specification requires the UFS devices to support 4 well known
6589  * logical units:
6590  *	"REPORT_LUNS" (address: 01h)
6591  *	"UFS Device" (address: 50h)
6592  *	"RPMB" (address: 44h)
6593  *	"BOOT" (address: 30h)
6594  * UFS device's power management needs to be controlled by "POWER CONDITION"
6595  * field of SSU (START STOP UNIT) command. But this "power condition" field
6596  * will take effect only when its sent to "UFS device" well known logical unit
6597  * hence we require the scsi_device instance to represent this logical unit in
6598  * order for the UFS host driver to send the SSU command for power management.
6599  *
6600  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
6601  * Block) LU so user space process can control this LU. User space may also
6602  * want to have access to BOOT LU.
6603  *
6604  * This function adds scsi device instances for each of all well known LUs
6605  * (except "REPORT LUNS" LU).
6606  *
6607  * Returns zero on success (all required W-LUs are added successfully),
6608  * non-zero error value on failure (if failed to add any of the required W-LU).
6609  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)6610 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
6611 {
6612 	int ret = 0;
6613 	struct scsi_device *sdev_rpmb;
6614 	struct scsi_device *sdev_boot;
6615 
6616 	hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
6617 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
6618 	if (IS_ERR(hba->sdev_ufs_device)) {
6619 		ret = PTR_ERR(hba->sdev_ufs_device);
6620 		hba->sdev_ufs_device = NULL;
6621 		goto out;
6622 	}
6623 	scsi_device_put(hba->sdev_ufs_device);
6624 
6625 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
6626 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
6627 	if (IS_ERR(sdev_rpmb)) {
6628 		ret = PTR_ERR(sdev_rpmb);
6629 		goto remove_sdev_ufs_device;
6630 	}
6631 	scsi_device_put(sdev_rpmb);
6632 
6633 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
6634 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
6635 	if (IS_ERR(sdev_boot))
6636 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
6637 	else
6638 		scsi_device_put(sdev_boot);
6639 	goto out;
6640 
6641 remove_sdev_ufs_device:
6642 	scsi_remove_device(hba->sdev_ufs_device);
6643 out:
6644 	return ret;
6645 }
6646 
ufs_get_device_desc(struct ufs_hba * hba,struct ufs_dev_desc * dev_desc)6647 static int ufs_get_device_desc(struct ufs_hba *hba,
6648 			       struct ufs_dev_desc *dev_desc)
6649 {
6650 	int err;
6651 	size_t buff_len;
6652 	u8 model_index;
6653 	u8 *desc_buf;
6654 
6655 	if (!dev_desc)
6656 		return -EINVAL;
6657 
6658 	buff_len = max_t(size_t, hba->desc_size.dev_desc,
6659 			 QUERY_DESC_MAX_SIZE + 1);
6660 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
6661 	if (!desc_buf) {
6662 		err = -ENOMEM;
6663 		goto out;
6664 	}
6665 
6666 	err = ufshcd_read_device_desc(hba, desc_buf, hba->desc_size.dev_desc);
6667 	if (err) {
6668 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
6669 			__func__, err);
6670 		goto out;
6671 	}
6672 
6673 	/*
6674 	 * getting vendor (manufacturerID) and Bank Index in big endian
6675 	 * format
6676 	 */
6677 	dev_desc->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
6678 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
6679 
6680 	/* getting Specification Version in big endian format */
6681 	hba->dev_info.spec_version = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
6682 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
6683 
6684 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
6685 	err = ufshcd_read_string_desc(hba, model_index,
6686 				      &dev_desc->model, SD_ASCII_STD);
6687 	if (err < 0) {
6688 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
6689 			__func__, err);
6690 		goto out;
6691 	}
6692 
6693 	/*
6694 	 * ufshcd_read_string_desc returns size of the string
6695 	 * reset the error value
6696 	 */
6697 	err = 0;
6698 
6699 out:
6700 	kfree(desc_buf);
6701 	return err;
6702 }
6703 
ufs_put_device_desc(struct ufs_dev_desc * dev_desc)6704 static void ufs_put_device_desc(struct ufs_dev_desc *dev_desc)
6705 {
6706 	kfree(dev_desc->model);
6707 	dev_desc->model = NULL;
6708 }
6709 
ufs_fixup_device_setup(struct ufs_hba * hba,struct ufs_dev_desc * dev_desc)6710 static void ufs_fixup_device_setup(struct ufs_hba *hba,
6711 				   struct ufs_dev_desc *dev_desc)
6712 {
6713 	struct ufs_dev_fix *f;
6714 
6715 	for (f = ufs_fixups; f->quirk; f++) {
6716 		if ((f->card.wmanufacturerid == dev_desc->wmanufacturerid ||
6717 		     f->card.wmanufacturerid == UFS_ANY_VENDOR) &&
6718 		     ((dev_desc->model &&
6719 		       STR_PRFX_EQUAL(f->card.model, dev_desc->model)) ||
6720 		      !strcmp(f->card.model, UFS_ANY_MODEL)))
6721 			hba->dev_quirks |= f->quirk;
6722 	}
6723 }
6724 
6725 /**
6726  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
6727  * @hba: per-adapter instance
6728  *
6729  * PA_TActivate parameter can be tuned manually if UniPro version is less than
6730  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
6731  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
6732  * the hibern8 exit latency.
6733  *
6734  * Returns zero on success, non-zero error value on failure.
6735  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)6736 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
6737 {
6738 	int ret = 0;
6739 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
6740 
6741 	ret = ufshcd_dme_peer_get(hba,
6742 				  UIC_ARG_MIB_SEL(
6743 					RX_MIN_ACTIVATETIME_CAPABILITY,
6744 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
6745 				  &peer_rx_min_activatetime);
6746 	if (ret)
6747 		goto out;
6748 
6749 	/* make sure proper unit conversion is applied */
6750 	tuned_pa_tactivate =
6751 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
6752 		 / PA_TACTIVATE_TIME_UNIT_US);
6753 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
6754 			     tuned_pa_tactivate);
6755 
6756 out:
6757 	return ret;
6758 }
6759 
6760 /**
6761  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
6762  * @hba: per-adapter instance
6763  *
6764  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
6765  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
6766  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
6767  * This optimal value can help reduce the hibern8 exit latency.
6768  *
6769  * Returns zero on success, non-zero error value on failure.
6770  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)6771 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
6772 {
6773 	int ret = 0;
6774 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
6775 	u32 max_hibern8_time, tuned_pa_hibern8time;
6776 
6777 	ret = ufshcd_dme_get(hba,
6778 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
6779 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
6780 				  &local_tx_hibern8_time_cap);
6781 	if (ret)
6782 		goto out;
6783 
6784 	ret = ufshcd_dme_peer_get(hba,
6785 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
6786 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
6787 				  &peer_rx_hibern8_time_cap);
6788 	if (ret)
6789 		goto out;
6790 
6791 	max_hibern8_time = max(local_tx_hibern8_time_cap,
6792 			       peer_rx_hibern8_time_cap);
6793 	/* make sure proper unit conversion is applied */
6794 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
6795 				/ PA_HIBERN8_TIME_UNIT_US);
6796 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
6797 			     tuned_pa_hibern8time);
6798 out:
6799 	return ret;
6800 }
6801 
6802 /**
6803  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
6804  * less than device PA_TACTIVATE time.
6805  * @hba: per-adapter instance
6806  *
6807  * Some UFS devices require host PA_TACTIVATE to be lower than device
6808  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
6809  * for such devices.
6810  *
6811  * Returns zero on success, non-zero error value on failure.
6812  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)6813 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
6814 {
6815 	int ret = 0;
6816 	u32 granularity, peer_granularity;
6817 	u32 pa_tactivate, peer_pa_tactivate;
6818 	u32 pa_tactivate_us, peer_pa_tactivate_us;
6819 	u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
6820 
6821 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
6822 				  &granularity);
6823 	if (ret)
6824 		goto out;
6825 
6826 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
6827 				  &peer_granularity);
6828 	if (ret)
6829 		goto out;
6830 
6831 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
6832 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
6833 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
6834 			__func__, granularity);
6835 		return -EINVAL;
6836 	}
6837 
6838 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
6839 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
6840 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
6841 			__func__, peer_granularity);
6842 		return -EINVAL;
6843 	}
6844 
6845 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
6846 	if (ret)
6847 		goto out;
6848 
6849 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
6850 				  &peer_pa_tactivate);
6851 	if (ret)
6852 		goto out;
6853 
6854 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
6855 	peer_pa_tactivate_us = peer_pa_tactivate *
6856 			     gran_to_us_table[peer_granularity - 1];
6857 
6858 	if (pa_tactivate_us > peer_pa_tactivate_us) {
6859 		u32 new_peer_pa_tactivate;
6860 
6861 		new_peer_pa_tactivate = pa_tactivate_us /
6862 				      gran_to_us_table[peer_granularity - 1];
6863 		new_peer_pa_tactivate++;
6864 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
6865 					  new_peer_pa_tactivate);
6866 	}
6867 
6868 out:
6869 	return ret;
6870 }
6871 
ufshcd_tune_unipro_params(struct ufs_hba * hba)6872 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
6873 {
6874 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
6875 		ufshcd_tune_pa_tactivate(hba);
6876 		ufshcd_tune_pa_hibern8time(hba);
6877 	}
6878 
6879 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
6880 		/* set 1ms timeout for PA_TACTIVATE */
6881 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
6882 
6883 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
6884 		ufshcd_quirk_tune_host_pa_tactivate(hba);
6885 
6886 	ufshcd_vops_apply_dev_quirks(hba);
6887 }
6888 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)6889 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
6890 {
6891 	hba->ufs_stats.hibern8_exit_cnt = 0;
6892 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
6893 	hba->req_abort_count = 0;
6894 }
6895 
ufshcd_init_desc_sizes(struct ufs_hba * hba)6896 static void ufshcd_init_desc_sizes(struct ufs_hba *hba)
6897 {
6898 	int err;
6899 
6900 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_DEVICE, 0,
6901 		&hba->desc_size.dev_desc);
6902 	if (err)
6903 		hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE;
6904 
6905 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_POWER, 0,
6906 		&hba->desc_size.pwr_desc);
6907 	if (err)
6908 		hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE;
6909 
6910 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_INTERCONNECT, 0,
6911 		&hba->desc_size.interc_desc);
6912 	if (err)
6913 		hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE;
6914 
6915 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_CONFIGURATION, 0,
6916 		&hba->desc_size.conf_desc);
6917 	if (err)
6918 		hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE;
6919 
6920 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_UNIT, 0,
6921 		&hba->desc_size.unit_desc);
6922 	if (err)
6923 		hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE;
6924 
6925 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_GEOMETRY, 0,
6926 		&hba->desc_size.geom_desc);
6927 	if (err)
6928 		hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE;
6929 
6930 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_HEALTH, 0,
6931 		&hba->desc_size.hlth_desc);
6932 	if (err)
6933 		hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE;
6934 }
6935 
6936 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
6937 	{19200000, REF_CLK_FREQ_19_2_MHZ},
6938 	{26000000, REF_CLK_FREQ_26_MHZ},
6939 	{38400000, REF_CLK_FREQ_38_4_MHZ},
6940 	{52000000, REF_CLK_FREQ_52_MHZ},
6941 	{0, REF_CLK_FREQ_INVAL},
6942 };
6943 
6944 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)6945 ufs_get_bref_clk_from_hz(unsigned long freq)
6946 {
6947 	int i;
6948 
6949 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
6950 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
6951 			return ufs_ref_clk_freqs[i].val;
6952 
6953 	return REF_CLK_FREQ_INVAL;
6954 }
6955 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)6956 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
6957 {
6958 	unsigned long freq;
6959 
6960 	freq = clk_get_rate(refclk);
6961 
6962 	hba->dev_ref_clk_freq =
6963 		ufs_get_bref_clk_from_hz(freq);
6964 
6965 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
6966 		dev_err(hba->dev,
6967 		"invalid ref_clk setting = %ld\n", freq);
6968 }
6969 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)6970 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
6971 {
6972 	int err;
6973 	u32 ref_clk;
6974 	u32 freq = hba->dev_ref_clk_freq;
6975 
6976 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6977 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
6978 
6979 	if (err) {
6980 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
6981 			err);
6982 		goto out;
6983 	}
6984 
6985 	if (ref_clk == freq)
6986 		goto out; /* nothing to update */
6987 
6988 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6989 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
6990 
6991 	if (err) {
6992 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
6993 			ufs_ref_clk_freqs[freq].freq_hz);
6994 		goto out;
6995 	}
6996 
6997 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
6998 			ufs_ref_clk_freqs[freq].freq_hz);
6999 
7000 out:
7001 	return err;
7002 }
7003 
7004 /**
7005  * ufshcd_probe_hba - probe hba to detect device and initialize
7006  * @hba: per-adapter instance
7007  *
7008  * Execute link-startup and verify device initialization
7009  */
ufshcd_probe_hba(struct ufs_hba * hba)7010 static int ufshcd_probe_hba(struct ufs_hba *hba)
7011 {
7012 	struct ufs_dev_desc card = {0};
7013 	int ret;
7014 	ktime_t start = ktime_get();
7015 
7016 	ret = ufshcd_link_startup(hba);
7017 	if (ret)
7018 		goto out;
7019 
7020 	/* set the default level for urgent bkops */
7021 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
7022 	hba->is_urgent_bkops_lvl_checked = false;
7023 
7024 	/* Debug counters initialization */
7025 	ufshcd_clear_dbg_ufs_stats(hba);
7026 
7027 	/* UniPro link is active now */
7028 	ufshcd_set_link_active(hba);
7029 
7030 	ret = ufshcd_verify_dev_init(hba);
7031 	if (ret)
7032 		goto out;
7033 
7034 	ret = ufshcd_complete_dev_init(hba);
7035 	if (ret)
7036 		goto out;
7037 
7038 	/* Init check for device descriptor sizes */
7039 	ufshcd_init_desc_sizes(hba);
7040 
7041 	ret = ufs_get_device_desc(hba, &card);
7042 	if (ret) {
7043 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
7044 			__func__, ret);
7045 		goto out;
7046 	}
7047 
7048 	ufs_fixup_device_setup(hba, &card);
7049 	ufs_put_device_desc(&card);
7050 
7051 	ufshcd_tune_unipro_params(hba);
7052 
7053 	/* UFS device is also active now */
7054 	ufshcd_set_ufs_dev_active(hba);
7055 	ufshcd_force_reset_auto_bkops(hba);
7056 	hba->wlun_dev_clr_ua = true;
7057 
7058 	if (ufshcd_get_max_pwr_mode(hba)) {
7059 		dev_err(hba->dev,
7060 			"%s: Failed getting max supported power mode\n",
7061 			__func__);
7062 	} else {
7063 		/*
7064 		 * Set the right value to bRefClkFreq before attempting to
7065 		 * switch to HS gears.
7066 		 */
7067 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
7068 			ufshcd_set_dev_ref_clk(hba);
7069 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
7070 		if (ret) {
7071 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
7072 					__func__, ret);
7073 			goto out;
7074 		}
7075 	}
7076 
7077 	/*
7078 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
7079 	 * and for removable UFS card as well, hence always set the parameter.
7080 	 * Note: Error handler may issue the device reset hence resetting
7081 	 *       bActiveICCLevel as well so it is always safe to set this here.
7082 	 */
7083 	ufshcd_set_active_icc_lvl(hba);
7084 
7085 	/* set the state as operational after switching to desired gear */
7086 	hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7087 
7088 	/* Enable Auto-Hibernate if configured */
7089 	ufshcd_auto_hibern8_enable(hba);
7090 
7091 	/*
7092 	 * If we are in error handling context or in power management callbacks
7093 	 * context, no need to scan the host
7094 	 */
7095 	if (!ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress) {
7096 		bool flag;
7097 
7098 		/* clear any previous UFS device information */
7099 		memset(&hba->dev_info, 0, sizeof(hba->dev_info));
7100 
7101 		ufshcd_get_ref_clk_gating_wait(hba);
7102 
7103 		if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
7104 				QUERY_FLAG_IDN_PWR_ON_WPE, &flag))
7105 			hba->dev_info.f_power_on_wp_en = flag;
7106 
7107 		/* Add required well known logical units to scsi mid layer */
7108 		if (ufshcd_scsi_add_wlus(hba))
7109 			goto out;
7110 
7111 		/* Initialize devfreq after UFS device is detected */
7112 		if (ufshcd_is_clkscaling_supported(hba)) {
7113 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
7114 				&hba->pwr_info,
7115 				sizeof(struct ufs_pa_layer_attr));
7116 			hba->clk_scaling.saved_pwr_info.is_valid = true;
7117 			if (!hba->devfreq) {
7118 				ret = ufshcd_devfreq_init(hba);
7119 				if (ret)
7120 					goto out;
7121 			}
7122 			hba->clk_scaling.is_allowed = true;
7123 		}
7124 
7125 		ufs_bsg_probe(hba);
7126 
7127 		scsi_scan_host(hba->host);
7128 		pm_runtime_put_sync(hba->dev);
7129 	}
7130 
7131 out:
7132 	/*
7133 	 * If we failed to initialize the device or the device is not
7134 	 * present, turn off the power/clocks etc.
7135 	 */
7136 	if (ret && !ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress) {
7137 		pm_runtime_put_sync(hba->dev);
7138 		ufshcd_exit_clk_scaling(hba);
7139 		ufshcd_hba_exit(hba);
7140 	}
7141 
7142 	trace_ufshcd_init(dev_name(hba->dev), ret,
7143 		ktime_to_us(ktime_sub(ktime_get(), start)),
7144 		hba->curr_dev_pwr_mode, hba->uic_link_state);
7145 	return ret;
7146 }
7147 
7148 /**
7149  * ufshcd_async_scan - asynchronous execution for probing hba
7150  * @data: data pointer to pass to this function
7151  * @cookie: cookie data
7152  */
ufshcd_async_scan(void * data,async_cookie_t cookie)7153 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
7154 {
7155 	struct ufs_hba *hba = (struct ufs_hba *)data;
7156 
7157 	ufshcd_probe_hba(hba);
7158 }
7159 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)7160 static enum blk_eh_timer_return ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
7161 {
7162 	unsigned long flags;
7163 	struct Scsi_Host *host;
7164 	struct ufs_hba *hba;
7165 	int index;
7166 	bool found = false;
7167 
7168 	if (!scmd || !scmd->device || !scmd->device->host)
7169 		return BLK_EH_DONE;
7170 
7171 	host = scmd->device->host;
7172 	hba = shost_priv(host);
7173 	if (!hba)
7174 		return BLK_EH_DONE;
7175 
7176 	spin_lock_irqsave(host->host_lock, flags);
7177 
7178 	for_each_set_bit(index, &hba->outstanding_reqs, hba->nutrs) {
7179 		if (hba->lrb[index].cmd == scmd) {
7180 			found = true;
7181 			break;
7182 		}
7183 	}
7184 
7185 	spin_unlock_irqrestore(host->host_lock, flags);
7186 
7187 	/*
7188 	 * Bypass SCSI error handling and reset the block layer timer if this
7189 	 * SCSI command was not actually dispatched to UFS driver, otherwise
7190 	 * let SCSI layer handle the error as usual.
7191 	 */
7192 	return found ? BLK_EH_DONE : BLK_EH_RESET_TIMER;
7193 }
7194 
7195 static const struct attribute_group *ufshcd_driver_groups[] = {
7196 	&ufs_sysfs_unit_descriptor_group,
7197 	&ufs_sysfs_lun_attributes_group,
7198 	NULL,
7199 };
7200 
7201 static struct scsi_host_template ufshcd_driver_template = {
7202 	.module			= THIS_MODULE,
7203 	.name			= UFSHCD,
7204 	.proc_name		= UFSHCD,
7205 	.queuecommand		= ufshcd_queuecommand,
7206 	.slave_alloc		= ufshcd_slave_alloc,
7207 	.slave_configure	= ufshcd_slave_configure,
7208 	.slave_destroy		= ufshcd_slave_destroy,
7209 	.change_queue_depth	= ufshcd_change_queue_depth,
7210 	.eh_abort_handler	= ufshcd_abort,
7211 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
7212 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
7213 	.eh_timed_out		= ufshcd_eh_timed_out,
7214 	.this_id		= -1,
7215 	.sg_tablesize		= SG_ALL,
7216 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
7217 	.can_queue		= UFSHCD_CAN_QUEUE,
7218 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
7219 	.max_host_blocked	= 1,
7220 	.track_queue_depth	= 1,
7221 	.sdev_groups		= ufshcd_driver_groups,
7222 	.dma_boundary		= PAGE_SIZE - 1,
7223 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
7224 };
7225 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)7226 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
7227 				   int ua)
7228 {
7229 	int ret;
7230 
7231 	if (!vreg)
7232 		return 0;
7233 
7234 	/*
7235 	 * "set_load" operation shall be required on those regulators
7236 	 * which specifically configured current limitation. Otherwise
7237 	 * zero max_uA may cause unexpected behavior when regulator is
7238 	 * enabled or set as high power mode.
7239 	 */
7240 	if (!vreg->max_uA)
7241 		return 0;
7242 
7243 	ret = regulator_set_load(vreg->reg, ua);
7244 	if (ret < 0) {
7245 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
7246 				__func__, vreg->name, ua, ret);
7247 	}
7248 
7249 	return ret;
7250 }
7251 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7252 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
7253 					 struct ufs_vreg *vreg)
7254 {
7255 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
7256 }
7257 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7258 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
7259 					 struct ufs_vreg *vreg)
7260 {
7261 	if (!vreg)
7262 		return 0;
7263 
7264 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
7265 }
7266 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)7267 static int ufshcd_config_vreg(struct device *dev,
7268 		struct ufs_vreg *vreg, bool on)
7269 {
7270 	int ret = 0;
7271 	struct regulator *reg;
7272 	const char *name;
7273 	int min_uV, uA_load;
7274 
7275 	BUG_ON(!vreg);
7276 
7277 	reg = vreg->reg;
7278 	name = vreg->name;
7279 
7280 	if (regulator_count_voltages(reg) > 0) {
7281 		uA_load = on ? vreg->max_uA : 0;
7282 		ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
7283 		if (ret)
7284 			goto out;
7285 
7286 		if (vreg->min_uV && vreg->max_uV) {
7287 			min_uV = on ? vreg->min_uV : 0;
7288 			ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
7289 			if (ret) {
7290 				dev_err(dev,
7291 					"%s: %s set voltage failed, err=%d\n",
7292 					__func__, name, ret);
7293 				goto out;
7294 			}
7295 		}
7296 	}
7297 out:
7298 	return ret;
7299 }
7300 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)7301 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
7302 {
7303 	int ret = 0;
7304 
7305 	if (!vreg || vreg->enabled)
7306 		goto out;
7307 
7308 	ret = ufshcd_config_vreg(dev, vreg, true);
7309 	if (!ret)
7310 		ret = regulator_enable(vreg->reg);
7311 
7312 	if (!ret)
7313 		vreg->enabled = true;
7314 	else
7315 		dev_err(dev, "%s: %s enable failed, err=%d\n",
7316 				__func__, vreg->name, ret);
7317 out:
7318 	return ret;
7319 }
7320 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)7321 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
7322 {
7323 	int ret = 0;
7324 
7325 	if (!vreg || !vreg->enabled)
7326 		goto out;
7327 
7328 	ret = regulator_disable(vreg->reg);
7329 
7330 	if (!ret) {
7331 		/* ignore errors on applying disable config */
7332 		ufshcd_config_vreg(dev, vreg, false);
7333 		vreg->enabled = false;
7334 	} else {
7335 		dev_err(dev, "%s: %s disable failed, err=%d\n",
7336 				__func__, vreg->name, ret);
7337 	}
7338 out:
7339 	return ret;
7340 }
7341 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)7342 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
7343 {
7344 	int ret = 0;
7345 	struct device *dev = hba->dev;
7346 	struct ufs_vreg_info *info = &hba->vreg_info;
7347 
7348 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
7349 	if (ret)
7350 		goto out;
7351 
7352 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
7353 	if (ret)
7354 		goto out;
7355 
7356 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
7357 	if (ret)
7358 		goto out;
7359 
7360 out:
7361 	if (ret) {
7362 		ufshcd_toggle_vreg(dev, info->vccq2, false);
7363 		ufshcd_toggle_vreg(dev, info->vccq, false);
7364 		ufshcd_toggle_vreg(dev, info->vcc, false);
7365 	}
7366 	return ret;
7367 }
7368 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)7369 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
7370 {
7371 	struct ufs_vreg_info *info = &hba->vreg_info;
7372 
7373 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
7374 }
7375 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)7376 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
7377 {
7378 	int ret = 0;
7379 
7380 	if (!vreg)
7381 		goto out;
7382 
7383 	vreg->reg = devm_regulator_get(dev, vreg->name);
7384 	if (IS_ERR(vreg->reg)) {
7385 		ret = PTR_ERR(vreg->reg);
7386 		dev_err(dev, "%s: %s get failed, err=%d\n",
7387 				__func__, vreg->name, ret);
7388 	}
7389 out:
7390 	return ret;
7391 }
7392 
ufshcd_init_vreg(struct ufs_hba * hba)7393 static int ufshcd_init_vreg(struct ufs_hba *hba)
7394 {
7395 	int ret = 0;
7396 	struct device *dev = hba->dev;
7397 	struct ufs_vreg_info *info = &hba->vreg_info;
7398 
7399 	ret = ufshcd_get_vreg(dev, info->vcc);
7400 	if (ret)
7401 		goto out;
7402 
7403 	ret = ufshcd_get_vreg(dev, info->vccq);
7404 	if (ret)
7405 		goto out;
7406 
7407 	ret = ufshcd_get_vreg(dev, info->vccq2);
7408 out:
7409 	return ret;
7410 }
7411 
ufshcd_init_hba_vreg(struct ufs_hba * hba)7412 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
7413 {
7414 	struct ufs_vreg_info *info = &hba->vreg_info;
7415 
7416 	if (info)
7417 		return ufshcd_get_vreg(hba->dev, info->vdd_hba);
7418 
7419 	return 0;
7420 }
7421 
__ufshcd_setup_clocks(struct ufs_hba * hba,bool on,bool skip_ref_clk)7422 static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
7423 					bool skip_ref_clk)
7424 {
7425 	int ret = 0;
7426 	struct ufs_clk_info *clki;
7427 	struct list_head *head = &hba->clk_list_head;
7428 	unsigned long flags;
7429 	unsigned long gating_wait;
7430 	ktime_t start = ktime_get();
7431 	bool clk_state_changed = false;
7432 
7433 	if (list_empty(head))
7434 		goto out;
7435 
7436 	gating_wait = (unsigned long)hba->dev_info.clk_gating_wait_us;
7437 	if (!on && !skip_ref_clk && !!gating_wait)
7438 		usleep_range(gating_wait, gating_wait + 10);
7439 
7440 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
7441 	if (ret)
7442 		return ret;
7443 
7444 	list_for_each_entry(clki, head, list) {
7445 		if (!IS_ERR_OR_NULL(clki->clk)) {
7446 			if (skip_ref_clk && !strcmp(clki->name, "ref_clk"))
7447 				continue;
7448 
7449 			clk_state_changed = on ^ clki->enabled;
7450 			if (on && !clki->enabled) {
7451 				ret = clk_prepare_enable(clki->clk);
7452 				if (ret) {
7453 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
7454 						__func__, clki->name, ret);
7455 					goto out;
7456 				}
7457 			} else if (!on && clki->enabled) {
7458 				clk_disable_unprepare(clki->clk);
7459 			}
7460 			clki->enabled = on;
7461 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
7462 					clki->name, on ? "en" : "dis");
7463 		}
7464 	}
7465 
7466 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
7467 	if (ret)
7468 		return ret;
7469 
7470 out:
7471 	if (ret) {
7472 		list_for_each_entry(clki, head, list) {
7473 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
7474 				clk_disable_unprepare(clki->clk);
7475 		}
7476 	} else if (!ret && on) {
7477 		spin_lock_irqsave(hba->host->host_lock, flags);
7478 		hba->clk_gating.state = CLKS_ON;
7479 		trace_ufshcd_clk_gating(dev_name(hba->dev),
7480 					hba->clk_gating.state);
7481 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7482 	}
7483 
7484 	if (clk_state_changed)
7485 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
7486 			(on ? "on" : "off"),
7487 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
7488 	return ret;
7489 }
7490 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)7491 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
7492 {
7493 	return  __ufshcd_setup_clocks(hba, on, false);
7494 }
7495 
ufshcd_init_clocks(struct ufs_hba * hba)7496 static int ufshcd_init_clocks(struct ufs_hba *hba)
7497 {
7498 	int ret = 0;
7499 	struct ufs_clk_info *clki;
7500 	struct device *dev = hba->dev;
7501 	struct list_head *head = &hba->clk_list_head;
7502 
7503 	if (list_empty(head))
7504 		goto out;
7505 
7506 	list_for_each_entry(clki, head, list) {
7507 		if (!clki->name)
7508 			continue;
7509 
7510 		clki->clk = devm_clk_get(dev, clki->name);
7511 		if (IS_ERR(clki->clk)) {
7512 			ret = PTR_ERR(clki->clk);
7513 			dev_err(dev, "%s: %s clk get failed, %d\n",
7514 					__func__, clki->name, ret);
7515 			goto out;
7516 		}
7517 
7518 		/*
7519 		 * Parse device ref clk freq as per device tree "ref_clk".
7520 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
7521 		 * in ufshcd_alloc_host().
7522 		 */
7523 		if (!strcmp(clki->name, "ref_clk"))
7524 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
7525 
7526 		if (clki->max_freq) {
7527 			ret = clk_set_rate(clki->clk, clki->max_freq);
7528 			if (ret) {
7529 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
7530 					__func__, clki->name,
7531 					clki->max_freq, ret);
7532 				goto out;
7533 			}
7534 			clki->curr_freq = clki->max_freq;
7535 		}
7536 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
7537 				clki->name, clk_get_rate(clki->clk));
7538 	}
7539 out:
7540 	return ret;
7541 }
7542 
ufshcd_variant_hba_init(struct ufs_hba * hba)7543 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
7544 {
7545 	int err = 0;
7546 
7547 	if (!hba->vops)
7548 		goto out;
7549 
7550 	err = ufshcd_vops_init(hba);
7551 	if (err)
7552 		goto out;
7553 
7554 	err = ufshcd_vops_setup_regulators(hba, true);
7555 	if (err)
7556 		goto out_exit;
7557 
7558 	goto out;
7559 
7560 out_exit:
7561 	ufshcd_vops_exit(hba);
7562 out:
7563 	if (err)
7564 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
7565 			__func__, ufshcd_get_var_name(hba), err);
7566 	return err;
7567 }
7568 
ufshcd_variant_hba_exit(struct ufs_hba * hba)7569 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
7570 {
7571 	if (!hba->vops)
7572 		return;
7573 
7574 	ufshcd_vops_setup_regulators(hba, false);
7575 
7576 	ufshcd_vops_exit(hba);
7577 }
7578 
ufshcd_hba_init(struct ufs_hba * hba)7579 static int ufshcd_hba_init(struct ufs_hba *hba)
7580 {
7581 	int err;
7582 
7583 	/*
7584 	 * Handle host controller power separately from the UFS device power
7585 	 * rails as it will help controlling the UFS host controller power
7586 	 * collapse easily which is different than UFS device power collapse.
7587 	 * Also, enable the host controller power before we go ahead with rest
7588 	 * of the initialization here.
7589 	 */
7590 	err = ufshcd_init_hba_vreg(hba);
7591 	if (err)
7592 		goto out;
7593 
7594 	err = ufshcd_setup_hba_vreg(hba, true);
7595 	if (err)
7596 		goto out;
7597 
7598 	err = ufshcd_init_clocks(hba);
7599 	if (err)
7600 		goto out_disable_hba_vreg;
7601 
7602 	err = ufshcd_setup_clocks(hba, true);
7603 	if (err)
7604 		goto out_disable_hba_vreg;
7605 
7606 	err = ufshcd_init_vreg(hba);
7607 	if (err)
7608 		goto out_disable_clks;
7609 
7610 	err = ufshcd_setup_vreg(hba, true);
7611 	if (err)
7612 		goto out_disable_clks;
7613 
7614 	err = ufshcd_variant_hba_init(hba);
7615 	if (err)
7616 		goto out_disable_vreg;
7617 
7618 	hba->is_powered = true;
7619 	goto out;
7620 
7621 out_disable_vreg:
7622 	ufshcd_setup_vreg(hba, false);
7623 out_disable_clks:
7624 	ufshcd_setup_clocks(hba, false);
7625 out_disable_hba_vreg:
7626 	ufshcd_setup_hba_vreg(hba, false);
7627 out:
7628 	return err;
7629 }
7630 
ufshcd_hba_exit(struct ufs_hba * hba)7631 static void ufshcd_hba_exit(struct ufs_hba *hba)
7632 {
7633 	if (hba->is_powered) {
7634 		ufshcd_variant_hba_exit(hba);
7635 		ufshcd_setup_vreg(hba, false);
7636 		ufshcd_suspend_clkscaling(hba);
7637 		if (ufshcd_is_clkscaling_supported(hba))
7638 			if (hba->devfreq)
7639 				ufshcd_suspend_clkscaling(hba);
7640 		ufshcd_setup_clocks(hba, false);
7641 		ufshcd_setup_hba_vreg(hba, false);
7642 		hba->is_powered = false;
7643 	}
7644 }
7645 
7646 static int
ufshcd_send_request_sense(struct ufs_hba * hba,struct scsi_device * sdp)7647 ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp)
7648 {
7649 	unsigned char cmd[6] = {REQUEST_SENSE,
7650 				0,
7651 				0,
7652 				0,
7653 				UFS_SENSE_SIZE,
7654 				0};
7655 	char *buffer;
7656 	int ret;
7657 
7658 	buffer = kzalloc(UFS_SENSE_SIZE, GFP_KERNEL);
7659 	if (!buffer) {
7660 		ret = -ENOMEM;
7661 		goto out;
7662 	}
7663 
7664 	ret = scsi_execute(sdp, cmd, DMA_FROM_DEVICE, buffer,
7665 			UFS_SENSE_SIZE, NULL, NULL,
7666 			msecs_to_jiffies(1000), 3, 0, RQF_PM, NULL);
7667 	if (ret)
7668 		pr_err("%s: failed with err %d\n", __func__, ret);
7669 
7670 	kfree(buffer);
7671 out:
7672 	return ret;
7673 }
7674 
7675 /**
7676  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
7677  *			     power mode
7678  * @hba: per adapter instance
7679  * @pwr_mode: device power mode to set
7680  *
7681  * Returns 0 if requested power mode is set successfully
7682  * Returns non-zero if failed to set the requested power mode
7683  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)7684 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
7685 				     enum ufs_dev_pwr_mode pwr_mode)
7686 {
7687 	unsigned char cmd[6] = { START_STOP };
7688 	struct scsi_sense_hdr sshdr;
7689 	struct scsi_device *sdp;
7690 	unsigned long flags;
7691 	int ret;
7692 
7693 	spin_lock_irqsave(hba->host->host_lock, flags);
7694 	sdp = hba->sdev_ufs_device;
7695 	if (sdp) {
7696 		ret = scsi_device_get(sdp);
7697 		if (!ret && !scsi_device_online(sdp)) {
7698 			ret = -ENODEV;
7699 			scsi_device_put(sdp);
7700 		}
7701 	} else {
7702 		ret = -ENODEV;
7703 	}
7704 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7705 
7706 	if (ret)
7707 		return ret;
7708 
7709 	/*
7710 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
7711 	 * handling, which would wait for host to be resumed. Since we know
7712 	 * we are functional while we are here, skip host resume in error
7713 	 * handling context.
7714 	 */
7715 	hba->host->eh_noresume = 1;
7716 	if (hba->wlun_dev_clr_ua) {
7717 		ret = ufshcd_send_request_sense(hba, sdp);
7718 		if (ret)
7719 			goto out;
7720 		/* Unit attention condition is cleared now */
7721 		hba->wlun_dev_clr_ua = false;
7722 	}
7723 
7724 	cmd[4] = pwr_mode << 4;
7725 
7726 	/*
7727 	 * Current function would be generally called from the power management
7728 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
7729 	 * already suspended childs.
7730 	 */
7731 	ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
7732 			START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
7733 	if (ret) {
7734 		sdev_printk(KERN_WARNING, sdp,
7735 			    "START_STOP failed for power mode: %d, result %x\n",
7736 			    pwr_mode, ret);
7737 		if (driver_byte(ret) == DRIVER_SENSE)
7738 			scsi_print_sense_hdr(sdp, NULL, &sshdr);
7739 	}
7740 
7741 	if (!ret)
7742 		hba->curr_dev_pwr_mode = pwr_mode;
7743 out:
7744 	scsi_device_put(sdp);
7745 	hba->host->eh_noresume = 0;
7746 	return ret;
7747 }
7748 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)7749 static int ufshcd_link_state_transition(struct ufs_hba *hba,
7750 					enum uic_link_state req_link_state,
7751 					int check_for_bkops)
7752 {
7753 	int ret = 0;
7754 
7755 	if (req_link_state == hba->uic_link_state)
7756 		return 0;
7757 
7758 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
7759 		ret = ufshcd_uic_hibern8_enter(hba);
7760 		if (!ret)
7761 			ufshcd_set_link_hibern8(hba);
7762 		else
7763 			goto out;
7764 	}
7765 	/*
7766 	 * If autobkops is enabled, link can't be turned off because
7767 	 * turning off the link would also turn off the device.
7768 	 */
7769 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
7770 		   (!check_for_bkops || (check_for_bkops &&
7771 		    !hba->auto_bkops_enabled))) {
7772 		/*
7773 		 * Let's make sure that link is in low power mode, we are doing
7774 		 * this currently by putting the link in Hibern8. Otherway to
7775 		 * put the link in low power mode is to send the DME end point
7776 		 * to device and then send the DME reset command to local
7777 		 * unipro. But putting the link in hibern8 is much faster.
7778 		 */
7779 		ret = ufshcd_uic_hibern8_enter(hba);
7780 		if (ret)
7781 			goto out;
7782 		/*
7783 		 * Change controller state to "reset state" which
7784 		 * should also put the link in off/reset state
7785 		 */
7786 		ufshcd_hba_stop(hba, true);
7787 		/*
7788 		 * TODO: Check if we need any delay to make sure that
7789 		 * controller is reset
7790 		 */
7791 		ufshcd_set_link_off(hba);
7792 	}
7793 
7794 out:
7795 	return ret;
7796 }
7797 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)7798 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
7799 {
7800 	/*
7801 	 * It seems some UFS devices may keep drawing more than sleep current
7802 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
7803 	 * To avoid this situation, add 2ms delay before putting these UFS
7804 	 * rails in LPM mode.
7805 	 */
7806 	if (!ufshcd_is_link_active(hba) &&
7807 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
7808 		usleep_range(2000, 2100);
7809 
7810 	/*
7811 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
7812 	 * power.
7813 	 *
7814 	 * If UFS device and link is in OFF state, all power supplies (VCC,
7815 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
7816 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
7817 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
7818 	 *
7819 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
7820 	 * in low power state which would save some power.
7821 	 */
7822 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
7823 	    !hba->dev_info.is_lu_power_on_wp) {
7824 		ufshcd_setup_vreg(hba, false);
7825 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
7826 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
7827 		if (!ufshcd_is_link_active(hba)) {
7828 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
7829 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
7830 		}
7831 	}
7832 }
7833 
ufshcd_vreg_set_hpm(struct ufs_hba * hba)7834 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
7835 {
7836 	int ret = 0;
7837 
7838 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
7839 	    !hba->dev_info.is_lu_power_on_wp) {
7840 		ret = ufshcd_setup_vreg(hba, true);
7841 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
7842 		if (!ret && !ufshcd_is_link_active(hba)) {
7843 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
7844 			if (ret)
7845 				goto vcc_disable;
7846 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
7847 			if (ret)
7848 				goto vccq_lpm;
7849 		}
7850 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
7851 	}
7852 	goto out;
7853 
7854 vccq_lpm:
7855 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
7856 vcc_disable:
7857 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
7858 out:
7859 	return ret;
7860 }
7861 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)7862 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
7863 {
7864 	if (ufshcd_is_link_off(hba))
7865 		ufshcd_setup_hba_vreg(hba, false);
7866 }
7867 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)7868 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
7869 {
7870 	if (ufshcd_is_link_off(hba))
7871 		ufshcd_setup_hba_vreg(hba, true);
7872 }
7873 
7874 /**
7875  * ufshcd_suspend - helper function for suspend operations
7876  * @hba: per adapter instance
7877  * @pm_op: desired low power operation type
7878  *
7879  * This function will try to put the UFS device and link into low power
7880  * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl"
7881  * (System PM level).
7882  *
7883  * If this function is called during shutdown, it will make sure that
7884  * both UFS device and UFS link is powered off.
7885  *
7886  * NOTE: UFS device & link must be active before we enter in this function.
7887  *
7888  * Returns 0 for success and non-zero for failure
7889  */
ufshcd_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)7890 static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
7891 {
7892 	int ret = 0;
7893 	enum ufs_pm_level pm_lvl;
7894 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
7895 	enum uic_link_state req_link_state;
7896 
7897 	hba->pm_op_in_progress = 1;
7898 	if (!ufshcd_is_shutdown_pm(pm_op)) {
7899 		pm_lvl = ufshcd_is_runtime_pm(pm_op) ?
7900 			 hba->rpm_lvl : hba->spm_lvl;
7901 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
7902 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
7903 	} else {
7904 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
7905 		req_link_state = UIC_LINK_OFF_STATE;
7906 	}
7907 
7908 	ret = ufshcd_crypto_suspend(hba, pm_op);
7909 	if (ret)
7910 		goto out;
7911 
7912 	/*
7913 	 * If we can't transition into any of the low power modes
7914 	 * just gate the clocks.
7915 	 */
7916 	ufshcd_hold(hba, false);
7917 	hba->clk_gating.is_suspended = true;
7918 
7919 	if (hba->clk_scaling.is_allowed) {
7920 		cancel_work_sync(&hba->clk_scaling.suspend_work);
7921 		cancel_work_sync(&hba->clk_scaling.resume_work);
7922 		ufshcd_suspend_clkscaling(hba);
7923 	}
7924 
7925 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
7926 			req_link_state == UIC_LINK_ACTIVE_STATE) {
7927 		goto disable_clks;
7928 	}
7929 
7930 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
7931 	    (req_link_state == hba->uic_link_state))
7932 		goto enable_gating;
7933 
7934 	/* UFS device & link must be active before we enter in this function */
7935 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
7936 		ret = -EINVAL;
7937 		goto enable_gating;
7938 	}
7939 
7940 	if (ufshcd_is_runtime_pm(pm_op)) {
7941 		if (ufshcd_can_autobkops_during_suspend(hba)) {
7942 			/*
7943 			 * The device is idle with no requests in the queue,
7944 			 * allow background operations if bkops status shows
7945 			 * that performance might be impacted.
7946 			 */
7947 			ret = ufshcd_urgent_bkops(hba);
7948 			if (ret)
7949 				goto enable_gating;
7950 		} else {
7951 			/* make sure that auto bkops is disabled */
7952 			ufshcd_disable_auto_bkops(hba);
7953 		}
7954 	}
7955 
7956 	if ((req_dev_pwr_mode != hba->curr_dev_pwr_mode) &&
7957 	     ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) ||
7958 	       !ufshcd_is_runtime_pm(pm_op))) {
7959 		/* ensure that bkops is disabled */
7960 		ufshcd_disable_auto_bkops(hba);
7961 		ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
7962 		if (ret)
7963 			goto enable_gating;
7964 	}
7965 
7966 	flush_work(&hba->eeh_work);
7967 	ret = ufshcd_link_state_transition(hba, req_link_state, 1);
7968 	if (ret)
7969 		goto set_dev_active;
7970 
7971 	ufshcd_vreg_set_lpm(hba);
7972 
7973 disable_clks:
7974 	/*
7975 	 * Call vendor specific suspend callback. As these callbacks may access
7976 	 * vendor specific host controller register space call them before the
7977 	 * host clocks are ON.
7978 	 */
7979 	ret = ufshcd_vops_suspend(hba, pm_op);
7980 	if (ret)
7981 		goto set_link_active;
7982 
7983 	if (!ufshcd_is_link_active(hba))
7984 		ufshcd_setup_clocks(hba, false);
7985 	else
7986 		/* If link is active, device ref_clk can't be switched off */
7987 		__ufshcd_setup_clocks(hba, false, true);
7988 
7989 	hba->clk_gating.state = CLKS_OFF;
7990 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
7991 	/*
7992 	 * Disable the host irq as host controller as there won't be any
7993 	 * host controller transaction expected till resume.
7994 	 */
7995 	ufshcd_disable_irq(hba);
7996 	/* Put the host controller in low power mode if possible */
7997 	ufshcd_hba_vreg_set_lpm(hba);
7998 	goto out;
7999 
8000 set_link_active:
8001 	if (hba->clk_scaling.is_allowed)
8002 		ufshcd_resume_clkscaling(hba);
8003 	ufshcd_vreg_set_hpm(hba);
8004 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
8005 		ufshcd_set_link_active(hba);
8006 	else if (ufshcd_is_link_off(hba))
8007 		ufshcd_host_reset_and_restore(hba);
8008 set_dev_active:
8009 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
8010 		ufshcd_disable_auto_bkops(hba);
8011 enable_gating:
8012 	if (hba->clk_scaling.is_allowed)
8013 		ufshcd_resume_clkscaling(hba);
8014 	hba->clk_gating.is_suspended = false;
8015 	ufshcd_release(hba);
8016 	ufshcd_crypto_resume(hba, pm_op);
8017 out:
8018 	hba->pm_op_in_progress = 0;
8019 	if (ret)
8020 		ufshcd_update_reg_hist(&hba->ufs_stats.suspend_err, (u32)ret);
8021 	return ret;
8022 }
8023 
8024 /**
8025  * ufshcd_resume - helper function for resume operations
8026  * @hba: per adapter instance
8027  * @pm_op: runtime PM or system PM
8028  *
8029  * This function basically brings the UFS device, UniPro link and controller
8030  * to active state.
8031  *
8032  * Returns 0 for success and non-zero for failure
8033  */
ufshcd_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)8034 static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8035 {
8036 	int ret;
8037 	enum uic_link_state old_link_state;
8038 	enum ufs_dev_pwr_mode old_pwr_mode;
8039 
8040 	hba->pm_op_in_progress = 1;
8041 	old_link_state = hba->uic_link_state;
8042 	old_pwr_mode = hba->curr_dev_pwr_mode;
8043 
8044 	ufshcd_hba_vreg_set_hpm(hba);
8045 	/* Make sure clocks are enabled before accessing controller */
8046 	ret = ufshcd_setup_clocks(hba, true);
8047 	if (ret)
8048 		goto out;
8049 
8050 	/* enable the host irq as host controller would be active soon */
8051 	ufshcd_enable_irq(hba);
8052 
8053 	ret = ufshcd_vreg_set_hpm(hba);
8054 	if (ret)
8055 		goto disable_irq_and_vops_clks;
8056 
8057 	/*
8058 	 * Call vendor specific resume callback. As these callbacks may access
8059 	 * vendor specific host controller register space call them when the
8060 	 * host clocks are ON.
8061 	 */
8062 	ret = ufshcd_vops_resume(hba, pm_op);
8063 	if (ret)
8064 		goto disable_vreg;
8065 
8066 	if (ufshcd_is_link_hibern8(hba)) {
8067 		ret = ufshcd_uic_hibern8_exit(hba);
8068 		if (!ret)
8069 			ufshcd_set_link_active(hba);
8070 		else
8071 			goto vendor_suspend;
8072 	} else if (ufshcd_is_link_off(hba)) {
8073 		ret = ufshcd_host_reset_and_restore(hba);
8074 		/*
8075 		 * ufshcd_host_reset_and_restore() should have already
8076 		 * set the link state as active
8077 		 */
8078 		if (ret || !ufshcd_is_link_active(hba))
8079 			goto vendor_suspend;
8080 	}
8081 
8082 	if (!ufshcd_is_ufs_dev_active(hba)) {
8083 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
8084 		if (ret)
8085 			goto set_old_link_state;
8086 	}
8087 
8088 	ret = ufshcd_crypto_resume(hba, pm_op);
8089 	if (ret)
8090 		goto set_old_dev_pwr_mode;
8091 
8092 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
8093 		ufshcd_enable_auto_bkops(hba);
8094 	else
8095 		/*
8096 		 * If BKOPs operations are urgently needed at this moment then
8097 		 * keep auto-bkops enabled or else disable it.
8098 		 */
8099 		ufshcd_urgent_bkops(hba);
8100 
8101 	hba->clk_gating.is_suspended = false;
8102 
8103 	if (hba->clk_scaling.is_allowed)
8104 		ufshcd_resume_clkscaling(hba);
8105 
8106 	/* Enable Auto-Hibernate if configured */
8107 	ufshcd_auto_hibern8_enable(hba);
8108 
8109 	/* Schedule clock gating in case of no access to UFS device yet */
8110 	ufshcd_release(hba);
8111 
8112 	goto out;
8113 
8114 set_old_dev_pwr_mode:
8115 	if (old_pwr_mode != hba->curr_dev_pwr_mode)
8116 		ufshcd_set_dev_pwr_mode(hba, old_pwr_mode);
8117 set_old_link_state:
8118 	ufshcd_link_state_transition(hba, old_link_state, 0);
8119 vendor_suspend:
8120 	ufshcd_vops_suspend(hba, pm_op);
8121 disable_vreg:
8122 	ufshcd_vreg_set_lpm(hba);
8123 disable_irq_and_vops_clks:
8124 	ufshcd_disable_irq(hba);
8125 	if (hba->clk_scaling.is_allowed)
8126 		ufshcd_suspend_clkscaling(hba);
8127 	ufshcd_setup_clocks(hba, false);
8128 out:
8129 	hba->pm_op_in_progress = 0;
8130 	if (ret)
8131 		ufshcd_update_reg_hist(&hba->ufs_stats.resume_err, (u32)ret);
8132 	return ret;
8133 }
8134 
8135 /**
8136  * ufshcd_system_suspend - system suspend routine
8137  * @hba: per adapter instance
8138  *
8139  * Check the description of ufshcd_suspend() function for more details.
8140  *
8141  * Returns 0 for success and non-zero for failure
8142  */
ufshcd_system_suspend(struct ufs_hba * hba)8143 int ufshcd_system_suspend(struct ufs_hba *hba)
8144 {
8145 	int ret = 0;
8146 	ktime_t start = ktime_get();
8147 
8148 	if (!hba || !hba->is_powered)
8149 		return 0;
8150 
8151 	if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) ==
8152 	     hba->curr_dev_pwr_mode) &&
8153 	    (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
8154 	     hba->uic_link_state))
8155 		goto out;
8156 
8157 	if (pm_runtime_suspended(hba->dev)) {
8158 		/*
8159 		 * UFS device and/or UFS link low power states during runtime
8160 		 * suspend seems to be different than what is expected during
8161 		 * system suspend. Hence runtime resume the devic & link and
8162 		 * let the system suspend low power states to take effect.
8163 		 * TODO: If resume takes longer time, we might have optimize
8164 		 * it in future by not resuming everything if possible.
8165 		 */
8166 		ret = ufshcd_runtime_resume(hba);
8167 		if (ret)
8168 			goto out;
8169 	}
8170 
8171 	ret = ufshcd_suspend(hba, UFS_SYSTEM_PM);
8172 out:
8173 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
8174 		ktime_to_us(ktime_sub(ktime_get(), start)),
8175 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8176 	if (!ret)
8177 		hba->is_sys_suspended = true;
8178 	return ret;
8179 }
8180 EXPORT_SYMBOL(ufshcd_system_suspend);
8181 
8182 /**
8183  * ufshcd_system_resume - system resume routine
8184  * @hba: per adapter instance
8185  *
8186  * Returns 0 for success and non-zero for failure
8187  */
8188 
ufshcd_system_resume(struct ufs_hba * hba)8189 int ufshcd_system_resume(struct ufs_hba *hba)
8190 {
8191 	int ret = 0;
8192 	ktime_t start = ktime_get();
8193 
8194 	if (!hba)
8195 		return -EINVAL;
8196 
8197 	if (!hba->is_powered || pm_runtime_suspended(hba->dev))
8198 		/*
8199 		 * Let the runtime resume take care of resuming
8200 		 * if runtime suspended.
8201 		 */
8202 		goto out;
8203 	else
8204 		ret = ufshcd_resume(hba, UFS_SYSTEM_PM);
8205 out:
8206 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
8207 		ktime_to_us(ktime_sub(ktime_get(), start)),
8208 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8209 	if (!ret)
8210 		hba->is_sys_suspended = false;
8211 	return ret;
8212 }
8213 EXPORT_SYMBOL(ufshcd_system_resume);
8214 
8215 /**
8216  * ufshcd_runtime_suspend - runtime suspend routine
8217  * @hba: per adapter instance
8218  *
8219  * Check the description of ufshcd_suspend() function for more details.
8220  *
8221  * Returns 0 for success and non-zero for failure
8222  */
ufshcd_runtime_suspend(struct ufs_hba * hba)8223 int ufshcd_runtime_suspend(struct ufs_hba *hba)
8224 {
8225 	int ret = 0;
8226 	ktime_t start = ktime_get();
8227 
8228 	if (!hba)
8229 		return -EINVAL;
8230 
8231 	if (!hba->is_powered)
8232 		goto out;
8233 	else
8234 		ret = ufshcd_suspend(hba, UFS_RUNTIME_PM);
8235 out:
8236 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
8237 		ktime_to_us(ktime_sub(ktime_get(), start)),
8238 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8239 	return ret;
8240 }
8241 EXPORT_SYMBOL(ufshcd_runtime_suspend);
8242 
8243 /**
8244  * ufshcd_runtime_resume - runtime resume routine
8245  * @hba: per adapter instance
8246  *
8247  * This function basically brings the UFS device, UniPro link and controller
8248  * to active state. Following operations are done in this function:
8249  *
8250  * 1. Turn on all the controller related clocks
8251  * 2. Bring the UniPro link out of Hibernate state
8252  * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device
8253  *    to active state.
8254  * 4. If auto-bkops is enabled on the device, disable it.
8255  *
8256  * So following would be the possible power state after this function return
8257  * successfully:
8258  *	S1: UFS device in Active state with VCC rail ON
8259  *	    UniPro link in Active state
8260  *	    All the UFS/UniPro controller clocks are ON
8261  *
8262  * Returns 0 for success and non-zero for failure
8263  */
ufshcd_runtime_resume(struct ufs_hba * hba)8264 int ufshcd_runtime_resume(struct ufs_hba *hba)
8265 {
8266 	int ret = 0;
8267 	ktime_t start = ktime_get();
8268 
8269 	if (!hba)
8270 		return -EINVAL;
8271 
8272 	if (!hba->is_powered)
8273 		goto out;
8274 	else
8275 		ret = ufshcd_resume(hba, UFS_RUNTIME_PM);
8276 out:
8277 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
8278 		ktime_to_us(ktime_sub(ktime_get(), start)),
8279 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8280 	return ret;
8281 }
8282 EXPORT_SYMBOL(ufshcd_runtime_resume);
8283 
ufshcd_runtime_idle(struct ufs_hba * hba)8284 int ufshcd_runtime_idle(struct ufs_hba *hba)
8285 {
8286 	return 0;
8287 }
8288 EXPORT_SYMBOL(ufshcd_runtime_idle);
8289 
8290 /**
8291  * ufshcd_shutdown - shutdown routine
8292  * @hba: per adapter instance
8293  *
8294  * This function would power off both UFS device and UFS link.
8295  *
8296  * Returns 0 always to allow force shutdown even in case of errors.
8297  */
ufshcd_shutdown(struct ufs_hba * hba)8298 int ufshcd_shutdown(struct ufs_hba *hba)
8299 {
8300 	int ret = 0;
8301 
8302 	if (!hba->is_powered)
8303 		goto out;
8304 
8305 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
8306 		goto out;
8307 
8308 	if (pm_runtime_suspended(hba->dev)) {
8309 		ret = ufshcd_runtime_resume(hba);
8310 		if (ret)
8311 			goto out;
8312 	}
8313 
8314 	ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM);
8315 out:
8316 	if (ret)
8317 		dev_err(hba->dev, "%s failed, err %d\n", __func__, ret);
8318 	/* allow force shutdown even in case of errors */
8319 	return 0;
8320 }
8321 EXPORT_SYMBOL(ufshcd_shutdown);
8322 
8323 /**
8324  * ufshcd_remove - de-allocate SCSI host and host memory space
8325  *		data structure memory
8326  * @hba: per adapter instance
8327  */
ufshcd_remove(struct ufs_hba * hba)8328 void ufshcd_remove(struct ufs_hba *hba)
8329 {
8330 	ufs_bsg_remove(hba);
8331 	ufs_sysfs_remove_nodes(hba->dev);
8332 	scsi_remove_host(hba->host);
8333 	/* disable interrupts */
8334 	ufshcd_disable_intr(hba, hba->intr_mask);
8335 	ufshcd_hba_stop(hba, true);
8336 
8337 	ufshcd_exit_clk_scaling(hba);
8338 	ufshcd_exit_clk_gating(hba);
8339 	if (ufshcd_is_clkscaling_supported(hba))
8340 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
8341 	ufshcd_hba_exit(hba);
8342 }
8343 EXPORT_SYMBOL_GPL(ufshcd_remove);
8344 
8345 /**
8346  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
8347  * @hba: pointer to Host Bus Adapter (HBA)
8348  */
ufshcd_dealloc_host(struct ufs_hba * hba)8349 void ufshcd_dealloc_host(struct ufs_hba *hba)
8350 {
8351 	scsi_host_put(hba->host);
8352 }
8353 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
8354 
8355 /**
8356  * ufshcd_set_dma_mask - Set dma mask based on the controller
8357  *			 addressing capability
8358  * @hba: per adapter instance
8359  *
8360  * Returns 0 for success, non-zero for failure
8361  */
ufshcd_set_dma_mask(struct ufs_hba * hba)8362 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
8363 {
8364 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
8365 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
8366 			return 0;
8367 	}
8368 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
8369 }
8370 
8371 /**
8372  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
8373  * @dev: pointer to device handle
8374  * @hba_handle: driver private handle
8375  * Returns 0 on success, non-zero value on failure
8376  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)8377 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
8378 {
8379 	struct Scsi_Host *host;
8380 	struct ufs_hba *hba;
8381 	int err = 0;
8382 
8383 	if (!dev) {
8384 		dev_err(dev,
8385 		"Invalid memory reference for dev is NULL\n");
8386 		err = -ENODEV;
8387 		goto out_error;
8388 	}
8389 
8390 	host = scsi_host_alloc(&ufshcd_driver_template,
8391 				sizeof(struct ufs_hba));
8392 	if (!host) {
8393 		dev_err(dev, "scsi_host_alloc failed\n");
8394 		err = -ENOMEM;
8395 		goto out_error;
8396 	}
8397 	hba = shost_priv(host);
8398 	hba->host = host;
8399 	hba->dev = dev;
8400 	*hba_handle = hba;
8401 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
8402 
8403 	INIT_LIST_HEAD(&hba->clk_list_head);
8404 
8405 out_error:
8406 	return err;
8407 }
8408 EXPORT_SYMBOL(ufshcd_alloc_host);
8409 
8410 /**
8411  * ufshcd_init - Driver initialization routine
8412  * @hba: per-adapter instance
8413  * @mmio_base: base register address
8414  * @irq: Interrupt line of device
8415  * Returns 0 on success, non-zero value on failure
8416  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)8417 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
8418 {
8419 	int err;
8420 	struct Scsi_Host *host = hba->host;
8421 	struct device *dev = hba->dev;
8422 
8423 	if (!mmio_base) {
8424 		dev_err(hba->dev,
8425 		"Invalid memory reference for mmio_base is NULL\n");
8426 		err = -ENODEV;
8427 		goto out_error;
8428 	}
8429 
8430 	hba->mmio_base = mmio_base;
8431 	hba->irq = irq;
8432 
8433 	err = ufshcd_hba_init(hba);
8434 	if (err)
8435 		goto out_error;
8436 
8437 	/* Read capabilities registers */
8438 	ufshcd_hba_capabilities(hba);
8439 
8440 	/* Get UFS version supported by the controller */
8441 	hba->ufs_version = ufshcd_get_ufs_version(hba);
8442 
8443 	if ((hba->ufs_version != UFSHCI_VERSION_10) &&
8444 	    (hba->ufs_version != UFSHCI_VERSION_11) &&
8445 	    (hba->ufs_version != UFSHCI_VERSION_20) &&
8446 	    (hba->ufs_version != UFSHCI_VERSION_21))
8447 		dev_err(hba->dev, "invalid UFS version 0x%x\n",
8448 			hba->ufs_version);
8449 
8450 	/* Get Interrupt bit mask per version */
8451 	hba->intr_mask = ufshcd_get_intr_mask(hba);
8452 
8453 	err = ufshcd_set_dma_mask(hba);
8454 	if (err) {
8455 		dev_err(hba->dev, "set dma mask failed\n");
8456 		goto out_disable;
8457 	}
8458 
8459 	/* Allocate memory for host memory space */
8460 	err = ufshcd_memory_alloc(hba);
8461 	if (err) {
8462 		dev_err(hba->dev, "Memory allocation failed\n");
8463 		goto out_disable;
8464 	}
8465 
8466 	/* Configure LRB */
8467 	ufshcd_host_memory_configure(hba);
8468 
8469 	host->can_queue = hba->nutrs;
8470 	host->cmd_per_lun = hba->nutrs;
8471 	host->max_id = UFSHCD_MAX_ID;
8472 	host->max_lun = UFS_MAX_LUNS;
8473 	host->max_channel = UFSHCD_MAX_CHANNEL;
8474 	host->unique_id = host->host_no;
8475 	host->max_cmd_len = UFS_CDB_SIZE;
8476 
8477 	hba->max_pwr_info.is_valid = false;
8478 
8479 	/* Initailize wait queue for task management */
8480 	init_waitqueue_head(&hba->tm_wq);
8481 	init_waitqueue_head(&hba->tm_tag_wq);
8482 
8483 	/* Initialize work queues */
8484 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
8485 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
8486 
8487 	/* Initialize UIC command mutex */
8488 	mutex_init(&hba->uic_cmd_mutex);
8489 
8490 	/* Initialize mutex for device management commands */
8491 	mutex_init(&hba->dev_cmd.lock);
8492 
8493 	init_rwsem(&hba->clk_scaling_lock);
8494 
8495 	/* Initialize device management tag acquire wait queue */
8496 	init_waitqueue_head(&hba->dev_cmd.tag_wq);
8497 
8498 	ufshcd_init_clk_gating(hba);
8499 
8500 	ufshcd_init_clk_scaling(hba);
8501 
8502 	/*
8503 	 * In order to avoid any spurious interrupt immediately after
8504 	 * registering UFS controller interrupt handler, clear any pending UFS
8505 	 * interrupt status and disable all the UFS interrupts.
8506 	 */
8507 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
8508 		      REG_INTERRUPT_STATUS);
8509 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
8510 	/*
8511 	 * Make sure that UFS interrupts are disabled and any pending interrupt
8512 	 * status is cleared before registering UFS interrupt handler.
8513 	 */
8514 	mb();
8515 
8516 	/* IRQ registration */
8517 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
8518 	if (err) {
8519 		dev_err(hba->dev, "request irq failed\n");
8520 		goto exit_gating;
8521 	} else {
8522 		hba->is_irq_enabled = true;
8523 	}
8524 
8525 	err = scsi_add_host(host, hba->dev);
8526 	if (err) {
8527 		dev_err(hba->dev, "scsi_add_host failed\n");
8528 		goto exit_gating;
8529 	}
8530 
8531 	/* Reset the attached device */
8532 	ufshcd_vops_device_reset(hba);
8533 
8534 	/* Init crypto */
8535 	err = ufshcd_hba_init_crypto(hba);
8536 	if (err) {
8537 		dev_err(hba->dev, "crypto setup failed\n");
8538 		goto out_remove_scsi_host;
8539 	}
8540 
8541 	/* Host controller enable */
8542 	err = ufshcd_hba_enable(hba);
8543 	if (err) {
8544 		dev_err(hba->dev, "Host controller enable failed\n");
8545 		ufshcd_print_host_regs(hba);
8546 		ufshcd_print_host_state(hba);
8547 		goto out_remove_scsi_host;
8548 	}
8549 
8550 	/*
8551 	 * Set the default power management level for runtime and system PM.
8552 	 * Default power saving mode is to keep UFS link in Hibern8 state
8553 	 * and UFS device in sleep state.
8554 	 */
8555 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
8556 						UFS_SLEEP_PWR_MODE,
8557 						UIC_LINK_HIBERN8_STATE);
8558 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
8559 						UFS_SLEEP_PWR_MODE,
8560 						UIC_LINK_HIBERN8_STATE);
8561 
8562 	/* Set the default auto-hiberate idle timer value to 150 ms */
8563 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
8564 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
8565 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
8566 	}
8567 
8568 	/* Hold auto suspend until async scan completes */
8569 	pm_runtime_get_sync(dev);
8570 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
8571 	/*
8572 	 * We are assuming that device wasn't put in sleep/power-down
8573 	 * state exclusively during the boot stage before kernel.
8574 	 * This assumption helps avoid doing link startup twice during
8575 	 * ufshcd_probe_hba().
8576 	 */
8577 	ufshcd_set_ufs_dev_active(hba);
8578 
8579 	async_schedule(ufshcd_async_scan, hba);
8580 	ufs_sysfs_add_nodes(hba->dev);
8581 
8582 	return 0;
8583 
8584 out_remove_scsi_host:
8585 	scsi_remove_host(hba->host);
8586 exit_gating:
8587 	ufshcd_exit_clk_scaling(hba);
8588 	ufshcd_exit_clk_gating(hba);
8589 out_disable:
8590 	hba->is_irq_enabled = false;
8591 	ufshcd_hba_exit(hba);
8592 out_error:
8593 	return err;
8594 }
8595 EXPORT_SYMBOL_GPL(ufshcd_init);
8596 
8597 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
8598 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
8599 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
8600 MODULE_LICENSE("GPL");
8601 MODULE_VERSION(UFSHCD_DRIVER_VERSION);
8602