1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10 #include "include/hw_ip/mmu/mmu_general.h"
11
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/genalloc.h>
15
16 #define PGS_IN_2MB_PAGE (PAGE_SIZE_2MB >> PAGE_SHIFT)
17 #define HL_MMU_DEBUG 0
18
19 /*
20 * The va ranges in context object contain a list with the available chunks of
21 * device virtual memory.
22 * There is one range for host allocations and one for DRAM allocations.
23 *
24 * On initialization each range contains one chunk of all of its available
25 * virtual range which is a half of the total device virtual range.
26 *
27 * On each mapping of physical pages, a suitable virtual range chunk (with a
28 * minimum size) is selected from the list. If the chunk size equals the
29 * requested size, the chunk is returned. Otherwise, the chunk is split into
30 * two chunks - one to return as result and a remainder to stay in the list.
31 *
32 * On each Unmapping of a virtual address, the relevant virtual chunk is
33 * returned to the list. The chunk is added to the list and if its edges match
34 * the edges of the adjacent chunks (means a contiguous chunk can be created),
35 * the chunks are merged.
36 *
37 * On finish, the list is checked to have only one chunk of all the relevant
38 * virtual range (which is a half of the device total virtual range).
39 * If not (means not all mappings were unmapped), a warning is printed.
40 */
41
42 /*
43 * alloc_device_memory - allocate device memory
44 *
45 * @ctx : current context
46 * @args : host parameters containing the requested size
47 * @ret_handle : result handle
48 *
49 * This function does the following:
50 * - Allocate the requested size rounded up to 2MB pages
51 * - Return unique handle
52 */
alloc_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args,u32 * ret_handle)53 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
54 u32 *ret_handle)
55 {
56 struct hl_device *hdev = ctx->hdev;
57 struct hl_vm *vm = &hdev->vm;
58 struct hl_vm_phys_pg_pack *phys_pg_pack;
59 u64 paddr = 0, total_size, num_pgs, i;
60 u32 num_curr_pgs, page_size, page_shift;
61 int handle, rc;
62 bool contiguous;
63
64 num_curr_pgs = 0;
65 page_size = hdev->asic_prop.dram_page_size;
66 page_shift = __ffs(page_size);
67 num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
68 total_size = num_pgs << page_shift;
69
70 contiguous = args->flags & HL_MEM_CONTIGUOUS;
71
72 if (contiguous) {
73 paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
74 if (!paddr) {
75 dev_err(hdev->dev,
76 "failed to allocate %llu huge contiguous pages\n",
77 num_pgs);
78 return -ENOMEM;
79 }
80 }
81
82 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
83 if (!phys_pg_pack) {
84 rc = -ENOMEM;
85 goto pages_pack_err;
86 }
87
88 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
89 phys_pg_pack->asid = ctx->asid;
90 phys_pg_pack->npages = num_pgs;
91 phys_pg_pack->page_size = page_size;
92 phys_pg_pack->total_size = total_size;
93 phys_pg_pack->flags = args->flags;
94 phys_pg_pack->contiguous = contiguous;
95
96 phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
97 if (!phys_pg_pack->pages) {
98 rc = -ENOMEM;
99 goto pages_arr_err;
100 }
101
102 if (phys_pg_pack->contiguous) {
103 for (i = 0 ; i < num_pgs ; i++)
104 phys_pg_pack->pages[i] = paddr + i * page_size;
105 } else {
106 for (i = 0 ; i < num_pgs ; i++) {
107 phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
108 vm->dram_pg_pool,
109 page_size);
110 if (!phys_pg_pack->pages[i]) {
111 dev_err(hdev->dev,
112 "Failed to allocate device memory (out of memory)\n");
113 rc = -ENOMEM;
114 goto page_err;
115 }
116
117 num_curr_pgs++;
118 }
119 }
120
121 spin_lock(&vm->idr_lock);
122 handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
123 GFP_ATOMIC);
124 spin_unlock(&vm->idr_lock);
125
126 if (handle < 0) {
127 dev_err(hdev->dev, "Failed to get handle for page\n");
128 rc = -EFAULT;
129 goto idr_err;
130 }
131
132 for (i = 0 ; i < num_pgs ; i++)
133 kref_get(&vm->dram_pg_pool_refcount);
134
135 phys_pg_pack->handle = handle;
136
137 atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
138 atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
139
140 *ret_handle = handle;
141
142 return 0;
143
144 idr_err:
145 page_err:
146 if (!phys_pg_pack->contiguous)
147 for (i = 0 ; i < num_curr_pgs ; i++)
148 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
149 page_size);
150
151 kvfree(phys_pg_pack->pages);
152 pages_arr_err:
153 kfree(phys_pg_pack);
154 pages_pack_err:
155 if (contiguous)
156 gen_pool_free(vm->dram_pg_pool, paddr, total_size);
157
158 return rc;
159 }
160
161 /*
162 * get_userptr_from_host_va - initialize userptr structure from given host
163 * virtual address
164 *
165 * @hdev : habanalabs device structure
166 * @args : parameters containing the virtual address and size
167 * @p_userptr : pointer to result userptr structure
168 *
169 * This function does the following:
170 * - Allocate userptr structure
171 * - Pin the given host memory using the userptr structure
172 * - Perform DMA mapping to have the DMA addresses of the pages
173 */
get_userptr_from_host_va(struct hl_device * hdev,struct hl_mem_in * args,struct hl_userptr ** p_userptr)174 static int get_userptr_from_host_va(struct hl_device *hdev,
175 struct hl_mem_in *args, struct hl_userptr **p_userptr)
176 {
177 struct hl_userptr *userptr;
178 int rc;
179
180 userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
181 if (!userptr) {
182 rc = -ENOMEM;
183 goto userptr_err;
184 }
185
186 rc = hl_pin_host_memory(hdev, args->map_host.host_virt_addr,
187 args->map_host.mem_size, userptr);
188 if (rc) {
189 dev_err(hdev->dev, "Failed to pin host memory\n");
190 goto pin_err;
191 }
192
193 rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
194 userptr->sgt->nents, DMA_BIDIRECTIONAL);
195 if (rc) {
196 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
197 goto dma_map_err;
198 }
199
200 userptr->dma_mapped = true;
201 userptr->dir = DMA_BIDIRECTIONAL;
202 userptr->vm_type = VM_TYPE_USERPTR;
203
204 *p_userptr = userptr;
205
206 return 0;
207
208 dma_map_err:
209 hl_unpin_host_memory(hdev, userptr);
210 pin_err:
211 kfree(userptr);
212 userptr_err:
213
214 return rc;
215 }
216
217 /*
218 * free_userptr - free userptr structure
219 *
220 * @hdev : habanalabs device structure
221 * @userptr : userptr to free
222 *
223 * This function does the following:
224 * - Unpins the physical pages
225 * - Frees the userptr structure
226 */
free_userptr(struct hl_device * hdev,struct hl_userptr * userptr)227 static void free_userptr(struct hl_device *hdev, struct hl_userptr *userptr)
228 {
229 hl_unpin_host_memory(hdev, userptr);
230 kfree(userptr);
231 }
232
233 /*
234 * dram_pg_pool_do_release - free DRAM pages pool
235 *
236 * @ref : pointer to reference object
237 *
238 * This function does the following:
239 * - Frees the idr structure of physical pages handles
240 * - Frees the generic pool of DRAM physical pages
241 */
dram_pg_pool_do_release(struct kref * ref)242 static void dram_pg_pool_do_release(struct kref *ref)
243 {
244 struct hl_vm *vm = container_of(ref, struct hl_vm,
245 dram_pg_pool_refcount);
246
247 /*
248 * free the idr here as only here we know for sure that there are no
249 * allocated physical pages and hence there are no handles in use
250 */
251 idr_destroy(&vm->phys_pg_pack_handles);
252 gen_pool_destroy(vm->dram_pg_pool);
253 }
254
255 /*
256 * free_phys_pg_pack - free physical page pack
257 *
258 * @hdev : habanalabs device structure
259 * @phys_pg_pack : physical page pack to free
260 *
261 * This function does the following:
262 * - For DRAM memory only, iterate over the pack and free each physical block
263 * structure by returning it to the general pool
264 * - Free the hl_vm_phys_pg_pack structure
265 */
free_phys_pg_pack(struct hl_device * hdev,struct hl_vm_phys_pg_pack * phys_pg_pack)266 static void free_phys_pg_pack(struct hl_device *hdev,
267 struct hl_vm_phys_pg_pack *phys_pg_pack)
268 {
269 struct hl_vm *vm = &hdev->vm;
270 u64 i;
271
272 if (!phys_pg_pack->created_from_userptr) {
273 if (phys_pg_pack->contiguous) {
274 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
275 phys_pg_pack->total_size);
276
277 for (i = 0; i < phys_pg_pack->npages ; i++)
278 kref_put(&vm->dram_pg_pool_refcount,
279 dram_pg_pool_do_release);
280 } else {
281 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
282 gen_pool_free(vm->dram_pg_pool,
283 phys_pg_pack->pages[i],
284 phys_pg_pack->page_size);
285 kref_put(&vm->dram_pg_pool_refcount,
286 dram_pg_pool_do_release);
287 }
288 }
289 }
290
291 kvfree(phys_pg_pack->pages);
292 kfree(phys_pg_pack);
293 }
294
295 /*
296 * free_device_memory - free device memory
297 *
298 * @ctx : current context
299 * @handle : handle of the memory chunk to free
300 *
301 * This function does the following:
302 * - Free the device memory related to the given handle
303 */
free_device_memory(struct hl_ctx * ctx,u32 handle)304 static int free_device_memory(struct hl_ctx *ctx, u32 handle)
305 {
306 struct hl_device *hdev = ctx->hdev;
307 struct hl_vm *vm = &hdev->vm;
308 struct hl_vm_phys_pg_pack *phys_pg_pack;
309
310 spin_lock(&vm->idr_lock);
311 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
312 if (phys_pg_pack) {
313 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
314 dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
315 handle);
316 spin_unlock(&vm->idr_lock);
317 return -EINVAL;
318 }
319
320 /*
321 * must remove from idr before the freeing of the physical
322 * pages as the refcount of the pool is also the trigger of the
323 * idr destroy
324 */
325 idr_remove(&vm->phys_pg_pack_handles, handle);
326 spin_unlock(&vm->idr_lock);
327
328 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
329 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
330
331 free_phys_pg_pack(hdev, phys_pg_pack);
332 } else {
333 spin_unlock(&vm->idr_lock);
334 dev_err(hdev->dev,
335 "free device memory failed, no match for handle %u\n",
336 handle);
337 return -EINVAL;
338 }
339
340 return 0;
341 }
342
343 /*
344 * clear_va_list_locked - free virtual addresses list
345 *
346 * @hdev : habanalabs device structure
347 * @va_list : list of virtual addresses to free
348 *
349 * This function does the following:
350 * - Iterate over the list and free each virtual addresses block
351 *
352 * This function should be called only when va_list lock is taken
353 */
clear_va_list_locked(struct hl_device * hdev,struct list_head * va_list)354 static void clear_va_list_locked(struct hl_device *hdev,
355 struct list_head *va_list)
356 {
357 struct hl_vm_va_block *va_block, *tmp;
358
359 list_for_each_entry_safe(va_block, tmp, va_list, node) {
360 list_del(&va_block->node);
361 kfree(va_block);
362 }
363 }
364
365 /*
366 * print_va_list_locked - print virtual addresses list
367 *
368 * @hdev : habanalabs device structure
369 * @va_list : list of virtual addresses to print
370 *
371 * This function does the following:
372 * - Iterate over the list and print each virtual addresses block
373 *
374 * This function should be called only when va_list lock is taken
375 */
print_va_list_locked(struct hl_device * hdev,struct list_head * va_list)376 static void print_va_list_locked(struct hl_device *hdev,
377 struct list_head *va_list)
378 {
379 #if HL_MMU_DEBUG
380 struct hl_vm_va_block *va_block;
381
382 dev_dbg(hdev->dev, "print va list:\n");
383
384 list_for_each_entry(va_block, va_list, node)
385 dev_dbg(hdev->dev,
386 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
387 va_block->start, va_block->end, va_block->size);
388 #endif
389 }
390
391 /*
392 * merge_va_blocks_locked - merge a virtual block if possible
393 *
394 * @hdev : pointer to the habanalabs device structure
395 * @va_list : pointer to the virtual addresses block list
396 * @va_block : virtual block to merge with adjacent blocks
397 *
398 * This function does the following:
399 * - Merge the given blocks with the adjacent blocks if their virtual ranges
400 * create a contiguous virtual range
401 *
402 * This Function should be called only when va_list lock is taken
403 */
merge_va_blocks_locked(struct hl_device * hdev,struct list_head * va_list,struct hl_vm_va_block * va_block)404 static void merge_va_blocks_locked(struct hl_device *hdev,
405 struct list_head *va_list, struct hl_vm_va_block *va_block)
406 {
407 struct hl_vm_va_block *prev, *next;
408
409 prev = list_prev_entry(va_block, node);
410 if (&prev->node != va_list && prev->end + 1 == va_block->start) {
411 prev->end = va_block->end;
412 prev->size = prev->end - prev->start;
413 list_del(&va_block->node);
414 kfree(va_block);
415 va_block = prev;
416 }
417
418 next = list_next_entry(va_block, node);
419 if (&next->node != va_list && va_block->end + 1 == next->start) {
420 next->start = va_block->start;
421 next->size = next->end - next->start;
422 list_del(&va_block->node);
423 kfree(va_block);
424 }
425 }
426
427 /*
428 * add_va_block_locked - add a virtual block to the virtual addresses list
429 *
430 * @hdev : pointer to the habanalabs device structure
431 * @va_list : pointer to the virtual addresses block list
432 * @start : start virtual address
433 * @end : end virtual address
434 *
435 * This function does the following:
436 * - Add the given block to the virtual blocks list and merge with other
437 * blocks if a contiguous virtual block can be created
438 *
439 * This Function should be called only when va_list lock is taken
440 */
add_va_block_locked(struct hl_device * hdev,struct list_head * va_list,u64 start,u64 end)441 static int add_va_block_locked(struct hl_device *hdev,
442 struct list_head *va_list, u64 start, u64 end)
443 {
444 struct hl_vm_va_block *va_block, *res = NULL;
445 u64 size = end - start;
446
447 print_va_list_locked(hdev, va_list);
448
449 list_for_each_entry(va_block, va_list, node) {
450 /* TODO: remove upon matureness */
451 if (hl_mem_area_crosses_range(start, size, va_block->start,
452 va_block->end)) {
453 dev_err(hdev->dev,
454 "block crossing ranges at start 0x%llx, end 0x%llx\n",
455 va_block->start, va_block->end);
456 return -EINVAL;
457 }
458
459 if (va_block->end < start)
460 res = va_block;
461 }
462
463 va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
464 if (!va_block)
465 return -ENOMEM;
466
467 va_block->start = start;
468 va_block->end = end;
469 va_block->size = size;
470
471 if (!res)
472 list_add(&va_block->node, va_list);
473 else
474 list_add(&va_block->node, &res->node);
475
476 merge_va_blocks_locked(hdev, va_list, va_block);
477
478 print_va_list_locked(hdev, va_list);
479
480 return 0;
481 }
482
483 /*
484 * add_va_block - wrapper for add_va_block_locked
485 *
486 * @hdev : pointer to the habanalabs device structure
487 * @va_list : pointer to the virtual addresses block list
488 * @start : start virtual address
489 * @end : end virtual address
490 *
491 * This function does the following:
492 * - Takes the list lock and calls add_va_block_locked
493 */
add_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)494 static inline int add_va_block(struct hl_device *hdev,
495 struct hl_va_range *va_range, u64 start, u64 end)
496 {
497 int rc;
498
499 mutex_lock(&va_range->lock);
500 rc = add_va_block_locked(hdev, &va_range->list, start, end);
501 mutex_unlock(&va_range->lock);
502
503 return rc;
504 }
505
506 /*
507 * get_va_block - get a virtual block with the requested size
508 *
509 * @hdev : pointer to the habanalabs device structure
510 * @va_range : pointer to the virtual addresses range
511 * @size : requested block size
512 * @hint_addr : hint for request address by the user
513 * @is_userptr : is host or DRAM memory
514 *
515 * This function does the following:
516 * - Iterate on the virtual block list to find a suitable virtual block for the
517 * requested size
518 * - Reserve the requested block and update the list
519 * - Return the start address of the virtual block
520 */
get_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 size,u64 hint_addr,bool is_userptr)521 static u64 get_va_block(struct hl_device *hdev,
522 struct hl_va_range *va_range, u64 size, u64 hint_addr,
523 bool is_userptr)
524 {
525 struct hl_vm_va_block *va_block, *new_va_block = NULL;
526 u64 valid_start, valid_size, prev_start, prev_end, page_mask,
527 res_valid_start = 0, res_valid_size = 0;
528 u32 page_size;
529 bool add_prev = false;
530
531 if (is_userptr) {
532 /*
533 * We cannot know if the user allocated memory with huge pages
534 * or not, hence we continue with the biggest possible
535 * granularity.
536 */
537 page_size = PAGE_SIZE_2MB;
538 page_mask = PAGE_MASK_2MB;
539 } else {
540 page_size = hdev->asic_prop.dram_page_size;
541 page_mask = ~((u64)page_size - 1);
542 }
543
544 mutex_lock(&va_range->lock);
545
546 print_va_list_locked(hdev, &va_range->list);
547
548 list_for_each_entry(va_block, &va_range->list, node) {
549 /* calc the first possible aligned addr */
550 valid_start = va_block->start;
551
552
553 if (valid_start & (page_size - 1)) {
554 valid_start &= page_mask;
555 valid_start += page_size;
556 if (valid_start > va_block->end)
557 continue;
558 }
559
560 valid_size = va_block->end - valid_start;
561
562 if (valid_size >= size &&
563 (!new_va_block || valid_size < res_valid_size)) {
564
565 new_va_block = va_block;
566 res_valid_start = valid_start;
567 res_valid_size = valid_size;
568 }
569
570 if (hint_addr && hint_addr >= valid_start &&
571 ((hint_addr + size) <= va_block->end)) {
572 new_va_block = va_block;
573 res_valid_start = hint_addr;
574 res_valid_size = valid_size;
575 break;
576 }
577 }
578
579 if (!new_va_block) {
580 dev_err(hdev->dev, "no available va block for size %llu\n",
581 size);
582 goto out;
583 }
584
585 if (res_valid_start > new_va_block->start) {
586 prev_start = new_va_block->start;
587 prev_end = res_valid_start - 1;
588
589 new_va_block->start = res_valid_start;
590 new_va_block->size = res_valid_size;
591
592 add_prev = true;
593 }
594
595 if (new_va_block->size > size) {
596 new_va_block->start += size;
597 new_va_block->size = new_va_block->end - new_va_block->start;
598 } else {
599 list_del(&new_va_block->node);
600 kfree(new_va_block);
601 }
602
603 if (add_prev)
604 add_va_block_locked(hdev, &va_range->list, prev_start,
605 prev_end);
606
607 print_va_list_locked(hdev, &va_range->list);
608 out:
609 mutex_unlock(&va_range->lock);
610
611 return res_valid_start;
612 }
613
614 /*
615 * get_sg_info - get number of pages and the DMA address from SG list
616 *
617 * @sg : the SG list
618 * @dma_addr : pointer to DMA address to return
619 *
620 * Calculate the number of consecutive pages described by the SG list. Take the
621 * offset of the address in the first page, add to it the length and round it up
622 * to the number of needed pages.
623 */
get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)624 static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
625 {
626 *dma_addr = sg_dma_address(sg);
627
628 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
629 (PAGE_SIZE - 1)) >> PAGE_SHIFT;
630 }
631
632 /*
633 * init_phys_pg_pack_from_userptr - initialize physical page pack from host
634 * memory
635 *
636 * @ctx : current context
637 * @userptr : userptr to initialize from
638 * @pphys_pg_pack : res pointer
639 *
640 * This function does the following:
641 * - Pin the physical pages related to the given virtual block
642 * - Create a physical page pack from the physical pages related to the given
643 * virtual block
644 */
init_phys_pg_pack_from_userptr(struct hl_ctx * ctx,struct hl_userptr * userptr,struct hl_vm_phys_pg_pack ** pphys_pg_pack)645 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
646 struct hl_userptr *userptr,
647 struct hl_vm_phys_pg_pack **pphys_pg_pack)
648 {
649 struct hl_vm_phys_pg_pack *phys_pg_pack;
650 struct scatterlist *sg;
651 dma_addr_t dma_addr;
652 u64 page_mask, total_npages;
653 u32 npages, page_size = PAGE_SIZE;
654 bool first = true, is_huge_page_opt = true;
655 int rc, i, j;
656
657 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
658 if (!phys_pg_pack)
659 return -ENOMEM;
660
661 phys_pg_pack->vm_type = userptr->vm_type;
662 phys_pg_pack->created_from_userptr = true;
663 phys_pg_pack->asid = ctx->asid;
664 atomic_set(&phys_pg_pack->mapping_cnt, 1);
665
666 /* Only if all dma_addrs are aligned to 2MB and their
667 * sizes is at least 2MB, we can use huge page mapping.
668 * We limit the 2MB optimization to this condition,
669 * since later on we acquire the related VA range as one
670 * consecutive block.
671 */
672 total_npages = 0;
673 for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
674 npages = get_sg_info(sg, &dma_addr);
675
676 total_npages += npages;
677
678 if ((npages % PGS_IN_2MB_PAGE) ||
679 (dma_addr & (PAGE_SIZE_2MB - 1)))
680 is_huge_page_opt = false;
681 }
682
683 if (is_huge_page_opt) {
684 page_size = PAGE_SIZE_2MB;
685 total_npages /= PGS_IN_2MB_PAGE;
686 }
687
688 page_mask = ~(((u64) page_size) - 1);
689
690 phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
691 GFP_KERNEL);
692 if (!phys_pg_pack->pages) {
693 rc = -ENOMEM;
694 goto page_pack_arr_mem_err;
695 }
696
697 phys_pg_pack->npages = total_npages;
698 phys_pg_pack->page_size = page_size;
699 phys_pg_pack->total_size = total_npages * page_size;
700
701 j = 0;
702 for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
703 npages = get_sg_info(sg, &dma_addr);
704
705 /* align down to physical page size and save the offset */
706 if (first) {
707 first = false;
708 phys_pg_pack->offset = dma_addr & (page_size - 1);
709 dma_addr &= page_mask;
710 }
711
712 while (npages) {
713 phys_pg_pack->pages[j++] = dma_addr;
714 dma_addr += page_size;
715
716 if (is_huge_page_opt)
717 npages -= PGS_IN_2MB_PAGE;
718 else
719 npages--;
720 }
721 }
722
723 *pphys_pg_pack = phys_pg_pack;
724
725 return 0;
726
727 page_pack_arr_mem_err:
728 kfree(phys_pg_pack);
729
730 return rc;
731 }
732
733 /*
734 * map_phys_page_pack - maps the physical page pack
735 *
736 * @ctx : current context
737 * @vaddr : start address of the virtual area to map from
738 * @phys_pg_pack : the pack of physical pages to map to
739 *
740 * This function does the following:
741 * - Maps each chunk of virtual memory to matching physical chunk
742 * - Stores number of successful mappings in the given argument
743 * - Returns 0 on success, error code otherwise.
744 */
map_phys_page_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)745 static int map_phys_page_pack(struct hl_ctx *ctx, u64 vaddr,
746 struct hl_vm_phys_pg_pack *phys_pg_pack)
747 {
748 struct hl_device *hdev = ctx->hdev;
749 u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
750 u32 page_size = phys_pg_pack->page_size;
751 int rc = 0;
752
753 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
754 paddr = phys_pg_pack->pages[i];
755
756 rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size);
757 if (rc) {
758 dev_err(hdev->dev,
759 "map failed for handle %u, npages: %llu, mapped: %llu",
760 phys_pg_pack->handle, phys_pg_pack->npages,
761 mapped_pg_cnt);
762 goto err;
763 }
764
765 mapped_pg_cnt++;
766 next_vaddr += page_size;
767 }
768
769 return 0;
770
771 err:
772 next_vaddr = vaddr;
773 for (i = 0 ; i < mapped_pg_cnt ; i++) {
774 if (hl_mmu_unmap(ctx, next_vaddr, page_size))
775 dev_warn_ratelimited(hdev->dev,
776 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
777 phys_pg_pack->handle, next_vaddr,
778 phys_pg_pack->pages[i], page_size);
779
780 next_vaddr += page_size;
781 }
782
783 return rc;
784 }
785
get_paddr_from_handle(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * paddr)786 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
787 u64 *paddr)
788 {
789 struct hl_device *hdev = ctx->hdev;
790 struct hl_vm *vm = &hdev->vm;
791 struct hl_vm_phys_pg_pack *phys_pg_pack;
792 u32 handle;
793
794 handle = lower_32_bits(args->map_device.handle);
795 spin_lock(&vm->idr_lock);
796 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
797 if (!phys_pg_pack) {
798 spin_unlock(&vm->idr_lock);
799 dev_err(hdev->dev, "no match for handle %u\n", handle);
800 return -EINVAL;
801 }
802
803 *paddr = phys_pg_pack->pages[0];
804
805 spin_unlock(&vm->idr_lock);
806
807 return 0;
808 }
809
810 /*
811 * map_device_va - map the given memory
812 *
813 * @ctx : current context
814 * @args : host parameters with handle/host virtual address
815 * @device_addr : pointer to result device virtual address
816 *
817 * This function does the following:
818 * - If given a physical device memory handle, map to a device virtual block
819 * and return the start address of this block
820 * - If given a host virtual address and size, find the related physical pages,
821 * map a device virtual block to this pages and return the start address of
822 * this block
823 */
map_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * device_addr)824 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
825 u64 *device_addr)
826 {
827 struct hl_device *hdev = ctx->hdev;
828 struct hl_vm *vm = &hdev->vm;
829 struct hl_vm_phys_pg_pack *phys_pg_pack;
830 struct hl_userptr *userptr = NULL;
831 struct hl_vm_hash_node *hnode;
832 enum vm_type_t *vm_type;
833 u64 ret_vaddr, hint_addr;
834 u32 handle = 0;
835 int rc;
836 bool is_userptr = args->flags & HL_MEM_USERPTR;
837
838 /* Assume failure */
839 *device_addr = 0;
840
841 if (is_userptr) {
842 rc = get_userptr_from_host_va(hdev, args, &userptr);
843 if (rc) {
844 dev_err(hdev->dev, "failed to get userptr from va\n");
845 return rc;
846 }
847
848 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
849 &phys_pg_pack);
850 if (rc) {
851 dev_err(hdev->dev,
852 "unable to init page pack for vaddr 0x%llx\n",
853 args->map_host.host_virt_addr);
854 goto init_page_pack_err;
855 }
856
857 vm_type = (enum vm_type_t *) userptr;
858 hint_addr = args->map_host.hint_addr;
859 } else {
860 handle = lower_32_bits(args->map_device.handle);
861
862 spin_lock(&vm->idr_lock);
863 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
864 if (!phys_pg_pack) {
865 spin_unlock(&vm->idr_lock);
866 dev_err(hdev->dev,
867 "no match for handle %u\n", handle);
868 return -EINVAL;
869 }
870
871 /* increment now to avoid freeing device memory while mapping */
872 atomic_inc(&phys_pg_pack->mapping_cnt);
873
874 spin_unlock(&vm->idr_lock);
875
876 vm_type = (enum vm_type_t *) phys_pg_pack;
877
878 hint_addr = args->map_device.hint_addr;
879 }
880
881 /*
882 * relevant for mapping device physical memory only, as host memory is
883 * implicitly shared
884 */
885 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
886 phys_pg_pack->asid != ctx->asid) {
887 dev_err(hdev->dev,
888 "Failed to map memory, handle %u is not shared\n",
889 handle);
890 rc = -EPERM;
891 goto shared_err;
892 }
893
894 hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
895 if (!hnode) {
896 rc = -ENOMEM;
897 goto hnode_err;
898 }
899
900 ret_vaddr = get_va_block(hdev,
901 is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
902 phys_pg_pack->total_size, hint_addr, is_userptr);
903 if (!ret_vaddr) {
904 dev_err(hdev->dev, "no available va block for handle %u\n",
905 handle);
906 rc = -ENOMEM;
907 goto va_block_err;
908 }
909
910 mutex_lock(&ctx->mmu_lock);
911
912 rc = map_phys_page_pack(ctx, ret_vaddr, phys_pg_pack);
913 if (rc) {
914 mutex_unlock(&ctx->mmu_lock);
915 dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
916 handle);
917 goto map_err;
918 }
919
920 hdev->asic_funcs->mmu_invalidate_cache(hdev, false);
921
922 mutex_unlock(&ctx->mmu_lock);
923
924 ret_vaddr += phys_pg_pack->offset;
925
926 hnode->ptr = vm_type;
927 hnode->vaddr = ret_vaddr;
928
929 mutex_lock(&ctx->mem_hash_lock);
930 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
931 mutex_unlock(&ctx->mem_hash_lock);
932
933 *device_addr = ret_vaddr;
934
935 if (is_userptr)
936 free_phys_pg_pack(hdev, phys_pg_pack);
937
938 return 0;
939
940 map_err:
941 if (add_va_block(hdev,
942 is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
943 ret_vaddr,
944 ret_vaddr + phys_pg_pack->total_size - 1))
945 dev_warn(hdev->dev,
946 "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
947 handle, ret_vaddr);
948
949 va_block_err:
950 kfree(hnode);
951 hnode_err:
952 shared_err:
953 atomic_dec(&phys_pg_pack->mapping_cnt);
954 if (is_userptr)
955 free_phys_pg_pack(hdev, phys_pg_pack);
956 init_page_pack_err:
957 if (is_userptr)
958 free_userptr(hdev, userptr);
959
960 return rc;
961 }
962
963 /*
964 * unmap_device_va - unmap the given device virtual address
965 *
966 * @ctx : current context
967 * @vaddr : device virtual address to unmap
968 * @ctx_free : true if in context free flow, false otherwise.
969 *
970 * This function does the following:
971 * - Unmap the physical pages related to the given virtual address
972 * - return the device virtual block to the virtual block list
973 */
unmap_device_va(struct hl_ctx * ctx,u64 vaddr,bool ctx_free)974 static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr, bool ctx_free)
975 {
976 struct hl_device *hdev = ctx->hdev;
977 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
978 struct hl_vm_hash_node *hnode = NULL;
979 struct hl_userptr *userptr = NULL;
980 struct hl_va_range *va_range;
981 enum vm_type_t *vm_type;
982 u64 next_vaddr, i;
983 u32 page_size;
984 bool is_userptr;
985 int rc;
986
987 /* protect from double entrance */
988 mutex_lock(&ctx->mem_hash_lock);
989 hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
990 if (vaddr == hnode->vaddr)
991 break;
992
993 if (!hnode) {
994 mutex_unlock(&ctx->mem_hash_lock);
995 dev_err(hdev->dev,
996 "unmap failed, no mem hnode for vaddr 0x%llx\n",
997 vaddr);
998 return -EINVAL;
999 }
1000
1001 hash_del(&hnode->node);
1002 mutex_unlock(&ctx->mem_hash_lock);
1003
1004 vm_type = hnode->ptr;
1005
1006 if (*vm_type == VM_TYPE_USERPTR) {
1007 is_userptr = true;
1008 va_range = &ctx->host_va_range;
1009 userptr = hnode->ptr;
1010 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1011 &phys_pg_pack);
1012 if (rc) {
1013 dev_err(hdev->dev,
1014 "unable to init page pack for vaddr 0x%llx\n",
1015 vaddr);
1016 goto vm_type_err;
1017 }
1018 } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1019 is_userptr = false;
1020 va_range = &ctx->dram_va_range;
1021 phys_pg_pack = hnode->ptr;
1022 } else {
1023 dev_warn(hdev->dev,
1024 "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1025 vaddr);
1026 rc = -EFAULT;
1027 goto vm_type_err;
1028 }
1029
1030 if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1031 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1032 rc = -EINVAL;
1033 goto mapping_cnt_err;
1034 }
1035
1036 page_size = phys_pg_pack->page_size;
1037 vaddr &= ~(((u64) page_size) - 1);
1038
1039 next_vaddr = vaddr;
1040
1041 mutex_lock(&ctx->mmu_lock);
1042
1043 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1044 if (hl_mmu_unmap(ctx, next_vaddr, page_size))
1045 dev_warn_ratelimited(hdev->dev,
1046 "unmap failed for vaddr: 0x%llx\n", next_vaddr);
1047
1048 /* unmapping on Palladium can be really long, so avoid a CPU
1049 * soft lockup bug by sleeping a little between unmapping pages
1050 */
1051 if (hdev->pldm)
1052 usleep_range(500, 1000);
1053 }
1054
1055 hdev->asic_funcs->mmu_invalidate_cache(hdev, true);
1056
1057 mutex_unlock(&ctx->mmu_lock);
1058
1059 /*
1060 * No point in maintaining the free VA block list if the context is
1061 * closing as the list will be freed anyway
1062 */
1063 if (!ctx_free) {
1064 rc = add_va_block(hdev, va_range, vaddr,
1065 vaddr + phys_pg_pack->total_size - 1);
1066 if (rc)
1067 dev_warn(hdev->dev,
1068 "add va block failed for vaddr: 0x%llx\n",
1069 vaddr);
1070 }
1071
1072 atomic_dec(&phys_pg_pack->mapping_cnt);
1073 kfree(hnode);
1074
1075 if (is_userptr) {
1076 free_phys_pg_pack(hdev, phys_pg_pack);
1077 free_userptr(hdev, userptr);
1078 }
1079
1080 return 0;
1081
1082 mapping_cnt_err:
1083 if (is_userptr)
1084 free_phys_pg_pack(hdev, phys_pg_pack);
1085 vm_type_err:
1086 mutex_lock(&ctx->mem_hash_lock);
1087 hash_add(ctx->mem_hash, &hnode->node, vaddr);
1088 mutex_unlock(&ctx->mem_hash_lock);
1089
1090 return rc;
1091 }
1092
mem_ioctl_no_mmu(struct hl_fpriv * hpriv,union hl_mem_args * args)1093 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
1094 {
1095 struct hl_device *hdev = hpriv->hdev;
1096 struct hl_ctx *ctx = hpriv->ctx;
1097 u64 device_addr = 0;
1098 u32 handle = 0;
1099 int rc;
1100
1101 switch (args->in.op) {
1102 case HL_MEM_OP_ALLOC:
1103 if (args->in.alloc.mem_size == 0) {
1104 dev_err(hdev->dev,
1105 "alloc size must be larger than 0\n");
1106 rc = -EINVAL;
1107 goto out;
1108 }
1109
1110 /* Force contiguous as there are no real MMU
1111 * translations to overcome physical memory gaps
1112 */
1113 args->in.flags |= HL_MEM_CONTIGUOUS;
1114 rc = alloc_device_memory(ctx, &args->in, &handle);
1115
1116 memset(args, 0, sizeof(*args));
1117 args->out.handle = (__u64) handle;
1118 break;
1119
1120 case HL_MEM_OP_FREE:
1121 rc = free_device_memory(ctx, args->in.free.handle);
1122 break;
1123
1124 case HL_MEM_OP_MAP:
1125 if (args->in.flags & HL_MEM_USERPTR) {
1126 device_addr = args->in.map_host.host_virt_addr;
1127 rc = 0;
1128 } else {
1129 rc = get_paddr_from_handle(ctx, &args->in,
1130 &device_addr);
1131 }
1132
1133 memset(args, 0, sizeof(*args));
1134 args->out.device_virt_addr = device_addr;
1135 break;
1136
1137 case HL_MEM_OP_UNMAP:
1138 rc = 0;
1139 break;
1140
1141 default:
1142 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1143 rc = -ENOTTY;
1144 break;
1145 }
1146
1147 out:
1148 return rc;
1149 }
1150
hl_mem_ioctl(struct hl_fpriv * hpriv,void * data)1151 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
1152 {
1153 union hl_mem_args *args = data;
1154 struct hl_device *hdev = hpriv->hdev;
1155 struct hl_ctx *ctx = hpriv->ctx;
1156 u64 device_addr = 0;
1157 u32 handle = 0;
1158 int rc;
1159
1160 if (hl_device_disabled_or_in_reset(hdev)) {
1161 dev_warn_ratelimited(hdev->dev,
1162 "Device is %s. Can't execute MEMORY IOCTL\n",
1163 atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
1164 return -EBUSY;
1165 }
1166
1167 if (!hdev->mmu_enable)
1168 return mem_ioctl_no_mmu(hpriv, args);
1169
1170 switch (args->in.op) {
1171 case HL_MEM_OP_ALLOC:
1172 if (!hdev->dram_supports_virtual_memory) {
1173 dev_err(hdev->dev, "DRAM alloc is not supported\n");
1174 rc = -EINVAL;
1175 goto out;
1176 }
1177
1178 if (args->in.alloc.mem_size == 0) {
1179 dev_err(hdev->dev,
1180 "alloc size must be larger than 0\n");
1181 rc = -EINVAL;
1182 goto out;
1183 }
1184 rc = alloc_device_memory(ctx, &args->in, &handle);
1185
1186 memset(args, 0, sizeof(*args));
1187 args->out.handle = (__u64) handle;
1188 break;
1189
1190 case HL_MEM_OP_FREE:
1191 rc = free_device_memory(ctx, args->in.free.handle);
1192 break;
1193
1194 case HL_MEM_OP_MAP:
1195 rc = map_device_va(ctx, &args->in, &device_addr);
1196
1197 memset(args, 0, sizeof(*args));
1198 args->out.device_virt_addr = device_addr;
1199 break;
1200
1201 case HL_MEM_OP_UNMAP:
1202 rc = unmap_device_va(ctx, args->in.unmap.device_virt_addr,
1203 false);
1204 break;
1205
1206 default:
1207 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1208 rc = -ENOTTY;
1209 break;
1210 }
1211
1212 out:
1213 return rc;
1214 }
1215
1216 /*
1217 * hl_pin_host_memory - pins a chunk of host memory
1218 *
1219 * @hdev : pointer to the habanalabs device structure
1220 * @addr : the user-space virtual address of the memory area
1221 * @size : the size of the memory area
1222 * @userptr : pointer to hl_userptr structure
1223 *
1224 * This function does the following:
1225 * - Pins the physical pages
1226 * - Create a SG list from those pages
1227 */
hl_pin_host_memory(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr * userptr)1228 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1229 struct hl_userptr *userptr)
1230 {
1231 u64 start, end;
1232 u32 npages, offset;
1233 int rc;
1234
1235 if (!size) {
1236 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
1237 return -EINVAL;
1238 }
1239
1240 if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1241 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
1242 return -EFAULT;
1243 }
1244
1245 /*
1246 * If the combination of the address and size requested for this memory
1247 * region causes an integer overflow, return error.
1248 */
1249 if (((addr + size) < addr) ||
1250 PAGE_ALIGN(addr + size) < (addr + size)) {
1251 dev_err(hdev->dev,
1252 "user pointer 0x%llx + %llu causes integer overflow\n",
1253 addr, size);
1254 return -EINVAL;
1255 }
1256
1257 start = addr & PAGE_MASK;
1258 offset = addr & ~PAGE_MASK;
1259 end = PAGE_ALIGN(addr + size);
1260 npages = (end - start) >> PAGE_SHIFT;
1261
1262 userptr->size = size;
1263 userptr->addr = addr;
1264 userptr->dma_mapped = false;
1265 INIT_LIST_HEAD(&userptr->job_node);
1266
1267 userptr->vec = frame_vector_create(npages);
1268 if (!userptr->vec) {
1269 dev_err(hdev->dev, "Failed to create frame vector\n");
1270 return -ENOMEM;
1271 }
1272
1273 rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
1274 userptr->vec);
1275
1276 if (rc != npages) {
1277 dev_err(hdev->dev,
1278 "Failed to map host memory, user ptr probably wrong\n");
1279 if (rc < 0)
1280 goto destroy_framevec;
1281 rc = -EFAULT;
1282 goto put_framevec;
1283 }
1284
1285 if (frame_vector_to_pages(userptr->vec) < 0) {
1286 dev_err(hdev->dev,
1287 "Failed to translate frame vector to pages\n");
1288 rc = -EFAULT;
1289 goto put_framevec;
1290 }
1291
1292 userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
1293 if (!userptr->sgt) {
1294 rc = -ENOMEM;
1295 goto put_framevec;
1296 }
1297
1298 rc = sg_alloc_table_from_pages(userptr->sgt,
1299 frame_vector_pages(userptr->vec),
1300 npages, offset, size, GFP_ATOMIC);
1301 if (rc < 0) {
1302 dev_err(hdev->dev, "failed to create SG table from pages\n");
1303 goto free_sgt;
1304 }
1305
1306 hl_debugfs_add_userptr(hdev, userptr);
1307
1308 return 0;
1309
1310 free_sgt:
1311 kfree(userptr->sgt);
1312 put_framevec:
1313 put_vaddr_frames(userptr->vec);
1314 destroy_framevec:
1315 frame_vector_destroy(userptr->vec);
1316 return rc;
1317 }
1318
1319 /*
1320 * hl_unpin_host_memory - unpins a chunk of host memory
1321 *
1322 * @hdev : pointer to the habanalabs device structure
1323 * @userptr : pointer to hl_userptr structure
1324 *
1325 * This function does the following:
1326 * - Unpins the physical pages related to the host memory
1327 * - Free the SG list
1328 */
hl_unpin_host_memory(struct hl_device * hdev,struct hl_userptr * userptr)1329 int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
1330 {
1331 struct page **pages;
1332
1333 hl_debugfs_remove_userptr(hdev, userptr);
1334
1335 if (userptr->dma_mapped)
1336 hdev->asic_funcs->hl_dma_unmap_sg(hdev,
1337 userptr->sgt->sgl,
1338 userptr->sgt->nents,
1339 userptr->dir);
1340
1341 pages = frame_vector_pages(userptr->vec);
1342 if (!IS_ERR(pages)) {
1343 int i;
1344
1345 for (i = 0; i < frame_vector_count(userptr->vec); i++)
1346 set_page_dirty_lock(pages[i]);
1347 }
1348 put_vaddr_frames(userptr->vec);
1349 frame_vector_destroy(userptr->vec);
1350
1351 list_del(&userptr->job_node);
1352
1353 sg_free_table(userptr->sgt);
1354 kfree(userptr->sgt);
1355
1356 return 0;
1357 }
1358
1359 /*
1360 * hl_userptr_delete_list - clear userptr list
1361 *
1362 * @hdev : pointer to the habanalabs device structure
1363 * @userptr_list : pointer to the list to clear
1364 *
1365 * This function does the following:
1366 * - Iterates over the list and unpins the host memory and frees the userptr
1367 * structure.
1368 */
hl_userptr_delete_list(struct hl_device * hdev,struct list_head * userptr_list)1369 void hl_userptr_delete_list(struct hl_device *hdev,
1370 struct list_head *userptr_list)
1371 {
1372 struct hl_userptr *userptr, *tmp;
1373
1374 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
1375 hl_unpin_host_memory(hdev, userptr);
1376 kfree(userptr);
1377 }
1378
1379 INIT_LIST_HEAD(userptr_list);
1380 }
1381
1382 /*
1383 * hl_userptr_is_pinned - returns whether the given userptr is pinned
1384 *
1385 * @hdev : pointer to the habanalabs device structure
1386 * @userptr_list : pointer to the list to clear
1387 * @userptr : pointer to userptr to check
1388 *
1389 * This function does the following:
1390 * - Iterates over the list and checks if the given userptr is in it, means is
1391 * pinned. If so, returns true, otherwise returns false.
1392 */
hl_userptr_is_pinned(struct hl_device * hdev,u64 addr,u32 size,struct list_head * userptr_list,struct hl_userptr ** userptr)1393 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
1394 u32 size, struct list_head *userptr_list,
1395 struct hl_userptr **userptr)
1396 {
1397 list_for_each_entry((*userptr), userptr_list, job_node) {
1398 if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
1399 return true;
1400 }
1401
1402 return false;
1403 }
1404
1405 /*
1406 * hl_va_range_init - initialize virtual addresses range
1407 *
1408 * @hdev : pointer to the habanalabs device structure
1409 * @va_range : pointer to the range to initialize
1410 * @start : range start address
1411 * @end : range end address
1412 *
1413 * This function does the following:
1414 * - Initializes the virtual addresses list of the given range with the given
1415 * addresses.
1416 */
hl_va_range_init(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)1417 static int hl_va_range_init(struct hl_device *hdev,
1418 struct hl_va_range *va_range, u64 start, u64 end)
1419 {
1420 int rc;
1421
1422 INIT_LIST_HEAD(&va_range->list);
1423
1424 /* PAGE_SIZE alignment */
1425
1426 if (start & (PAGE_SIZE - 1)) {
1427 start &= PAGE_MASK;
1428 start += PAGE_SIZE;
1429 }
1430
1431 if (end & (PAGE_SIZE - 1))
1432 end &= PAGE_MASK;
1433
1434 if (start >= end) {
1435 dev_err(hdev->dev, "too small vm range for va list\n");
1436 return -EFAULT;
1437 }
1438
1439 rc = add_va_block(hdev, va_range, start, end);
1440
1441 if (rc) {
1442 dev_err(hdev->dev, "Failed to init host va list\n");
1443 return rc;
1444 }
1445
1446 va_range->start_addr = start;
1447 va_range->end_addr = end;
1448
1449 return 0;
1450 }
1451
1452 /*
1453 * hl_vm_ctx_init_with_ranges - initialize virtual memory for context
1454 *
1455 * @ctx : pointer to the habanalabs context structure
1456 * @host_range_start : host virtual addresses range start
1457 * @host_range_end : host virtual addresses range end
1458 * @dram_range_start : dram virtual addresses range start
1459 * @dram_range_end : dram virtual addresses range end
1460 *
1461 * This function initializes the following:
1462 * - MMU for context
1463 * - Virtual address to area descriptor hashtable
1464 * - Virtual block list of available virtual memory
1465 */
hl_vm_ctx_init_with_ranges(struct hl_ctx * ctx,u64 host_range_start,u64 host_range_end,u64 dram_range_start,u64 dram_range_end)1466 static int hl_vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start,
1467 u64 host_range_end, u64 dram_range_start,
1468 u64 dram_range_end)
1469 {
1470 struct hl_device *hdev = ctx->hdev;
1471 int rc;
1472
1473 rc = hl_mmu_ctx_init(ctx);
1474 if (rc) {
1475 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
1476 return rc;
1477 }
1478
1479 mutex_init(&ctx->mem_hash_lock);
1480 hash_init(ctx->mem_hash);
1481
1482 mutex_init(&ctx->host_va_range.lock);
1483
1484 rc = hl_va_range_init(hdev, &ctx->host_va_range, host_range_start,
1485 host_range_end);
1486 if (rc) {
1487 dev_err(hdev->dev, "failed to init host vm range\n");
1488 goto host_vm_err;
1489 }
1490
1491 mutex_init(&ctx->dram_va_range.lock);
1492
1493 rc = hl_va_range_init(hdev, &ctx->dram_va_range, dram_range_start,
1494 dram_range_end);
1495 if (rc) {
1496 dev_err(hdev->dev, "failed to init dram vm range\n");
1497 goto dram_vm_err;
1498 }
1499
1500 hl_debugfs_add_ctx_mem_hash(hdev, ctx);
1501
1502 return 0;
1503
1504 dram_vm_err:
1505 mutex_destroy(&ctx->dram_va_range.lock);
1506
1507 mutex_lock(&ctx->host_va_range.lock);
1508 clear_va_list_locked(hdev, &ctx->host_va_range.list);
1509 mutex_unlock(&ctx->host_va_range.lock);
1510 host_vm_err:
1511 mutex_destroy(&ctx->host_va_range.lock);
1512 mutex_destroy(&ctx->mem_hash_lock);
1513 hl_mmu_ctx_fini(ctx);
1514
1515 return rc;
1516 }
1517
hl_vm_ctx_init(struct hl_ctx * ctx)1518 int hl_vm_ctx_init(struct hl_ctx *ctx)
1519 {
1520 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
1521 u64 host_range_start, host_range_end, dram_range_start,
1522 dram_range_end;
1523
1524 atomic64_set(&ctx->dram_phys_mem, 0);
1525
1526 /*
1527 * - If MMU is enabled, init the ranges as usual.
1528 * - If MMU is disabled, in case of host mapping, the returned address
1529 * is the given one.
1530 * In case of DRAM mapping, the returned address is the physical
1531 * address of the memory related to the given handle.
1532 */
1533 if (ctx->hdev->mmu_enable) {
1534 dram_range_start = prop->va_space_dram_start_address;
1535 dram_range_end = prop->va_space_dram_end_address;
1536 host_range_start = prop->va_space_host_start_address;
1537 host_range_end = prop->va_space_host_end_address;
1538 } else {
1539 dram_range_start = prop->dram_user_base_address;
1540 dram_range_end = prop->dram_end_address;
1541 host_range_start = prop->dram_user_base_address;
1542 host_range_end = prop->dram_end_address;
1543 }
1544
1545 return hl_vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
1546 dram_range_start, dram_range_end);
1547 }
1548
1549 /*
1550 * hl_va_range_fini - clear a virtual addresses range
1551 *
1552 * @hdev : pointer to the habanalabs structure
1553 * va_range : pointer to virtual addresses range
1554 *
1555 * This function initializes the following:
1556 * - Checks that the given range contains the whole initial range
1557 * - Frees the virtual addresses block list and its lock
1558 */
hl_va_range_fini(struct hl_device * hdev,struct hl_va_range * va_range)1559 static void hl_va_range_fini(struct hl_device *hdev,
1560 struct hl_va_range *va_range)
1561 {
1562 struct hl_vm_va_block *va_block;
1563
1564 if (list_empty(&va_range->list)) {
1565 dev_warn(hdev->dev,
1566 "va list should not be empty on cleanup!\n");
1567 goto out;
1568 }
1569
1570 if (!list_is_singular(&va_range->list)) {
1571 dev_warn(hdev->dev,
1572 "va list should not contain multiple blocks on cleanup!\n");
1573 goto free_va_list;
1574 }
1575
1576 va_block = list_first_entry(&va_range->list, typeof(*va_block), node);
1577
1578 if (va_block->start != va_range->start_addr ||
1579 va_block->end != va_range->end_addr) {
1580 dev_warn(hdev->dev,
1581 "wrong va block on cleanup, from 0x%llx to 0x%llx\n",
1582 va_block->start, va_block->end);
1583 goto free_va_list;
1584 }
1585
1586 free_va_list:
1587 mutex_lock(&va_range->lock);
1588 clear_va_list_locked(hdev, &va_range->list);
1589 mutex_unlock(&va_range->lock);
1590
1591 out:
1592 mutex_destroy(&va_range->lock);
1593 }
1594
1595 /*
1596 * hl_vm_ctx_fini - virtual memory teardown of context
1597 *
1598 * @ctx : pointer to the habanalabs context structure
1599 *
1600 * This function perform teardown the following:
1601 * - Virtual block list of available virtual memory
1602 * - Virtual address to area descriptor hashtable
1603 * - MMU for context
1604 *
1605 * In addition this function does the following:
1606 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
1607 * hashtable should be empty as no valid mappings should exist at this
1608 * point.
1609 * - Frees any existing physical page list from the idr which relates to the
1610 * current context asid.
1611 * - This function checks the virtual block list for correctness. At this point
1612 * the list should contain one element which describes the whole virtual
1613 * memory range of the context. Otherwise, a warning is printed.
1614 */
hl_vm_ctx_fini(struct hl_ctx * ctx)1615 void hl_vm_ctx_fini(struct hl_ctx *ctx)
1616 {
1617 struct hl_device *hdev = ctx->hdev;
1618 struct hl_vm *vm = &hdev->vm;
1619 struct hl_vm_phys_pg_pack *phys_pg_list;
1620 struct hl_vm_hash_node *hnode;
1621 struct hlist_node *tmp_node;
1622 int i;
1623
1624 hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
1625
1626 if (!hash_empty(ctx->mem_hash))
1627 dev_notice(hdev->dev, "ctx is freed while it has va in use\n");
1628
1629 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
1630 dev_dbg(hdev->dev,
1631 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
1632 hnode->vaddr, ctx->asid);
1633 unmap_device_va(ctx, hnode->vaddr, true);
1634 }
1635
1636 spin_lock(&vm->idr_lock);
1637 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
1638 if (phys_pg_list->asid == ctx->asid) {
1639 dev_dbg(hdev->dev,
1640 "page list 0x%p of asid %d is still alive\n",
1641 phys_pg_list, ctx->asid);
1642 atomic64_sub(phys_pg_list->total_size,
1643 &hdev->dram_used_mem);
1644 free_phys_pg_pack(hdev, phys_pg_list);
1645 idr_remove(&vm->phys_pg_pack_handles, i);
1646 }
1647 spin_unlock(&vm->idr_lock);
1648
1649 hl_va_range_fini(hdev, &ctx->dram_va_range);
1650 hl_va_range_fini(hdev, &ctx->host_va_range);
1651
1652 mutex_destroy(&ctx->mem_hash_lock);
1653 hl_mmu_ctx_fini(ctx);
1654 }
1655
1656 /*
1657 * hl_vm_init - initialize virtual memory module
1658 *
1659 * @hdev : pointer to the habanalabs device structure
1660 *
1661 * This function initializes the following:
1662 * - MMU module
1663 * - DRAM physical pages pool of 2MB
1664 * - Idr for device memory allocation handles
1665 */
hl_vm_init(struct hl_device * hdev)1666 int hl_vm_init(struct hl_device *hdev)
1667 {
1668 struct asic_fixed_properties *prop = &hdev->asic_prop;
1669 struct hl_vm *vm = &hdev->vm;
1670 int rc;
1671
1672 vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
1673 if (!vm->dram_pg_pool) {
1674 dev_err(hdev->dev, "Failed to create dram page pool\n");
1675 return -ENOMEM;
1676 }
1677
1678 kref_init(&vm->dram_pg_pool_refcount);
1679
1680 rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
1681 prop->dram_end_address - prop->dram_user_base_address,
1682 -1);
1683
1684 if (rc) {
1685 dev_err(hdev->dev,
1686 "Failed to add memory to dram page pool %d\n", rc);
1687 goto pool_add_err;
1688 }
1689
1690 spin_lock_init(&vm->idr_lock);
1691 idr_init(&vm->phys_pg_pack_handles);
1692
1693 atomic64_set(&hdev->dram_used_mem, 0);
1694
1695 vm->init_done = true;
1696
1697 return 0;
1698
1699 pool_add_err:
1700 gen_pool_destroy(vm->dram_pg_pool);
1701
1702 return rc;
1703 }
1704
1705 /*
1706 * hl_vm_fini - virtual memory module teardown
1707 *
1708 * @hdev : pointer to the habanalabs device structure
1709 *
1710 * This function perform teardown to the following:
1711 * - Idr for device memory allocation handles
1712 * - DRAM physical pages pool of 2MB
1713 * - MMU module
1714 */
hl_vm_fini(struct hl_device * hdev)1715 void hl_vm_fini(struct hl_device *hdev)
1716 {
1717 struct hl_vm *vm = &hdev->vm;
1718
1719 if (!vm->init_done)
1720 return;
1721
1722 /*
1723 * At this point all the contexts should be freed and hence no DRAM
1724 * memory should be in use. Hence the DRAM pool should be freed here.
1725 */
1726 if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
1727 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
1728 __func__);
1729
1730 vm->init_done = false;
1731 }
1732