1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Filesystem-level keyring for fscrypt
4 *
5 * Copyright 2019 Google LLC
6 */
7
8 /*
9 * This file implements management of fscrypt master keys in the
10 * filesystem-level keyring, including the ioctls:
11 *
12 * - FS_IOC_ADD_ENCRYPTION_KEY
13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16 *
17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18 * information about these ioctls.
19 */
20
21 #include <crypto/skcipher.h>
22 #include <linux/key-type.h>
23 #include <linux/seq_file.h>
24
25 #include "fscrypt_private.h"
26
wipe_master_key_secret(struct fscrypt_master_key_secret * secret)27 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
28 {
29 fscrypt_destroy_hkdf(&secret->hkdf);
30 memzero_explicit(secret, sizeof(*secret));
31 }
32
move_master_key_secret(struct fscrypt_master_key_secret * dst,struct fscrypt_master_key_secret * src)33 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
34 struct fscrypt_master_key_secret *src)
35 {
36 memcpy(dst, src, sizeof(*dst));
37 memzero_explicit(src, sizeof(*src));
38 }
39
free_master_key(struct fscrypt_master_key * mk)40 static void free_master_key(struct fscrypt_master_key *mk)
41 {
42 size_t i;
43
44 wipe_master_key_secret(&mk->mk_secret);
45
46 for (i = 0; i <= __FSCRYPT_MODE_MAX; i++) {
47 fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]);
48 fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]);
49 }
50
51 key_put(mk->mk_users);
52 kzfree(mk);
53 }
54
valid_key_spec(const struct fscrypt_key_specifier * spec)55 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
56 {
57 if (spec->__reserved)
58 return false;
59 return master_key_spec_len(spec) != 0;
60 }
61
fscrypt_key_instantiate(struct key * key,struct key_preparsed_payload * prep)62 static int fscrypt_key_instantiate(struct key *key,
63 struct key_preparsed_payload *prep)
64 {
65 key->payload.data[0] = (struct fscrypt_master_key *)prep->data;
66 return 0;
67 }
68
fscrypt_key_destroy(struct key * key)69 static void fscrypt_key_destroy(struct key *key)
70 {
71 free_master_key(key->payload.data[0]);
72 }
73
fscrypt_key_describe(const struct key * key,struct seq_file * m)74 static void fscrypt_key_describe(const struct key *key, struct seq_file *m)
75 {
76 seq_puts(m, key->description);
77
78 if (key_is_positive(key)) {
79 const struct fscrypt_master_key *mk = key->payload.data[0];
80
81 if (!is_master_key_secret_present(&mk->mk_secret))
82 seq_puts(m, ": secret removed");
83 }
84 }
85
86 /*
87 * Type of key in ->s_master_keys. Each key of this type represents a master
88 * key which has been added to the filesystem. Its payload is a
89 * 'struct fscrypt_master_key'. The "." prefix in the key type name prevents
90 * users from adding keys of this type via the keyrings syscalls rather than via
91 * the intended method of FS_IOC_ADD_ENCRYPTION_KEY.
92 */
93 static struct key_type key_type_fscrypt = {
94 .name = "._fscrypt",
95 .instantiate = fscrypt_key_instantiate,
96 .destroy = fscrypt_key_destroy,
97 .describe = fscrypt_key_describe,
98 };
99
fscrypt_user_key_instantiate(struct key * key,struct key_preparsed_payload * prep)100 static int fscrypt_user_key_instantiate(struct key *key,
101 struct key_preparsed_payload *prep)
102 {
103 /*
104 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
105 * each key, regardless of the exact key size. The amount of memory
106 * actually used is greater than the size of the raw key anyway.
107 */
108 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
109 }
110
fscrypt_user_key_describe(const struct key * key,struct seq_file * m)111 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
112 {
113 seq_puts(m, key->description);
114 }
115
116 /*
117 * Type of key in ->mk_users. Each key of this type represents a particular
118 * user who has added a particular master key.
119 *
120 * Note that the name of this key type really should be something like
121 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen
122 * mainly for simplicity of presentation in /proc/keys when read by a non-root
123 * user. And it is expected to be rare that a key is actually added by multiple
124 * users, since users should keep their encryption keys confidential.
125 */
126 static struct key_type key_type_fscrypt_user = {
127 .name = ".fscrypt",
128 .instantiate = fscrypt_user_key_instantiate,
129 .describe = fscrypt_user_key_describe,
130 };
131
132 /* Search ->s_master_keys or ->mk_users */
search_fscrypt_keyring(struct key * keyring,struct key_type * type,const char * description)133 static struct key *search_fscrypt_keyring(struct key *keyring,
134 struct key_type *type,
135 const char *description)
136 {
137 /*
138 * We need to mark the keyring reference as "possessed" so that we
139 * acquire permission to search it, via the KEY_POS_SEARCH permission.
140 */
141 key_ref_t keyref = make_key_ref(keyring, true /* possessed */);
142
143 keyref = keyring_search(keyref, type, description, false);
144 if (IS_ERR(keyref)) {
145 if (PTR_ERR(keyref) == -EAGAIN || /* not found */
146 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
147 keyref = ERR_PTR(-ENOKEY);
148 return ERR_CAST(keyref);
149 }
150 return key_ref_to_ptr(keyref);
151 }
152
153 #define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE \
154 (CONST_STRLEN("fscrypt-") + FIELD_SIZEOF(struct super_block, s_id))
155
156 #define FSCRYPT_MK_DESCRIPTION_SIZE (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1)
157
158 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \
159 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
160 CONST_STRLEN("-users") + 1)
161
162 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \
163 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
164
format_fs_keyring_description(char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE],const struct super_block * sb)165 static void format_fs_keyring_description(
166 char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE],
167 const struct super_block *sb)
168 {
169 sprintf(description, "fscrypt-%s", sb->s_id);
170 }
171
format_mk_description(char description[FSCRYPT_MK_DESCRIPTION_SIZE],const struct fscrypt_key_specifier * mk_spec)172 static void format_mk_description(
173 char description[FSCRYPT_MK_DESCRIPTION_SIZE],
174 const struct fscrypt_key_specifier *mk_spec)
175 {
176 sprintf(description, "%*phN",
177 master_key_spec_len(mk_spec), (u8 *)&mk_spec->u);
178 }
179
format_mk_users_keyring_description(char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])180 static void format_mk_users_keyring_description(
181 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
182 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
183 {
184 sprintf(description, "fscrypt-%*phN-users",
185 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
186 }
187
format_mk_user_description(char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])188 static void format_mk_user_description(
189 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
190 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
191 {
192
193 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
194 mk_identifier, __kuid_val(current_fsuid()));
195 }
196
197 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */
allocate_filesystem_keyring(struct super_block * sb)198 static int allocate_filesystem_keyring(struct super_block *sb)
199 {
200 char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE];
201 struct key *keyring;
202
203 if (sb->s_master_keys)
204 return 0;
205
206 format_fs_keyring_description(description, sb);
207 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
208 current_cred(), KEY_POS_SEARCH |
209 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
210 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
211 if (IS_ERR(keyring))
212 return PTR_ERR(keyring);
213
214 /* Pairs with READ_ONCE() in fscrypt_find_master_key() */
215 smp_store_release(&sb->s_master_keys, keyring);
216 return 0;
217 }
218
fscrypt_sb_free(struct super_block * sb)219 void fscrypt_sb_free(struct super_block *sb)
220 {
221 key_put(sb->s_master_keys);
222 sb->s_master_keys = NULL;
223 }
224
225 /*
226 * Find the specified master key in ->s_master_keys.
227 * Returns ERR_PTR(-ENOKEY) if not found.
228 */
fscrypt_find_master_key(struct super_block * sb,const struct fscrypt_key_specifier * mk_spec)229 struct key *fscrypt_find_master_key(struct super_block *sb,
230 const struct fscrypt_key_specifier *mk_spec)
231 {
232 struct key *keyring;
233 char description[FSCRYPT_MK_DESCRIPTION_SIZE];
234
235 /* pairs with smp_store_release() in allocate_filesystem_keyring() */
236 keyring = READ_ONCE(sb->s_master_keys);
237 if (keyring == NULL)
238 return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */
239
240 format_mk_description(description, mk_spec);
241 return search_fscrypt_keyring(keyring, &key_type_fscrypt, description);
242 }
243
allocate_master_key_users_keyring(struct fscrypt_master_key * mk)244 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
245 {
246 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
247 struct key *keyring;
248
249 format_mk_users_keyring_description(description,
250 mk->mk_spec.u.identifier);
251 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
252 current_cred(), KEY_POS_SEARCH |
253 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
254 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
255 if (IS_ERR(keyring))
256 return PTR_ERR(keyring);
257
258 mk->mk_users = keyring;
259 return 0;
260 }
261
262 /*
263 * Find the current user's "key" in the master key's ->mk_users.
264 * Returns ERR_PTR(-ENOKEY) if not found.
265 */
find_master_key_user(struct fscrypt_master_key * mk)266 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
267 {
268 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
269
270 format_mk_user_description(description, mk->mk_spec.u.identifier);
271 return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user,
272 description);
273 }
274
275 /*
276 * Give the current user a "key" in ->mk_users. This charges the user's quota
277 * and marks the master key as added by the current user, so that it cannot be
278 * removed by another user with the key. Either the master key's key->sem must
279 * be held for write, or the master key must be still undergoing initialization.
280 */
add_master_key_user(struct fscrypt_master_key * mk)281 static int add_master_key_user(struct fscrypt_master_key *mk)
282 {
283 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
284 struct key *mk_user;
285 int err;
286
287 format_mk_user_description(description, mk->mk_spec.u.identifier);
288 mk_user = key_alloc(&key_type_fscrypt_user, description,
289 current_fsuid(), current_gid(), current_cred(),
290 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
291 if (IS_ERR(mk_user))
292 return PTR_ERR(mk_user);
293
294 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
295 key_put(mk_user);
296 return err;
297 }
298
299 /*
300 * Remove the current user's "key" from ->mk_users.
301 * The master key's key->sem must be held for write.
302 *
303 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
304 */
remove_master_key_user(struct fscrypt_master_key * mk)305 static int remove_master_key_user(struct fscrypt_master_key *mk)
306 {
307 struct key *mk_user;
308 int err;
309
310 mk_user = find_master_key_user(mk);
311 if (IS_ERR(mk_user))
312 return PTR_ERR(mk_user);
313 err = key_unlink(mk->mk_users, mk_user);
314 key_put(mk_user);
315 return err;
316 }
317
318 /*
319 * Allocate a new fscrypt_master_key which contains the given secret, set it as
320 * the payload of a new 'struct key' of type fscrypt, and link the 'struct key'
321 * into the given keyring. Synchronized by fscrypt_add_key_mutex.
322 */
add_new_master_key(struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec,struct key * keyring)323 static int add_new_master_key(struct fscrypt_master_key_secret *secret,
324 const struct fscrypt_key_specifier *mk_spec,
325 struct key *keyring)
326 {
327 struct fscrypt_master_key *mk;
328 char description[FSCRYPT_MK_DESCRIPTION_SIZE];
329 struct key *key;
330 int err;
331
332 mk = kzalloc(sizeof(*mk), GFP_KERNEL);
333 if (!mk)
334 return -ENOMEM;
335
336 mk->mk_spec = *mk_spec;
337
338 move_master_key_secret(&mk->mk_secret, secret);
339 init_rwsem(&mk->mk_secret_sem);
340
341 refcount_set(&mk->mk_refcount, 1); /* secret is present */
342 INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
343 spin_lock_init(&mk->mk_decrypted_inodes_lock);
344
345 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
346 err = allocate_master_key_users_keyring(mk);
347 if (err)
348 goto out_free_mk;
349 err = add_master_key_user(mk);
350 if (err)
351 goto out_free_mk;
352 }
353
354 /*
355 * Note that we don't charge this key to anyone's quota, since when
356 * ->mk_users is in use those keys are charged instead, and otherwise
357 * (when ->mk_users isn't in use) only root can add these keys.
358 */
359 format_mk_description(description, mk_spec);
360 key = key_alloc(&key_type_fscrypt, description,
361 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(),
362 KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW,
363 KEY_ALLOC_NOT_IN_QUOTA, NULL);
364 if (IS_ERR(key)) {
365 err = PTR_ERR(key);
366 goto out_free_mk;
367 }
368 err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL);
369 key_put(key);
370 if (err)
371 goto out_free_mk;
372
373 return 0;
374
375 out_free_mk:
376 free_master_key(mk);
377 return err;
378 }
379
380 #define KEY_DEAD 1
381
add_existing_master_key(struct fscrypt_master_key * mk,struct fscrypt_master_key_secret * secret)382 static int add_existing_master_key(struct fscrypt_master_key *mk,
383 struct fscrypt_master_key_secret *secret)
384 {
385 struct key *mk_user;
386 bool rekey;
387 int err;
388
389 /*
390 * If the current user is already in ->mk_users, then there's nothing to
391 * do. (Not applicable for v1 policy keys, which have NULL ->mk_users.)
392 */
393 if (mk->mk_users) {
394 mk_user = find_master_key_user(mk);
395 if (mk_user != ERR_PTR(-ENOKEY)) {
396 if (IS_ERR(mk_user))
397 return PTR_ERR(mk_user);
398 key_put(mk_user);
399 return 0;
400 }
401 }
402
403 /* If we'll be re-adding ->mk_secret, try to take the reference. */
404 rekey = !is_master_key_secret_present(&mk->mk_secret);
405 if (rekey && !refcount_inc_not_zero(&mk->mk_refcount))
406 return KEY_DEAD;
407
408 /* Add the current user to ->mk_users, if applicable. */
409 if (mk->mk_users) {
410 err = add_master_key_user(mk);
411 if (err) {
412 if (rekey && refcount_dec_and_test(&mk->mk_refcount))
413 return KEY_DEAD;
414 return err;
415 }
416 }
417
418 /* Re-add the secret if needed. */
419 if (rekey) {
420 down_write(&mk->mk_secret_sem);
421 move_master_key_secret(&mk->mk_secret, secret);
422 up_write(&mk->mk_secret_sem);
423 }
424 return 0;
425 }
426
add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)427 static int add_master_key(struct super_block *sb,
428 struct fscrypt_master_key_secret *secret,
429 const struct fscrypt_key_specifier *mk_spec)
430 {
431 static DEFINE_MUTEX(fscrypt_add_key_mutex);
432 struct key *key;
433 int err;
434
435 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
436 retry:
437 key = fscrypt_find_master_key(sb, mk_spec);
438 if (IS_ERR(key)) {
439 err = PTR_ERR(key);
440 if (err != -ENOKEY)
441 goto out_unlock;
442 /* Didn't find the key in ->s_master_keys. Add it. */
443 err = allocate_filesystem_keyring(sb);
444 if (err)
445 goto out_unlock;
446 err = add_new_master_key(secret, mk_spec, sb->s_master_keys);
447 } else {
448 /*
449 * Found the key in ->s_master_keys. Re-add the secret if
450 * needed, and add the user to ->mk_users if needed.
451 */
452 down_write(&key->sem);
453 err = add_existing_master_key(key->payload.data[0], secret);
454 up_write(&key->sem);
455 if (err == KEY_DEAD) {
456 /* Key being removed or needs to be removed */
457 key_invalidate(key);
458 key_put(key);
459 goto retry;
460 }
461 key_put(key);
462 }
463 out_unlock:
464 mutex_unlock(&fscrypt_add_key_mutex);
465 return err;
466 }
467
468 /* Size of software "secret" derived from hardware-wrapped key */
469 #define RAW_SECRET_SIZE 32
470
471 /*
472 * Add a master encryption key to the filesystem, causing all files which were
473 * encrypted with it to appear "unlocked" (decrypted) when accessed.
474 *
475 * When adding a key for use by v1 encryption policies, this ioctl is
476 * privileged, and userspace must provide the 'key_descriptor'.
477 *
478 * When adding a key for use by v2+ encryption policies, this ioctl is
479 * unprivileged. This is needed, in general, to allow non-root users to use
480 * encryption without encountering the visibility problems of process-subscribed
481 * keyrings and the inability to properly remove keys. This works by having
482 * each key identified by its cryptographically secure hash --- the
483 * 'key_identifier'. The cryptographic hash ensures that a malicious user
484 * cannot add the wrong key for a given identifier. Furthermore, each added key
485 * is charged to the appropriate user's quota for the keyrings service, which
486 * prevents a malicious user from adding too many keys. Finally, we forbid a
487 * user from removing a key while other users have added it too, which prevents
488 * a user who knows another user's key from causing a denial-of-service by
489 * removing it at an inopportune time. (We tolerate that a user who knows a key
490 * can prevent other users from removing it.)
491 *
492 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
493 * Documentation/filesystems/fscrypt.rst.
494 */
fscrypt_ioctl_add_key(struct file * filp,void __user * _uarg)495 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
496 {
497 struct super_block *sb = file_inode(filp)->i_sb;
498 struct fscrypt_add_key_arg __user *uarg = _uarg;
499 struct fscrypt_add_key_arg arg;
500 struct fscrypt_master_key_secret secret;
501 u8 _kdf_key[RAW_SECRET_SIZE];
502 u8 *kdf_key;
503 unsigned int kdf_key_size;
504 int err;
505
506 if (copy_from_user(&arg, uarg, sizeof(arg)))
507 return -EFAULT;
508
509 if (!valid_key_spec(&arg.key_spec))
510 return -EINVAL;
511
512 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
513 return -EINVAL;
514
515 BUILD_BUG_ON(FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE <
516 FSCRYPT_MAX_KEY_SIZE);
517
518 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
519 arg.raw_size >
520 ((arg.__flags & __FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) ?
521 FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE : FSCRYPT_MAX_KEY_SIZE))
522 return -EINVAL;
523
524 memset(&secret, 0, sizeof(secret));
525 secret.size = arg.raw_size;
526 err = -EFAULT;
527 if (copy_from_user(secret.raw, uarg->raw, secret.size))
528 goto out_wipe_secret;
529
530 switch (arg.key_spec.type) {
531 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
532 /*
533 * Only root can add keys that are identified by an arbitrary
534 * descriptor rather than by a cryptographic hash --- since
535 * otherwise a malicious user could add the wrong key.
536 */
537 err = -EACCES;
538 if (!capable(CAP_SYS_ADMIN))
539 goto out_wipe_secret;
540
541 err = -EINVAL;
542 if (arg.__flags)
543 goto out_wipe_secret;
544 break;
545 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
546 err = -EINVAL;
547 if (arg.__flags & ~__FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
548 goto out_wipe_secret;
549 if (arg.__flags & __FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) {
550 kdf_key = _kdf_key;
551 kdf_key_size = RAW_SECRET_SIZE;
552 err = fscrypt_derive_raw_secret(sb, secret.raw,
553 secret.size,
554 kdf_key, kdf_key_size);
555 if (err)
556 goto out_wipe_secret;
557 secret.is_hw_wrapped = true;
558 } else {
559 kdf_key = secret.raw;
560 kdf_key_size = secret.size;
561 }
562 err = fscrypt_init_hkdf(&secret.hkdf, kdf_key, kdf_key_size);
563 /*
564 * Now that the HKDF context is initialized, the raw HKDF
565 * key is no longer needed.
566 */
567 memzero_explicit(kdf_key, kdf_key_size);
568 if (err)
569 goto out_wipe_secret;
570
571 /* Calculate the key identifier and return it to userspace. */
572 err = fscrypt_hkdf_expand(&secret.hkdf,
573 HKDF_CONTEXT_KEY_IDENTIFIER,
574 NULL, 0, arg.key_spec.u.identifier,
575 FSCRYPT_KEY_IDENTIFIER_SIZE);
576 if (err)
577 goto out_wipe_secret;
578 err = -EFAULT;
579 if (copy_to_user(uarg->key_spec.u.identifier,
580 arg.key_spec.u.identifier,
581 FSCRYPT_KEY_IDENTIFIER_SIZE))
582 goto out_wipe_secret;
583 break;
584 default:
585 WARN_ON(1);
586 err = -EINVAL;
587 goto out_wipe_secret;
588 }
589
590 err = add_master_key(sb, &secret, &arg.key_spec);
591 out_wipe_secret:
592 wipe_master_key_secret(&secret);
593 return err;
594 }
595 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
596
597 /*
598 * Verify that the current user has added a master key with the given identifier
599 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting
600 * their files using some other user's key which they don't actually know.
601 * Cryptographically this isn't much of a problem, but the semantics of this
602 * would be a bit weird, so it's best to just forbid it.
603 *
604 * The system administrator (CAP_FOWNER) can override this, which should be
605 * enough for any use cases where encryption policies are being set using keys
606 * that were chosen ahead of time but aren't available at the moment.
607 *
608 * Note that the key may have already removed by the time this returns, but
609 * that's okay; we just care whether the key was there at some point.
610 *
611 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
612 */
fscrypt_verify_key_added(struct super_block * sb,const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])613 int fscrypt_verify_key_added(struct super_block *sb,
614 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
615 {
616 struct fscrypt_key_specifier mk_spec;
617 struct key *key, *mk_user;
618 struct fscrypt_master_key *mk;
619 int err;
620
621 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
622 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
623
624 key = fscrypt_find_master_key(sb, &mk_spec);
625 if (IS_ERR(key)) {
626 err = PTR_ERR(key);
627 goto out;
628 }
629 mk = key->payload.data[0];
630 mk_user = find_master_key_user(mk);
631 if (IS_ERR(mk_user)) {
632 err = PTR_ERR(mk_user);
633 } else {
634 key_put(mk_user);
635 err = 0;
636 }
637 key_put(key);
638 out:
639 if (err == -ENOKEY && capable(CAP_FOWNER))
640 err = 0;
641 return err;
642 }
643
644 /*
645 * Try to evict the inode's dentries from the dentry cache. If the inode is a
646 * directory, then it can have at most one dentry; however, that dentry may be
647 * pinned by child dentries, so first try to evict the children too.
648 */
shrink_dcache_inode(struct inode * inode)649 static void shrink_dcache_inode(struct inode *inode)
650 {
651 struct dentry *dentry;
652
653 if (S_ISDIR(inode->i_mode)) {
654 dentry = d_find_any_alias(inode);
655 if (dentry) {
656 shrink_dcache_parent(dentry);
657 dput(dentry);
658 }
659 }
660 d_prune_aliases(inode);
661 }
662
evict_dentries_for_decrypted_inodes(struct fscrypt_master_key * mk)663 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
664 {
665 struct fscrypt_info *ci;
666 struct inode *inode;
667 struct inode *toput_inode = NULL;
668
669 spin_lock(&mk->mk_decrypted_inodes_lock);
670
671 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
672 inode = ci->ci_inode;
673 spin_lock(&inode->i_lock);
674 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
675 spin_unlock(&inode->i_lock);
676 continue;
677 }
678 __iget(inode);
679 spin_unlock(&inode->i_lock);
680 spin_unlock(&mk->mk_decrypted_inodes_lock);
681
682 shrink_dcache_inode(inode);
683 iput(toput_inode);
684 toput_inode = inode;
685
686 spin_lock(&mk->mk_decrypted_inodes_lock);
687 }
688
689 spin_unlock(&mk->mk_decrypted_inodes_lock);
690 iput(toput_inode);
691 }
692
check_for_busy_inodes(struct super_block * sb,struct fscrypt_master_key * mk)693 static int check_for_busy_inodes(struct super_block *sb,
694 struct fscrypt_master_key *mk)
695 {
696 struct list_head *pos;
697 size_t busy_count = 0;
698 unsigned long ino;
699 struct dentry *dentry;
700 char _path[256];
701 char *path = NULL;
702
703 spin_lock(&mk->mk_decrypted_inodes_lock);
704
705 list_for_each(pos, &mk->mk_decrypted_inodes)
706 busy_count++;
707
708 if (busy_count == 0) {
709 spin_unlock(&mk->mk_decrypted_inodes_lock);
710 return 0;
711 }
712
713 {
714 /* select an example file to show for debugging purposes */
715 struct inode *inode =
716 list_first_entry(&mk->mk_decrypted_inodes,
717 struct fscrypt_info,
718 ci_master_key_link)->ci_inode;
719 ino = inode->i_ino;
720 dentry = d_find_alias(inode);
721 }
722 spin_unlock(&mk->mk_decrypted_inodes_lock);
723
724 if (dentry) {
725 path = dentry_path(dentry, _path, sizeof(_path));
726 dput(dentry);
727 }
728 if (IS_ERR_OR_NULL(path))
729 path = "(unknown)";
730
731 fscrypt_warn(NULL,
732 "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu (%s)",
733 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
734 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
735 ino, path);
736 return -EBUSY;
737 }
738
739 static BLOCKING_NOTIFIER_HEAD(fscrypt_key_removal_notifiers);
740
741 /*
742 * Register a function to be executed when the FS_IOC_REMOVE_ENCRYPTION_KEY
743 * ioctl has removed a key and is about to try evicting inodes.
744 */
fscrypt_register_key_removal_notifier(struct notifier_block * nb)745 int fscrypt_register_key_removal_notifier(struct notifier_block *nb)
746 {
747 return blocking_notifier_chain_register(&fscrypt_key_removal_notifiers,
748 nb);
749 }
750 EXPORT_SYMBOL_GPL(fscrypt_register_key_removal_notifier);
751
fscrypt_unregister_key_removal_notifier(struct notifier_block * nb)752 int fscrypt_unregister_key_removal_notifier(struct notifier_block *nb)
753 {
754 return blocking_notifier_chain_unregister(&fscrypt_key_removal_notifiers,
755 nb);
756 }
757 EXPORT_SYMBOL_GPL(fscrypt_unregister_key_removal_notifier);
758
try_to_lock_encrypted_files(struct super_block * sb,struct fscrypt_master_key * mk)759 static int try_to_lock_encrypted_files(struct super_block *sb,
760 struct fscrypt_master_key *mk)
761 {
762 int err1;
763 int err2;
764
765 blocking_notifier_call_chain(&fscrypt_key_removal_notifiers, 0, NULL);
766
767 /*
768 * An inode can't be evicted while it is dirty or has dirty pages.
769 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
770 *
771 * Just do it the easy way: call sync_filesystem(). It's overkill, but
772 * it works, and it's more important to minimize the amount of caches we
773 * drop than the amount of data we sync. Also, unprivileged users can
774 * already call sync_filesystem() via sys_syncfs() or sys_sync().
775 */
776 down_read(&sb->s_umount);
777 err1 = sync_filesystem(sb);
778 up_read(&sb->s_umount);
779 /* If a sync error occurs, still try to evict as much as possible. */
780
781 /*
782 * Inodes are pinned by their dentries, so we have to evict their
783 * dentries. shrink_dcache_sb() would suffice, but would be overkill
784 * and inappropriate for use by unprivileged users. So instead go
785 * through the inodes' alias lists and try to evict each dentry.
786 */
787 evict_dentries_for_decrypted_inodes(mk);
788
789 /*
790 * evict_dentries_for_decrypted_inodes() already iput() each inode in
791 * the list; any inodes for which that dropped the last reference will
792 * have been evicted due to fscrypt_drop_inode() detecting the key
793 * removal and telling the VFS to evict the inode. So to finish, we
794 * just need to check whether any inodes couldn't be evicted.
795 */
796 err2 = check_for_busy_inodes(sb, mk);
797
798 return err1 ?: err2;
799 }
800
801 /*
802 * Try to remove an fscrypt master encryption key.
803 *
804 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
805 * claim to the key, then removes the key itself if no other users have claims.
806 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
807 * key itself.
808 *
809 * To "remove the key itself", first we wipe the actual master key secret, so
810 * that no more inodes can be unlocked with it. Then we try to evict all cached
811 * inodes that had been unlocked with the key.
812 *
813 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
814 * keyring. Otherwise it remains in the keyring in the "incompletely removed"
815 * state (without the actual secret key) where it tracks the list of remaining
816 * inodes. Userspace can execute the ioctl again later to retry eviction, or
817 * alternatively can re-add the secret key again.
818 *
819 * For more details, see the "Removing keys" section of
820 * Documentation/filesystems/fscrypt.rst.
821 */
do_remove_key(struct file * filp,void __user * _uarg,bool all_users)822 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
823 {
824 struct super_block *sb = file_inode(filp)->i_sb;
825 struct fscrypt_remove_key_arg __user *uarg = _uarg;
826 struct fscrypt_remove_key_arg arg;
827 struct key *key;
828 struct fscrypt_master_key *mk;
829 u32 status_flags = 0;
830 int err;
831 bool dead;
832
833 if (copy_from_user(&arg, uarg, sizeof(arg)))
834 return -EFAULT;
835
836 if (!valid_key_spec(&arg.key_spec))
837 return -EINVAL;
838
839 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
840 return -EINVAL;
841
842 /*
843 * Only root can add and remove keys that are identified by an arbitrary
844 * descriptor rather than by a cryptographic hash.
845 */
846 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
847 !capable(CAP_SYS_ADMIN))
848 return -EACCES;
849
850 /* Find the key being removed. */
851 key = fscrypt_find_master_key(sb, &arg.key_spec);
852 if (IS_ERR(key))
853 return PTR_ERR(key);
854 mk = key->payload.data[0];
855
856 down_write(&key->sem);
857
858 /* If relevant, remove current user's (or all users) claim to the key */
859 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
860 if (all_users)
861 err = keyring_clear(mk->mk_users);
862 else
863 err = remove_master_key_user(mk);
864 if (err) {
865 up_write(&key->sem);
866 goto out_put_key;
867 }
868 if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
869 /*
870 * Other users have still added the key too. We removed
871 * the current user's claim to the key, but we still
872 * can't remove the key itself.
873 */
874 status_flags |=
875 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
876 err = 0;
877 up_write(&key->sem);
878 goto out_put_key;
879 }
880 }
881
882 /* No user claims remaining. Go ahead and wipe the secret. */
883 dead = false;
884 if (is_master_key_secret_present(&mk->mk_secret)) {
885 down_write(&mk->mk_secret_sem);
886 wipe_master_key_secret(&mk->mk_secret);
887 dead = refcount_dec_and_test(&mk->mk_refcount);
888 up_write(&mk->mk_secret_sem);
889 }
890 up_write(&key->sem);
891 if (dead) {
892 /*
893 * No inodes reference the key, and we wiped the secret, so the
894 * key object is free to be removed from the keyring.
895 */
896 key_invalidate(key);
897 err = 0;
898 } else {
899 /* Some inodes still reference this key; try to evict them. */
900 err = try_to_lock_encrypted_files(sb, mk);
901 if (err == -EBUSY) {
902 status_flags |=
903 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
904 err = 0;
905 }
906 }
907 /*
908 * We return 0 if we successfully did something: removed a claim to the
909 * key, wiped the secret, or tried locking the files again. Users need
910 * to check the informational status flags if they care whether the key
911 * has been fully removed including all files locked.
912 */
913 out_put_key:
914 key_put(key);
915 if (err == 0)
916 err = put_user(status_flags, &uarg->removal_status_flags);
917 return err;
918 }
919
fscrypt_ioctl_remove_key(struct file * filp,void __user * uarg)920 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
921 {
922 return do_remove_key(filp, uarg, false);
923 }
924 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
925
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * uarg)926 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
927 {
928 if (!capable(CAP_SYS_ADMIN))
929 return -EACCES;
930 return do_remove_key(filp, uarg, true);
931 }
932 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
933
934 /*
935 * Retrieve the status of an fscrypt master encryption key.
936 *
937 * We set ->status to indicate whether the key is absent, present, or
938 * incompletely removed. "Incompletely removed" means that the master key
939 * secret has been removed, but some files which had been unlocked with it are
940 * still in use. This field allows applications to easily determine the state
941 * of an encrypted directory without using a hack such as trying to open a
942 * regular file in it (which can confuse the "incompletely removed" state with
943 * absent or present).
944 *
945 * In addition, for v2 policy keys we allow applications to determine, via
946 * ->status_flags and ->user_count, whether the key has been added by the
947 * current user, by other users, or by both. Most applications should not need
948 * this, since ordinarily only one user should know a given key. However, if a
949 * secret key is shared by multiple users, applications may wish to add an
950 * already-present key to prevent other users from removing it. This ioctl can
951 * be used to check whether that really is the case before the work is done to
952 * add the key --- which might e.g. require prompting the user for a passphrase.
953 *
954 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
955 * Documentation/filesystems/fscrypt.rst.
956 */
fscrypt_ioctl_get_key_status(struct file * filp,void __user * uarg)957 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
958 {
959 struct super_block *sb = file_inode(filp)->i_sb;
960 struct fscrypt_get_key_status_arg arg;
961 struct key *key;
962 struct fscrypt_master_key *mk;
963 int err;
964
965 if (copy_from_user(&arg, uarg, sizeof(arg)))
966 return -EFAULT;
967
968 if (!valid_key_spec(&arg.key_spec))
969 return -EINVAL;
970
971 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
972 return -EINVAL;
973
974 arg.status_flags = 0;
975 arg.user_count = 0;
976 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
977
978 key = fscrypt_find_master_key(sb, &arg.key_spec);
979 if (IS_ERR(key)) {
980 if (key != ERR_PTR(-ENOKEY))
981 return PTR_ERR(key);
982 arg.status = FSCRYPT_KEY_STATUS_ABSENT;
983 err = 0;
984 goto out;
985 }
986 mk = key->payload.data[0];
987 down_read(&key->sem);
988
989 if (!is_master_key_secret_present(&mk->mk_secret)) {
990 arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED;
991 err = 0;
992 goto out_release_key;
993 }
994
995 arg.status = FSCRYPT_KEY_STATUS_PRESENT;
996 if (mk->mk_users) {
997 struct key *mk_user;
998
999 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1000 mk_user = find_master_key_user(mk);
1001 if (!IS_ERR(mk_user)) {
1002 arg.status_flags |=
1003 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1004 key_put(mk_user);
1005 } else if (mk_user != ERR_PTR(-ENOKEY)) {
1006 err = PTR_ERR(mk_user);
1007 goto out_release_key;
1008 }
1009 }
1010 err = 0;
1011 out_release_key:
1012 up_read(&key->sem);
1013 key_put(key);
1014 out:
1015 if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1016 err = -EFAULT;
1017 return err;
1018 }
1019 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1020
fscrypt_init_keyring(void)1021 int __init fscrypt_init_keyring(void)
1022 {
1023 int err;
1024
1025 err = register_key_type(&key_type_fscrypt);
1026 if (err)
1027 return err;
1028
1029 err = register_key_type(&key_type_fscrypt_user);
1030 if (err)
1031 goto err_unregister_fscrypt;
1032
1033 return 0;
1034
1035 err_unregister_fscrypt:
1036 unregister_key_type(&key_type_fscrypt);
1037 return err;
1038 }
1039