1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2005, Paul Mackerras, IBM Corporation.
4 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
7
8 #include <linux/sched.h>
9 #include <linux/mm_types.h>
10 #include <linux/mm.h>
11
12 #include <asm/pgalloc.h>
13 #include <asm/pgtable.h>
14 #include <asm/sections.h>
15 #include <asm/mmu.h>
16 #include <asm/tlb.h>
17
18 #include <mm/mmu_decl.h>
19
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/thp.h>
22
23 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
24 #warning Limited user VSID range means pagetable space is wasted
25 #endif
26
27 #ifdef CONFIG_SPARSEMEM_VMEMMAP
28 /*
29 * vmemmap is the starting address of the virtual address space where
30 * struct pages are allocated for all possible PFNs present on the system
31 * including holes and bad memory (hence sparse). These virtual struct
32 * pages are stored in sequence in this virtual address space irrespective
33 * of the fact whether the corresponding PFN is valid or not. This achieves
34 * constant relationship between address of struct page and its PFN.
35 *
36 * During boot or memory hotplug operation when a new memory section is
37 * added, physical memory allocation (including hash table bolting) will
38 * be performed for the set of struct pages which are part of the memory
39 * section. This saves memory by not allocating struct pages for PFNs
40 * which are not valid.
41 *
42 * ----------------------------------------------
43 * | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
44 * ----------------------------------------------
45 *
46 * f000000000000000 c000000000000000
47 * vmemmap +--------------+ +--------------+
48 * + | page struct | +--------------> | page struct |
49 * | +--------------+ +--------------+
50 * | | page struct | +--------------> | page struct |
51 * | +--------------+ | +--------------+
52 * | | page struct | + +------> | page struct |
53 * | +--------------+ | +--------------+
54 * | | page struct | | +--> | page struct |
55 * | +--------------+ | | +--------------+
56 * | | page struct | | |
57 * | +--------------+ | |
58 * | | page struct | | |
59 * | +--------------+ | |
60 * | | page struct | | |
61 * | +--------------+ | |
62 * | | page struct | | |
63 * | +--------------+ | |
64 * | | page struct | +-------+ |
65 * | +--------------+ |
66 * | | page struct | +-----------+
67 * | +--------------+
68 * | | page struct | No mapping
69 * | +--------------+
70 * | | page struct | No mapping
71 * v +--------------+
72 *
73 * -----------------------------------------
74 * | RELATION BETWEEN STRUCT PAGES AND PFNS|
75 * -----------------------------------------
76 *
77 * vmemmap +--------------+ +---------------+
78 * + | page struct | +-------------> | PFN |
79 * | +--------------+ +---------------+
80 * | | page struct | +-------------> | PFN |
81 * | +--------------+ +---------------+
82 * | | page struct | +-------------> | PFN |
83 * | +--------------+ +---------------+
84 * | | page struct | +-------------> | PFN |
85 * | +--------------+ +---------------+
86 * | | |
87 * | +--------------+
88 * | | |
89 * | +--------------+
90 * | | |
91 * | +--------------+ +---------------+
92 * | | page struct | +-------------> | PFN |
93 * | +--------------+ +---------------+
94 * | | |
95 * | +--------------+
96 * | | |
97 * | +--------------+ +---------------+
98 * | | page struct | +-------------> | PFN |
99 * | +--------------+ +---------------+
100 * | | page struct | +-------------> | PFN |
101 * v +--------------+ +---------------+
102 */
103 /*
104 * On hash-based CPUs, the vmemmap is bolted in the hash table.
105 *
106 */
hash__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)107 int __meminit hash__vmemmap_create_mapping(unsigned long start,
108 unsigned long page_size,
109 unsigned long phys)
110 {
111 int rc;
112
113 if ((start + page_size) >= H_VMEMMAP_END) {
114 pr_warn("Outside the supported range\n");
115 return -1;
116 }
117
118 rc = htab_bolt_mapping(start, start + page_size, phys,
119 pgprot_val(PAGE_KERNEL),
120 mmu_vmemmap_psize, mmu_kernel_ssize);
121 if (rc < 0) {
122 int rc2 = htab_remove_mapping(start, start + page_size,
123 mmu_vmemmap_psize,
124 mmu_kernel_ssize);
125 BUG_ON(rc2 && (rc2 != -ENOENT));
126 }
127 return rc;
128 }
129
130 #ifdef CONFIG_MEMORY_HOTPLUG
hash__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)131 void hash__vmemmap_remove_mapping(unsigned long start,
132 unsigned long page_size)
133 {
134 int rc = htab_remove_mapping(start, start + page_size,
135 mmu_vmemmap_psize,
136 mmu_kernel_ssize);
137 BUG_ON((rc < 0) && (rc != -ENOENT));
138 WARN_ON(rc == -ENOENT);
139 }
140 #endif
141 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
142
143 /*
144 * map_kernel_page currently only called by __ioremap
145 * map_kernel_page adds an entry to the ioremap page table
146 * and adds an entry to the HPT, possibly bolting it
147 */
hash__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t prot)148 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
149 {
150 pgd_t *pgdp;
151 pud_t *pudp;
152 pmd_t *pmdp;
153 pte_t *ptep;
154
155 BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
156 if (slab_is_available()) {
157 pgdp = pgd_offset_k(ea);
158 pudp = pud_alloc(&init_mm, pgdp, ea);
159 if (!pudp)
160 return -ENOMEM;
161 pmdp = pmd_alloc(&init_mm, pudp, ea);
162 if (!pmdp)
163 return -ENOMEM;
164 ptep = pte_alloc_kernel(pmdp, ea);
165 if (!ptep)
166 return -ENOMEM;
167 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
168 } else {
169 /*
170 * If the mm subsystem is not fully up, we cannot create a
171 * linux page table entry for this mapping. Simply bolt an
172 * entry in the hardware page table.
173 *
174 */
175 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
176 mmu_io_psize, mmu_kernel_ssize)) {
177 printk(KERN_ERR "Failed to do bolted mapping IO "
178 "memory at %016lx !\n", pa);
179 return -ENOMEM;
180 }
181 }
182
183 smp_wmb();
184 return 0;
185 }
186
187 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
188
hash__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)189 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
190 pmd_t *pmdp, unsigned long clr,
191 unsigned long set)
192 {
193 __be64 old_be, tmp;
194 unsigned long old;
195
196 #ifdef CONFIG_DEBUG_VM
197 WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
198 assert_spin_locked(pmd_lockptr(mm, pmdp));
199 #endif
200
201 __asm__ __volatile__(
202 "1: ldarx %0,0,%3\n\
203 and. %1,%0,%6\n\
204 bne- 1b \n\
205 andc %1,%0,%4 \n\
206 or %1,%1,%7\n\
207 stdcx. %1,0,%3 \n\
208 bne- 1b"
209 : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
210 : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
211 "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
212 : "cc" );
213
214 old = be64_to_cpu(old_be);
215
216 trace_hugepage_update(addr, old, clr, set);
217 if (old & H_PAGE_HASHPTE)
218 hpte_do_hugepage_flush(mm, addr, pmdp, old);
219 return old;
220 }
221
hash__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)222 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
223 pmd_t *pmdp)
224 {
225 pmd_t pmd;
226
227 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
228 VM_BUG_ON(pmd_trans_huge(*pmdp));
229 VM_BUG_ON(pmd_devmap(*pmdp));
230
231 pmd = *pmdp;
232 pmd_clear(pmdp);
233 /*
234 * Wait for all pending hash_page to finish. This is needed
235 * in case of subpage collapse. When we collapse normal pages
236 * to hugepage, we first clear the pmd, then invalidate all
237 * the PTE entries. The assumption here is that any low level
238 * page fault will see a none pmd and take the slow path that
239 * will wait on mmap_sem. But we could very well be in a
240 * hash_page with local ptep pointer value. Such a hash page
241 * can result in adding new HPTE entries for normal subpages.
242 * That means we could be modifying the page content as we
243 * copy them to a huge page. So wait for parallel hash_page
244 * to finish before invalidating HPTE entries. We can do this
245 * by sending an IPI to all the cpus and executing a dummy
246 * function there.
247 */
248 serialize_against_pte_lookup(vma->vm_mm);
249 /*
250 * Now invalidate the hpte entries in the range
251 * covered by pmd. This make sure we take a
252 * fault and will find the pmd as none, which will
253 * result in a major fault which takes mmap_sem and
254 * hence wait for collapse to complete. Without this
255 * the __collapse_huge_page_copy can result in copying
256 * the old content.
257 */
258 flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
259 return pmd;
260 }
261
262 /*
263 * We want to put the pgtable in pmd and use pgtable for tracking
264 * the base page size hptes
265 */
hash__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)266 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
267 pgtable_t pgtable)
268 {
269 pgtable_t *pgtable_slot;
270
271 assert_spin_locked(pmd_lockptr(mm, pmdp));
272 /*
273 * we store the pgtable in the second half of PMD
274 */
275 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
276 *pgtable_slot = pgtable;
277 /*
278 * expose the deposited pgtable to other cpus.
279 * before we set the hugepage PTE at pmd level
280 * hash fault code looks at the deposted pgtable
281 * to store hash index values.
282 */
283 smp_wmb();
284 }
285
hash__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)286 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
287 {
288 pgtable_t pgtable;
289 pgtable_t *pgtable_slot;
290
291 assert_spin_locked(pmd_lockptr(mm, pmdp));
292
293 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
294 pgtable = *pgtable_slot;
295 /*
296 * Once we withdraw, mark the entry NULL.
297 */
298 *pgtable_slot = NULL;
299 /*
300 * We store HPTE information in the deposited PTE fragment.
301 * zero out the content on withdraw.
302 */
303 memset(pgtable, 0, PTE_FRAG_SIZE);
304 return pgtable;
305 }
306
307 /*
308 * A linux hugepage PMD was changed and the corresponding hash table entries
309 * neesd to be flushed.
310 */
hpte_do_hugepage_flush(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long old_pmd)311 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
312 pmd_t *pmdp, unsigned long old_pmd)
313 {
314 int ssize;
315 unsigned int psize;
316 unsigned long vsid;
317 unsigned long flags = 0;
318
319 /* get the base page size,vsid and segment size */
320 #ifdef CONFIG_DEBUG_VM
321 psize = get_slice_psize(mm, addr);
322 BUG_ON(psize == MMU_PAGE_16M);
323 #endif
324 if (old_pmd & H_PAGE_COMBO)
325 psize = MMU_PAGE_4K;
326 else
327 psize = MMU_PAGE_64K;
328
329 if (!is_kernel_addr(addr)) {
330 ssize = user_segment_size(addr);
331 vsid = get_user_vsid(&mm->context, addr, ssize);
332 WARN_ON(vsid == 0);
333 } else {
334 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
335 ssize = mmu_kernel_ssize;
336 }
337
338 if (mm_is_thread_local(mm))
339 flags |= HPTE_LOCAL_UPDATE;
340
341 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
342 }
343
hash__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)344 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
345 unsigned long addr, pmd_t *pmdp)
346 {
347 pmd_t old_pmd;
348 pgtable_t pgtable;
349 unsigned long old;
350 pgtable_t *pgtable_slot;
351
352 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
353 old_pmd = __pmd(old);
354 /*
355 * We have pmd == none and we are holding page_table_lock.
356 * So we can safely go and clear the pgtable hash
357 * index info.
358 */
359 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
360 pgtable = *pgtable_slot;
361 /*
362 * Let's zero out old valid and hash index details
363 * hash fault look at them.
364 */
365 memset(pgtable, 0, PTE_FRAG_SIZE);
366 /*
367 * Serialize against find_current_mm_pte variants which does lock-less
368 * lookup in page tables with local interrupts disabled. For huge pages
369 * it casts pmd_t to pte_t. Since format of pte_t is different from
370 * pmd_t we want to prevent transit from pmd pointing to page table
371 * to pmd pointing to huge page (and back) while interrupts are disabled.
372 * We clear pmd to possibly replace it with page table pointer in
373 * different code paths. So make sure we wait for the parallel
374 * find_curren_mm_pte to finish.
375 */
376 serialize_against_pte_lookup(mm);
377 return old_pmd;
378 }
379
hash__has_transparent_hugepage(void)380 int hash__has_transparent_hugepage(void)
381 {
382
383 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
384 return 0;
385 /*
386 * We support THP only if PMD_SIZE is 16MB.
387 */
388 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
389 return 0;
390 /*
391 * We need to make sure that we support 16MB hugepage in a segement
392 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
393 * of 64K.
394 */
395 /*
396 * If we have 64K HPTE, we will be using that by default
397 */
398 if (mmu_psize_defs[MMU_PAGE_64K].shift &&
399 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
400 return 0;
401 /*
402 * Ok we only have 4K HPTE
403 */
404 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
405 return 0;
406
407 return 1;
408 }
409 EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
410
411 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
412
413 #ifdef CONFIG_STRICT_KERNEL_RWX
hash__change_memory_range(unsigned long start,unsigned long end,unsigned long newpp)414 static bool hash__change_memory_range(unsigned long start, unsigned long end,
415 unsigned long newpp)
416 {
417 unsigned long idx;
418 unsigned int step, shift;
419
420 shift = mmu_psize_defs[mmu_linear_psize].shift;
421 step = 1 << shift;
422
423 start = ALIGN_DOWN(start, step);
424 end = ALIGN(end, step); // aligns up
425
426 if (start >= end)
427 return false;
428
429 pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
430 start, end, newpp, step);
431
432 for (idx = start; idx < end; idx += step)
433 /* Not sure if we can do much with the return value */
434 mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
435 mmu_kernel_ssize);
436
437 return true;
438 }
439
hash__mark_rodata_ro(void)440 void hash__mark_rodata_ro(void)
441 {
442 unsigned long start, end;
443
444 start = (unsigned long)_stext;
445 end = (unsigned long)__init_begin;
446
447 WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
448 }
449
hash__mark_initmem_nx(void)450 void hash__mark_initmem_nx(void)
451 {
452 unsigned long start, end, pp;
453
454 start = (unsigned long)__init_begin;
455 end = (unsigned long)__init_end;
456
457 pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
458
459 WARN_ON(!hash__change_memory_range(start, end, pp));
460 }
461 #endif
462