1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 #include <trace/events/android_fs.h>
29
30 #define NUM_PREALLOC_POST_READ_CTXS 128
31
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35
__is_cp_guaranteed(struct page * page)36 static bool __is_cp_guaranteed(struct page *page)
37 {
38 struct address_space *mapping = page->mapping;
39 struct inode *inode;
40 struct f2fs_sb_info *sbi;
41
42 if (!mapping)
43 return false;
44
45 inode = mapping->host;
46 sbi = F2FS_I_SB(inode);
47
48 if (inode->i_ino == F2FS_META_INO(sbi) ||
49 inode->i_ino == F2FS_NODE_INO(sbi) ||
50 S_ISDIR(inode->i_mode) ||
51 (S_ISREG(inode->i_mode) &&
52 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
53 is_cold_data(page))
54 return true;
55 return false;
56 }
57
__read_io_type(struct page * page)58 static enum count_type __read_io_type(struct page *page)
59 {
60 struct address_space *mapping = page_file_mapping(page);
61
62 if (mapping) {
63 struct inode *inode = mapping->host;
64 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
65
66 if (inode->i_ino == F2FS_META_INO(sbi))
67 return F2FS_RD_META;
68
69 if (inode->i_ino == F2FS_NODE_INO(sbi))
70 return F2FS_RD_NODE;
71 }
72 return F2FS_RD_DATA;
73 }
74
75 /* postprocessing steps for read bios */
76 enum bio_post_read_step {
77 STEP_INITIAL = 0,
78 STEP_DECRYPT,
79 STEP_VERITY,
80 };
81
82 struct bio_post_read_ctx {
83 struct bio *bio;
84 struct work_struct work;
85 unsigned int cur_step;
86 unsigned int enabled_steps;
87 };
88
__read_end_io(struct bio * bio)89 static void __read_end_io(struct bio *bio)
90 {
91 struct page *page;
92 struct bio_vec *bv;
93 struct bvec_iter_all iter_all;
94
95 bio_for_each_segment_all(bv, bio, iter_all) {
96 page = bv->bv_page;
97
98 /* PG_error was set if any post_read step failed */
99 if (bio->bi_status || PageError(page)) {
100 ClearPageUptodate(page);
101 /* will re-read again later */
102 ClearPageError(page);
103 } else {
104 SetPageUptodate(page);
105 }
106 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
107 unlock_page(page);
108 }
109 if (bio->bi_private)
110 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
111 bio_put(bio);
112 }
113
114 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
115
decrypt_work(struct work_struct * work)116 static void decrypt_work(struct work_struct *work)
117 {
118 struct bio_post_read_ctx *ctx =
119 container_of(work, struct bio_post_read_ctx, work);
120
121 fscrypt_decrypt_bio(ctx->bio);
122
123 bio_post_read_processing(ctx);
124 }
125
verity_work(struct work_struct * work)126 static void verity_work(struct work_struct *work)
127 {
128 struct bio_post_read_ctx *ctx =
129 container_of(work, struct bio_post_read_ctx, work);
130
131 fsverity_verify_bio(ctx->bio);
132
133 bio_post_read_processing(ctx);
134 }
135
bio_post_read_processing(struct bio_post_read_ctx * ctx)136 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
137 {
138 /*
139 * We use different work queues for decryption and for verity because
140 * verity may require reading metadata pages that need decryption, and
141 * we shouldn't recurse to the same workqueue.
142 */
143 switch (++ctx->cur_step) {
144 case STEP_DECRYPT:
145 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
146 INIT_WORK(&ctx->work, decrypt_work);
147 fscrypt_enqueue_decrypt_work(&ctx->work);
148 return;
149 }
150 ctx->cur_step++;
151 /* fall-through */
152 case STEP_VERITY:
153 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
154 INIT_WORK(&ctx->work, verity_work);
155 fsverity_enqueue_verify_work(&ctx->work);
156 return;
157 }
158 ctx->cur_step++;
159 /* fall-through */
160 default:
161 __read_end_io(ctx->bio);
162 }
163 }
164
f2fs_bio_post_read_required(struct bio * bio)165 static bool f2fs_bio_post_read_required(struct bio *bio)
166 {
167 return bio->bi_private && !bio->bi_status;
168 }
169
f2fs_read_end_io(struct bio * bio)170 static void f2fs_read_end_io(struct bio *bio)
171 {
172 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
173
174 if (time_to_inject(sbi, FAULT_READ_IO)) {
175 f2fs_show_injection_info(sbi, FAULT_READ_IO);
176 bio->bi_status = BLK_STS_IOERR;
177 }
178
179 if (f2fs_bio_post_read_required(bio)) {
180 struct bio_post_read_ctx *ctx = bio->bi_private;
181
182 ctx->cur_step = STEP_INITIAL;
183 bio_post_read_processing(ctx);
184 return;
185 }
186
187 __read_end_io(bio);
188 }
189
f2fs_write_end_io(struct bio * bio)190 static void f2fs_write_end_io(struct bio *bio)
191 {
192 struct f2fs_sb_info *sbi = bio->bi_private;
193 struct bio_vec *bvec;
194 struct bvec_iter_all iter_all;
195
196 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
197 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
198 bio->bi_status = BLK_STS_IOERR;
199 }
200
201 bio_for_each_segment_all(bvec, bio, iter_all) {
202 struct page *page = bvec->bv_page;
203 enum count_type type = WB_DATA_TYPE(page);
204
205 if (IS_DUMMY_WRITTEN_PAGE(page)) {
206 set_page_private(page, (unsigned long)NULL);
207 ClearPagePrivate(page);
208 unlock_page(page);
209 mempool_free(page, sbi->write_io_dummy);
210
211 if (unlikely(bio->bi_status))
212 f2fs_stop_checkpoint(sbi, true);
213 continue;
214 }
215
216 fscrypt_finalize_bounce_page(&page);
217
218 if (unlikely(bio->bi_status)) {
219 mapping_set_error(page->mapping, -EIO);
220 if (type == F2FS_WB_CP_DATA)
221 f2fs_stop_checkpoint(sbi, true);
222 }
223
224 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
225 page->index != nid_of_node(page));
226
227 dec_page_count(sbi, type);
228 if (f2fs_in_warm_node_list(sbi, page))
229 f2fs_del_fsync_node_entry(sbi, page);
230 clear_cold_data(page);
231 end_page_writeback(page);
232 }
233 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
234 wq_has_sleeper(&sbi->cp_wait))
235 wake_up(&sbi->cp_wait);
236
237 bio_put(bio);
238 }
239
240 /*
241 * Return true, if pre_bio's bdev is same as its target device.
242 */
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)243 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
244 block_t blk_addr, struct bio *bio)
245 {
246 struct block_device *bdev = sbi->sb->s_bdev;
247 int i;
248
249 if (f2fs_is_multi_device(sbi)) {
250 for (i = 0; i < sbi->s_ndevs; i++) {
251 if (FDEV(i).start_blk <= blk_addr &&
252 FDEV(i).end_blk >= blk_addr) {
253 blk_addr -= FDEV(i).start_blk;
254 bdev = FDEV(i).bdev;
255 break;
256 }
257 }
258 }
259 if (bio) {
260 bio_set_dev(bio, bdev);
261 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
262 }
263 return bdev;
264 }
265
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)266 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
267 {
268 int i;
269
270 if (!f2fs_is_multi_device(sbi))
271 return 0;
272
273 for (i = 0; i < sbi->s_ndevs; i++)
274 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
275 return i;
276 return 0;
277 }
278
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)279 static bool __same_bdev(struct f2fs_sb_info *sbi,
280 block_t blk_addr, struct bio *bio)
281 {
282 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
283 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
284 }
285
286 /*
287 * Low-level block read/write IO operations.
288 */
__bio_alloc(struct f2fs_io_info * fio,int npages)289 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
290 {
291 struct f2fs_sb_info *sbi = fio->sbi;
292 struct bio *bio;
293
294 bio = f2fs_bio_alloc(sbi, npages, true);
295
296 f2fs_target_device(sbi, fio->new_blkaddr, bio);
297 if (is_read_io(fio->op)) {
298 bio->bi_end_io = f2fs_read_end_io;
299 bio->bi_private = NULL;
300 } else {
301 bio->bi_end_io = f2fs_write_end_io;
302 bio->bi_private = sbi;
303 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
304 fio->type, fio->temp);
305 }
306 if (fio->io_wbc)
307 wbc_init_bio(fio->io_wbc, bio);
308
309 return bio;
310 }
311
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)312 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
313 pgoff_t first_idx,
314 const struct f2fs_io_info *fio,
315 gfp_t gfp_mask)
316 {
317 /*
318 * The f2fs garbage collector sets ->encrypted_page when it wants to
319 * read/write raw data without encryption.
320 */
321 if (!fio || !fio->encrypted_page)
322 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
323 else if (fscrypt_inode_should_skip_dm_default_key(inode))
324 bio_set_skip_dm_default_key(bio);
325 }
326
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)327 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
328 pgoff_t next_idx,
329 const struct f2fs_io_info *fio)
330 {
331 /*
332 * The f2fs garbage collector sets ->encrypted_page when it wants to
333 * read/write raw data without encryption.
334 */
335 if (fio && fio->encrypted_page)
336 return !bio_has_crypt_ctx(bio) &&
337 (bio_should_skip_dm_default_key(bio) ==
338 fscrypt_inode_should_skip_dm_default_key(inode));
339
340 return fscrypt_mergeable_bio(bio, inode, next_idx);
341 }
342
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)343 static inline void __submit_bio(struct f2fs_sb_info *sbi,
344 struct bio *bio, enum page_type type)
345 {
346 if (!is_read_io(bio_op(bio))) {
347 unsigned int start;
348
349 if (type != DATA && type != NODE)
350 goto submit_io;
351
352 if (test_opt(sbi, LFS) && current->plug)
353 blk_finish_plug(current->plug);
354
355 if (F2FS_IO_ALIGNED(sbi))
356 goto submit_io;
357
358 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
359 start %= F2FS_IO_SIZE(sbi);
360
361 if (start == 0)
362 goto submit_io;
363
364 /* fill dummy pages */
365 for (; start < F2FS_IO_SIZE(sbi); start++) {
366 struct page *page =
367 mempool_alloc(sbi->write_io_dummy,
368 GFP_NOIO | __GFP_NOFAIL);
369 f2fs_bug_on(sbi, !page);
370
371 zero_user_segment(page, 0, PAGE_SIZE);
372 SetPagePrivate(page);
373 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
374 lock_page(page);
375 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
376 f2fs_bug_on(sbi, 1);
377 }
378 /*
379 * In the NODE case, we lose next block address chain. So, we
380 * need to do checkpoint in f2fs_sync_file.
381 */
382 if (type == NODE)
383 set_sbi_flag(sbi, SBI_NEED_CP);
384 }
385 submit_io:
386 if (is_read_io(bio_op(bio)))
387 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
388 else
389 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
390 submit_bio(bio);
391 }
392
__submit_merged_bio(struct f2fs_bio_info * io)393 static void __submit_merged_bio(struct f2fs_bio_info *io)
394 {
395 struct f2fs_io_info *fio = &io->fio;
396
397 if (!io->bio)
398 return;
399
400 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
401
402 if (is_read_io(fio->op))
403 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
404 else
405 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
406
407 __submit_bio(io->sbi, io->bio, fio->type);
408 io->bio = NULL;
409 }
410
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)411 static bool __has_merged_page(struct bio *bio, struct inode *inode,
412 struct page *page, nid_t ino)
413 {
414 struct bio_vec *bvec;
415 struct page *target;
416 struct bvec_iter_all iter_all;
417
418 if (!bio)
419 return false;
420
421 if (!inode && !page && !ino)
422 return true;
423
424 bio_for_each_segment_all(bvec, bio, iter_all) {
425
426 target = bvec->bv_page;
427 if (fscrypt_is_bounce_page(target))
428 target = fscrypt_pagecache_page(target);
429
430 if (inode && inode == target->mapping->host)
431 return true;
432 if (page && page == target)
433 return true;
434 if (ino && ino == ino_of_node(target))
435 return true;
436 }
437
438 return false;
439 }
440
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)441 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
442 enum page_type type, enum temp_type temp)
443 {
444 enum page_type btype = PAGE_TYPE_OF_BIO(type);
445 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
446
447 down_write(&io->io_rwsem);
448
449 /* change META to META_FLUSH in the checkpoint procedure */
450 if (type >= META_FLUSH) {
451 io->fio.type = META_FLUSH;
452 io->fio.op = REQ_OP_WRITE;
453 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
454 if (!test_opt(sbi, NOBARRIER))
455 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
456 }
457 __submit_merged_bio(io);
458 up_write(&io->io_rwsem);
459 }
460
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)461 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
462 struct inode *inode, struct page *page,
463 nid_t ino, enum page_type type, bool force)
464 {
465 enum temp_type temp;
466 bool ret = true;
467
468 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
469 if (!force) {
470 enum page_type btype = PAGE_TYPE_OF_BIO(type);
471 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
472
473 down_read(&io->io_rwsem);
474 ret = __has_merged_page(io->bio, inode, page, ino);
475 up_read(&io->io_rwsem);
476 }
477 if (ret)
478 __f2fs_submit_merged_write(sbi, type, temp);
479
480 /* TODO: use HOT temp only for meta pages now. */
481 if (type >= META)
482 break;
483 }
484 }
485
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)486 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
487 {
488 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
489 }
490
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)491 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
492 struct inode *inode, struct page *page,
493 nid_t ino, enum page_type type)
494 {
495 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
496 }
497
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)498 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
499 {
500 f2fs_submit_merged_write(sbi, DATA);
501 f2fs_submit_merged_write(sbi, NODE);
502 f2fs_submit_merged_write(sbi, META);
503 }
504
505 /*
506 * Fill the locked page with data located in the block address.
507 * A caller needs to unlock the page on failure.
508 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)509 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
510 {
511 struct bio *bio;
512 struct page *page = fio->encrypted_page ?
513 fio->encrypted_page : fio->page;
514
515 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
516 fio->is_por ? META_POR : (__is_meta_io(fio) ?
517 META_GENERIC : DATA_GENERIC_ENHANCE)))
518 return -EFSCORRUPTED;
519
520 trace_f2fs_submit_page_bio(page, fio);
521 f2fs_trace_ios(fio, 0);
522
523 /* Allocate a new bio */
524 bio = __bio_alloc(fio, 1);
525
526 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
527 fio->page->index, fio, GFP_NOIO);
528
529 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
530 bio_put(bio);
531 return -EFAULT;
532 }
533
534 if (fio->io_wbc && !is_read_io(fio->op))
535 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
536
537 bio_set_op_attrs(bio, fio->op, fio->op_flags);
538
539 inc_page_count(fio->sbi, is_read_io(fio->op) ?
540 __read_io_type(page): WB_DATA_TYPE(fio->page));
541
542 __submit_bio(fio->sbi, bio, fio->type);
543 return 0;
544 }
545
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)546 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
547 block_t last_blkaddr, block_t cur_blkaddr)
548 {
549 if (last_blkaddr + 1 != cur_blkaddr)
550 return false;
551 return __same_bdev(sbi, cur_blkaddr, bio);
552 }
553
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)554 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
555 struct f2fs_io_info *fio)
556 {
557 if (io->fio.op != fio->op)
558 return false;
559 return io->fio.op_flags == fio->op_flags;
560 }
561
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)562 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
563 struct f2fs_bio_info *io,
564 struct f2fs_io_info *fio,
565 block_t last_blkaddr,
566 block_t cur_blkaddr)
567 {
568 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
569 unsigned int filled_blocks =
570 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
571 unsigned int io_size = F2FS_IO_SIZE(sbi);
572 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
573
574 /* IOs in bio is aligned and left space of vectors is not enough */
575 if (!(filled_blocks % io_size) && left_vecs < io_size)
576 return false;
577 }
578 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
579 return false;
580 return io_type_is_mergeable(io, fio);
581 }
582
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)583 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
584 struct page *page, enum temp_type temp)
585 {
586 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
587 struct bio_entry *be;
588
589 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
590 be->bio = bio;
591 bio_get(bio);
592
593 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
594 f2fs_bug_on(sbi, 1);
595
596 down_write(&io->bio_list_lock);
597 list_add_tail(&be->list, &io->bio_list);
598 up_write(&io->bio_list_lock);
599 }
600
del_bio_entry(struct bio_entry * be)601 static void del_bio_entry(struct bio_entry *be)
602 {
603 list_del(&be->list);
604 kmem_cache_free(bio_entry_slab, be);
605 }
606
add_ipu_page(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)607 static int add_ipu_page(struct f2fs_sb_info *sbi, struct bio **bio,
608 struct page *page)
609 {
610 enum temp_type temp;
611 bool found = false;
612 int ret = -EAGAIN;
613
614 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
615 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
616 struct list_head *head = &io->bio_list;
617 struct bio_entry *be;
618
619 down_write(&io->bio_list_lock);
620 list_for_each_entry(be, head, list) {
621 if (be->bio != *bio)
622 continue;
623
624 found = true;
625
626 if (bio_add_page(*bio, page, PAGE_SIZE, 0) == PAGE_SIZE) {
627 ret = 0;
628 break;
629 }
630
631 /* bio is full */
632 del_bio_entry(be);
633 __submit_bio(sbi, *bio, DATA);
634 break;
635 }
636 up_write(&io->bio_list_lock);
637 }
638
639 if (ret) {
640 bio_put(*bio);
641 *bio = NULL;
642 }
643
644 return ret;
645 }
646
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)647 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
648 struct bio **bio, struct page *page)
649 {
650 enum temp_type temp;
651 bool found = false;
652 struct bio *target = bio ? *bio : NULL;
653
654 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
655 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
656 struct list_head *head = &io->bio_list;
657 struct bio_entry *be;
658
659 if (list_empty(head))
660 continue;
661
662 down_read(&io->bio_list_lock);
663 list_for_each_entry(be, head, list) {
664 if (target)
665 found = (target == be->bio);
666 else
667 found = __has_merged_page(be->bio, NULL,
668 page, 0);
669 if (found)
670 break;
671 }
672 up_read(&io->bio_list_lock);
673
674 if (!found)
675 continue;
676
677 found = false;
678
679 down_write(&io->bio_list_lock);
680 list_for_each_entry(be, head, list) {
681 if (target)
682 found = (target == be->bio);
683 else
684 found = __has_merged_page(be->bio, NULL,
685 page, 0);
686 if (found) {
687 target = be->bio;
688 del_bio_entry(be);
689 break;
690 }
691 }
692 up_write(&io->bio_list_lock);
693 }
694
695 if (found)
696 __submit_bio(sbi, target, DATA);
697 if (bio && *bio) {
698 bio_put(*bio);
699 *bio = NULL;
700 }
701 }
702
f2fs_merge_page_bio(struct f2fs_io_info * fio)703 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
704 {
705 struct bio *bio = *fio->bio;
706 struct page *page = fio->encrypted_page ?
707 fio->encrypted_page : fio->page;
708
709 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
710 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
711 return -EFSCORRUPTED;
712
713 trace_f2fs_submit_page_bio(page, fio);
714 f2fs_trace_ios(fio, 0);
715
716 if (bio && (!page_is_mergeable(fio->sbi, bio, *fio->last_block,
717 fio->new_blkaddr) ||
718 !f2fs_crypt_mergeable_bio(bio, fio->page->mapping->host,
719 fio->page->index, fio)))
720 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
721 alloc_new:
722 if (!bio) {
723 bio = __bio_alloc(fio, BIO_MAX_PAGES);
724 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
725 fio->page->index, fio,
726 GFP_NOIO);
727 bio_set_op_attrs(bio, fio->op, fio->op_flags);
728
729 add_bio_entry(fio->sbi, bio, page, fio->temp);
730 } else {
731 if (add_ipu_page(fio->sbi, &bio, page))
732 goto alloc_new;
733 }
734
735 if (fio->io_wbc)
736 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
737
738 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
739
740 *fio->last_block = fio->new_blkaddr;
741 *fio->bio = bio;
742
743 return 0;
744 }
745
f2fs_submit_page_write(struct f2fs_io_info * fio)746 void f2fs_submit_page_write(struct f2fs_io_info *fio)
747 {
748 struct f2fs_sb_info *sbi = fio->sbi;
749 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
750 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
751 struct page *bio_page;
752
753 f2fs_bug_on(sbi, is_read_io(fio->op));
754
755 down_write(&io->io_rwsem);
756 next:
757 if (fio->in_list) {
758 spin_lock(&io->io_lock);
759 if (list_empty(&io->io_list)) {
760 spin_unlock(&io->io_lock);
761 goto out;
762 }
763 fio = list_first_entry(&io->io_list,
764 struct f2fs_io_info, list);
765 list_del(&fio->list);
766 spin_unlock(&io->io_lock);
767 }
768
769 verify_fio_blkaddr(fio);
770
771 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
772
773 /* set submitted = true as a return value */
774 fio->submitted = true;
775
776 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
777
778 if (io->bio &&
779 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
780 fio->new_blkaddr) ||
781 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
782 fio->page->index, fio)))
783 __submit_merged_bio(io);
784 alloc_new:
785 if (io->bio == NULL) {
786 if (F2FS_IO_ALIGNED(sbi) &&
787 (fio->type == DATA || fio->type == NODE) &&
788 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
789 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
790 fio->retry = true;
791 goto skip;
792 }
793 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
794 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
795 fio->page->index, fio,
796 GFP_NOIO);
797 io->fio = *fio;
798 }
799
800 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
801 __submit_merged_bio(io);
802 goto alloc_new;
803 }
804
805 if (fio->io_wbc)
806 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
807
808 io->last_block_in_bio = fio->new_blkaddr;
809 f2fs_trace_ios(fio, 0);
810
811 trace_f2fs_submit_page_write(fio->page, fio);
812 skip:
813 if (fio->in_list)
814 goto next;
815 out:
816 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
817 !f2fs_is_checkpoint_ready(sbi))
818 __submit_merged_bio(io);
819 up_write(&io->io_rwsem);
820 }
821
f2fs_need_verity(const struct inode * inode,pgoff_t idx)822 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
823 {
824 return fsverity_active(inode) &&
825 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
826 }
827
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx)828 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
829 unsigned nr_pages, unsigned op_flag,
830 pgoff_t first_idx)
831 {
832 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
833 struct bio *bio;
834 struct bio_post_read_ctx *ctx;
835 unsigned int post_read_steps = 0;
836
837 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
838 if (!bio)
839 return ERR_PTR(-ENOMEM);
840
841 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
842
843 f2fs_target_device(sbi, blkaddr, bio);
844 bio->bi_end_io = f2fs_read_end_io;
845 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
846
847 if (fscrypt_inode_uses_fs_layer_crypto(inode))
848 post_read_steps |= 1 << STEP_DECRYPT;
849
850 if (f2fs_need_verity(inode, first_idx))
851 post_read_steps |= 1 << STEP_VERITY;
852
853 if (post_read_steps) {
854 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
855 if (!ctx) {
856 bio_put(bio);
857 return ERR_PTR(-ENOMEM);
858 }
859 ctx->bio = bio;
860 ctx->enabled_steps = post_read_steps;
861 bio->bi_private = ctx;
862 }
863
864 return bio;
865 }
866
867 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr)868 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
869 block_t blkaddr)
870 {
871 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
872 struct bio *bio;
873
874 bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index);
875 if (IS_ERR(bio))
876 return PTR_ERR(bio);
877
878 /* wait for GCed page writeback via META_MAPPING */
879 f2fs_wait_on_block_writeback(inode, blkaddr);
880
881 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
882 bio_put(bio);
883 return -EFAULT;
884 }
885 ClearPageError(page);
886 inc_page_count(sbi, F2FS_RD_DATA);
887 __submit_bio(sbi, bio, DATA);
888 return 0;
889 }
890
__set_data_blkaddr(struct dnode_of_data * dn)891 static void __set_data_blkaddr(struct dnode_of_data *dn)
892 {
893 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
894 __le32 *addr_array;
895 int base = 0;
896
897 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
898 base = get_extra_isize(dn->inode);
899
900 /* Get physical address of data block */
901 addr_array = blkaddr_in_node(rn);
902 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
903 }
904
905 /*
906 * Lock ordering for the change of data block address:
907 * ->data_page
908 * ->node_page
909 * update block addresses in the node page
910 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)911 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
912 {
913 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
914 __set_data_blkaddr(dn);
915 if (set_page_dirty(dn->node_page))
916 dn->node_changed = true;
917 }
918
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)919 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
920 {
921 dn->data_blkaddr = blkaddr;
922 f2fs_set_data_blkaddr(dn);
923 f2fs_update_extent_cache(dn);
924 }
925
926 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)927 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
928 {
929 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
930 int err;
931
932 if (!count)
933 return 0;
934
935 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
936 return -EPERM;
937 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
938 return err;
939
940 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
941 dn->ofs_in_node, count);
942
943 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
944
945 for (; count > 0; dn->ofs_in_node++) {
946 block_t blkaddr = datablock_addr(dn->inode,
947 dn->node_page, dn->ofs_in_node);
948 if (blkaddr == NULL_ADDR) {
949 dn->data_blkaddr = NEW_ADDR;
950 __set_data_blkaddr(dn);
951 count--;
952 }
953 }
954
955 if (set_page_dirty(dn->node_page))
956 dn->node_changed = true;
957 return 0;
958 }
959
960 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)961 int f2fs_reserve_new_block(struct dnode_of_data *dn)
962 {
963 unsigned int ofs_in_node = dn->ofs_in_node;
964 int ret;
965
966 ret = f2fs_reserve_new_blocks(dn, 1);
967 dn->ofs_in_node = ofs_in_node;
968 return ret;
969 }
970
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)971 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
972 {
973 bool need_put = dn->inode_page ? false : true;
974 int err;
975
976 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
977 if (err)
978 return err;
979
980 if (dn->data_blkaddr == NULL_ADDR)
981 err = f2fs_reserve_new_block(dn);
982 if (err || need_put)
983 f2fs_put_dnode(dn);
984 return err;
985 }
986
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)987 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
988 {
989 struct extent_info ei = {0,0,0};
990 struct inode *inode = dn->inode;
991
992 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
993 dn->data_blkaddr = ei.blk + index - ei.fofs;
994 return 0;
995 }
996
997 return f2fs_reserve_block(dn, index);
998 }
999
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)1000 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1001 int op_flags, bool for_write)
1002 {
1003 struct address_space *mapping = inode->i_mapping;
1004 struct dnode_of_data dn;
1005 struct page *page;
1006 struct extent_info ei = {0,0,0};
1007 int err;
1008
1009 page = f2fs_grab_cache_page(mapping, index, for_write);
1010 if (!page)
1011 return ERR_PTR(-ENOMEM);
1012
1013 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1014 dn.data_blkaddr = ei.blk + index - ei.fofs;
1015 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1016 DATA_GENERIC_ENHANCE_READ)) {
1017 err = -EFSCORRUPTED;
1018 goto put_err;
1019 }
1020 goto got_it;
1021 }
1022
1023 set_new_dnode(&dn, inode, NULL, NULL, 0);
1024 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1025 if (err)
1026 goto put_err;
1027 f2fs_put_dnode(&dn);
1028
1029 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1030 err = -ENOENT;
1031 goto put_err;
1032 }
1033 if (dn.data_blkaddr != NEW_ADDR &&
1034 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1035 dn.data_blkaddr,
1036 DATA_GENERIC_ENHANCE)) {
1037 err = -EFSCORRUPTED;
1038 goto put_err;
1039 }
1040 got_it:
1041 if (PageUptodate(page)) {
1042 unlock_page(page);
1043 return page;
1044 }
1045
1046 /*
1047 * A new dentry page is allocated but not able to be written, since its
1048 * new inode page couldn't be allocated due to -ENOSPC.
1049 * In such the case, its blkaddr can be remained as NEW_ADDR.
1050 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1051 * f2fs_init_inode_metadata.
1052 */
1053 if (dn.data_blkaddr == NEW_ADDR) {
1054 zero_user_segment(page, 0, PAGE_SIZE);
1055 if (!PageUptodate(page))
1056 SetPageUptodate(page);
1057 unlock_page(page);
1058 return page;
1059 }
1060
1061 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
1062 if (err)
1063 goto put_err;
1064 return page;
1065
1066 put_err:
1067 f2fs_put_page(page, 1);
1068 return ERR_PTR(err);
1069 }
1070
f2fs_find_data_page(struct inode * inode,pgoff_t index)1071 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1072 {
1073 struct address_space *mapping = inode->i_mapping;
1074 struct page *page;
1075
1076 page = find_get_page(mapping, index);
1077 if (page && PageUptodate(page))
1078 return page;
1079 f2fs_put_page(page, 0);
1080
1081 page = f2fs_get_read_data_page(inode, index, 0, false);
1082 if (IS_ERR(page))
1083 return page;
1084
1085 if (PageUptodate(page))
1086 return page;
1087
1088 wait_on_page_locked(page);
1089 if (unlikely(!PageUptodate(page))) {
1090 f2fs_put_page(page, 0);
1091 return ERR_PTR(-EIO);
1092 }
1093 return page;
1094 }
1095
1096 /*
1097 * If it tries to access a hole, return an error.
1098 * Because, the callers, functions in dir.c and GC, should be able to know
1099 * whether this page exists or not.
1100 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1101 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1102 bool for_write)
1103 {
1104 struct address_space *mapping = inode->i_mapping;
1105 struct page *page;
1106 repeat:
1107 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1108 if (IS_ERR(page))
1109 return page;
1110
1111 /* wait for read completion */
1112 lock_page(page);
1113 if (unlikely(page->mapping != mapping)) {
1114 f2fs_put_page(page, 1);
1115 goto repeat;
1116 }
1117 if (unlikely(!PageUptodate(page))) {
1118 f2fs_put_page(page, 1);
1119 return ERR_PTR(-EIO);
1120 }
1121 return page;
1122 }
1123
1124 /*
1125 * Caller ensures that this data page is never allocated.
1126 * A new zero-filled data page is allocated in the page cache.
1127 *
1128 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1129 * f2fs_unlock_op().
1130 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1131 * ipage should be released by this function.
1132 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1133 struct page *f2fs_get_new_data_page(struct inode *inode,
1134 struct page *ipage, pgoff_t index, bool new_i_size)
1135 {
1136 struct address_space *mapping = inode->i_mapping;
1137 struct page *page;
1138 struct dnode_of_data dn;
1139 int err;
1140
1141 page = f2fs_grab_cache_page(mapping, index, true);
1142 if (!page) {
1143 /*
1144 * before exiting, we should make sure ipage will be released
1145 * if any error occur.
1146 */
1147 f2fs_put_page(ipage, 1);
1148 return ERR_PTR(-ENOMEM);
1149 }
1150
1151 set_new_dnode(&dn, inode, ipage, NULL, 0);
1152 err = f2fs_reserve_block(&dn, index);
1153 if (err) {
1154 f2fs_put_page(page, 1);
1155 return ERR_PTR(err);
1156 }
1157 if (!ipage)
1158 f2fs_put_dnode(&dn);
1159
1160 if (PageUptodate(page))
1161 goto got_it;
1162
1163 if (dn.data_blkaddr == NEW_ADDR) {
1164 zero_user_segment(page, 0, PAGE_SIZE);
1165 if (!PageUptodate(page))
1166 SetPageUptodate(page);
1167 } else {
1168 f2fs_put_page(page, 1);
1169
1170 /* if ipage exists, blkaddr should be NEW_ADDR */
1171 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1172 page = f2fs_get_lock_data_page(inode, index, true);
1173 if (IS_ERR(page))
1174 return page;
1175 }
1176 got_it:
1177 if (new_i_size && i_size_read(inode) <
1178 ((loff_t)(index + 1) << PAGE_SHIFT))
1179 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1180 return page;
1181 }
1182
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1183 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1184 {
1185 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1186 struct f2fs_summary sum;
1187 struct node_info ni;
1188 block_t old_blkaddr;
1189 blkcnt_t count = 1;
1190 int err;
1191
1192 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1193 return -EPERM;
1194
1195 err = f2fs_get_node_info(sbi, dn->nid, &ni);
1196 if (err)
1197 return err;
1198
1199 dn->data_blkaddr = datablock_addr(dn->inode,
1200 dn->node_page, dn->ofs_in_node);
1201 if (dn->data_blkaddr != NULL_ADDR)
1202 goto alloc;
1203
1204 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1205 return err;
1206
1207 alloc:
1208 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1209 old_blkaddr = dn->data_blkaddr;
1210 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1211 &sum, seg_type, NULL, false);
1212 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1213 invalidate_mapping_pages(META_MAPPING(sbi),
1214 old_blkaddr, old_blkaddr);
1215 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1216
1217 /*
1218 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1219 * data from unwritten block via dio_read.
1220 */
1221 return 0;
1222 }
1223
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * from)1224 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1225 {
1226 struct inode *inode = file_inode(iocb->ki_filp);
1227 struct f2fs_map_blocks map;
1228 int flag;
1229 int err = 0;
1230 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1231
1232 /* convert inline data for Direct I/O*/
1233 if (direct_io) {
1234 err = f2fs_convert_inline_inode(inode);
1235 if (err)
1236 return err;
1237 }
1238
1239 if (direct_io && allow_outplace_dio(inode, iocb, from))
1240 return 0;
1241
1242 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
1243 return 0;
1244
1245 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1246 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1247 if (map.m_len > map.m_lblk)
1248 map.m_len -= map.m_lblk;
1249 else
1250 map.m_len = 0;
1251
1252 map.m_next_pgofs = NULL;
1253 map.m_next_extent = NULL;
1254 map.m_seg_type = NO_CHECK_TYPE;
1255 map.m_may_create = true;
1256
1257 if (direct_io) {
1258 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1259 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1260 F2FS_GET_BLOCK_PRE_AIO :
1261 F2FS_GET_BLOCK_PRE_DIO;
1262 goto map_blocks;
1263 }
1264 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1265 err = f2fs_convert_inline_inode(inode);
1266 if (err)
1267 return err;
1268 }
1269 if (f2fs_has_inline_data(inode))
1270 return err;
1271
1272 flag = F2FS_GET_BLOCK_PRE_AIO;
1273
1274 map_blocks:
1275 err = f2fs_map_blocks(inode, &map, 1, flag);
1276 if (map.m_len > 0 && err == -ENOSPC) {
1277 if (!direct_io)
1278 set_inode_flag(inode, FI_NO_PREALLOC);
1279 err = 0;
1280 }
1281 return err;
1282 }
1283
__do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1284 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1285 {
1286 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1287 if (lock)
1288 down_read(&sbi->node_change);
1289 else
1290 up_read(&sbi->node_change);
1291 } else {
1292 if (lock)
1293 f2fs_lock_op(sbi);
1294 else
1295 f2fs_unlock_op(sbi);
1296 }
1297 }
1298
1299 /*
1300 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1301 * f2fs_map_blocks structure.
1302 * If original data blocks are allocated, then give them to blockdev.
1303 * Otherwise,
1304 * a. preallocate requested block addresses
1305 * b. do not use extent cache for better performance
1306 * c. give the block addresses to blockdev
1307 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1308 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1309 int create, int flag)
1310 {
1311 unsigned int maxblocks = map->m_len;
1312 struct dnode_of_data dn;
1313 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1314 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1315 pgoff_t pgofs, end_offset, end;
1316 int err = 0, ofs = 1;
1317 unsigned int ofs_in_node, last_ofs_in_node;
1318 blkcnt_t prealloc;
1319 struct extent_info ei = {0,0,0};
1320 block_t blkaddr;
1321 unsigned int start_pgofs;
1322
1323 if (!maxblocks)
1324 return 0;
1325
1326 map->m_len = 0;
1327 map->m_flags = 0;
1328
1329 /* it only supports block size == page size */
1330 pgofs = (pgoff_t)map->m_lblk;
1331 end = pgofs + maxblocks;
1332
1333 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1334 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1335 map->m_may_create)
1336 goto next_dnode;
1337
1338 map->m_pblk = ei.blk + pgofs - ei.fofs;
1339 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1340 map->m_flags = F2FS_MAP_MAPPED;
1341 if (map->m_next_extent)
1342 *map->m_next_extent = pgofs + map->m_len;
1343
1344 /* for hardware encryption, but to avoid potential issue in future */
1345 if (flag == F2FS_GET_BLOCK_DIO)
1346 f2fs_wait_on_block_writeback_range(inode,
1347 map->m_pblk, map->m_len);
1348 goto out;
1349 }
1350
1351 next_dnode:
1352 if (map->m_may_create)
1353 __do_map_lock(sbi, flag, true);
1354
1355 /* When reading holes, we need its node page */
1356 set_new_dnode(&dn, inode, NULL, NULL, 0);
1357 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1358 if (err) {
1359 if (flag == F2FS_GET_BLOCK_BMAP)
1360 map->m_pblk = 0;
1361 if (err == -ENOENT) {
1362 err = 0;
1363 if (map->m_next_pgofs)
1364 *map->m_next_pgofs =
1365 f2fs_get_next_page_offset(&dn, pgofs);
1366 if (map->m_next_extent)
1367 *map->m_next_extent =
1368 f2fs_get_next_page_offset(&dn, pgofs);
1369 }
1370 goto unlock_out;
1371 }
1372
1373 start_pgofs = pgofs;
1374 prealloc = 0;
1375 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1376 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1377
1378 next_block:
1379 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1380
1381 if (__is_valid_data_blkaddr(blkaddr) &&
1382 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1383 err = -EFSCORRUPTED;
1384 goto sync_out;
1385 }
1386
1387 if (__is_valid_data_blkaddr(blkaddr)) {
1388 /* use out-place-update for driect IO under LFS mode */
1389 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1390 map->m_may_create) {
1391 err = __allocate_data_block(&dn, map->m_seg_type);
1392 if (err)
1393 goto sync_out;
1394 blkaddr = dn.data_blkaddr;
1395 set_inode_flag(inode, FI_APPEND_WRITE);
1396 }
1397 } else {
1398 if (create) {
1399 if (unlikely(f2fs_cp_error(sbi))) {
1400 err = -EIO;
1401 goto sync_out;
1402 }
1403 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1404 if (blkaddr == NULL_ADDR) {
1405 prealloc++;
1406 last_ofs_in_node = dn.ofs_in_node;
1407 }
1408 } else {
1409 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1410 flag != F2FS_GET_BLOCK_DIO);
1411 err = __allocate_data_block(&dn,
1412 map->m_seg_type);
1413 if (!err)
1414 set_inode_flag(inode, FI_APPEND_WRITE);
1415 }
1416 if (err)
1417 goto sync_out;
1418 map->m_flags |= F2FS_MAP_NEW;
1419 blkaddr = dn.data_blkaddr;
1420 } else {
1421 if (flag == F2FS_GET_BLOCK_BMAP) {
1422 map->m_pblk = 0;
1423 goto sync_out;
1424 }
1425 if (flag == F2FS_GET_BLOCK_PRECACHE)
1426 goto sync_out;
1427 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1428 blkaddr == NULL_ADDR) {
1429 if (map->m_next_pgofs)
1430 *map->m_next_pgofs = pgofs + 1;
1431 goto sync_out;
1432 }
1433 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1434 /* for defragment case */
1435 if (map->m_next_pgofs)
1436 *map->m_next_pgofs = pgofs + 1;
1437 goto sync_out;
1438 }
1439 }
1440 }
1441
1442 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1443 goto skip;
1444
1445 if (map->m_len == 0) {
1446 /* preallocated unwritten block should be mapped for fiemap. */
1447 if (blkaddr == NEW_ADDR)
1448 map->m_flags |= F2FS_MAP_UNWRITTEN;
1449 map->m_flags |= F2FS_MAP_MAPPED;
1450
1451 map->m_pblk = blkaddr;
1452 map->m_len = 1;
1453 } else if ((map->m_pblk != NEW_ADDR &&
1454 blkaddr == (map->m_pblk + ofs)) ||
1455 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1456 flag == F2FS_GET_BLOCK_PRE_DIO) {
1457 ofs++;
1458 map->m_len++;
1459 } else {
1460 goto sync_out;
1461 }
1462
1463 skip:
1464 dn.ofs_in_node++;
1465 pgofs++;
1466
1467 /* preallocate blocks in batch for one dnode page */
1468 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1469 (pgofs == end || dn.ofs_in_node == end_offset)) {
1470
1471 dn.ofs_in_node = ofs_in_node;
1472 err = f2fs_reserve_new_blocks(&dn, prealloc);
1473 if (err)
1474 goto sync_out;
1475
1476 map->m_len += dn.ofs_in_node - ofs_in_node;
1477 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1478 err = -ENOSPC;
1479 goto sync_out;
1480 }
1481 dn.ofs_in_node = end_offset;
1482 }
1483
1484 if (pgofs >= end)
1485 goto sync_out;
1486 else if (dn.ofs_in_node < end_offset)
1487 goto next_block;
1488
1489 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1490 if (map->m_flags & F2FS_MAP_MAPPED) {
1491 unsigned int ofs = start_pgofs - map->m_lblk;
1492
1493 f2fs_update_extent_cache_range(&dn,
1494 start_pgofs, map->m_pblk + ofs,
1495 map->m_len - ofs);
1496 }
1497 }
1498
1499 f2fs_put_dnode(&dn);
1500
1501 if (map->m_may_create) {
1502 __do_map_lock(sbi, flag, false);
1503 f2fs_balance_fs(sbi, dn.node_changed);
1504 }
1505 goto next_dnode;
1506
1507 sync_out:
1508
1509 /* for hardware encryption, but to avoid potential issue in future */
1510 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1511 f2fs_wait_on_block_writeback_range(inode,
1512 map->m_pblk, map->m_len);
1513
1514 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1515 if (map->m_flags & F2FS_MAP_MAPPED) {
1516 unsigned int ofs = start_pgofs - map->m_lblk;
1517
1518 f2fs_update_extent_cache_range(&dn,
1519 start_pgofs, map->m_pblk + ofs,
1520 map->m_len - ofs);
1521 }
1522 if (map->m_next_extent)
1523 *map->m_next_extent = pgofs + 1;
1524 }
1525 f2fs_put_dnode(&dn);
1526 unlock_out:
1527 if (map->m_may_create) {
1528 __do_map_lock(sbi, flag, false);
1529 f2fs_balance_fs(sbi, dn.node_changed);
1530 }
1531 out:
1532 trace_f2fs_map_blocks(inode, map, err);
1533 return err;
1534 }
1535
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1536 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1537 {
1538 struct f2fs_map_blocks map;
1539 block_t last_lblk;
1540 int err;
1541
1542 if (pos + len > i_size_read(inode))
1543 return false;
1544
1545 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1546 map.m_next_pgofs = NULL;
1547 map.m_next_extent = NULL;
1548 map.m_seg_type = NO_CHECK_TYPE;
1549 map.m_may_create = false;
1550 last_lblk = F2FS_BLK_ALIGN(pos + len);
1551
1552 while (map.m_lblk < last_lblk) {
1553 map.m_len = last_lblk - map.m_lblk;
1554 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1555 if (err || map.m_len == 0)
1556 return false;
1557 map.m_lblk += map.m_len;
1558 }
1559 return true;
1560 }
1561
__get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create,int flag,pgoff_t * next_pgofs,int seg_type,bool may_write)1562 static int __get_data_block(struct inode *inode, sector_t iblock,
1563 struct buffer_head *bh, int create, int flag,
1564 pgoff_t *next_pgofs, int seg_type, bool may_write)
1565 {
1566 struct f2fs_map_blocks map;
1567 int err;
1568
1569 map.m_lblk = iblock;
1570 map.m_len = bh->b_size >> inode->i_blkbits;
1571 map.m_next_pgofs = next_pgofs;
1572 map.m_next_extent = NULL;
1573 map.m_seg_type = seg_type;
1574 map.m_may_create = may_write;
1575
1576 err = f2fs_map_blocks(inode, &map, create, flag);
1577 if (!err) {
1578 map_bh(bh, inode->i_sb, map.m_pblk);
1579 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1580 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1581 }
1582 return err;
1583 }
1584
get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,int flag,pgoff_t * next_pgofs)1585 static int get_data_block(struct inode *inode, sector_t iblock,
1586 struct buffer_head *bh_result, int create, int flag,
1587 pgoff_t *next_pgofs)
1588 {
1589 return __get_data_block(inode, iblock, bh_result, create,
1590 flag, next_pgofs,
1591 NO_CHECK_TYPE, create);
1592 }
1593
get_data_block_dio_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1594 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1595 struct buffer_head *bh_result, int create)
1596 {
1597 return __get_data_block(inode, iblock, bh_result, create,
1598 F2FS_GET_BLOCK_DIO, NULL,
1599 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1600 IS_SWAPFILE(inode) ? false : true);
1601 }
1602
get_data_block_dio(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1603 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1604 struct buffer_head *bh_result, int create)
1605 {
1606 return __get_data_block(inode, iblock, bh_result, create,
1607 F2FS_GET_BLOCK_DIO, NULL,
1608 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1609 false);
1610 }
1611
get_data_block_bmap(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1612 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1613 struct buffer_head *bh_result, int create)
1614 {
1615 /* Block number less than F2FS MAX BLOCKS */
1616 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1617 return -EFBIG;
1618
1619 return __get_data_block(inode, iblock, bh_result, create,
1620 F2FS_GET_BLOCK_BMAP, NULL,
1621 NO_CHECK_TYPE, create);
1622 }
1623
logical_to_blk(struct inode * inode,loff_t offset)1624 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1625 {
1626 return (offset >> inode->i_blkbits);
1627 }
1628
blk_to_logical(struct inode * inode,sector_t blk)1629 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1630 {
1631 return (blk << inode->i_blkbits);
1632 }
1633
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1634 static int f2fs_xattr_fiemap(struct inode *inode,
1635 struct fiemap_extent_info *fieinfo)
1636 {
1637 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1638 struct page *page;
1639 struct node_info ni;
1640 __u64 phys = 0, len;
1641 __u32 flags;
1642 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1643 int err = 0;
1644
1645 if (f2fs_has_inline_xattr(inode)) {
1646 int offset;
1647
1648 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1649 inode->i_ino, false);
1650 if (!page)
1651 return -ENOMEM;
1652
1653 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1654 if (err) {
1655 f2fs_put_page(page, 1);
1656 return err;
1657 }
1658
1659 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1660 offset = offsetof(struct f2fs_inode, i_addr) +
1661 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1662 get_inline_xattr_addrs(inode));
1663
1664 phys += offset;
1665 len = inline_xattr_size(inode);
1666
1667 f2fs_put_page(page, 1);
1668
1669 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1670
1671 if (!xnid)
1672 flags |= FIEMAP_EXTENT_LAST;
1673
1674 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1675 if (err || err == 1)
1676 return err;
1677 }
1678
1679 if (xnid) {
1680 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1681 if (!page)
1682 return -ENOMEM;
1683
1684 err = f2fs_get_node_info(sbi, xnid, &ni);
1685 if (err) {
1686 f2fs_put_page(page, 1);
1687 return err;
1688 }
1689
1690 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1691 len = inode->i_sb->s_blocksize;
1692
1693 f2fs_put_page(page, 1);
1694
1695 flags = FIEMAP_EXTENT_LAST;
1696 }
1697
1698 if (phys)
1699 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1700
1701 return (err < 0 ? err : 0);
1702 }
1703
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1704 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1705 u64 start, u64 len)
1706 {
1707 struct buffer_head map_bh;
1708 sector_t start_blk, last_blk;
1709 pgoff_t next_pgofs;
1710 u64 logical = 0, phys = 0, size = 0;
1711 u32 flags = 0;
1712 int ret = 0;
1713
1714 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1715 ret = f2fs_precache_extents(inode);
1716 if (ret)
1717 return ret;
1718 }
1719
1720 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1721 if (ret)
1722 return ret;
1723
1724 inode_lock(inode);
1725
1726 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1727 ret = f2fs_xattr_fiemap(inode, fieinfo);
1728 goto out;
1729 }
1730
1731 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1732 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1733 if (ret != -EAGAIN)
1734 goto out;
1735 }
1736
1737 if (logical_to_blk(inode, len) == 0)
1738 len = blk_to_logical(inode, 1);
1739
1740 start_blk = logical_to_blk(inode, start);
1741 last_blk = logical_to_blk(inode, start + len - 1);
1742
1743 next:
1744 memset(&map_bh, 0, sizeof(struct buffer_head));
1745 map_bh.b_size = len;
1746
1747 ret = get_data_block(inode, start_blk, &map_bh, 0,
1748 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1749 if (ret)
1750 goto out;
1751
1752 /* HOLE */
1753 if (!buffer_mapped(&map_bh)) {
1754 start_blk = next_pgofs;
1755
1756 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1757 F2FS_I_SB(inode)->max_file_blocks))
1758 goto prep_next;
1759
1760 flags |= FIEMAP_EXTENT_LAST;
1761 }
1762
1763 if (size) {
1764 if (IS_ENCRYPTED(inode))
1765 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1766
1767 ret = fiemap_fill_next_extent(fieinfo, logical,
1768 phys, size, flags);
1769 }
1770
1771 if (start_blk > last_blk || ret)
1772 goto out;
1773
1774 logical = blk_to_logical(inode, start_blk);
1775 phys = blk_to_logical(inode, map_bh.b_blocknr);
1776 size = map_bh.b_size;
1777 flags = 0;
1778 if (buffer_unwritten(&map_bh))
1779 flags = FIEMAP_EXTENT_UNWRITTEN;
1780
1781 start_blk += logical_to_blk(inode, size);
1782
1783 prep_next:
1784 cond_resched();
1785 if (fatal_signal_pending(current))
1786 ret = -EINTR;
1787 else
1788 goto next;
1789 out:
1790 if (ret == 1)
1791 ret = 0;
1792
1793 inode_unlock(inode);
1794 return ret;
1795 }
1796
f2fs_readpage_limit(struct inode * inode)1797 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1798 {
1799 if (IS_ENABLED(CONFIG_FS_VERITY) &&
1800 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1801 return inode->i_sb->s_maxbytes;
1802
1803 return i_size_read(inode);
1804 }
1805
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)1806 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1807 unsigned nr_pages,
1808 struct f2fs_map_blocks *map,
1809 struct bio **bio_ret,
1810 sector_t *last_block_in_bio,
1811 bool is_readahead)
1812 {
1813 struct bio *bio = *bio_ret;
1814 const unsigned blkbits = inode->i_blkbits;
1815 const unsigned blocksize = 1 << blkbits;
1816 sector_t block_in_file;
1817 sector_t last_block;
1818 sector_t last_block_in_file;
1819 sector_t block_nr;
1820 int ret = 0;
1821
1822 block_in_file = (sector_t)page_index(page);
1823 last_block = block_in_file + nr_pages;
1824 last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1825 blkbits;
1826 if (last_block > last_block_in_file)
1827 last_block = last_block_in_file;
1828
1829 /* just zeroing out page which is beyond EOF */
1830 if (block_in_file >= last_block)
1831 goto zero_out;
1832 /*
1833 * Map blocks using the previous result first.
1834 */
1835 if ((map->m_flags & F2FS_MAP_MAPPED) &&
1836 block_in_file > map->m_lblk &&
1837 block_in_file < (map->m_lblk + map->m_len))
1838 goto got_it;
1839
1840 /*
1841 * Then do more f2fs_map_blocks() calls until we are
1842 * done with this page.
1843 */
1844 map->m_lblk = block_in_file;
1845 map->m_len = last_block - block_in_file;
1846
1847 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1848 if (ret)
1849 goto out;
1850 got_it:
1851 if ((map->m_flags & F2FS_MAP_MAPPED)) {
1852 block_nr = map->m_pblk + block_in_file - map->m_lblk;
1853 SetPageMappedToDisk(page);
1854
1855 if (!PageUptodate(page) && (!PageSwapCache(page) &&
1856 !cleancache_get_page(page))) {
1857 SetPageUptodate(page);
1858 goto confused;
1859 }
1860
1861 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1862 DATA_GENERIC_ENHANCE_READ)) {
1863 ret = -EFSCORRUPTED;
1864 goto out;
1865 }
1866 } else {
1867 zero_out:
1868 zero_user_segment(page, 0, PAGE_SIZE);
1869 if (f2fs_need_verity(inode, page->index) &&
1870 !fsverity_verify_page(page)) {
1871 ret = -EIO;
1872 goto out;
1873 }
1874 if (!PageUptodate(page))
1875 SetPageUptodate(page);
1876 unlock_page(page);
1877 goto out;
1878 }
1879
1880 /*
1881 * This page will go to BIO. Do we need to send this
1882 * BIO off first?
1883 */
1884 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
1885 *last_block_in_bio, block_nr) ||
1886 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
1887 submit_and_realloc:
1888 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1889 bio = NULL;
1890 }
1891 if (bio == NULL) {
1892 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1893 is_readahead ? REQ_RAHEAD : 0, page->index);
1894 if (IS_ERR(bio)) {
1895 ret = PTR_ERR(bio);
1896 bio = NULL;
1897 goto out;
1898 }
1899 }
1900
1901 /*
1902 * If the page is under writeback, we need to wait for
1903 * its completion to see the correct decrypted data.
1904 */
1905 f2fs_wait_on_block_writeback(inode, block_nr);
1906
1907 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1908 goto submit_and_realloc;
1909
1910 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1911 ClearPageError(page);
1912 *last_block_in_bio = block_nr;
1913 goto out;
1914 confused:
1915 if (bio) {
1916 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1917 bio = NULL;
1918 }
1919 unlock_page(page);
1920 out:
1921 *bio_ret = bio;
1922 return ret;
1923 }
1924
1925 /*
1926 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1927 * Major change was from block_size == page_size in f2fs by default.
1928 *
1929 * Note that the aops->readpages() function is ONLY used for read-ahead. If
1930 * this function ever deviates from doing just read-ahead, it should either
1931 * use ->readpage() or do the necessary surgery to decouple ->readpages()
1932 * from read-ahead.
1933 */
f2fs_mpage_readpages(struct address_space * mapping,struct list_head * pages,struct page * page,unsigned nr_pages,bool is_readahead)1934 static int f2fs_mpage_readpages(struct address_space *mapping,
1935 struct list_head *pages, struct page *page,
1936 unsigned nr_pages, bool is_readahead)
1937 {
1938 struct bio *bio = NULL;
1939 sector_t last_block_in_bio = 0;
1940 struct inode *inode = mapping->host;
1941 struct f2fs_map_blocks map;
1942 int ret = 0;
1943
1944 map.m_pblk = 0;
1945 map.m_lblk = 0;
1946 map.m_len = 0;
1947 map.m_flags = 0;
1948 map.m_next_pgofs = NULL;
1949 map.m_next_extent = NULL;
1950 map.m_seg_type = NO_CHECK_TYPE;
1951 map.m_may_create = false;
1952
1953 for (; nr_pages; nr_pages--) {
1954 if (pages) {
1955 page = list_last_entry(pages, struct page, lru);
1956
1957 prefetchw(&page->flags);
1958 list_del(&page->lru);
1959 if (add_to_page_cache_lru(page, mapping,
1960 page_index(page),
1961 readahead_gfp_mask(mapping)))
1962 goto next_page;
1963 }
1964
1965 ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1966 &last_block_in_bio, is_readahead);
1967 if (ret) {
1968 SetPageError(page);
1969 zero_user_segment(page, 0, PAGE_SIZE);
1970 unlock_page(page);
1971 }
1972 next_page:
1973 if (pages)
1974 put_page(page);
1975 }
1976 BUG_ON(pages && !list_empty(pages));
1977 if (bio)
1978 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1979 return pages ? 0 : ret;
1980 }
1981
f2fs_read_data_page(struct file * file,struct page * page)1982 static int f2fs_read_data_page(struct file *file, struct page *page)
1983 {
1984 struct inode *inode = page_file_mapping(page)->host;
1985 int ret = -EAGAIN;
1986
1987 trace_f2fs_readpage(page, DATA);
1988
1989 /* If the file has inline data, try to read it directly */
1990 if (f2fs_has_inline_data(inode))
1991 ret = f2fs_read_inline_data(inode, page);
1992 if (ret == -EAGAIN)
1993 ret = f2fs_mpage_readpages(page_file_mapping(page),
1994 NULL, page, 1, false);
1995 return ret;
1996 }
1997
f2fs_read_data_pages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1998 static int f2fs_read_data_pages(struct file *file,
1999 struct address_space *mapping,
2000 struct list_head *pages, unsigned nr_pages)
2001 {
2002 struct inode *inode = mapping->host;
2003 struct page *page = list_last_entry(pages, struct page, lru);
2004
2005 trace_f2fs_readpages(inode, page, nr_pages);
2006
2007 /* If the file has inline data, skip readpages */
2008 if (f2fs_has_inline_data(inode))
2009 return 0;
2010
2011 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
2012 }
2013
encrypt_one_page(struct f2fs_io_info * fio)2014 static int encrypt_one_page(struct f2fs_io_info *fio)
2015 {
2016 struct inode *inode = fio->page->mapping->host;
2017 struct page *mpage;
2018 gfp_t gfp_flags = GFP_NOFS;
2019
2020 if (!f2fs_encrypted_file(inode))
2021 return 0;
2022
2023 /* wait for GCed page writeback via META_MAPPING */
2024 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2025
2026 if (fscrypt_inode_uses_inline_crypto(inode))
2027 return 0;
2028
2029 retry_encrypt:
2030 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page,
2031 PAGE_SIZE, 0,
2032 gfp_flags);
2033 if (IS_ERR(fio->encrypted_page)) {
2034 /* flush pending IOs and wait for a while in the ENOMEM case */
2035 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2036 f2fs_flush_merged_writes(fio->sbi);
2037 congestion_wait(BLK_RW_ASYNC, HZ/50);
2038 gfp_flags |= __GFP_NOFAIL;
2039 goto retry_encrypt;
2040 }
2041 return PTR_ERR(fio->encrypted_page);
2042 }
2043
2044 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2045 if (mpage) {
2046 if (PageUptodate(mpage))
2047 memcpy(page_address(mpage),
2048 page_address(fio->encrypted_page), PAGE_SIZE);
2049 f2fs_put_page(mpage, 1);
2050 }
2051 return 0;
2052 }
2053
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2054 static inline bool check_inplace_update_policy(struct inode *inode,
2055 struct f2fs_io_info *fio)
2056 {
2057 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2058 unsigned int policy = SM_I(sbi)->ipu_policy;
2059
2060 if (policy & (0x1 << F2FS_IPU_FORCE))
2061 return true;
2062 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2063 return true;
2064 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2065 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2066 return true;
2067 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2068 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2069 return true;
2070
2071 /*
2072 * IPU for rewrite async pages
2073 */
2074 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2075 fio && fio->op == REQ_OP_WRITE &&
2076 !(fio->op_flags & REQ_SYNC) &&
2077 !IS_ENCRYPTED(inode))
2078 return true;
2079
2080 /* this is only set during fdatasync */
2081 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2082 is_inode_flag_set(inode, FI_NEED_IPU))
2083 return true;
2084
2085 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2086 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2087 return true;
2088
2089 return false;
2090 }
2091
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2092 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2093 {
2094 if (f2fs_is_pinned_file(inode))
2095 return true;
2096
2097 /* if this is cold file, we should overwrite to avoid fragmentation */
2098 if (file_is_cold(inode))
2099 return true;
2100
2101 return check_inplace_update_policy(inode, fio);
2102 }
2103
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2104 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2105 {
2106 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2107
2108 if (test_opt(sbi, LFS))
2109 return true;
2110 if (S_ISDIR(inode->i_mode))
2111 return true;
2112 if (IS_NOQUOTA(inode))
2113 return true;
2114 if (f2fs_is_atomic_file(inode))
2115 return true;
2116 if (fio) {
2117 if (is_cold_data(fio->page))
2118 return true;
2119 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2120 return true;
2121 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2122 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2123 return true;
2124 }
2125 return false;
2126 }
2127
need_inplace_update(struct f2fs_io_info * fio)2128 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2129 {
2130 struct inode *inode = fio->page->mapping->host;
2131
2132 if (f2fs_should_update_outplace(inode, fio))
2133 return false;
2134
2135 return f2fs_should_update_inplace(inode, fio);
2136 }
2137
f2fs_do_write_data_page(struct f2fs_io_info * fio)2138 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2139 {
2140 struct page *page = fio->page;
2141 struct inode *inode = page->mapping->host;
2142 struct dnode_of_data dn;
2143 struct extent_info ei = {0,0,0};
2144 struct node_info ni;
2145 bool ipu_force = false;
2146 int err = 0;
2147
2148 set_new_dnode(&dn, inode, NULL, NULL, 0);
2149 if (need_inplace_update(fio) &&
2150 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2151 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2152
2153 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2154 DATA_GENERIC_ENHANCE))
2155 return -EFSCORRUPTED;
2156
2157 ipu_force = true;
2158 fio->need_lock = LOCK_DONE;
2159 goto got_it;
2160 }
2161
2162 /* Deadlock due to between page->lock and f2fs_lock_op */
2163 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2164 return -EAGAIN;
2165
2166 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2167 if (err)
2168 goto out;
2169
2170 fio->old_blkaddr = dn.data_blkaddr;
2171
2172 /* This page is already truncated */
2173 if (fio->old_blkaddr == NULL_ADDR) {
2174 ClearPageUptodate(page);
2175 clear_cold_data(page);
2176 goto out_writepage;
2177 }
2178 got_it:
2179 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2180 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2181 DATA_GENERIC_ENHANCE)) {
2182 err = -EFSCORRUPTED;
2183 goto out_writepage;
2184 }
2185 /*
2186 * If current allocation needs SSR,
2187 * it had better in-place writes for updated data.
2188 */
2189 if (ipu_force ||
2190 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2191 need_inplace_update(fio))) {
2192 err = encrypt_one_page(fio);
2193 if (err)
2194 goto out_writepage;
2195
2196 set_page_writeback(page);
2197 ClearPageError(page);
2198 f2fs_put_dnode(&dn);
2199 if (fio->need_lock == LOCK_REQ)
2200 f2fs_unlock_op(fio->sbi);
2201 err = f2fs_inplace_write_data(fio);
2202 if (err) {
2203 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2204 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2205 if (PageWriteback(page))
2206 end_page_writeback(page);
2207 } else {
2208 set_inode_flag(inode, FI_UPDATE_WRITE);
2209 }
2210 trace_f2fs_do_write_data_page(fio->page, IPU);
2211 return err;
2212 }
2213
2214 if (fio->need_lock == LOCK_RETRY) {
2215 if (!f2fs_trylock_op(fio->sbi)) {
2216 err = -EAGAIN;
2217 goto out_writepage;
2218 }
2219 fio->need_lock = LOCK_REQ;
2220 }
2221
2222 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2223 if (err)
2224 goto out_writepage;
2225
2226 fio->version = ni.version;
2227
2228 err = encrypt_one_page(fio);
2229 if (err)
2230 goto out_writepage;
2231
2232 set_page_writeback(page);
2233 ClearPageError(page);
2234
2235 /* LFS mode write path */
2236 f2fs_outplace_write_data(&dn, fio);
2237 trace_f2fs_do_write_data_page(page, OPU);
2238 set_inode_flag(inode, FI_APPEND_WRITE);
2239 if (page->index == 0)
2240 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2241 out_writepage:
2242 f2fs_put_dnode(&dn);
2243 out:
2244 if (fio->need_lock == LOCK_REQ)
2245 f2fs_unlock_op(fio->sbi);
2246 return err;
2247 }
2248
__write_data_page(struct page * page,bool * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type)2249 static int __write_data_page(struct page *page, bool *submitted,
2250 struct bio **bio,
2251 sector_t *last_block,
2252 struct writeback_control *wbc,
2253 enum iostat_type io_type)
2254 {
2255 struct inode *inode = page->mapping->host;
2256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2257 loff_t i_size = i_size_read(inode);
2258 const pgoff_t end_index = ((unsigned long long) i_size)
2259 >> PAGE_SHIFT;
2260 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2261 unsigned offset = 0;
2262 bool need_balance_fs = false;
2263 int err = 0;
2264 struct f2fs_io_info fio = {
2265 .sbi = sbi,
2266 .ino = inode->i_ino,
2267 .type = DATA,
2268 .op = REQ_OP_WRITE,
2269 .op_flags = wbc_to_write_flags(wbc),
2270 .old_blkaddr = NULL_ADDR,
2271 .page = page,
2272 .encrypted_page = NULL,
2273 .submitted = false,
2274 .need_lock = LOCK_RETRY,
2275 .io_type = io_type,
2276 .io_wbc = wbc,
2277 .bio = bio,
2278 .last_block = last_block,
2279 };
2280
2281 trace_f2fs_writepage(page, DATA);
2282
2283 /* we should bypass data pages to proceed the kworkder jobs */
2284 if (unlikely(f2fs_cp_error(sbi))) {
2285 mapping_set_error(page->mapping, -EIO);
2286 /*
2287 * don't drop any dirty dentry pages for keeping lastest
2288 * directory structure.
2289 */
2290 if (S_ISDIR(inode->i_mode))
2291 goto redirty_out;
2292 goto out;
2293 }
2294
2295 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2296 goto redirty_out;
2297
2298 if (page->index < end_index || f2fs_verity_in_progress(inode))
2299 goto write;
2300
2301 /*
2302 * If the offset is out-of-range of file size,
2303 * this page does not have to be written to disk.
2304 */
2305 offset = i_size & (PAGE_SIZE - 1);
2306 if ((page->index >= end_index + 1) || !offset)
2307 goto out;
2308
2309 zero_user_segment(page, offset, PAGE_SIZE);
2310 write:
2311 if (f2fs_is_drop_cache(inode))
2312 goto out;
2313 /* we should not write 0'th page having journal header */
2314 if (f2fs_is_volatile_file(inode) && (!page->index ||
2315 (!wbc->for_reclaim &&
2316 f2fs_available_free_memory(sbi, BASE_CHECK))))
2317 goto redirty_out;
2318
2319 /* Dentry blocks are controlled by checkpoint */
2320 if (S_ISDIR(inode->i_mode)) {
2321 fio.need_lock = LOCK_DONE;
2322 err = f2fs_do_write_data_page(&fio);
2323 goto done;
2324 }
2325
2326 if (!wbc->for_reclaim)
2327 need_balance_fs = true;
2328 else if (has_not_enough_free_secs(sbi, 0, 0))
2329 goto redirty_out;
2330 else
2331 set_inode_flag(inode, FI_HOT_DATA);
2332
2333 err = -EAGAIN;
2334 if (f2fs_has_inline_data(inode)) {
2335 err = f2fs_write_inline_data(inode, page);
2336 if (!err)
2337 goto out;
2338 }
2339
2340 if (err == -EAGAIN) {
2341 err = f2fs_do_write_data_page(&fio);
2342 if (err == -EAGAIN) {
2343 fio.need_lock = LOCK_REQ;
2344 err = f2fs_do_write_data_page(&fio);
2345 }
2346 }
2347
2348 if (err) {
2349 file_set_keep_isize(inode);
2350 } else {
2351 down_write(&F2FS_I(inode)->i_sem);
2352 if (F2FS_I(inode)->last_disk_size < psize)
2353 F2FS_I(inode)->last_disk_size = psize;
2354 up_write(&F2FS_I(inode)->i_sem);
2355 }
2356
2357 done:
2358 if (err && err != -ENOENT)
2359 goto redirty_out;
2360
2361 out:
2362 inode_dec_dirty_pages(inode);
2363 if (err) {
2364 ClearPageUptodate(page);
2365 clear_cold_data(page);
2366 }
2367
2368 if (wbc->for_reclaim) {
2369 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2370 clear_inode_flag(inode, FI_HOT_DATA);
2371 f2fs_remove_dirty_inode(inode);
2372 submitted = NULL;
2373 }
2374
2375 unlock_page(page);
2376 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2377 !F2FS_I(inode)->cp_task)
2378 f2fs_balance_fs(sbi, need_balance_fs);
2379
2380 if (unlikely(f2fs_cp_error(sbi))) {
2381 f2fs_submit_merged_write(sbi, DATA);
2382 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2383 submitted = NULL;
2384 }
2385
2386 if (submitted)
2387 *submitted = fio.submitted;
2388
2389 return 0;
2390
2391 redirty_out:
2392 redirty_page_for_writepage(wbc, page);
2393 /*
2394 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2395 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2396 * file_write_and_wait_range() will see EIO error, which is critical
2397 * to return value of fsync() followed by atomic_write failure to user.
2398 */
2399 if (!err || wbc->for_reclaim)
2400 return AOP_WRITEPAGE_ACTIVATE;
2401 unlock_page(page);
2402 return err;
2403 }
2404
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2405 static int f2fs_write_data_page(struct page *page,
2406 struct writeback_control *wbc)
2407 {
2408 return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO);
2409 }
2410
2411 /*
2412 * This function was copied from write_cche_pages from mm/page-writeback.c.
2413 * The major change is making write step of cold data page separately from
2414 * warm/hot data page.
2415 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2416 static int f2fs_write_cache_pages(struct address_space *mapping,
2417 struct writeback_control *wbc,
2418 enum iostat_type io_type)
2419 {
2420 int ret = 0;
2421 int done = 0;
2422 struct pagevec pvec;
2423 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2424 struct bio *bio = NULL;
2425 sector_t last_block;
2426 int nr_pages;
2427 pgoff_t uninitialized_var(writeback_index);
2428 pgoff_t index;
2429 pgoff_t end; /* Inclusive */
2430 pgoff_t done_index;
2431 int cycled;
2432 int range_whole = 0;
2433 xa_mark_t tag;
2434 int nwritten = 0;
2435
2436 pagevec_init(&pvec);
2437
2438 if (get_dirty_pages(mapping->host) <=
2439 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2440 set_inode_flag(mapping->host, FI_HOT_DATA);
2441 else
2442 clear_inode_flag(mapping->host, FI_HOT_DATA);
2443
2444 if (wbc->range_cyclic) {
2445 writeback_index = mapping->writeback_index; /* prev offset */
2446 index = writeback_index;
2447 if (index == 0)
2448 cycled = 1;
2449 else
2450 cycled = 0;
2451 end = -1;
2452 } else {
2453 index = wbc->range_start >> PAGE_SHIFT;
2454 end = wbc->range_end >> PAGE_SHIFT;
2455 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2456 range_whole = 1;
2457 cycled = 1; /* ignore range_cyclic tests */
2458 }
2459 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2460 tag = PAGECACHE_TAG_TOWRITE;
2461 else
2462 tag = PAGECACHE_TAG_DIRTY;
2463 retry:
2464 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2465 tag_pages_for_writeback(mapping, index, end);
2466 done_index = index;
2467 while (!done && (index <= end)) {
2468 int i;
2469
2470 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2471 tag);
2472 if (nr_pages == 0)
2473 break;
2474
2475 for (i = 0; i < nr_pages; i++) {
2476 struct page *page = pvec.pages[i];
2477 bool submitted = false;
2478
2479 /* give a priority to WB_SYNC threads */
2480 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2481 wbc->sync_mode == WB_SYNC_NONE) {
2482 done = 1;
2483 break;
2484 }
2485
2486 done_index = page->index;
2487 retry_write:
2488 lock_page(page);
2489
2490 if (unlikely(page->mapping != mapping)) {
2491 continue_unlock:
2492 unlock_page(page);
2493 continue;
2494 }
2495
2496 if (!PageDirty(page)) {
2497 /* someone wrote it for us */
2498 goto continue_unlock;
2499 }
2500
2501 if (PageWriteback(page)) {
2502 if (wbc->sync_mode != WB_SYNC_NONE)
2503 f2fs_wait_on_page_writeback(page,
2504 DATA, true, true);
2505 else
2506 goto continue_unlock;
2507 }
2508
2509 if (!clear_page_dirty_for_io(page))
2510 goto continue_unlock;
2511
2512 ret = __write_data_page(page, &submitted, &bio,
2513 &last_block, wbc, io_type);
2514 if (unlikely(ret)) {
2515 /*
2516 * keep nr_to_write, since vfs uses this to
2517 * get # of written pages.
2518 */
2519 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2520 unlock_page(page);
2521 ret = 0;
2522 continue;
2523 } else if (ret == -EAGAIN) {
2524 ret = 0;
2525 if (wbc->sync_mode == WB_SYNC_ALL) {
2526 cond_resched();
2527 congestion_wait(BLK_RW_ASYNC,
2528 HZ/50);
2529 goto retry_write;
2530 }
2531 continue;
2532 }
2533 done_index = page->index + 1;
2534 done = 1;
2535 break;
2536 } else if (submitted) {
2537 nwritten++;
2538 }
2539
2540 if (--wbc->nr_to_write <= 0 &&
2541 wbc->sync_mode == WB_SYNC_NONE) {
2542 done = 1;
2543 break;
2544 }
2545 }
2546 pagevec_release(&pvec);
2547 cond_resched();
2548 }
2549
2550 if (!cycled && !done) {
2551 cycled = 1;
2552 index = 0;
2553 end = writeback_index - 1;
2554 goto retry;
2555 }
2556 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2557 mapping->writeback_index = done_index;
2558
2559 if (nwritten)
2560 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2561 NULL, 0, DATA);
2562 /* submit cached bio of IPU write */
2563 if (bio)
2564 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
2565
2566 return ret;
2567 }
2568
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)2569 static inline bool __should_serialize_io(struct inode *inode,
2570 struct writeback_control *wbc)
2571 {
2572 if (!S_ISREG(inode->i_mode))
2573 return false;
2574 if (IS_NOQUOTA(inode))
2575 return false;
2576 /* to avoid deadlock in path of data flush */
2577 if (F2FS_I(inode)->cp_task)
2578 return false;
2579 if (wbc->sync_mode != WB_SYNC_ALL)
2580 return true;
2581 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2582 return true;
2583 return false;
2584 }
2585
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2586 static int __f2fs_write_data_pages(struct address_space *mapping,
2587 struct writeback_control *wbc,
2588 enum iostat_type io_type)
2589 {
2590 struct inode *inode = mapping->host;
2591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2592 struct blk_plug plug;
2593 int ret;
2594 bool locked = false;
2595
2596 /* deal with chardevs and other special file */
2597 if (!mapping->a_ops->writepage)
2598 return 0;
2599
2600 /* skip writing if there is no dirty page in this inode */
2601 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2602 return 0;
2603
2604 /* during POR, we don't need to trigger writepage at all. */
2605 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2606 goto skip_write;
2607
2608 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2609 wbc->sync_mode == WB_SYNC_NONE &&
2610 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2611 f2fs_available_free_memory(sbi, DIRTY_DENTS))
2612 goto skip_write;
2613
2614 /* skip writing during file defragment */
2615 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2616 goto skip_write;
2617
2618 trace_f2fs_writepages(mapping->host, wbc, DATA);
2619
2620 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2621 if (wbc->sync_mode == WB_SYNC_ALL)
2622 atomic_inc(&sbi->wb_sync_req[DATA]);
2623 else if (atomic_read(&sbi->wb_sync_req[DATA]))
2624 goto skip_write;
2625
2626 if (__should_serialize_io(inode, wbc)) {
2627 mutex_lock(&sbi->writepages);
2628 locked = true;
2629 }
2630
2631 blk_start_plug(&plug);
2632 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2633 blk_finish_plug(&plug);
2634
2635 if (locked)
2636 mutex_unlock(&sbi->writepages);
2637
2638 if (wbc->sync_mode == WB_SYNC_ALL)
2639 atomic_dec(&sbi->wb_sync_req[DATA]);
2640 /*
2641 * if some pages were truncated, we cannot guarantee its mapping->host
2642 * to detect pending bios.
2643 */
2644
2645 f2fs_remove_dirty_inode(inode);
2646 return ret;
2647
2648 skip_write:
2649 wbc->pages_skipped += get_dirty_pages(inode);
2650 trace_f2fs_writepages(mapping->host, wbc, DATA);
2651 return 0;
2652 }
2653
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)2654 static int f2fs_write_data_pages(struct address_space *mapping,
2655 struct writeback_control *wbc)
2656 {
2657 struct inode *inode = mapping->host;
2658
2659 return __f2fs_write_data_pages(mapping, wbc,
2660 F2FS_I(inode)->cp_task == current ?
2661 FS_CP_DATA_IO : FS_DATA_IO);
2662 }
2663
f2fs_write_failed(struct address_space * mapping,loff_t to)2664 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2665 {
2666 struct inode *inode = mapping->host;
2667 loff_t i_size = i_size_read(inode);
2668
2669 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
2670 if (to > i_size && !f2fs_verity_in_progress(inode)) {
2671 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2672 down_write(&F2FS_I(inode)->i_mmap_sem);
2673
2674 truncate_pagecache(inode, i_size);
2675 if (!IS_NOQUOTA(inode))
2676 f2fs_truncate_blocks(inode, i_size, true);
2677
2678 up_write(&F2FS_I(inode)->i_mmap_sem);
2679 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2680 }
2681 }
2682
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)2683 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2684 struct page *page, loff_t pos, unsigned len,
2685 block_t *blk_addr, bool *node_changed)
2686 {
2687 struct inode *inode = page->mapping->host;
2688 pgoff_t index = page->index;
2689 struct dnode_of_data dn;
2690 struct page *ipage;
2691 bool locked = false;
2692 struct extent_info ei = {0,0,0};
2693 int err = 0;
2694 int flag;
2695
2696 /*
2697 * we already allocated all the blocks, so we don't need to get
2698 * the block addresses when there is no need to fill the page.
2699 */
2700 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2701 !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
2702 !f2fs_verity_in_progress(inode))
2703 return 0;
2704
2705 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
2706 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2707 flag = F2FS_GET_BLOCK_DEFAULT;
2708 else
2709 flag = F2FS_GET_BLOCK_PRE_AIO;
2710
2711 if (f2fs_has_inline_data(inode) ||
2712 (pos & PAGE_MASK) >= i_size_read(inode)) {
2713 __do_map_lock(sbi, flag, true);
2714 locked = true;
2715 }
2716 restart:
2717 /* check inline_data */
2718 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2719 if (IS_ERR(ipage)) {
2720 err = PTR_ERR(ipage);
2721 goto unlock_out;
2722 }
2723
2724 set_new_dnode(&dn, inode, ipage, ipage, 0);
2725
2726 if (f2fs_has_inline_data(inode)) {
2727 if (pos + len <= MAX_INLINE_DATA(inode)) {
2728 f2fs_do_read_inline_data(page, ipage);
2729 set_inode_flag(inode, FI_DATA_EXIST);
2730 if (inode->i_nlink)
2731 set_inline_node(ipage);
2732 } else {
2733 err = f2fs_convert_inline_page(&dn, page);
2734 if (err)
2735 goto out;
2736 if (dn.data_blkaddr == NULL_ADDR)
2737 err = f2fs_get_block(&dn, index);
2738 }
2739 } else if (locked) {
2740 err = f2fs_get_block(&dn, index);
2741 } else {
2742 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2743 dn.data_blkaddr = ei.blk + index - ei.fofs;
2744 } else {
2745 /* hole case */
2746 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2747 if (err || dn.data_blkaddr == NULL_ADDR) {
2748 f2fs_put_dnode(&dn);
2749 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2750 true);
2751 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2752 locked = true;
2753 goto restart;
2754 }
2755 }
2756 }
2757
2758 /* convert_inline_page can make node_changed */
2759 *blk_addr = dn.data_blkaddr;
2760 *node_changed = dn.node_changed;
2761 out:
2762 f2fs_put_dnode(&dn);
2763 unlock_out:
2764 if (locked)
2765 __do_map_lock(sbi, flag, false);
2766 return err;
2767 }
2768
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2769 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2770 loff_t pos, unsigned len, unsigned flags,
2771 struct page **pagep, void **fsdata)
2772 {
2773 struct inode *inode = mapping->host;
2774 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2775 struct page *page = NULL;
2776 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2777 bool need_balance = false, drop_atomic = false;
2778 block_t blkaddr = NULL_ADDR;
2779 int err = 0;
2780
2781 if (trace_android_fs_datawrite_start_enabled()) {
2782 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
2783
2784 path = android_fstrace_get_pathname(pathbuf,
2785 MAX_TRACE_PATHBUF_LEN,
2786 inode);
2787 trace_android_fs_datawrite_start(inode, pos, len,
2788 current->pid, path,
2789 current->comm);
2790 }
2791 trace_f2fs_write_begin(inode, pos, len, flags);
2792
2793 if (!f2fs_is_checkpoint_ready(sbi)) {
2794 err = -ENOSPC;
2795 goto fail;
2796 }
2797
2798 if ((f2fs_is_atomic_file(inode) &&
2799 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2800 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2801 err = -ENOMEM;
2802 drop_atomic = true;
2803 goto fail;
2804 }
2805
2806 /*
2807 * We should check this at this moment to avoid deadlock on inode page
2808 * and #0 page. The locking rule for inline_data conversion should be:
2809 * lock_page(page #0) -> lock_page(inode_page)
2810 */
2811 if (index != 0) {
2812 err = f2fs_convert_inline_inode(inode);
2813 if (err)
2814 goto fail;
2815 }
2816 repeat:
2817 /*
2818 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2819 * wait_for_stable_page. Will wait that below with our IO control.
2820 */
2821 page = f2fs_pagecache_get_page(mapping, index,
2822 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2823 if (!page) {
2824 err = -ENOMEM;
2825 goto fail;
2826 }
2827
2828 *pagep = page;
2829
2830 err = prepare_write_begin(sbi, page, pos, len,
2831 &blkaddr, &need_balance);
2832 if (err)
2833 goto fail;
2834
2835 if (need_balance && !IS_NOQUOTA(inode) &&
2836 has_not_enough_free_secs(sbi, 0, 0)) {
2837 unlock_page(page);
2838 f2fs_balance_fs(sbi, true);
2839 lock_page(page);
2840 if (page->mapping != mapping) {
2841 /* The page got truncated from under us */
2842 f2fs_put_page(page, 1);
2843 goto repeat;
2844 }
2845 }
2846
2847 f2fs_wait_on_page_writeback(page, DATA, false, true);
2848
2849 if (len == PAGE_SIZE || PageUptodate(page))
2850 return 0;
2851
2852 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
2853 !f2fs_verity_in_progress(inode)) {
2854 zero_user_segment(page, len, PAGE_SIZE);
2855 return 0;
2856 }
2857
2858 if (blkaddr == NEW_ADDR) {
2859 zero_user_segment(page, 0, PAGE_SIZE);
2860 SetPageUptodate(page);
2861 } else {
2862 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2863 DATA_GENERIC_ENHANCE_READ)) {
2864 err = -EFSCORRUPTED;
2865 goto fail;
2866 }
2867 err = f2fs_submit_page_read(inode, page, blkaddr);
2868 if (err)
2869 goto fail;
2870
2871 lock_page(page);
2872 if (unlikely(page->mapping != mapping)) {
2873 f2fs_put_page(page, 1);
2874 goto repeat;
2875 }
2876 if (unlikely(!PageUptodate(page))) {
2877 err = -EIO;
2878 goto fail;
2879 }
2880 }
2881 return 0;
2882
2883 fail:
2884 f2fs_put_page(page, 1);
2885 f2fs_write_failed(mapping, pos + len);
2886 if (drop_atomic)
2887 f2fs_drop_inmem_pages_all(sbi, false);
2888 return err;
2889 }
2890
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2891 static int f2fs_write_end(struct file *file,
2892 struct address_space *mapping,
2893 loff_t pos, unsigned len, unsigned copied,
2894 struct page *page, void *fsdata)
2895 {
2896 struct inode *inode = page->mapping->host;
2897
2898 trace_android_fs_datawrite_end(inode, pos, len);
2899 trace_f2fs_write_end(inode, pos, len, copied);
2900
2901 /*
2902 * This should be come from len == PAGE_SIZE, and we expect copied
2903 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2904 * let generic_perform_write() try to copy data again through copied=0.
2905 */
2906 if (!PageUptodate(page)) {
2907 if (unlikely(copied != len))
2908 copied = 0;
2909 else
2910 SetPageUptodate(page);
2911 }
2912 if (!copied)
2913 goto unlock_out;
2914
2915 set_page_dirty(page);
2916
2917 if (pos + copied > i_size_read(inode) &&
2918 !f2fs_verity_in_progress(inode))
2919 f2fs_i_size_write(inode, pos + copied);
2920 unlock_out:
2921 f2fs_put_page(page, 1);
2922 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2923 return copied;
2924 }
2925
check_direct_IO(struct inode * inode,struct iov_iter * iter,loff_t offset)2926 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2927 loff_t offset)
2928 {
2929 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2930 unsigned blkbits = i_blkbits;
2931 unsigned blocksize_mask = (1 << blkbits) - 1;
2932 unsigned long align = offset | iov_iter_alignment(iter);
2933 struct block_device *bdev = inode->i_sb->s_bdev;
2934
2935 if (align & blocksize_mask) {
2936 if (bdev)
2937 blkbits = blksize_bits(bdev_logical_block_size(bdev));
2938 blocksize_mask = (1 << blkbits) - 1;
2939 if (align & blocksize_mask)
2940 return -EINVAL;
2941 return 1;
2942 }
2943 return 0;
2944 }
2945
f2fs_dio_end_io(struct bio * bio)2946 static void f2fs_dio_end_io(struct bio *bio)
2947 {
2948 struct f2fs_private_dio *dio = bio->bi_private;
2949
2950 dec_page_count(F2FS_I_SB(dio->inode),
2951 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2952
2953 bio->bi_private = dio->orig_private;
2954 bio->bi_end_io = dio->orig_end_io;
2955
2956 kvfree(dio);
2957
2958 bio_endio(bio);
2959 }
2960
f2fs_dio_submit_bio(struct bio * bio,struct inode * inode,loff_t file_offset)2961 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2962 loff_t file_offset)
2963 {
2964 struct f2fs_private_dio *dio;
2965 bool write = (bio_op(bio) == REQ_OP_WRITE);
2966
2967 dio = f2fs_kzalloc(F2FS_I_SB(inode),
2968 sizeof(struct f2fs_private_dio), GFP_NOFS);
2969 if (!dio)
2970 goto out;
2971
2972 dio->inode = inode;
2973 dio->orig_end_io = bio->bi_end_io;
2974 dio->orig_private = bio->bi_private;
2975 dio->write = write;
2976
2977 bio->bi_end_io = f2fs_dio_end_io;
2978 bio->bi_private = dio;
2979
2980 inc_page_count(F2FS_I_SB(inode),
2981 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2982
2983 submit_bio(bio);
2984 return;
2985 out:
2986 bio->bi_status = BLK_STS_IOERR;
2987 bio_endio(bio);
2988 }
2989
f2fs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2990 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2991 {
2992 struct address_space *mapping = iocb->ki_filp->f_mapping;
2993 struct inode *inode = mapping->host;
2994 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2995 struct f2fs_inode_info *fi = F2FS_I(inode);
2996 size_t count = iov_iter_count(iter);
2997 loff_t offset = iocb->ki_pos;
2998 int rw = iov_iter_rw(iter);
2999 int err;
3000 enum rw_hint hint = iocb->ki_hint;
3001 int whint_mode = F2FS_OPTION(sbi).whint_mode;
3002 bool do_opu;
3003
3004 err = check_direct_IO(inode, iter, offset);
3005 if (err)
3006 return err < 0 ? err : 0;
3007
3008 if (f2fs_force_buffered_io(inode, iocb, iter))
3009 return 0;
3010
3011 do_opu = allow_outplace_dio(inode, iocb, iter);
3012
3013 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3014
3015 if (trace_android_fs_dataread_start_enabled() &&
3016 (rw == READ)) {
3017 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3018
3019 path = android_fstrace_get_pathname(pathbuf,
3020 MAX_TRACE_PATHBUF_LEN,
3021 inode);
3022 trace_android_fs_dataread_start(inode, offset,
3023 count, current->pid, path,
3024 current->comm);
3025 }
3026 if (trace_android_fs_datawrite_start_enabled() &&
3027 (rw == WRITE)) {
3028 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3029
3030 path = android_fstrace_get_pathname(pathbuf,
3031 MAX_TRACE_PATHBUF_LEN,
3032 inode);
3033 trace_android_fs_datawrite_start(inode, offset, count,
3034 current->pid, path,
3035 current->comm);
3036 }
3037
3038 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3039 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3040
3041 if (iocb->ki_flags & IOCB_NOWAIT) {
3042 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3043 iocb->ki_hint = hint;
3044 err = -EAGAIN;
3045 goto out;
3046 }
3047 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3048 up_read(&fi->i_gc_rwsem[rw]);
3049 iocb->ki_hint = hint;
3050 err = -EAGAIN;
3051 goto out;
3052 }
3053 } else {
3054 down_read(&fi->i_gc_rwsem[rw]);
3055 if (do_opu)
3056 down_read(&fi->i_gc_rwsem[READ]);
3057 }
3058
3059 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3060 iter, rw == WRITE ? get_data_block_dio_write :
3061 get_data_block_dio, NULL, f2fs_dio_submit_bio,
3062 DIO_LOCKING | DIO_SKIP_HOLES);
3063
3064 if (do_opu)
3065 up_read(&fi->i_gc_rwsem[READ]);
3066
3067 up_read(&fi->i_gc_rwsem[rw]);
3068
3069 if (rw == WRITE) {
3070 if (whint_mode == WHINT_MODE_OFF)
3071 iocb->ki_hint = hint;
3072 if (err > 0) {
3073 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3074 err);
3075 if (!do_opu)
3076 set_inode_flag(inode, FI_UPDATE_WRITE);
3077 } else if (err < 0) {
3078 f2fs_write_failed(mapping, offset + count);
3079 }
3080 }
3081
3082 out:
3083 if (trace_android_fs_dataread_start_enabled() &&
3084 (rw == READ))
3085 trace_android_fs_dataread_end(inode, offset, count);
3086 if (trace_android_fs_datawrite_start_enabled() &&
3087 (rw == WRITE))
3088 trace_android_fs_datawrite_end(inode, offset, count);
3089
3090 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3091
3092 return err;
3093 }
3094
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)3095 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3096 unsigned int length)
3097 {
3098 struct inode *inode = page->mapping->host;
3099 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3100
3101 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3102 (offset % PAGE_SIZE || length != PAGE_SIZE))
3103 return;
3104
3105 if (PageDirty(page)) {
3106 if (inode->i_ino == F2FS_META_INO(sbi)) {
3107 dec_page_count(sbi, F2FS_DIRTY_META);
3108 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3109 dec_page_count(sbi, F2FS_DIRTY_NODES);
3110 } else {
3111 inode_dec_dirty_pages(inode);
3112 f2fs_remove_dirty_inode(inode);
3113 }
3114 }
3115
3116 clear_cold_data(page);
3117
3118 if (IS_ATOMIC_WRITTEN_PAGE(page))
3119 return f2fs_drop_inmem_page(inode, page);
3120
3121 f2fs_clear_page_private(page);
3122 }
3123
f2fs_release_page(struct page * page,gfp_t wait)3124 int f2fs_release_page(struct page *page, gfp_t wait)
3125 {
3126 /* If this is dirty page, keep PagePrivate */
3127 if (PageDirty(page))
3128 return 0;
3129
3130 /* This is atomic written page, keep Private */
3131 if (IS_ATOMIC_WRITTEN_PAGE(page))
3132 return 0;
3133
3134 clear_cold_data(page);
3135 f2fs_clear_page_private(page);
3136 return 1;
3137 }
3138
f2fs_set_data_page_dirty(struct page * page)3139 static int f2fs_set_data_page_dirty(struct page *page)
3140 {
3141 struct inode *inode = page_file_mapping(page)->host;
3142
3143 trace_f2fs_set_page_dirty(page, DATA);
3144
3145 if (!PageUptodate(page))
3146 SetPageUptodate(page);
3147 if (PageSwapCache(page))
3148 return __set_page_dirty_nobuffers(page);
3149
3150 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3151 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3152 f2fs_register_inmem_page(inode, page);
3153 return 1;
3154 }
3155 /*
3156 * Previously, this page has been registered, we just
3157 * return here.
3158 */
3159 return 0;
3160 }
3161
3162 if (!PageDirty(page)) {
3163 __set_page_dirty_nobuffers(page);
3164 f2fs_update_dirty_page(inode, page);
3165 return 1;
3166 }
3167 return 0;
3168 }
3169
f2fs_bmap(struct address_space * mapping,sector_t block)3170 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3171 {
3172 struct inode *inode = mapping->host;
3173
3174 if (f2fs_has_inline_data(inode))
3175 return 0;
3176
3177 /* make sure allocating whole blocks */
3178 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3179 filemap_write_and_wait(mapping);
3180
3181 return generic_block_bmap(mapping, block, get_data_block_bmap);
3182 }
3183
3184 #ifdef CONFIG_MIGRATION
3185 #include <linux/migrate.h>
3186
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3187 int f2fs_migrate_page(struct address_space *mapping,
3188 struct page *newpage, struct page *page, enum migrate_mode mode)
3189 {
3190 int rc, extra_count;
3191 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3192 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3193
3194 BUG_ON(PageWriteback(page));
3195
3196 /* migrating an atomic written page is safe with the inmem_lock hold */
3197 if (atomic_written) {
3198 if (mode != MIGRATE_SYNC)
3199 return -EBUSY;
3200 if (!mutex_trylock(&fi->inmem_lock))
3201 return -EAGAIN;
3202 }
3203
3204 /* one extra reference was held for atomic_write page */
3205 extra_count = atomic_written ? 1 : 0;
3206 rc = migrate_page_move_mapping(mapping, newpage,
3207 page, extra_count);
3208 if (rc != MIGRATEPAGE_SUCCESS) {
3209 if (atomic_written)
3210 mutex_unlock(&fi->inmem_lock);
3211 return rc;
3212 }
3213
3214 if (atomic_written) {
3215 struct inmem_pages *cur;
3216 list_for_each_entry(cur, &fi->inmem_pages, list)
3217 if (cur->page == page) {
3218 cur->page = newpage;
3219 break;
3220 }
3221 mutex_unlock(&fi->inmem_lock);
3222 put_page(page);
3223 get_page(newpage);
3224 }
3225
3226 if (PagePrivate(page)) {
3227 f2fs_set_page_private(newpage, page_private(page));
3228 f2fs_clear_page_private(page);
3229 }
3230
3231 if (mode != MIGRATE_SYNC_NO_COPY)
3232 migrate_page_copy(newpage, page);
3233 else
3234 migrate_page_states(newpage, page);
3235
3236 return MIGRATEPAGE_SUCCESS;
3237 }
3238 #endif
3239
3240 #ifdef CONFIG_SWAP
3241 /* Copied from generic_swapfile_activate() to check any holes */
check_swap_activate(struct file * swap_file,unsigned int max)3242 static int check_swap_activate(struct file *swap_file, unsigned int max)
3243 {
3244 struct address_space *mapping = swap_file->f_mapping;
3245 struct inode *inode = mapping->host;
3246 unsigned blocks_per_page;
3247 unsigned long page_no;
3248 unsigned blkbits;
3249 sector_t probe_block;
3250 sector_t last_block;
3251 sector_t lowest_block = -1;
3252 sector_t highest_block = 0;
3253
3254 blkbits = inode->i_blkbits;
3255 blocks_per_page = PAGE_SIZE >> blkbits;
3256
3257 /*
3258 * Map all the blocks into the extent list. This code doesn't try
3259 * to be very smart.
3260 */
3261 probe_block = 0;
3262 page_no = 0;
3263 last_block = i_size_read(inode) >> blkbits;
3264 while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
3265 unsigned block_in_page;
3266 sector_t first_block;
3267
3268 cond_resched();
3269
3270 first_block = bmap(inode, probe_block);
3271 if (first_block == 0)
3272 goto bad_bmap;
3273
3274 /*
3275 * It must be PAGE_SIZE aligned on-disk
3276 */
3277 if (first_block & (blocks_per_page - 1)) {
3278 probe_block++;
3279 goto reprobe;
3280 }
3281
3282 for (block_in_page = 1; block_in_page < blocks_per_page;
3283 block_in_page++) {
3284 sector_t block;
3285
3286 block = bmap(inode, probe_block + block_in_page);
3287 if (block == 0)
3288 goto bad_bmap;
3289 if (block != first_block + block_in_page) {
3290 /* Discontiguity */
3291 probe_block++;
3292 goto reprobe;
3293 }
3294 }
3295
3296 first_block >>= (PAGE_SHIFT - blkbits);
3297 if (page_no) { /* exclude the header page */
3298 if (first_block < lowest_block)
3299 lowest_block = first_block;
3300 if (first_block > highest_block)
3301 highest_block = first_block;
3302 }
3303
3304 page_no++;
3305 probe_block += blocks_per_page;
3306 reprobe:
3307 continue;
3308 }
3309 return 0;
3310
3311 bad_bmap:
3312 pr_err("swapon: swapfile has holes\n");
3313 return -EINVAL;
3314 }
3315
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3316 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3317 sector_t *span)
3318 {
3319 struct inode *inode = file_inode(file);
3320 int ret;
3321
3322 if (!S_ISREG(inode->i_mode))
3323 return -EINVAL;
3324
3325 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3326 return -EROFS;
3327
3328 ret = f2fs_convert_inline_inode(inode);
3329 if (ret)
3330 return ret;
3331
3332 ret = check_swap_activate(file, sis->max);
3333 if (ret)
3334 return ret;
3335
3336 set_inode_flag(inode, FI_PIN_FILE);
3337 f2fs_precache_extents(inode);
3338 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3339 return 0;
3340 }
3341
f2fs_swap_deactivate(struct file * file)3342 static void f2fs_swap_deactivate(struct file *file)
3343 {
3344 struct inode *inode = file_inode(file);
3345
3346 clear_inode_flag(inode, FI_PIN_FILE);
3347 }
3348 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3349 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3350 sector_t *span)
3351 {
3352 return -EOPNOTSUPP;
3353 }
3354
f2fs_swap_deactivate(struct file * file)3355 static void f2fs_swap_deactivate(struct file *file)
3356 {
3357 }
3358 #endif
3359
3360 const struct address_space_operations f2fs_dblock_aops = {
3361 .readpage = f2fs_read_data_page,
3362 .readpages = f2fs_read_data_pages,
3363 .writepage = f2fs_write_data_page,
3364 .writepages = f2fs_write_data_pages,
3365 .write_begin = f2fs_write_begin,
3366 .write_end = f2fs_write_end,
3367 .set_page_dirty = f2fs_set_data_page_dirty,
3368 .invalidatepage = f2fs_invalidate_page,
3369 .releasepage = f2fs_release_page,
3370 .direct_IO = f2fs_direct_IO,
3371 .bmap = f2fs_bmap,
3372 .swap_activate = f2fs_swap_activate,
3373 .swap_deactivate = f2fs_swap_deactivate,
3374 #ifdef CONFIG_MIGRATION
3375 .migratepage = f2fs_migrate_page,
3376 #endif
3377 };
3378
f2fs_clear_page_cache_dirty_tag(struct page * page)3379 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3380 {
3381 struct address_space *mapping = page_mapping(page);
3382 unsigned long flags;
3383
3384 xa_lock_irqsave(&mapping->i_pages, flags);
3385 __xa_clear_mark(&mapping->i_pages, page_index(page),
3386 PAGECACHE_TAG_DIRTY);
3387 xa_unlock_irqrestore(&mapping->i_pages, flags);
3388 }
3389
f2fs_init_post_read_processing(void)3390 int __init f2fs_init_post_read_processing(void)
3391 {
3392 bio_post_read_ctx_cache =
3393 kmem_cache_create("f2fs_bio_post_read_ctx",
3394 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3395 if (!bio_post_read_ctx_cache)
3396 goto fail;
3397 bio_post_read_ctx_pool =
3398 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3399 bio_post_read_ctx_cache);
3400 if (!bio_post_read_ctx_pool)
3401 goto fail_free_cache;
3402 return 0;
3403
3404 fail_free_cache:
3405 kmem_cache_destroy(bio_post_read_ctx_cache);
3406 fail:
3407 return -ENOMEM;
3408 }
3409
f2fs_destroy_post_read_processing(void)3410 void f2fs_destroy_post_read_processing(void)
3411 {
3412 mempool_destroy(bio_post_read_ctx_pool);
3413 kmem_cache_destroy(bio_post_read_ctx_cache);
3414 }
3415
f2fs_init_bio_entry_cache(void)3416 int __init f2fs_init_bio_entry_cache(void)
3417 {
3418 bio_entry_slab = f2fs_kmem_cache_create("bio_entry_slab",
3419 sizeof(struct bio_entry));
3420 if (!bio_entry_slab)
3421 return -ENOMEM;
3422 return 0;
3423 }
3424
f2fs_destroy_bio_entry_cache(void)3425 void __exit f2fs_destroy_bio_entry_cache(void)
3426 {
3427 kmem_cache_destroy(bio_entry_slab);
3428 }
3429