• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 	void				(*handle_intel_pt_intr)(void);
34 };
35 
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39 
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61 
62 struct perf_callchain_entry {
63 	__u64				nr;
64 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66 
67 struct perf_callchain_entry_ctx {
68 	struct perf_callchain_entry *entry;
69 	u32			    max_stack;
70 	u32			    nr;
71 	short			    contexts;
72 	bool			    contexts_maxed;
73 };
74 
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 				     unsigned long off, unsigned long len);
77 
78 struct perf_raw_frag {
79 	union {
80 		struct perf_raw_frag	*next;
81 		unsigned long		pad;
82 	};
83 	perf_copy_f			copy;
84 	void				*data;
85 	u32				size;
86 } __packed;
87 
88 struct perf_raw_record {
89 	struct perf_raw_frag		frag;
90 	u32				size;
91 };
92 
93 /*
94  * branch stack layout:
95  *  nr: number of taken branches stored in entries[]
96  *
97  * Note that nr can vary from sample to sample
98  * branches (to, from) are stored from most recent
99  * to least recent, i.e., entries[0] contains the most
100  * recent branch.
101  */
102 struct perf_branch_stack {
103 	__u64				nr;
104 	struct perf_branch_entry	entries[0];
105 };
106 
107 struct task_struct;
108 
109 /*
110  * extra PMU register associated with an event
111  */
112 struct hw_perf_event_extra {
113 	u64		config;	/* register value */
114 	unsigned int	reg;	/* register address or index */
115 	int		alloc;	/* extra register already allocated */
116 	int		idx;	/* index in shared_regs->regs[] */
117 };
118 
119 /**
120  * struct hw_perf_event - performance event hardware details:
121  */
122 struct hw_perf_event {
123 #ifdef CONFIG_PERF_EVENTS
124 	union {
125 		struct { /* hardware */
126 			u64		config;
127 			u64		last_tag;
128 			unsigned long	config_base;
129 			unsigned long	event_base;
130 			int		event_base_rdpmc;
131 			int		idx;
132 			int		last_cpu;
133 			int		flags;
134 
135 			struct hw_perf_event_extra extra_reg;
136 			struct hw_perf_event_extra branch_reg;
137 		};
138 		struct { /* software */
139 			struct hrtimer	hrtimer;
140 		};
141 		struct { /* tracepoint */
142 			/* for tp_event->class */
143 			struct list_head	tp_list;
144 		};
145 		struct { /* amd_power */
146 			u64	pwr_acc;
147 			u64	ptsc;
148 		};
149 #ifdef CONFIG_HAVE_HW_BREAKPOINT
150 		struct { /* breakpoint */
151 			/*
152 			 * Crufty hack to avoid the chicken and egg
153 			 * problem hw_breakpoint has with context
154 			 * creation and event initalization.
155 			 */
156 			struct arch_hw_breakpoint	info;
157 			struct list_head		bp_list;
158 		};
159 #endif
160 		struct { /* amd_iommu */
161 			u8	iommu_bank;
162 			u8	iommu_cntr;
163 			u16	padding;
164 			u64	conf;
165 			u64	conf1;
166 		};
167 	};
168 	/*
169 	 * If the event is a per task event, this will point to the task in
170 	 * question. See the comment in perf_event_alloc().
171 	 */
172 	struct task_struct		*target;
173 
174 	/*
175 	 * PMU would store hardware filter configuration
176 	 * here.
177 	 */
178 	void				*addr_filters;
179 
180 	/* Last sync'ed generation of filters */
181 	unsigned long			addr_filters_gen;
182 
183 /*
184  * hw_perf_event::state flags; used to track the PERF_EF_* state.
185  */
186 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
187 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
188 #define PERF_HES_ARCH		0x04
189 
190 	int				state;
191 
192 	/*
193 	 * The last observed hardware counter value, updated with a
194 	 * local64_cmpxchg() such that pmu::read() can be called nested.
195 	 */
196 	local64_t			prev_count;
197 
198 	/*
199 	 * The period to start the next sample with.
200 	 */
201 	u64				sample_period;
202 
203 	/*
204 	 * The period we started this sample with.
205 	 */
206 	u64				last_period;
207 
208 	/*
209 	 * However much is left of the current period; note that this is
210 	 * a full 64bit value and allows for generation of periods longer
211 	 * than hardware might allow.
212 	 */
213 	local64_t			period_left;
214 
215 	/*
216 	 * State for throttling the event, see __perf_event_overflow() and
217 	 * perf_adjust_freq_unthr_context().
218 	 */
219 	u64                             interrupts_seq;
220 	u64				interrupts;
221 
222 	/*
223 	 * State for freq target events, see __perf_event_overflow() and
224 	 * perf_adjust_freq_unthr_context().
225 	 */
226 	u64				freq_time_stamp;
227 	u64				freq_count_stamp;
228 #endif
229 };
230 
231 struct perf_event;
232 
233 /*
234  * Common implementation detail of pmu::{start,commit,cancel}_txn
235  */
236 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
237 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
238 
239 /**
240  * pmu::capabilities flags
241  */
242 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
243 #define PERF_PMU_CAP_NO_NMI			0x02
244 #define PERF_PMU_CAP_AUX_NO_SG			0x04
245 #define PERF_PMU_CAP_EXTENDED_REGS		0x08
246 #define PERF_PMU_CAP_EXCLUSIVE			0x10
247 #define PERF_PMU_CAP_ITRACE			0x20
248 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
249 #define PERF_PMU_CAP_NO_EXCLUDE			0x80
250 #define PERF_PMU_CAP_AUX_OUTPUT			0x100
251 
252 /**
253  * struct pmu - generic performance monitoring unit
254  */
255 struct pmu {
256 	struct list_head		entry;
257 
258 	struct module			*module;
259 	struct device			*dev;
260 	const struct attribute_group	**attr_groups;
261 	const struct attribute_group	**attr_update;
262 	const char			*name;
263 	int				type;
264 
265 	/*
266 	 * various common per-pmu feature flags
267 	 */
268 	int				capabilities;
269 
270 	int __percpu			*pmu_disable_count;
271 	struct perf_cpu_context __percpu *pmu_cpu_context;
272 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
273 	int				task_ctx_nr;
274 	int				hrtimer_interval_ms;
275 
276 	/* number of address filters this PMU can do */
277 	unsigned int			nr_addr_filters;
278 
279 	/*
280 	 * Fully disable/enable this PMU, can be used to protect from the PMI
281 	 * as well as for lazy/batch writing of the MSRs.
282 	 */
283 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
284 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
285 
286 	/*
287 	 * Try and initialize the event for this PMU.
288 	 *
289 	 * Returns:
290 	 *  -ENOENT	-- @event is not for this PMU
291 	 *
292 	 *  -ENODEV	-- @event is for this PMU but PMU not present
293 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
294 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
295 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
296 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
297 	 *
298 	 *  0		-- @event is for this PMU and valid
299 	 *
300 	 * Other error return values are allowed.
301 	 */
302 	int (*event_init)		(struct perf_event *event);
303 
304 	/*
305 	 * Notification that the event was mapped or unmapped.  Called
306 	 * in the context of the mapping task.
307 	 */
308 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
309 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
310 
311 	/*
312 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
313 	 * matching hw_perf_event::state flags.
314 	 */
315 #define PERF_EF_START	0x01		/* start the counter when adding    */
316 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
317 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
318 
319 	/*
320 	 * Adds/Removes a counter to/from the PMU, can be done inside a
321 	 * transaction, see the ->*_txn() methods.
322 	 *
323 	 * The add/del callbacks will reserve all hardware resources required
324 	 * to service the event, this includes any counter constraint
325 	 * scheduling etc.
326 	 *
327 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
328 	 * is on.
329 	 *
330 	 * ->add() called without PERF_EF_START should result in the same state
331 	 *  as ->add() followed by ->stop().
332 	 *
333 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
334 	 *  ->stop() that must deal with already being stopped without
335 	 *  PERF_EF_UPDATE.
336 	 */
337 	int  (*add)			(struct perf_event *event, int flags);
338 	void (*del)			(struct perf_event *event, int flags);
339 
340 	/*
341 	 * Starts/Stops a counter present on the PMU.
342 	 *
343 	 * The PMI handler should stop the counter when perf_event_overflow()
344 	 * returns !0. ->start() will be used to continue.
345 	 *
346 	 * Also used to change the sample period.
347 	 *
348 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
349 	 * is on -- will be called from NMI context with the PMU generates
350 	 * NMIs.
351 	 *
352 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
353 	 *  period/count values like ->read() would.
354 	 *
355 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
356 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
357 	 */
358 	void (*start)			(struct perf_event *event, int flags);
359 	void (*stop)			(struct perf_event *event, int flags);
360 
361 	/*
362 	 * Updates the counter value of the event.
363 	 *
364 	 * For sampling capable PMUs this will also update the software period
365 	 * hw_perf_event::period_left field.
366 	 */
367 	void (*read)			(struct perf_event *event);
368 
369 	/*
370 	 * Group events scheduling is treated as a transaction, add
371 	 * group events as a whole and perform one schedulability test.
372 	 * If the test fails, roll back the whole group
373 	 *
374 	 * Start the transaction, after this ->add() doesn't need to
375 	 * do schedulability tests.
376 	 *
377 	 * Optional.
378 	 */
379 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
380 	/*
381 	 * If ->start_txn() disabled the ->add() schedulability test
382 	 * then ->commit_txn() is required to perform one. On success
383 	 * the transaction is closed. On error the transaction is kept
384 	 * open until ->cancel_txn() is called.
385 	 *
386 	 * Optional.
387 	 */
388 	int  (*commit_txn)		(struct pmu *pmu);
389 	/*
390 	 * Will cancel the transaction, assumes ->del() is called
391 	 * for each successful ->add() during the transaction.
392 	 *
393 	 * Optional.
394 	 */
395 	void (*cancel_txn)		(struct pmu *pmu);
396 
397 	/*
398 	 * Will return the value for perf_event_mmap_page::index for this event,
399 	 * if no implementation is provided it will default to: event->hw.idx + 1.
400 	 */
401 	int (*event_idx)		(struct perf_event *event); /*optional */
402 
403 	/*
404 	 * context-switches callback
405 	 */
406 	void (*sched_task)		(struct perf_event_context *ctx,
407 					bool sched_in);
408 	/*
409 	 * PMU specific data size
410 	 */
411 	size_t				task_ctx_size;
412 
413 
414 	/*
415 	 * Set up pmu-private data structures for an AUX area
416 	 */
417 	void *(*setup_aux)		(struct perf_event *event, void **pages,
418 					 int nr_pages, bool overwrite);
419 					/* optional */
420 
421 	/*
422 	 * Free pmu-private AUX data structures
423 	 */
424 	void (*free_aux)		(void *aux); /* optional */
425 
426 	/*
427 	 * Validate address range filters: make sure the HW supports the
428 	 * requested configuration and number of filters; return 0 if the
429 	 * supplied filters are valid, -errno otherwise.
430 	 *
431 	 * Runs in the context of the ioctl()ing process and is not serialized
432 	 * with the rest of the PMU callbacks.
433 	 */
434 	int (*addr_filters_validate)	(struct list_head *filters);
435 					/* optional */
436 
437 	/*
438 	 * Synchronize address range filter configuration:
439 	 * translate hw-agnostic filters into hardware configuration in
440 	 * event::hw::addr_filters.
441 	 *
442 	 * Runs as a part of filter sync sequence that is done in ->start()
443 	 * callback by calling perf_event_addr_filters_sync().
444 	 *
445 	 * May (and should) traverse event::addr_filters::list, for which its
446 	 * caller provides necessary serialization.
447 	 */
448 	void (*addr_filters_sync)	(struct perf_event *event);
449 					/* optional */
450 
451 	/*
452 	 * Check if event can be used for aux_output purposes for
453 	 * events of this PMU.
454 	 *
455 	 * Runs from perf_event_open(). Should return 0 for "no match"
456 	 * or non-zero for "match".
457 	 */
458 	int (*aux_output_match)		(struct perf_event *event);
459 					/* optional */
460 
461 	/*
462 	 * Filter events for PMU-specific reasons.
463 	 */
464 	int (*filter_match)		(struct perf_event *event); /* optional */
465 
466 	/*
467 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
468 	 */
469 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
470 };
471 
472 enum perf_addr_filter_action_t {
473 	PERF_ADDR_FILTER_ACTION_STOP = 0,
474 	PERF_ADDR_FILTER_ACTION_START,
475 	PERF_ADDR_FILTER_ACTION_FILTER,
476 };
477 
478 /**
479  * struct perf_addr_filter - address range filter definition
480  * @entry:	event's filter list linkage
481  * @path:	object file's path for file-based filters
482  * @offset:	filter range offset
483  * @size:	filter range size (size==0 means single address trigger)
484  * @action:	filter/start/stop
485  *
486  * This is a hardware-agnostic filter configuration as specified by the user.
487  */
488 struct perf_addr_filter {
489 	struct list_head	entry;
490 	struct path		path;
491 	unsigned long		offset;
492 	unsigned long		size;
493 	enum perf_addr_filter_action_t	action;
494 };
495 
496 /**
497  * struct perf_addr_filters_head - container for address range filters
498  * @list:	list of filters for this event
499  * @lock:	spinlock that serializes accesses to the @list and event's
500  *		(and its children's) filter generations.
501  * @nr_file_filters:	number of file-based filters
502  *
503  * A child event will use parent's @list (and therefore @lock), so they are
504  * bundled together; see perf_event_addr_filters().
505  */
506 struct perf_addr_filters_head {
507 	struct list_head	list;
508 	raw_spinlock_t		lock;
509 	unsigned int		nr_file_filters;
510 };
511 
512 struct perf_addr_filter_range {
513 	unsigned long		start;
514 	unsigned long		size;
515 };
516 
517 /**
518  * enum perf_event_state - the states of an event:
519  */
520 enum perf_event_state {
521 	PERF_EVENT_STATE_DEAD		= -4,
522 	PERF_EVENT_STATE_EXIT		= -3,
523 	PERF_EVENT_STATE_ERROR		= -2,
524 	PERF_EVENT_STATE_OFF		= -1,
525 	PERF_EVENT_STATE_INACTIVE	=  0,
526 	PERF_EVENT_STATE_ACTIVE		=  1,
527 };
528 
529 struct file;
530 struct perf_sample_data;
531 
532 typedef void (*perf_overflow_handler_t)(struct perf_event *,
533 					struct perf_sample_data *,
534 					struct pt_regs *regs);
535 
536 /*
537  * Event capabilities. For event_caps and groups caps.
538  *
539  * PERF_EV_CAP_SOFTWARE: Is a software event.
540  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
541  * from any CPU in the package where it is active.
542  */
543 #define PERF_EV_CAP_SOFTWARE		BIT(0)
544 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
545 
546 #define SWEVENT_HLIST_BITS		8
547 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
548 
549 struct swevent_hlist {
550 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
551 	struct rcu_head			rcu_head;
552 };
553 
554 #define PERF_ATTACH_CONTEXT	0x01
555 #define PERF_ATTACH_GROUP	0x02
556 #define PERF_ATTACH_TASK	0x04
557 #define PERF_ATTACH_TASK_DATA	0x08
558 #define PERF_ATTACH_ITRACE	0x10
559 
560 struct perf_cgroup;
561 struct ring_buffer;
562 
563 struct pmu_event_list {
564 	raw_spinlock_t		lock;
565 	struct list_head	list;
566 };
567 
568 #define for_each_sibling_event(sibling, event)			\
569 	if ((event)->group_leader == (event))			\
570 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
571 
572 /**
573  * struct perf_event - performance event kernel representation:
574  */
575 struct perf_event {
576 #ifdef CONFIG_PERF_EVENTS
577 	/*
578 	 * entry onto perf_event_context::event_list;
579 	 *   modifications require ctx->lock
580 	 *   RCU safe iterations.
581 	 */
582 	struct list_head		event_entry;
583 
584 	/*
585 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
586 	 * either sufficies for read.
587 	 */
588 	struct list_head		sibling_list;
589 	struct list_head		active_list;
590 	/*
591 	 * Node on the pinned or flexible tree located at the event context;
592 	 */
593 	struct rb_node			group_node;
594 	u64				group_index;
595 	/*
596 	 * We need storage to track the entries in perf_pmu_migrate_context; we
597 	 * cannot use the event_entry because of RCU and we want to keep the
598 	 * group in tact which avoids us using the other two entries.
599 	 */
600 	struct list_head		migrate_entry;
601 
602 	struct hlist_node		hlist_entry;
603 	struct list_head		active_entry;
604 	int				nr_siblings;
605 
606 	/* Not serialized. Only written during event initialization. */
607 	int				event_caps;
608 	/* The cumulative AND of all event_caps for events in this group. */
609 	int				group_caps;
610 
611 	struct perf_event		*group_leader;
612 	struct pmu			*pmu;
613 	void				*pmu_private;
614 
615 	enum perf_event_state		state;
616 	unsigned int			attach_state;
617 	local64_t			count;
618 	atomic64_t			child_count;
619 
620 	/*
621 	 * These are the total time in nanoseconds that the event
622 	 * has been enabled (i.e. eligible to run, and the task has
623 	 * been scheduled in, if this is a per-task event)
624 	 * and running (scheduled onto the CPU), respectively.
625 	 */
626 	u64				total_time_enabled;
627 	u64				total_time_running;
628 	u64				tstamp;
629 
630 	/*
631 	 * timestamp shadows the actual context timing but it can
632 	 * be safely used in NMI interrupt context. It reflects the
633 	 * context time as it was when the event was last scheduled in.
634 	 *
635 	 * ctx_time already accounts for ctx->timestamp. Therefore to
636 	 * compute ctx_time for a sample, simply add perf_clock().
637 	 */
638 	u64				shadow_ctx_time;
639 
640 	struct perf_event_attr		attr;
641 	u16				header_size;
642 	u16				id_header_size;
643 	u16				read_size;
644 	struct hw_perf_event		hw;
645 
646 	struct perf_event_context	*ctx;
647 	atomic_long_t			refcount;
648 
649 	/*
650 	 * These accumulate total time (in nanoseconds) that children
651 	 * events have been enabled and running, respectively.
652 	 */
653 	atomic64_t			child_total_time_enabled;
654 	atomic64_t			child_total_time_running;
655 
656 	/*
657 	 * Protect attach/detach and child_list:
658 	 */
659 	struct mutex			child_mutex;
660 	struct list_head		child_list;
661 	struct perf_event		*parent;
662 
663 	int				oncpu;
664 	int				cpu;
665 
666 	struct list_head		owner_entry;
667 	struct task_struct		*owner;
668 
669 	/* mmap bits */
670 	struct mutex			mmap_mutex;
671 	atomic_t			mmap_count;
672 
673 	struct ring_buffer		*rb;
674 	struct list_head		rb_entry;
675 	unsigned long			rcu_batches;
676 	int				rcu_pending;
677 
678 	/* poll related */
679 	wait_queue_head_t		waitq;
680 	struct fasync_struct		*fasync;
681 
682 	/* delayed work for NMIs and such */
683 	int				pending_wakeup;
684 	int				pending_kill;
685 	int				pending_disable;
686 	struct irq_work			pending;
687 
688 	atomic_t			event_limit;
689 
690 	/* address range filters */
691 	struct perf_addr_filters_head	addr_filters;
692 	/* vma address array for file-based filders */
693 	struct perf_addr_filter_range	*addr_filter_ranges;
694 	unsigned long			addr_filters_gen;
695 
696 	/* for aux_output events */
697 	struct perf_event		*aux_event;
698 
699 	void (*destroy)(struct perf_event *);
700 	struct rcu_head			rcu_head;
701 
702 	struct pid_namespace		*ns;
703 	u64				id;
704 
705 	u64				(*clock)(void);
706 	perf_overflow_handler_t		overflow_handler;
707 	void				*overflow_handler_context;
708 #ifdef CONFIG_BPF_SYSCALL
709 	perf_overflow_handler_t		orig_overflow_handler;
710 	struct bpf_prog			*prog;
711 #endif
712 
713 #ifdef CONFIG_EVENT_TRACING
714 	struct trace_event_call		*tp_event;
715 	struct event_filter		*filter;
716 #ifdef CONFIG_FUNCTION_TRACER
717 	struct ftrace_ops               ftrace_ops;
718 #endif
719 #endif
720 
721 #ifdef CONFIG_CGROUP_PERF
722 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
723 #endif
724 
725 #ifdef CONFIG_SECURITY
726 	void *security;
727 #endif
728 	struct list_head		sb_list;
729 #endif /* CONFIG_PERF_EVENTS */
730 };
731 
732 
733 struct perf_event_groups {
734 	struct rb_root	tree;
735 	u64		index;
736 };
737 
738 /**
739  * struct perf_event_context - event context structure
740  *
741  * Used as a container for task events and CPU events as well:
742  */
743 struct perf_event_context {
744 	struct pmu			*pmu;
745 	/*
746 	 * Protect the states of the events in the list,
747 	 * nr_active, and the list:
748 	 */
749 	raw_spinlock_t			lock;
750 	/*
751 	 * Protect the list of events.  Locking either mutex or lock
752 	 * is sufficient to ensure the list doesn't change; to change
753 	 * the list you need to lock both the mutex and the spinlock.
754 	 */
755 	struct mutex			mutex;
756 
757 	struct list_head		active_ctx_list;
758 	struct perf_event_groups	pinned_groups;
759 	struct perf_event_groups	flexible_groups;
760 	struct list_head		event_list;
761 
762 	struct list_head		pinned_active;
763 	struct list_head		flexible_active;
764 
765 	int				nr_events;
766 	int				nr_active;
767 	int				is_active;
768 	int				nr_stat;
769 	int				nr_freq;
770 	int				rotate_disable;
771 	/*
772 	 * Set when nr_events != nr_active, except tolerant to events not
773 	 * necessary to be active due to scheduling constraints, such as cgroups.
774 	 */
775 	int				rotate_necessary;
776 	refcount_t			refcount;
777 	struct task_struct		*task;
778 
779 	/*
780 	 * Context clock, runs when context enabled.
781 	 */
782 	u64				time;
783 	u64				timestamp;
784 
785 	/*
786 	 * These fields let us detect when two contexts have both
787 	 * been cloned (inherited) from a common ancestor.
788 	 */
789 	struct perf_event_context	*parent_ctx;
790 	u64				parent_gen;
791 	u64				generation;
792 	int				pin_count;
793 #ifdef CONFIG_CGROUP_PERF
794 	int				nr_cgroups;	 /* cgroup evts */
795 #endif
796 	void				*task_ctx_data; /* pmu specific data */
797 	struct rcu_head			rcu_head;
798 };
799 
800 /*
801  * Number of contexts where an event can trigger:
802  *	task, softirq, hardirq, nmi.
803  */
804 #define PERF_NR_CONTEXTS	4
805 
806 /**
807  * struct perf_event_cpu_context - per cpu event context structure
808  */
809 struct perf_cpu_context {
810 	struct perf_event_context	ctx;
811 	struct perf_event_context	*task_ctx;
812 	int				active_oncpu;
813 	int				exclusive;
814 
815 	raw_spinlock_t			hrtimer_lock;
816 	struct hrtimer			hrtimer;
817 	ktime_t				hrtimer_interval;
818 	unsigned int			hrtimer_active;
819 
820 #ifdef CONFIG_CGROUP_PERF
821 	struct perf_cgroup		*cgrp;
822 	struct list_head		cgrp_cpuctx_entry;
823 #endif
824 
825 	struct list_head		sched_cb_entry;
826 	int				sched_cb_usage;
827 
828 	int				online;
829 };
830 
831 struct perf_output_handle {
832 	struct perf_event		*event;
833 	struct ring_buffer		*rb;
834 	unsigned long			wakeup;
835 	unsigned long			size;
836 	u64				aux_flags;
837 	union {
838 		void			*addr;
839 		unsigned long		head;
840 	};
841 	int				page;
842 };
843 
844 struct bpf_perf_event_data_kern {
845 	bpf_user_pt_regs_t *regs;
846 	struct perf_sample_data *data;
847 	struct perf_event *event;
848 };
849 
850 #ifdef CONFIG_CGROUP_PERF
851 
852 /*
853  * perf_cgroup_info keeps track of time_enabled for a cgroup.
854  * This is a per-cpu dynamically allocated data structure.
855  */
856 struct perf_cgroup_info {
857 	u64				time;
858 	u64				timestamp;
859 };
860 
861 struct perf_cgroup {
862 	struct cgroup_subsys_state	css;
863 	struct perf_cgroup_info	__percpu *info;
864 };
865 
866 /*
867  * Must ensure cgroup is pinned (css_get) before calling
868  * this function. In other words, we cannot call this function
869  * if there is no cgroup event for the current CPU context.
870  */
871 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)872 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
873 {
874 	return container_of(task_css_check(task, perf_event_cgrp_id,
875 					   ctx ? lockdep_is_held(&ctx->lock)
876 					       : true),
877 			    struct perf_cgroup, css);
878 }
879 #endif /* CONFIG_CGROUP_PERF */
880 
881 #ifdef CONFIG_PERF_EVENTS
882 
883 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
884 				   struct perf_event *event);
885 extern void perf_aux_output_end(struct perf_output_handle *handle,
886 				unsigned long size);
887 extern int perf_aux_output_skip(struct perf_output_handle *handle,
888 				unsigned long size);
889 extern void *perf_get_aux(struct perf_output_handle *handle);
890 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
891 extern void perf_event_itrace_started(struct perf_event *event);
892 
893 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
894 extern void perf_pmu_unregister(struct pmu *pmu);
895 
896 extern int perf_num_counters(void);
897 extern const char *perf_pmu_name(void);
898 extern void __perf_event_task_sched_in(struct task_struct *prev,
899 				       struct task_struct *task);
900 extern void __perf_event_task_sched_out(struct task_struct *prev,
901 					struct task_struct *next);
902 extern int perf_event_init_task(struct task_struct *child);
903 extern void perf_event_exit_task(struct task_struct *child);
904 extern void perf_event_free_task(struct task_struct *task);
905 extern void perf_event_delayed_put(struct task_struct *task);
906 extern struct file *perf_event_get(unsigned int fd);
907 extern const struct perf_event *perf_get_event(struct file *file);
908 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
909 extern void perf_event_print_debug(void);
910 extern void perf_pmu_disable(struct pmu *pmu);
911 extern void perf_pmu_enable(struct pmu *pmu);
912 extern void perf_sched_cb_dec(struct pmu *pmu);
913 extern void perf_sched_cb_inc(struct pmu *pmu);
914 extern int perf_event_task_disable(void);
915 extern int perf_event_task_enable(void);
916 
917 extern void perf_pmu_resched(struct pmu *pmu);
918 
919 extern int perf_event_refresh(struct perf_event *event, int refresh);
920 extern void perf_event_update_userpage(struct perf_event *event);
921 extern int perf_event_release_kernel(struct perf_event *event);
922 extern struct perf_event *
923 perf_event_create_kernel_counter(struct perf_event_attr *attr,
924 				int cpu,
925 				struct task_struct *task,
926 				perf_overflow_handler_t callback,
927 				void *context);
928 extern void perf_pmu_migrate_context(struct pmu *pmu,
929 				int src_cpu, int dst_cpu);
930 int perf_event_read_local(struct perf_event *event, u64 *value,
931 			  u64 *enabled, u64 *running);
932 extern u64 perf_event_read_value(struct perf_event *event,
933 				 u64 *enabled, u64 *running);
934 
935 
936 struct perf_sample_data {
937 	/*
938 	 * Fields set by perf_sample_data_init(), group so as to
939 	 * minimize the cachelines touched.
940 	 */
941 	u64				addr;
942 	struct perf_raw_record		*raw;
943 	struct perf_branch_stack	*br_stack;
944 	u64				period;
945 	u64				weight;
946 	u64				txn;
947 	union  perf_mem_data_src	data_src;
948 
949 	/*
950 	 * The other fields, optionally {set,used} by
951 	 * perf_{prepare,output}_sample().
952 	 */
953 	u64				type;
954 	u64				ip;
955 	struct {
956 		u32	pid;
957 		u32	tid;
958 	}				tid_entry;
959 	u64				time;
960 	u64				id;
961 	u64				stream_id;
962 	struct {
963 		u32	cpu;
964 		u32	reserved;
965 	}				cpu_entry;
966 	struct perf_callchain_entry	*callchain;
967 
968 	/*
969 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
970 	 * on arch details.
971 	 */
972 	struct perf_regs		regs_user;
973 	struct pt_regs			regs_user_copy;
974 
975 	struct perf_regs		regs_intr;
976 	u64				stack_user_size;
977 
978 	u64				phys_addr;
979 } ____cacheline_aligned;
980 
981 /* default value for data source */
982 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
983 		    PERF_MEM_S(LVL, NA)   |\
984 		    PERF_MEM_S(SNOOP, NA) |\
985 		    PERF_MEM_S(LOCK, NA)  |\
986 		    PERF_MEM_S(TLB, NA))
987 
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)988 static inline void perf_sample_data_init(struct perf_sample_data *data,
989 					 u64 addr, u64 period)
990 {
991 	/* remaining struct members initialized in perf_prepare_sample() */
992 	data->addr = addr;
993 	data->raw  = NULL;
994 	data->br_stack = NULL;
995 	data->period = period;
996 	data->weight = 0;
997 	data->data_src.val = PERF_MEM_NA;
998 	data->txn = 0;
999 }
1000 
1001 extern void perf_output_sample(struct perf_output_handle *handle,
1002 			       struct perf_event_header *header,
1003 			       struct perf_sample_data *data,
1004 			       struct perf_event *event);
1005 extern void perf_prepare_sample(struct perf_event_header *header,
1006 				struct perf_sample_data *data,
1007 				struct perf_event *event,
1008 				struct pt_regs *regs);
1009 
1010 extern int perf_event_overflow(struct perf_event *event,
1011 				 struct perf_sample_data *data,
1012 				 struct pt_regs *regs);
1013 
1014 extern void perf_event_output_forward(struct perf_event *event,
1015 				     struct perf_sample_data *data,
1016 				     struct pt_regs *regs);
1017 extern void perf_event_output_backward(struct perf_event *event,
1018 				       struct perf_sample_data *data,
1019 				       struct pt_regs *regs);
1020 extern int perf_event_output(struct perf_event *event,
1021 			     struct perf_sample_data *data,
1022 			     struct pt_regs *regs);
1023 
1024 static inline bool
is_default_overflow_handler(struct perf_event * event)1025 is_default_overflow_handler(struct perf_event *event)
1026 {
1027 	if (likely(event->overflow_handler == perf_event_output_forward))
1028 		return true;
1029 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1030 		return true;
1031 	return false;
1032 }
1033 
1034 extern void
1035 perf_event_header__init_id(struct perf_event_header *header,
1036 			   struct perf_sample_data *data,
1037 			   struct perf_event *event);
1038 extern void
1039 perf_event__output_id_sample(struct perf_event *event,
1040 			     struct perf_output_handle *handle,
1041 			     struct perf_sample_data *sample);
1042 
1043 extern void
1044 perf_log_lost_samples(struct perf_event *event, u64 lost);
1045 
event_has_any_exclude_flag(struct perf_event * event)1046 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1047 {
1048 	struct perf_event_attr *attr = &event->attr;
1049 
1050 	return attr->exclude_idle || attr->exclude_user ||
1051 	       attr->exclude_kernel || attr->exclude_hv ||
1052 	       attr->exclude_guest || attr->exclude_host;
1053 }
1054 
is_sampling_event(struct perf_event * event)1055 static inline bool is_sampling_event(struct perf_event *event)
1056 {
1057 	return event->attr.sample_period != 0;
1058 }
1059 
1060 /*
1061  * Return 1 for a software event, 0 for a hardware event
1062  */
is_software_event(struct perf_event * event)1063 static inline int is_software_event(struct perf_event *event)
1064 {
1065 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1066 }
1067 
1068 /*
1069  * Return 1 for event in sw context, 0 for event in hw context
1070  */
in_software_context(struct perf_event * event)1071 static inline int in_software_context(struct perf_event *event)
1072 {
1073 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1074 }
1075 
is_exclusive_pmu(struct pmu * pmu)1076 static inline int is_exclusive_pmu(struct pmu *pmu)
1077 {
1078 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1079 }
1080 
1081 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1082 
1083 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1084 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1085 
1086 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1087 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1088 #endif
1089 
1090 /*
1091  * When generating a perf sample in-line, instead of from an interrupt /
1092  * exception, we lack a pt_regs. This is typically used from software events
1093  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1094  *
1095  * We typically don't need a full set, but (for x86) do require:
1096  * - ip for PERF_SAMPLE_IP
1097  * - cs for user_mode() tests
1098  * - sp for PERF_SAMPLE_CALLCHAIN
1099  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1100  *
1101  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1102  * things like PERF_SAMPLE_REGS_INTR.
1103  */
perf_fetch_caller_regs(struct pt_regs * regs)1104 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1105 {
1106 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1107 }
1108 
1109 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1110 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1111 {
1112 	if (static_key_false(&perf_swevent_enabled[event_id]))
1113 		__perf_sw_event(event_id, nr, regs, addr);
1114 }
1115 
1116 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1117 
1118 /*
1119  * 'Special' version for the scheduler, it hard assumes no recursion,
1120  * which is guaranteed by us not actually scheduling inside other swevents
1121  * because those disable preemption.
1122  */
1123 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1124 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1125 {
1126 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1127 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1128 
1129 		perf_fetch_caller_regs(regs);
1130 		___perf_sw_event(event_id, nr, regs, addr);
1131 	}
1132 }
1133 
1134 extern struct static_key_false perf_sched_events;
1135 
1136 static __always_inline bool
perf_sw_migrate_enabled(void)1137 perf_sw_migrate_enabled(void)
1138 {
1139 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1140 		return true;
1141 	return false;
1142 }
1143 
perf_event_task_migrate(struct task_struct * task)1144 static inline void perf_event_task_migrate(struct task_struct *task)
1145 {
1146 	if (perf_sw_migrate_enabled())
1147 		task->sched_migrated = 1;
1148 }
1149 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1150 static inline void perf_event_task_sched_in(struct task_struct *prev,
1151 					    struct task_struct *task)
1152 {
1153 	if (static_branch_unlikely(&perf_sched_events))
1154 		__perf_event_task_sched_in(prev, task);
1155 
1156 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1157 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1158 
1159 		perf_fetch_caller_regs(regs);
1160 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1161 		task->sched_migrated = 0;
1162 	}
1163 }
1164 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1165 static inline void perf_event_task_sched_out(struct task_struct *prev,
1166 					     struct task_struct *next)
1167 {
1168 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1169 
1170 	if (static_branch_unlikely(&perf_sched_events))
1171 		__perf_event_task_sched_out(prev, next);
1172 }
1173 
1174 extern void perf_event_mmap(struct vm_area_struct *vma);
1175 
1176 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1177 			       bool unregister, const char *sym);
1178 extern void perf_event_bpf_event(struct bpf_prog *prog,
1179 				 enum perf_bpf_event_type type,
1180 				 u16 flags);
1181 
1182 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1183 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1184 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1185 
1186 extern void perf_event_exec(void);
1187 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1188 extern void perf_event_namespaces(struct task_struct *tsk);
1189 extern void perf_event_fork(struct task_struct *tsk);
1190 
1191 /* Callchains */
1192 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1193 
1194 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1195 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1196 extern struct perf_callchain_entry *
1197 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1198 		   u32 max_stack, bool crosstask, bool add_mark);
1199 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1200 extern int get_callchain_buffers(int max_stack);
1201 extern void put_callchain_buffers(void);
1202 
1203 extern int sysctl_perf_event_max_stack;
1204 extern int sysctl_perf_event_max_contexts_per_stack;
1205 
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1206 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1207 {
1208 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1209 		struct perf_callchain_entry *entry = ctx->entry;
1210 		entry->ip[entry->nr++] = ip;
1211 		++ctx->contexts;
1212 		return 0;
1213 	} else {
1214 		ctx->contexts_maxed = true;
1215 		return -1; /* no more room, stop walking the stack */
1216 	}
1217 }
1218 
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1219 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1220 {
1221 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1222 		struct perf_callchain_entry *entry = ctx->entry;
1223 		entry->ip[entry->nr++] = ip;
1224 		++ctx->nr;
1225 		return 0;
1226 	} else {
1227 		return -1; /* no more room, stop walking the stack */
1228 	}
1229 }
1230 
1231 extern int sysctl_perf_event_paranoid;
1232 extern int sysctl_perf_event_mlock;
1233 extern int sysctl_perf_event_sample_rate;
1234 extern int sysctl_perf_cpu_time_max_percent;
1235 
1236 extern void perf_sample_event_took(u64 sample_len_ns);
1237 
1238 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1239 		void __user *buffer, size_t *lenp,
1240 		loff_t *ppos);
1241 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1242 		void __user *buffer, size_t *lenp,
1243 		loff_t *ppos);
1244 
1245 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1246 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1247 
1248 /* Access to perf_event_open(2) syscall. */
1249 #define PERF_SECURITY_OPEN		0
1250 
1251 /* Finer grained perf_event_open(2) access control. */
1252 #define PERF_SECURITY_CPU		1
1253 #define PERF_SECURITY_KERNEL		2
1254 #define PERF_SECURITY_TRACEPOINT	3
1255 
perf_is_paranoid(void)1256 static inline int perf_is_paranoid(void)
1257 {
1258 	return sysctl_perf_event_paranoid > -1;
1259 }
1260 
perf_allow_kernel(struct perf_event_attr * attr)1261 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1262 {
1263 	if (sysctl_perf_event_paranoid > 1 && !capable(CAP_SYS_ADMIN))
1264 		return -EACCES;
1265 
1266 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1267 }
1268 
perf_allow_cpu(struct perf_event_attr * attr)1269 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1270 {
1271 	if (sysctl_perf_event_paranoid > 0 && !capable(CAP_SYS_ADMIN))
1272 		return -EACCES;
1273 
1274 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1275 }
1276 
perf_allow_tracepoint(struct perf_event_attr * attr)1277 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1278 {
1279 	if (sysctl_perf_event_paranoid > -1 && !capable(CAP_SYS_ADMIN))
1280 		return -EPERM;
1281 
1282 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1283 }
1284 
1285 extern void perf_event_init(void);
1286 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1287 			  int entry_size, struct pt_regs *regs,
1288 			  struct hlist_head *head, int rctx,
1289 			  struct task_struct *task);
1290 extern void perf_bp_event(struct perf_event *event, void *data);
1291 
1292 #ifndef perf_misc_flags
1293 # define perf_misc_flags(regs) \
1294 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1295 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1296 #endif
1297 #ifndef perf_arch_bpf_user_pt_regs
1298 # define perf_arch_bpf_user_pt_regs(regs) regs
1299 #endif
1300 
has_branch_stack(struct perf_event * event)1301 static inline bool has_branch_stack(struct perf_event *event)
1302 {
1303 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1304 }
1305 
needs_branch_stack(struct perf_event * event)1306 static inline bool needs_branch_stack(struct perf_event *event)
1307 {
1308 	return event->attr.branch_sample_type != 0;
1309 }
1310 
has_aux(struct perf_event * event)1311 static inline bool has_aux(struct perf_event *event)
1312 {
1313 	return event->pmu->setup_aux;
1314 }
1315 
is_write_backward(struct perf_event * event)1316 static inline bool is_write_backward(struct perf_event *event)
1317 {
1318 	return !!event->attr.write_backward;
1319 }
1320 
has_addr_filter(struct perf_event * event)1321 static inline bool has_addr_filter(struct perf_event *event)
1322 {
1323 	return event->pmu->nr_addr_filters;
1324 }
1325 
1326 /*
1327  * An inherited event uses parent's filters
1328  */
1329 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1330 perf_event_addr_filters(struct perf_event *event)
1331 {
1332 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1333 
1334 	if (event->parent)
1335 		ifh = &event->parent->addr_filters;
1336 
1337 	return ifh;
1338 }
1339 
1340 extern void perf_event_addr_filters_sync(struct perf_event *event);
1341 
1342 extern int perf_output_begin(struct perf_output_handle *handle,
1343 			     struct perf_event *event, unsigned int size);
1344 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1345 				    struct perf_event *event,
1346 				    unsigned int size);
1347 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1348 				      struct perf_event *event,
1349 				      unsigned int size);
1350 
1351 extern void perf_output_end(struct perf_output_handle *handle);
1352 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1353 			     const void *buf, unsigned int len);
1354 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1355 				     unsigned int len);
1356 extern int perf_swevent_get_recursion_context(void);
1357 extern void perf_swevent_put_recursion_context(int rctx);
1358 extern u64 perf_swevent_set_period(struct perf_event *event);
1359 extern void perf_event_enable(struct perf_event *event);
1360 extern void perf_event_disable(struct perf_event *event);
1361 extern void perf_event_disable_local(struct perf_event *event);
1362 extern void perf_event_disable_inatomic(struct perf_event *event);
1363 extern void perf_event_task_tick(void);
1364 extern int perf_event_account_interrupt(struct perf_event *event);
1365 #else /* !CONFIG_PERF_EVENTS: */
1366 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1367 perf_aux_output_begin(struct perf_output_handle *handle,
1368 		      struct perf_event *event)				{ return NULL; }
1369 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1370 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1371 									{ }
1372 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1373 perf_aux_output_skip(struct perf_output_handle *handle,
1374 		     unsigned long size)				{ return -EINVAL; }
1375 static inline void *
perf_get_aux(struct perf_output_handle * handle)1376 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1377 static inline void
perf_event_task_migrate(struct task_struct * task)1378 perf_event_task_migrate(struct task_struct *task)			{ }
1379 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1380 perf_event_task_sched_in(struct task_struct *prev,
1381 			 struct task_struct *task)			{ }
1382 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1383 perf_event_task_sched_out(struct task_struct *prev,
1384 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child)1385 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
perf_event_exit_task(struct task_struct * child)1386 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1387 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1388 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_get(unsigned int fd)1389 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1390 static inline const struct perf_event *perf_get_event(struct file *file)
1391 {
1392 	return ERR_PTR(-EINVAL);
1393 }
perf_event_attrs(struct perf_event * event)1394 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1395 {
1396 	return ERR_PTR(-EINVAL);
1397 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1398 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1399 					u64 *enabled, u64 *running)
1400 {
1401 	return -EINVAL;
1402 }
perf_event_print_debug(void)1403 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1404 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1405 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1406 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1407 {
1408 	return -EINVAL;
1409 }
1410 
1411 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1412 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1413 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1414 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1415 static inline void
perf_bp_event(struct perf_event * event,void * data)1416 perf_bp_event(struct perf_event *event, void *data)			{ }
1417 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1418 static inline int perf_register_guest_info_callbacks
1419 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1420 static inline int perf_unregister_guest_info_callbacks
1421 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1422 
perf_event_mmap(struct vm_area_struct * vma)1423 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1424 
1425 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1426 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1427 				      bool unregister, const char *sym)	{ }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1428 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1429 					enum perf_bpf_event_type type,
1430 					u16 flags)			{ }
perf_event_exec(void)1431 static inline void perf_event_exec(void)				{ }
perf_event_comm(struct task_struct * tsk,bool exec)1432 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
perf_event_namespaces(struct task_struct * tsk)1433 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
perf_event_fork(struct task_struct * tsk)1434 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_init(void)1435 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1436 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1437 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_swevent_set_period(struct perf_event * event)1438 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
perf_event_enable(struct perf_event * event)1439 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1440 static inline void perf_event_disable(struct perf_event *event)		{ }
__perf_event_disable(void * info)1441 static inline int __perf_event_disable(void *info)			{ return -1; }
perf_event_task_tick(void)1442 static inline void perf_event_task_tick(void)				{ }
perf_event_release_kernel(struct perf_event * event)1443 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1444 #endif
1445 
1446 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1447 extern void perf_restore_debug_store(void);
1448 #else
perf_restore_debug_store(void)1449 static inline void perf_restore_debug_store(void)			{ }
1450 #endif
1451 
perf_raw_frag_last(const struct perf_raw_frag * frag)1452 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1453 {
1454 	return frag->pad < sizeof(u64);
1455 }
1456 
1457 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1458 
1459 struct perf_pmu_events_attr {
1460 	struct device_attribute attr;
1461 	u64 id;
1462 	const char *event_str;
1463 };
1464 
1465 struct perf_pmu_events_ht_attr {
1466 	struct device_attribute			attr;
1467 	u64					id;
1468 	const char				*event_str_ht;
1469 	const char				*event_str_noht;
1470 };
1471 
1472 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1473 			      char *page);
1474 
1475 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1476 static struct perf_pmu_events_attr _var = {				\
1477 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1478 	.id   =  _id,							\
1479 };
1480 
1481 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1482 static struct perf_pmu_events_attr _var = {				    \
1483 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1484 	.id		= 0,						    \
1485 	.event_str	= _str,						    \
1486 };
1487 
1488 #define PMU_FORMAT_ATTR(_name, _format)					\
1489 static ssize_t								\
1490 _name##_show(struct device *dev,					\
1491 			       struct device_attribute *attr,		\
1492 			       char *page)				\
1493 {									\
1494 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1495 	return sprintf(page, _format "\n");				\
1496 }									\
1497 									\
1498 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1499 
1500 /* Performance counter hotplug functions */
1501 #ifdef CONFIG_PERF_EVENTS
1502 int perf_event_init_cpu(unsigned int cpu);
1503 int perf_event_exit_cpu(unsigned int cpu);
1504 #else
1505 #define perf_event_init_cpu	NULL
1506 #define perf_event_exit_cpu	NULL
1507 #endif
1508 
1509 #endif /* _LINUX_PERF_EVENT_H */
1510