1 /*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49
50 #include "core_priv.h"
51 #include "restrack.h"
52
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61
62 /*
63 * Each of the three rwsem locks (devices, clients, client_data) protects the
64 * xarray of the same name. Specifically it allows the caller to assert that
65 * the MARK will/will not be changing under the lock, and for devices and
66 * clients, that the value in the xarray is still a valid pointer. Change of
67 * the MARK is linked to the object state, so holding the lock and testing the
68 * MARK also asserts that the contained object is in a certain state.
69 *
70 * This is used to build a two stage register/unregister flow where objects
71 * can continue to be in the xarray even though they are still in progress to
72 * register/unregister.
73 *
74 * The xarray itself provides additional locking, and restartable iteration,
75 * which is also relied on.
76 *
77 * Locks should not be nested, with the exception of client_data, which is
78 * allowed to nest under the read side of the other two locks.
79 *
80 * The devices_rwsem also protects the device name list, any change or
81 * assignment of device name must also hold the write side to guarantee unique
82 * names.
83 */
84
85 /*
86 * devices contains devices that have had their names assigned. The
87 * devices may not be registered. Users that care about the registration
88 * status need to call ib_device_try_get() on the device to ensure it is
89 * registered, and keep it registered, for the required duration.
90 *
91 */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100
ib_client_put(struct ib_client * client)101 static void ib_client_put(struct ib_client *client)
102 {
103 if (refcount_dec_and_test(&client->uses))
104 complete(&client->uses_zero);
105 }
106
107 /*
108 * If client_data is registered then the corresponding client must also still
109 * be registered.
110 */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112
113 unsigned int rdma_dev_net_id;
114
115 /*
116 * A list of net namespaces is maintained in an xarray. This is necessary
117 * because we can't get the locking right using the existing net ns list. We
118 * would require a init_net callback after the list is updated.
119 */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122 * rwsem to protect accessing the rdma_nets xarray entries.
123 */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 "Share device among net namespaces; default=1 (shared)");
130 /**
131 * rdma_dev_access_netns() - Return whether a rdma device can be accessed
132 * from a specified net namespace or not.
133 * @device: Pointer to rdma device which needs to be checked
134 * @net: Pointer to net namesapce for which access to be checked
135 *
136 * rdma_dev_access_netns() - Return whether a rdma device can be accessed
137 * from a specified net namespace or not. When
138 * rdma device is in shared mode, it ignores the
139 * net namespace. When rdma device is exclusive
140 * to a net namespace, rdma device net namespace is
141 * checked against the specified one.
142 */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)143 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
144 {
145 return (ib_devices_shared_netns ||
146 net_eq(read_pnet(&dev->coredev.rdma_net), net));
147 }
148 EXPORT_SYMBOL(rdma_dev_access_netns);
149
150 /*
151 * xarray has this behavior where it won't iterate over NULL values stored in
152 * allocated arrays. So we need our own iterator to see all values stored in
153 * the array. This does the same thing as xa_for_each except that it also
154 * returns NULL valued entries if the array is allocating. Simplified to only
155 * work on simple xarrays.
156 */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)157 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
158 xa_mark_t filter)
159 {
160 XA_STATE(xas, xa, *indexp);
161 void *entry;
162
163 rcu_read_lock();
164 do {
165 entry = xas_find_marked(&xas, ULONG_MAX, filter);
166 if (xa_is_zero(entry))
167 break;
168 } while (xas_retry(&xas, entry));
169 rcu_read_unlock();
170
171 if (entry) {
172 *indexp = xas.xa_index;
173 if (xa_is_zero(entry))
174 return NULL;
175 return entry;
176 }
177 return XA_ERROR(-ENOENT);
178 }
179 #define xan_for_each_marked(xa, index, entry, filter) \
180 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
181 !xa_is_err(entry); \
182 (index)++, entry = xan_find_marked(xa, &(index), filter))
183
184 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
185 static DEFINE_SPINLOCK(ndev_hash_lock);
186 static DECLARE_HASHTABLE(ndev_hash, 5);
187
188 static void free_netdevs(struct ib_device *ib_dev);
189 static void ib_unregister_work(struct work_struct *work);
190 static void __ib_unregister_device(struct ib_device *device);
191 static int ib_security_change(struct notifier_block *nb, unsigned long event,
192 void *lsm_data);
193 static void ib_policy_change_task(struct work_struct *work);
194 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
195
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)196 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
197 struct va_format *vaf)
198 {
199 if (ibdev && ibdev->dev.parent)
200 dev_printk_emit(level[1] - '0',
201 ibdev->dev.parent,
202 "%s %s %s: %pV",
203 dev_driver_string(ibdev->dev.parent),
204 dev_name(ibdev->dev.parent),
205 dev_name(&ibdev->dev),
206 vaf);
207 else if (ibdev)
208 printk("%s%s: %pV",
209 level, dev_name(&ibdev->dev), vaf);
210 else
211 printk("%s(NULL ib_device): %pV", level, vaf);
212 }
213
ibdev_printk(const char * level,const struct ib_device * ibdev,const char * format,...)214 void ibdev_printk(const char *level, const struct ib_device *ibdev,
215 const char *format, ...)
216 {
217 struct va_format vaf;
218 va_list args;
219
220 va_start(args, format);
221
222 vaf.fmt = format;
223 vaf.va = &args;
224
225 __ibdev_printk(level, ibdev, &vaf);
226
227 va_end(args);
228 }
229 EXPORT_SYMBOL(ibdev_printk);
230
231 #define define_ibdev_printk_level(func, level) \
232 void func(const struct ib_device *ibdev, const char *fmt, ...) \
233 { \
234 struct va_format vaf; \
235 va_list args; \
236 \
237 va_start(args, fmt); \
238 \
239 vaf.fmt = fmt; \
240 vaf.va = &args; \
241 \
242 __ibdev_printk(level, ibdev, &vaf); \
243 \
244 va_end(args); \
245 } \
246 EXPORT_SYMBOL(func);
247
248 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
249 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
250 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
251 define_ibdev_printk_level(ibdev_err, KERN_ERR);
252 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
253 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
254 define_ibdev_printk_level(ibdev_info, KERN_INFO);
255
256 static struct notifier_block ibdev_lsm_nb = {
257 .notifier_call = ib_security_change,
258 };
259
260 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
261 struct net *net);
262
263 /* Pointer to the RCU head at the start of the ib_port_data array */
264 struct ib_port_data_rcu {
265 struct rcu_head rcu_head;
266 struct ib_port_data pdata[];
267 };
268
ib_device_check_mandatory(struct ib_device * device)269 static void ib_device_check_mandatory(struct ib_device *device)
270 {
271 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
272 static const struct {
273 size_t offset;
274 char *name;
275 } mandatory_table[] = {
276 IB_MANDATORY_FUNC(query_device),
277 IB_MANDATORY_FUNC(query_port),
278 IB_MANDATORY_FUNC(query_pkey),
279 IB_MANDATORY_FUNC(alloc_pd),
280 IB_MANDATORY_FUNC(dealloc_pd),
281 IB_MANDATORY_FUNC(create_qp),
282 IB_MANDATORY_FUNC(modify_qp),
283 IB_MANDATORY_FUNC(destroy_qp),
284 IB_MANDATORY_FUNC(post_send),
285 IB_MANDATORY_FUNC(post_recv),
286 IB_MANDATORY_FUNC(create_cq),
287 IB_MANDATORY_FUNC(destroy_cq),
288 IB_MANDATORY_FUNC(poll_cq),
289 IB_MANDATORY_FUNC(req_notify_cq),
290 IB_MANDATORY_FUNC(get_dma_mr),
291 IB_MANDATORY_FUNC(dereg_mr),
292 IB_MANDATORY_FUNC(get_port_immutable)
293 };
294 int i;
295
296 device->kverbs_provider = true;
297 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
298 if (!*(void **) ((void *) &device->ops +
299 mandatory_table[i].offset)) {
300 device->kverbs_provider = false;
301 break;
302 }
303 }
304 }
305
306 /*
307 * Caller must perform ib_device_put() to return the device reference count
308 * when ib_device_get_by_index() returns valid device pointer.
309 */
ib_device_get_by_index(const struct net * net,u32 index)310 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
311 {
312 struct ib_device *device;
313
314 down_read(&devices_rwsem);
315 device = xa_load(&devices, index);
316 if (device) {
317 if (!rdma_dev_access_netns(device, net)) {
318 device = NULL;
319 goto out;
320 }
321
322 if (!ib_device_try_get(device))
323 device = NULL;
324 }
325 out:
326 up_read(&devices_rwsem);
327 return device;
328 }
329
330 /**
331 * ib_device_put - Release IB device reference
332 * @device: device whose reference to be released
333 *
334 * ib_device_put() releases reference to the IB device to allow it to be
335 * unregistered and eventually free.
336 */
ib_device_put(struct ib_device * device)337 void ib_device_put(struct ib_device *device)
338 {
339 if (refcount_dec_and_test(&device->refcount))
340 complete(&device->unreg_completion);
341 }
342 EXPORT_SYMBOL(ib_device_put);
343
__ib_device_get_by_name(const char * name)344 static struct ib_device *__ib_device_get_by_name(const char *name)
345 {
346 struct ib_device *device;
347 unsigned long index;
348
349 xa_for_each (&devices, index, device)
350 if (!strcmp(name, dev_name(&device->dev)))
351 return device;
352
353 return NULL;
354 }
355
356 /**
357 * ib_device_get_by_name - Find an IB device by name
358 * @name: The name to look for
359 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
360 *
361 * Find and hold an ib_device by its name. The caller must call
362 * ib_device_put() on the returned pointer.
363 */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)364 struct ib_device *ib_device_get_by_name(const char *name,
365 enum rdma_driver_id driver_id)
366 {
367 struct ib_device *device;
368
369 down_read(&devices_rwsem);
370 device = __ib_device_get_by_name(name);
371 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
372 device->ops.driver_id != driver_id)
373 device = NULL;
374
375 if (device) {
376 if (!ib_device_try_get(device))
377 device = NULL;
378 }
379 up_read(&devices_rwsem);
380 return device;
381 }
382 EXPORT_SYMBOL(ib_device_get_by_name);
383
rename_compat_devs(struct ib_device * device)384 static int rename_compat_devs(struct ib_device *device)
385 {
386 struct ib_core_device *cdev;
387 unsigned long index;
388 int ret = 0;
389
390 mutex_lock(&device->compat_devs_mutex);
391 xa_for_each (&device->compat_devs, index, cdev) {
392 ret = device_rename(&cdev->dev, dev_name(&device->dev));
393 if (ret) {
394 dev_warn(&cdev->dev,
395 "Fail to rename compatdev to new name %s\n",
396 dev_name(&device->dev));
397 break;
398 }
399 }
400 mutex_unlock(&device->compat_devs_mutex);
401 return ret;
402 }
403
ib_device_rename(struct ib_device * ibdev,const char * name)404 int ib_device_rename(struct ib_device *ibdev, const char *name)
405 {
406 unsigned long index;
407 void *client_data;
408 int ret;
409
410 down_write(&devices_rwsem);
411 if (!strcmp(name, dev_name(&ibdev->dev))) {
412 up_write(&devices_rwsem);
413 return 0;
414 }
415
416 if (__ib_device_get_by_name(name)) {
417 up_write(&devices_rwsem);
418 return -EEXIST;
419 }
420
421 ret = device_rename(&ibdev->dev, name);
422 if (ret) {
423 up_write(&devices_rwsem);
424 return ret;
425 }
426
427 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
428 ret = rename_compat_devs(ibdev);
429
430 downgrade_write(&devices_rwsem);
431 down_read(&ibdev->client_data_rwsem);
432 xan_for_each_marked(&ibdev->client_data, index, client_data,
433 CLIENT_DATA_REGISTERED) {
434 struct ib_client *client = xa_load(&clients, index);
435
436 if (!client || !client->rename)
437 continue;
438
439 client->rename(ibdev, client_data);
440 }
441 up_read(&ibdev->client_data_rwsem);
442 up_read(&devices_rwsem);
443 return 0;
444 }
445
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)446 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
447 {
448 if (use_dim > 1)
449 return -EINVAL;
450 ibdev->use_cq_dim = use_dim;
451
452 return 0;
453 }
454
alloc_name(struct ib_device * ibdev,const char * name)455 static int alloc_name(struct ib_device *ibdev, const char *name)
456 {
457 struct ib_device *device;
458 unsigned long index;
459 struct ida inuse;
460 int rc;
461 int i;
462
463 lockdep_assert_held_write(&devices_rwsem);
464 ida_init(&inuse);
465 xa_for_each (&devices, index, device) {
466 char buf[IB_DEVICE_NAME_MAX];
467
468 if (sscanf(dev_name(&device->dev), name, &i) != 1)
469 continue;
470 if (i < 0 || i >= INT_MAX)
471 continue;
472 snprintf(buf, sizeof buf, name, i);
473 if (strcmp(buf, dev_name(&device->dev)) != 0)
474 continue;
475
476 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
477 if (rc < 0)
478 goto out;
479 }
480
481 rc = ida_alloc(&inuse, GFP_KERNEL);
482 if (rc < 0)
483 goto out;
484
485 rc = dev_set_name(&ibdev->dev, name, rc);
486 out:
487 ida_destroy(&inuse);
488 return rc;
489 }
490
ib_device_release(struct device * device)491 static void ib_device_release(struct device *device)
492 {
493 struct ib_device *dev = container_of(device, struct ib_device, dev);
494
495 free_netdevs(dev);
496 WARN_ON(refcount_read(&dev->refcount));
497 if (dev->port_data) {
498 ib_cache_release_one(dev);
499 ib_security_release_port_pkey_list(dev);
500 rdma_counter_release(dev);
501 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 pdata[0]),
503 rcu_head);
504 }
505
506 mutex_destroy(&dev->unregistration_lock);
507 mutex_destroy(&dev->compat_devs_mutex);
508
509 xa_destroy(&dev->compat_devs);
510 xa_destroy(&dev->client_data);
511 kfree_rcu(dev, rcu_head);
512 }
513
ib_device_uevent(struct device * device,struct kobj_uevent_env * env)514 static int ib_device_uevent(struct device *device,
515 struct kobj_uevent_env *env)
516 {
517 if (add_uevent_var(env, "NAME=%s", dev_name(device)))
518 return -ENOMEM;
519
520 /*
521 * It would be nice to pass the node GUID with the event...
522 */
523
524 return 0;
525 }
526
net_namespace(struct device * d)527 static const void *net_namespace(struct device *d)
528 {
529 struct ib_core_device *coredev =
530 container_of(d, struct ib_core_device, dev);
531
532 return read_pnet(&coredev->rdma_net);
533 }
534
535 static struct class ib_class = {
536 .name = "infiniband",
537 .dev_release = ib_device_release,
538 .dev_uevent = ib_device_uevent,
539 .ns_type = &net_ns_type_operations,
540 .namespace = net_namespace,
541 };
542
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)543 static void rdma_init_coredev(struct ib_core_device *coredev,
544 struct ib_device *dev, struct net *net)
545 {
546 /* This BUILD_BUG_ON is intended to catch layout change
547 * of union of ib_core_device and device.
548 * dev must be the first element as ib_core and providers
549 * driver uses it. Adding anything in ib_core_device before
550 * device will break this assumption.
551 */
552 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
553 offsetof(struct ib_device, dev));
554
555 coredev->dev.class = &ib_class;
556 coredev->dev.groups = dev->groups;
557 device_initialize(&coredev->dev);
558 coredev->owner = dev;
559 INIT_LIST_HEAD(&coredev->port_list);
560 write_pnet(&coredev->rdma_net, net);
561 }
562
563 /**
564 * _ib_alloc_device - allocate an IB device struct
565 * @size:size of structure to allocate
566 *
567 * Low-level drivers should use ib_alloc_device() to allocate &struct
568 * ib_device. @size is the size of the structure to be allocated,
569 * including any private data used by the low-level driver.
570 * ib_dealloc_device() must be used to free structures allocated with
571 * ib_alloc_device().
572 */
_ib_alloc_device(size_t size)573 struct ib_device *_ib_alloc_device(size_t size)
574 {
575 struct ib_device *device;
576
577 if (WARN_ON(size < sizeof(struct ib_device)))
578 return NULL;
579
580 device = kzalloc(size, GFP_KERNEL);
581 if (!device)
582 return NULL;
583
584 if (rdma_restrack_init(device)) {
585 kfree(device);
586 return NULL;
587 }
588
589 device->groups[0] = &ib_dev_attr_group;
590 rdma_init_coredev(&device->coredev, device, &init_net);
591
592 INIT_LIST_HEAD(&device->event_handler_list);
593 spin_lock_init(&device->event_handler_lock);
594 mutex_init(&device->unregistration_lock);
595 /*
596 * client_data needs to be alloc because we don't want our mark to be
597 * destroyed if the user stores NULL in the client data.
598 */
599 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
600 init_rwsem(&device->client_data_rwsem);
601 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
602 mutex_init(&device->compat_devs_mutex);
603 init_completion(&device->unreg_completion);
604 INIT_WORK(&device->unregistration_work, ib_unregister_work);
605
606 return device;
607 }
608 EXPORT_SYMBOL(_ib_alloc_device);
609
610 /**
611 * ib_dealloc_device - free an IB device struct
612 * @device:structure to free
613 *
614 * Free a structure allocated with ib_alloc_device().
615 */
ib_dealloc_device(struct ib_device * device)616 void ib_dealloc_device(struct ib_device *device)
617 {
618 if (device->ops.dealloc_driver)
619 device->ops.dealloc_driver(device);
620
621 /*
622 * ib_unregister_driver() requires all devices to remain in the xarray
623 * while their ops are callable. The last op we call is dealloc_driver
624 * above. This is needed to create a fence on op callbacks prior to
625 * allowing the driver module to unload.
626 */
627 down_write(&devices_rwsem);
628 if (xa_load(&devices, device->index) == device)
629 xa_erase(&devices, device->index);
630 up_write(&devices_rwsem);
631
632 /* Expedite releasing netdev references */
633 free_netdevs(device);
634
635 WARN_ON(!xa_empty(&device->compat_devs));
636 WARN_ON(!xa_empty(&device->client_data));
637 WARN_ON(refcount_read(&device->refcount));
638 rdma_restrack_clean(device);
639 /* Balances with device_initialize */
640 put_device(&device->dev);
641 }
642 EXPORT_SYMBOL(ib_dealloc_device);
643
644 /*
645 * add_client_context() and remove_client_context() must be safe against
646 * parallel calls on the same device - registration/unregistration of both the
647 * device and client can be occurring in parallel.
648 *
649 * The routines need to be a fence, any caller must not return until the add
650 * or remove is fully completed.
651 */
add_client_context(struct ib_device * device,struct ib_client * client)652 static int add_client_context(struct ib_device *device,
653 struct ib_client *client)
654 {
655 int ret = 0;
656
657 if (!device->kverbs_provider && !client->no_kverbs_req)
658 return 0;
659
660 down_write(&device->client_data_rwsem);
661 /*
662 * So long as the client is registered hold both the client and device
663 * unregistration locks.
664 */
665 if (!refcount_inc_not_zero(&client->uses))
666 goto out_unlock;
667 refcount_inc(&device->refcount);
668
669 /*
670 * Another caller to add_client_context got here first and has already
671 * completely initialized context.
672 */
673 if (xa_get_mark(&device->client_data, client->client_id,
674 CLIENT_DATA_REGISTERED))
675 goto out;
676
677 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
678 GFP_KERNEL));
679 if (ret)
680 goto out;
681 downgrade_write(&device->client_data_rwsem);
682 if (client->add)
683 client->add(device);
684
685 /* Readers shall not see a client until add has been completed */
686 xa_set_mark(&device->client_data, client->client_id,
687 CLIENT_DATA_REGISTERED);
688 up_read(&device->client_data_rwsem);
689 return 0;
690
691 out:
692 ib_device_put(device);
693 ib_client_put(client);
694 out_unlock:
695 up_write(&device->client_data_rwsem);
696 return ret;
697 }
698
remove_client_context(struct ib_device * device,unsigned int client_id)699 static void remove_client_context(struct ib_device *device,
700 unsigned int client_id)
701 {
702 struct ib_client *client;
703 void *client_data;
704
705 down_write(&device->client_data_rwsem);
706 if (!xa_get_mark(&device->client_data, client_id,
707 CLIENT_DATA_REGISTERED)) {
708 up_write(&device->client_data_rwsem);
709 return;
710 }
711 client_data = xa_load(&device->client_data, client_id);
712 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
713 client = xa_load(&clients, client_id);
714 up_write(&device->client_data_rwsem);
715
716 /*
717 * Notice we cannot be holding any exclusive locks when calling the
718 * remove callback as the remove callback can recurse back into any
719 * public functions in this module and thus try for any locks those
720 * functions take.
721 *
722 * For this reason clients and drivers should not call the
723 * unregistration functions will holdling any locks.
724 */
725 if (client->remove)
726 client->remove(device, client_data);
727
728 xa_erase(&device->client_data, client_id);
729 ib_device_put(device);
730 ib_client_put(client);
731 }
732
alloc_port_data(struct ib_device * device)733 static int alloc_port_data(struct ib_device *device)
734 {
735 struct ib_port_data_rcu *pdata_rcu;
736 unsigned int port;
737
738 if (device->port_data)
739 return 0;
740
741 /* This can only be called once the physical port range is defined */
742 if (WARN_ON(!device->phys_port_cnt))
743 return -EINVAL;
744
745 /*
746 * device->port_data is indexed directly by the port number to make
747 * access to this data as efficient as possible.
748 *
749 * Therefore port_data is declared as a 1 based array with potential
750 * empty slots at the beginning.
751 */
752 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
753 rdma_end_port(device) + 1),
754 GFP_KERNEL);
755 if (!pdata_rcu)
756 return -ENOMEM;
757 /*
758 * The rcu_head is put in front of the port data array and the stored
759 * pointer is adjusted since we never need to see that member until
760 * kfree_rcu.
761 */
762 device->port_data = pdata_rcu->pdata;
763
764 rdma_for_each_port (device, port) {
765 struct ib_port_data *pdata = &device->port_data[port];
766
767 pdata->ib_dev = device;
768 spin_lock_init(&pdata->pkey_list_lock);
769 INIT_LIST_HEAD(&pdata->pkey_list);
770 spin_lock_init(&pdata->netdev_lock);
771 INIT_HLIST_NODE(&pdata->ndev_hash_link);
772 }
773 return 0;
774 }
775
verify_immutable(const struct ib_device * dev,u8 port)776 static int verify_immutable(const struct ib_device *dev, u8 port)
777 {
778 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
779 rdma_max_mad_size(dev, port) != 0);
780 }
781
setup_port_data(struct ib_device * device)782 static int setup_port_data(struct ib_device *device)
783 {
784 unsigned int port;
785 int ret;
786
787 ret = alloc_port_data(device);
788 if (ret)
789 return ret;
790
791 rdma_for_each_port (device, port) {
792 struct ib_port_data *pdata = &device->port_data[port];
793
794 ret = device->ops.get_port_immutable(device, port,
795 &pdata->immutable);
796 if (ret)
797 return ret;
798
799 if (verify_immutable(device, port))
800 return -EINVAL;
801 }
802 return 0;
803 }
804
ib_get_device_fw_str(struct ib_device * dev,char * str)805 void ib_get_device_fw_str(struct ib_device *dev, char *str)
806 {
807 if (dev->ops.get_dev_fw_str)
808 dev->ops.get_dev_fw_str(dev, str);
809 else
810 str[0] = '\0';
811 }
812 EXPORT_SYMBOL(ib_get_device_fw_str);
813
ib_policy_change_task(struct work_struct * work)814 static void ib_policy_change_task(struct work_struct *work)
815 {
816 struct ib_device *dev;
817 unsigned long index;
818
819 down_read(&devices_rwsem);
820 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
821 unsigned int i;
822
823 rdma_for_each_port (dev, i) {
824 u64 sp;
825 int ret = ib_get_cached_subnet_prefix(dev,
826 i,
827 &sp);
828
829 WARN_ONCE(ret,
830 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
831 ret);
832 if (!ret)
833 ib_security_cache_change(dev, i, sp);
834 }
835 }
836 up_read(&devices_rwsem);
837 }
838
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)839 static int ib_security_change(struct notifier_block *nb, unsigned long event,
840 void *lsm_data)
841 {
842 if (event != LSM_POLICY_CHANGE)
843 return NOTIFY_DONE;
844
845 schedule_work(&ib_policy_change_work);
846 ib_mad_agent_security_change();
847
848 return NOTIFY_OK;
849 }
850
compatdev_release(struct device * dev)851 static void compatdev_release(struct device *dev)
852 {
853 struct ib_core_device *cdev =
854 container_of(dev, struct ib_core_device, dev);
855
856 kfree(cdev);
857 }
858
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)859 static int add_one_compat_dev(struct ib_device *device,
860 struct rdma_dev_net *rnet)
861 {
862 struct ib_core_device *cdev;
863 int ret;
864
865 lockdep_assert_held(&rdma_nets_rwsem);
866 if (!ib_devices_shared_netns)
867 return 0;
868
869 /*
870 * Create and add compat device in all namespaces other than where it
871 * is currently bound to.
872 */
873 if (net_eq(read_pnet(&rnet->net),
874 read_pnet(&device->coredev.rdma_net)))
875 return 0;
876
877 /*
878 * The first of init_net() or ib_register_device() to take the
879 * compat_devs_mutex wins and gets to add the device. Others will wait
880 * for completion here.
881 */
882 mutex_lock(&device->compat_devs_mutex);
883 cdev = xa_load(&device->compat_devs, rnet->id);
884 if (cdev) {
885 ret = 0;
886 goto done;
887 }
888 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
889 if (ret)
890 goto done;
891
892 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
893 if (!cdev) {
894 ret = -ENOMEM;
895 goto cdev_err;
896 }
897
898 cdev->dev.parent = device->dev.parent;
899 rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
900 cdev->dev.release = compatdev_release;
901 dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
902
903 ret = device_add(&cdev->dev);
904 if (ret)
905 goto add_err;
906 ret = ib_setup_port_attrs(cdev);
907 if (ret)
908 goto port_err;
909
910 ret = xa_err(xa_store(&device->compat_devs, rnet->id,
911 cdev, GFP_KERNEL));
912 if (ret)
913 goto insert_err;
914
915 mutex_unlock(&device->compat_devs_mutex);
916 return 0;
917
918 insert_err:
919 ib_free_port_attrs(cdev);
920 port_err:
921 device_del(&cdev->dev);
922 add_err:
923 put_device(&cdev->dev);
924 cdev_err:
925 xa_release(&device->compat_devs, rnet->id);
926 done:
927 mutex_unlock(&device->compat_devs_mutex);
928 return ret;
929 }
930
remove_one_compat_dev(struct ib_device * device,u32 id)931 static void remove_one_compat_dev(struct ib_device *device, u32 id)
932 {
933 struct ib_core_device *cdev;
934
935 mutex_lock(&device->compat_devs_mutex);
936 cdev = xa_erase(&device->compat_devs, id);
937 mutex_unlock(&device->compat_devs_mutex);
938 if (cdev) {
939 ib_free_port_attrs(cdev);
940 device_del(&cdev->dev);
941 put_device(&cdev->dev);
942 }
943 }
944
remove_compat_devs(struct ib_device * device)945 static void remove_compat_devs(struct ib_device *device)
946 {
947 struct ib_core_device *cdev;
948 unsigned long index;
949
950 xa_for_each (&device->compat_devs, index, cdev)
951 remove_one_compat_dev(device, index);
952 }
953
add_compat_devs(struct ib_device * device)954 static int add_compat_devs(struct ib_device *device)
955 {
956 struct rdma_dev_net *rnet;
957 unsigned long index;
958 int ret = 0;
959
960 lockdep_assert_held(&devices_rwsem);
961
962 down_read(&rdma_nets_rwsem);
963 xa_for_each (&rdma_nets, index, rnet) {
964 ret = add_one_compat_dev(device, rnet);
965 if (ret)
966 break;
967 }
968 up_read(&rdma_nets_rwsem);
969 return ret;
970 }
971
remove_all_compat_devs(void)972 static void remove_all_compat_devs(void)
973 {
974 struct ib_compat_device *cdev;
975 struct ib_device *dev;
976 unsigned long index;
977
978 down_read(&devices_rwsem);
979 xa_for_each (&devices, index, dev) {
980 unsigned long c_index = 0;
981
982 /* Hold nets_rwsem so that any other thread modifying this
983 * system param can sync with this thread.
984 */
985 down_read(&rdma_nets_rwsem);
986 xa_for_each (&dev->compat_devs, c_index, cdev)
987 remove_one_compat_dev(dev, c_index);
988 up_read(&rdma_nets_rwsem);
989 }
990 up_read(&devices_rwsem);
991 }
992
add_all_compat_devs(void)993 static int add_all_compat_devs(void)
994 {
995 struct rdma_dev_net *rnet;
996 struct ib_device *dev;
997 unsigned long index;
998 int ret = 0;
999
1000 down_read(&devices_rwsem);
1001 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1002 unsigned long net_index = 0;
1003
1004 /* Hold nets_rwsem so that any other thread modifying this
1005 * system param can sync with this thread.
1006 */
1007 down_read(&rdma_nets_rwsem);
1008 xa_for_each (&rdma_nets, net_index, rnet) {
1009 ret = add_one_compat_dev(dev, rnet);
1010 if (ret)
1011 break;
1012 }
1013 up_read(&rdma_nets_rwsem);
1014 }
1015 up_read(&devices_rwsem);
1016 if (ret)
1017 remove_all_compat_devs();
1018 return ret;
1019 }
1020
rdma_compatdev_set(u8 enable)1021 int rdma_compatdev_set(u8 enable)
1022 {
1023 struct rdma_dev_net *rnet;
1024 unsigned long index;
1025 int ret = 0;
1026
1027 down_write(&rdma_nets_rwsem);
1028 if (ib_devices_shared_netns == enable) {
1029 up_write(&rdma_nets_rwsem);
1030 return 0;
1031 }
1032
1033 /* enable/disable of compat devices is not supported
1034 * when more than default init_net exists.
1035 */
1036 xa_for_each (&rdma_nets, index, rnet) {
1037 ret++;
1038 break;
1039 }
1040 if (!ret)
1041 ib_devices_shared_netns = enable;
1042 up_write(&rdma_nets_rwsem);
1043 if (ret)
1044 return -EBUSY;
1045
1046 if (enable)
1047 ret = add_all_compat_devs();
1048 else
1049 remove_all_compat_devs();
1050 return ret;
1051 }
1052
rdma_dev_exit_net(struct net * net)1053 static void rdma_dev_exit_net(struct net *net)
1054 {
1055 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1056 struct ib_device *dev;
1057 unsigned long index;
1058 int ret;
1059
1060 down_write(&rdma_nets_rwsem);
1061 /*
1062 * Prevent the ID from being re-used and hide the id from xa_for_each.
1063 */
1064 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1065 WARN_ON(ret);
1066 up_write(&rdma_nets_rwsem);
1067
1068 down_read(&devices_rwsem);
1069 xa_for_each (&devices, index, dev) {
1070 get_device(&dev->dev);
1071 /*
1072 * Release the devices_rwsem so that pontentially blocking
1073 * device_del, doesn't hold the devices_rwsem for too long.
1074 */
1075 up_read(&devices_rwsem);
1076
1077 remove_one_compat_dev(dev, rnet->id);
1078
1079 /*
1080 * If the real device is in the NS then move it back to init.
1081 */
1082 rdma_dev_change_netns(dev, net, &init_net);
1083
1084 put_device(&dev->dev);
1085 down_read(&devices_rwsem);
1086 }
1087 up_read(&devices_rwsem);
1088
1089 rdma_nl_net_exit(rnet);
1090 xa_erase(&rdma_nets, rnet->id);
1091 }
1092
rdma_dev_init_net(struct net * net)1093 static __net_init int rdma_dev_init_net(struct net *net)
1094 {
1095 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1096 unsigned long index;
1097 struct ib_device *dev;
1098 int ret;
1099
1100 write_pnet(&rnet->net, net);
1101
1102 ret = rdma_nl_net_init(rnet);
1103 if (ret)
1104 return ret;
1105
1106 /* No need to create any compat devices in default init_net. */
1107 if (net_eq(net, &init_net))
1108 return 0;
1109
1110 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1111 if (ret) {
1112 rdma_nl_net_exit(rnet);
1113 return ret;
1114 }
1115
1116 down_read(&devices_rwsem);
1117 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1118 /* Hold nets_rwsem so that netlink command cannot change
1119 * system configuration for device sharing mode.
1120 */
1121 down_read(&rdma_nets_rwsem);
1122 ret = add_one_compat_dev(dev, rnet);
1123 up_read(&rdma_nets_rwsem);
1124 if (ret)
1125 break;
1126 }
1127 up_read(&devices_rwsem);
1128
1129 if (ret)
1130 rdma_dev_exit_net(net);
1131
1132 return ret;
1133 }
1134
1135 /*
1136 * Assign the unique string device name and the unique device index. This is
1137 * undone by ib_dealloc_device.
1138 */
assign_name(struct ib_device * device,const char * name)1139 static int assign_name(struct ib_device *device, const char *name)
1140 {
1141 static u32 last_id;
1142 int ret;
1143
1144 down_write(&devices_rwsem);
1145 /* Assign a unique name to the device */
1146 if (strchr(name, '%'))
1147 ret = alloc_name(device, name);
1148 else
1149 ret = dev_set_name(&device->dev, name);
1150 if (ret)
1151 goto out;
1152
1153 if (__ib_device_get_by_name(dev_name(&device->dev))) {
1154 ret = -ENFILE;
1155 goto out;
1156 }
1157 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1158
1159 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1160 &last_id, GFP_KERNEL);
1161 if (ret > 0)
1162 ret = 0;
1163
1164 out:
1165 up_write(&devices_rwsem);
1166 return ret;
1167 }
1168
setup_dma_device(struct ib_device * device)1169 static void setup_dma_device(struct ib_device *device)
1170 {
1171 struct device *parent = device->dev.parent;
1172
1173 WARN_ON_ONCE(device->dma_device);
1174 if (device->dev.dma_ops) {
1175 /*
1176 * The caller provided custom DMA operations. Copy the
1177 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1178 * into device->dev.
1179 */
1180 device->dma_device = &device->dev;
1181 if (!device->dev.dma_mask) {
1182 if (parent)
1183 device->dev.dma_mask = parent->dma_mask;
1184 else
1185 WARN_ON_ONCE(true);
1186 }
1187 if (!device->dev.coherent_dma_mask) {
1188 if (parent)
1189 device->dev.coherent_dma_mask =
1190 parent->coherent_dma_mask;
1191 else
1192 WARN_ON_ONCE(true);
1193 }
1194 } else {
1195 /*
1196 * The caller did not provide custom DMA operations. Use the
1197 * DMA mapping operations of the parent device.
1198 */
1199 WARN_ON_ONCE(!parent);
1200 device->dma_device = parent;
1201 }
1202
1203 if (!device->dev.dma_parms) {
1204 if (parent) {
1205 /*
1206 * The caller did not provide DMA parameters, so
1207 * 'parent' probably represents a PCI device. The PCI
1208 * core sets the maximum segment size to 64
1209 * KB. Increase this parameter to 2 GB.
1210 */
1211 device->dev.dma_parms = parent->dma_parms;
1212 dma_set_max_seg_size(device->dma_device, SZ_2G);
1213 } else {
1214 WARN_ON_ONCE(true);
1215 }
1216 }
1217 }
1218
1219 /*
1220 * setup_device() allocates memory and sets up data that requires calling the
1221 * device ops, this is the only reason these actions are not done during
1222 * ib_alloc_device. It is undone by ib_dealloc_device().
1223 */
setup_device(struct ib_device * device)1224 static int setup_device(struct ib_device *device)
1225 {
1226 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1227 int ret;
1228
1229 setup_dma_device(device);
1230 ib_device_check_mandatory(device);
1231
1232 ret = setup_port_data(device);
1233 if (ret) {
1234 dev_warn(&device->dev, "Couldn't create per-port data\n");
1235 return ret;
1236 }
1237
1238 memset(&device->attrs, 0, sizeof(device->attrs));
1239 ret = device->ops.query_device(device, &device->attrs, &uhw);
1240 if (ret) {
1241 dev_warn(&device->dev,
1242 "Couldn't query the device attributes\n");
1243 return ret;
1244 }
1245
1246 return 0;
1247 }
1248
disable_device(struct ib_device * device)1249 static void disable_device(struct ib_device *device)
1250 {
1251 u32 cid;
1252
1253 WARN_ON(!refcount_read(&device->refcount));
1254
1255 down_write(&devices_rwsem);
1256 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1257 up_write(&devices_rwsem);
1258
1259 /*
1260 * Remove clients in LIFO order, see assign_client_id. This could be
1261 * more efficient if xarray learns to reverse iterate. Since no new
1262 * clients can be added to this ib_device past this point we only need
1263 * the maximum possible client_id value here.
1264 */
1265 down_read(&clients_rwsem);
1266 cid = highest_client_id;
1267 up_read(&clients_rwsem);
1268 while (cid) {
1269 cid--;
1270 remove_client_context(device, cid);
1271 }
1272
1273 /* Pairs with refcount_set in enable_device */
1274 ib_device_put(device);
1275 wait_for_completion(&device->unreg_completion);
1276
1277 /*
1278 * compat devices must be removed after device refcount drops to zero.
1279 * Otherwise init_net() may add more compatdevs after removing compat
1280 * devices and before device is disabled.
1281 */
1282 remove_compat_devs(device);
1283 }
1284
1285 /*
1286 * An enabled device is visible to all clients and to all the public facing
1287 * APIs that return a device pointer. This always returns with a new get, even
1288 * if it fails.
1289 */
enable_device_and_get(struct ib_device * device)1290 static int enable_device_and_get(struct ib_device *device)
1291 {
1292 struct ib_client *client;
1293 unsigned long index;
1294 int ret = 0;
1295
1296 /*
1297 * One ref belongs to the xa and the other belongs to this
1298 * thread. This is needed to guard against parallel unregistration.
1299 */
1300 refcount_set(&device->refcount, 2);
1301 down_write(&devices_rwsem);
1302 xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1303
1304 /*
1305 * By using downgrade_write() we ensure that no other thread can clear
1306 * DEVICE_REGISTERED while we are completing the client setup.
1307 */
1308 downgrade_write(&devices_rwsem);
1309
1310 if (device->ops.enable_driver) {
1311 ret = device->ops.enable_driver(device);
1312 if (ret)
1313 goto out;
1314 }
1315
1316 down_read(&clients_rwsem);
1317 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1318 ret = add_client_context(device, client);
1319 if (ret)
1320 break;
1321 }
1322 up_read(&clients_rwsem);
1323 if (!ret)
1324 ret = add_compat_devs(device);
1325 out:
1326 up_read(&devices_rwsem);
1327 return ret;
1328 }
1329
1330 /**
1331 * ib_register_device - Register an IB device with IB core
1332 * @device:Device to register
1333 *
1334 * Low-level drivers use ib_register_device() to register their
1335 * devices with the IB core. All registered clients will receive a
1336 * callback for each device that is added. @device must be allocated
1337 * with ib_alloc_device().
1338 *
1339 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1340 * asynchronously then the device pointer may become freed as soon as this
1341 * function returns.
1342 */
ib_register_device(struct ib_device * device,const char * name)1343 int ib_register_device(struct ib_device *device, const char *name)
1344 {
1345 int ret;
1346
1347 ret = assign_name(device, name);
1348 if (ret)
1349 return ret;
1350
1351 ret = setup_device(device);
1352 if (ret)
1353 return ret;
1354
1355 ret = ib_cache_setup_one(device);
1356 if (ret) {
1357 dev_warn(&device->dev,
1358 "Couldn't set up InfiniBand P_Key/GID cache\n");
1359 return ret;
1360 }
1361
1362 ib_device_register_rdmacg(device);
1363
1364 rdma_counter_init(device);
1365
1366 /*
1367 * Ensure that ADD uevent is not fired because it
1368 * is too early amd device is not initialized yet.
1369 */
1370 dev_set_uevent_suppress(&device->dev, true);
1371 ret = device_add(&device->dev);
1372 if (ret)
1373 goto cg_cleanup;
1374
1375 ret = ib_device_register_sysfs(device);
1376 if (ret) {
1377 dev_warn(&device->dev,
1378 "Couldn't register device with driver model\n");
1379 goto dev_cleanup;
1380 }
1381
1382 ret = enable_device_and_get(device);
1383 dev_set_uevent_suppress(&device->dev, false);
1384 /* Mark for userspace that device is ready */
1385 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1386 if (ret) {
1387 void (*dealloc_fn)(struct ib_device *);
1388
1389 /*
1390 * If we hit this error flow then we don't want to
1391 * automatically dealloc the device since the caller is
1392 * expected to call ib_dealloc_device() after
1393 * ib_register_device() fails. This is tricky due to the
1394 * possibility for a parallel unregistration along with this
1395 * error flow. Since we have a refcount here we know any
1396 * parallel flow is stopped in disable_device and will see the
1397 * NULL pointers, causing the responsibility to
1398 * ib_dealloc_device() to revert back to this thread.
1399 */
1400 dealloc_fn = device->ops.dealloc_driver;
1401 device->ops.dealloc_driver = NULL;
1402 ib_device_put(device);
1403 __ib_unregister_device(device);
1404 device->ops.dealloc_driver = dealloc_fn;
1405 return ret;
1406 }
1407 ib_device_put(device);
1408
1409 return 0;
1410
1411 dev_cleanup:
1412 device_del(&device->dev);
1413 cg_cleanup:
1414 dev_set_uevent_suppress(&device->dev, false);
1415 ib_device_unregister_rdmacg(device);
1416 ib_cache_cleanup_one(device);
1417 return ret;
1418 }
1419 EXPORT_SYMBOL(ib_register_device);
1420
1421 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1422 static void __ib_unregister_device(struct ib_device *ib_dev)
1423 {
1424 /*
1425 * We have a registration lock so that all the calls to unregister are
1426 * fully fenced, once any unregister returns the device is truely
1427 * unregistered even if multiple callers are unregistering it at the
1428 * same time. This also interacts with the registration flow and
1429 * provides sane semantics if register and unregister are racing.
1430 */
1431 mutex_lock(&ib_dev->unregistration_lock);
1432 if (!refcount_read(&ib_dev->refcount))
1433 goto out;
1434
1435 disable_device(ib_dev);
1436
1437 /* Expedite removing unregistered pointers from the hash table */
1438 free_netdevs(ib_dev);
1439
1440 ib_device_unregister_sysfs(ib_dev);
1441 device_del(&ib_dev->dev);
1442 ib_device_unregister_rdmacg(ib_dev);
1443 ib_cache_cleanup_one(ib_dev);
1444
1445 /*
1446 * Drivers using the new flow may not call ib_dealloc_device except
1447 * in error unwind prior to registration success.
1448 */
1449 if (ib_dev->ops.dealloc_driver) {
1450 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1451 ib_dealloc_device(ib_dev);
1452 }
1453 out:
1454 mutex_unlock(&ib_dev->unregistration_lock);
1455 }
1456
1457 /**
1458 * ib_unregister_device - Unregister an IB device
1459 * @device: The device to unregister
1460 *
1461 * Unregister an IB device. All clients will receive a remove callback.
1462 *
1463 * Callers should call this routine only once, and protect against races with
1464 * registration. Typically it should only be called as part of a remove
1465 * callback in an implementation of driver core's struct device_driver and
1466 * related.
1467 *
1468 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1469 * this function.
1470 */
ib_unregister_device(struct ib_device * ib_dev)1471 void ib_unregister_device(struct ib_device *ib_dev)
1472 {
1473 get_device(&ib_dev->dev);
1474 __ib_unregister_device(ib_dev);
1475 put_device(&ib_dev->dev);
1476 }
1477 EXPORT_SYMBOL(ib_unregister_device);
1478
1479 /**
1480 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1481 * device: The device to unregister
1482 *
1483 * This is the same as ib_unregister_device(), except it includes an internal
1484 * ib_device_put() that should match a 'get' obtained by the caller.
1485 *
1486 * It is safe to call this routine concurrently from multiple threads while
1487 * holding the 'get'. When the function returns the device is fully
1488 * unregistered.
1489 *
1490 * Drivers using this flow MUST use the driver_unregister callback to clean up
1491 * their resources associated with the device and dealloc it.
1492 */
ib_unregister_device_and_put(struct ib_device * ib_dev)1493 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1494 {
1495 WARN_ON(!ib_dev->ops.dealloc_driver);
1496 get_device(&ib_dev->dev);
1497 ib_device_put(ib_dev);
1498 __ib_unregister_device(ib_dev);
1499 put_device(&ib_dev->dev);
1500 }
1501 EXPORT_SYMBOL(ib_unregister_device_and_put);
1502
1503 /**
1504 * ib_unregister_driver - Unregister all IB devices for a driver
1505 * @driver_id: The driver to unregister
1506 *
1507 * This implements a fence for device unregistration. It only returns once all
1508 * devices associated with the driver_id have fully completed their
1509 * unregistration and returned from ib_unregister_device*().
1510 *
1511 * If device's are not yet unregistered it goes ahead and starts unregistering
1512 * them.
1513 *
1514 * This does not block creation of new devices with the given driver_id, that
1515 * is the responsibility of the caller.
1516 */
ib_unregister_driver(enum rdma_driver_id driver_id)1517 void ib_unregister_driver(enum rdma_driver_id driver_id)
1518 {
1519 struct ib_device *ib_dev;
1520 unsigned long index;
1521
1522 down_read(&devices_rwsem);
1523 xa_for_each (&devices, index, ib_dev) {
1524 if (ib_dev->ops.driver_id != driver_id)
1525 continue;
1526
1527 get_device(&ib_dev->dev);
1528 up_read(&devices_rwsem);
1529
1530 WARN_ON(!ib_dev->ops.dealloc_driver);
1531 __ib_unregister_device(ib_dev);
1532
1533 put_device(&ib_dev->dev);
1534 down_read(&devices_rwsem);
1535 }
1536 up_read(&devices_rwsem);
1537 }
1538 EXPORT_SYMBOL(ib_unregister_driver);
1539
ib_unregister_work(struct work_struct * work)1540 static void ib_unregister_work(struct work_struct *work)
1541 {
1542 struct ib_device *ib_dev =
1543 container_of(work, struct ib_device, unregistration_work);
1544
1545 __ib_unregister_device(ib_dev);
1546 put_device(&ib_dev->dev);
1547 }
1548
1549 /**
1550 * ib_unregister_device_queued - Unregister a device using a work queue
1551 * device: The device to unregister
1552 *
1553 * This schedules an asynchronous unregistration using a WQ for the device. A
1554 * driver should use this to avoid holding locks while doing unregistration,
1555 * such as holding the RTNL lock.
1556 *
1557 * Drivers using this API must use ib_unregister_driver before module unload
1558 * to ensure that all scheduled unregistrations have completed.
1559 */
ib_unregister_device_queued(struct ib_device * ib_dev)1560 void ib_unregister_device_queued(struct ib_device *ib_dev)
1561 {
1562 WARN_ON(!refcount_read(&ib_dev->refcount));
1563 WARN_ON(!ib_dev->ops.dealloc_driver);
1564 get_device(&ib_dev->dev);
1565 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1566 put_device(&ib_dev->dev);
1567 }
1568 EXPORT_SYMBOL(ib_unregister_device_queued);
1569
1570 /*
1571 * The caller must pass in a device that has the kref held and the refcount
1572 * released. If the device is in cur_net and still registered then it is moved
1573 * into net.
1574 */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1575 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1576 struct net *net)
1577 {
1578 int ret2 = -EINVAL;
1579 int ret;
1580
1581 mutex_lock(&device->unregistration_lock);
1582
1583 /*
1584 * If a device not under ib_device_get() or if the unregistration_lock
1585 * is not held, the namespace can be changed, or it can be unregistered.
1586 * Check again under the lock.
1587 */
1588 if (refcount_read(&device->refcount) == 0 ||
1589 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1590 ret = -ENODEV;
1591 goto out;
1592 }
1593
1594 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1595 disable_device(device);
1596
1597 /*
1598 * At this point no one can be using the device, so it is safe to
1599 * change the namespace.
1600 */
1601 write_pnet(&device->coredev.rdma_net, net);
1602
1603 down_read(&devices_rwsem);
1604 /*
1605 * Currently rdma devices are system wide unique. So the device name
1606 * is guaranteed free in the new namespace. Publish the new namespace
1607 * at the sysfs level.
1608 */
1609 ret = device_rename(&device->dev, dev_name(&device->dev));
1610 up_read(&devices_rwsem);
1611 if (ret) {
1612 dev_warn(&device->dev,
1613 "%s: Couldn't rename device after namespace change\n",
1614 __func__);
1615 /* Try and put things back and re-enable the device */
1616 write_pnet(&device->coredev.rdma_net, cur_net);
1617 }
1618
1619 ret2 = enable_device_and_get(device);
1620 if (ret2) {
1621 /*
1622 * This shouldn't really happen, but if it does, let the user
1623 * retry at later point. So don't disable the device.
1624 */
1625 dev_warn(&device->dev,
1626 "%s: Couldn't re-enable device after namespace change\n",
1627 __func__);
1628 }
1629 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1630
1631 ib_device_put(device);
1632 out:
1633 mutex_unlock(&device->unregistration_lock);
1634 if (ret)
1635 return ret;
1636 return ret2;
1637 }
1638
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1639 int ib_device_set_netns_put(struct sk_buff *skb,
1640 struct ib_device *dev, u32 ns_fd)
1641 {
1642 struct net *net;
1643 int ret;
1644
1645 net = get_net_ns_by_fd(ns_fd);
1646 if (IS_ERR(net)) {
1647 ret = PTR_ERR(net);
1648 goto net_err;
1649 }
1650
1651 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1652 ret = -EPERM;
1653 goto ns_err;
1654 }
1655
1656 /*
1657 * Currently supported only for those providers which support
1658 * disassociation and don't do port specific sysfs init. Once a
1659 * port_cleanup infrastructure is implemented, this limitation will be
1660 * removed.
1661 */
1662 if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1663 ib_devices_shared_netns) {
1664 ret = -EOPNOTSUPP;
1665 goto ns_err;
1666 }
1667
1668 get_device(&dev->dev);
1669 ib_device_put(dev);
1670 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1671 put_device(&dev->dev);
1672
1673 put_net(net);
1674 return ret;
1675
1676 ns_err:
1677 put_net(net);
1678 net_err:
1679 ib_device_put(dev);
1680 return ret;
1681 }
1682
1683 static struct pernet_operations rdma_dev_net_ops = {
1684 .init = rdma_dev_init_net,
1685 .exit = rdma_dev_exit_net,
1686 .id = &rdma_dev_net_id,
1687 .size = sizeof(struct rdma_dev_net),
1688 };
1689
assign_client_id(struct ib_client * client)1690 static int assign_client_id(struct ib_client *client)
1691 {
1692 int ret;
1693
1694 down_write(&clients_rwsem);
1695 /*
1696 * The add/remove callbacks must be called in FIFO/LIFO order. To
1697 * achieve this we assign client_ids so they are sorted in
1698 * registration order.
1699 */
1700 client->client_id = highest_client_id;
1701 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1702 if (ret)
1703 goto out;
1704
1705 highest_client_id++;
1706 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1707
1708 out:
1709 up_write(&clients_rwsem);
1710 return ret;
1711 }
1712
remove_client_id(struct ib_client * client)1713 static void remove_client_id(struct ib_client *client)
1714 {
1715 down_write(&clients_rwsem);
1716 xa_erase(&clients, client->client_id);
1717 for (; highest_client_id; highest_client_id--)
1718 if (xa_load(&clients, highest_client_id - 1))
1719 break;
1720 up_write(&clients_rwsem);
1721 }
1722
1723 /**
1724 * ib_register_client - Register an IB client
1725 * @client:Client to register
1726 *
1727 * Upper level users of the IB drivers can use ib_register_client() to
1728 * register callbacks for IB device addition and removal. When an IB
1729 * device is added, each registered client's add method will be called
1730 * (in the order the clients were registered), and when a device is
1731 * removed, each client's remove method will be called (in the reverse
1732 * order that clients were registered). In addition, when
1733 * ib_register_client() is called, the client will receive an add
1734 * callback for all devices already registered.
1735 */
ib_register_client(struct ib_client * client)1736 int ib_register_client(struct ib_client *client)
1737 {
1738 struct ib_device *device;
1739 unsigned long index;
1740 int ret;
1741
1742 refcount_set(&client->uses, 1);
1743 init_completion(&client->uses_zero);
1744 ret = assign_client_id(client);
1745 if (ret)
1746 return ret;
1747
1748 down_read(&devices_rwsem);
1749 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1750 ret = add_client_context(device, client);
1751 if (ret) {
1752 up_read(&devices_rwsem);
1753 ib_unregister_client(client);
1754 return ret;
1755 }
1756 }
1757 up_read(&devices_rwsem);
1758 return 0;
1759 }
1760 EXPORT_SYMBOL(ib_register_client);
1761
1762 /**
1763 * ib_unregister_client - Unregister an IB client
1764 * @client:Client to unregister
1765 *
1766 * Upper level users use ib_unregister_client() to remove their client
1767 * registration. When ib_unregister_client() is called, the client
1768 * will receive a remove callback for each IB device still registered.
1769 *
1770 * This is a full fence, once it returns no client callbacks will be called,
1771 * or are running in another thread.
1772 */
ib_unregister_client(struct ib_client * client)1773 void ib_unregister_client(struct ib_client *client)
1774 {
1775 struct ib_device *device;
1776 unsigned long index;
1777
1778 down_write(&clients_rwsem);
1779 ib_client_put(client);
1780 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1781 up_write(&clients_rwsem);
1782
1783 /* We do not want to have locks while calling client->remove() */
1784 rcu_read_lock();
1785 xa_for_each (&devices, index, device) {
1786 if (!ib_device_try_get(device))
1787 continue;
1788 rcu_read_unlock();
1789
1790 remove_client_context(device, client->client_id);
1791
1792 ib_device_put(device);
1793 rcu_read_lock();
1794 }
1795 rcu_read_unlock();
1796
1797 /*
1798 * remove_client_context() is not a fence, it can return even though a
1799 * removal is ongoing. Wait until all removals are completed.
1800 */
1801 wait_for_completion(&client->uses_zero);
1802 remove_client_id(client);
1803 }
1804 EXPORT_SYMBOL(ib_unregister_client);
1805
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1806 static int __ib_get_global_client_nl_info(const char *client_name,
1807 struct ib_client_nl_info *res)
1808 {
1809 struct ib_client *client;
1810 unsigned long index;
1811 int ret = -ENOENT;
1812
1813 down_read(&clients_rwsem);
1814 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1815 if (strcmp(client->name, client_name) != 0)
1816 continue;
1817 if (!client->get_global_nl_info) {
1818 ret = -EOPNOTSUPP;
1819 break;
1820 }
1821 ret = client->get_global_nl_info(res);
1822 if (WARN_ON(ret == -ENOENT))
1823 ret = -EINVAL;
1824 if (!ret && res->cdev)
1825 get_device(res->cdev);
1826 break;
1827 }
1828 up_read(&clients_rwsem);
1829 return ret;
1830 }
1831
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1832 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1833 const char *client_name,
1834 struct ib_client_nl_info *res)
1835 {
1836 unsigned long index;
1837 void *client_data;
1838 int ret = -ENOENT;
1839
1840 down_read(&ibdev->client_data_rwsem);
1841 xan_for_each_marked (&ibdev->client_data, index, client_data,
1842 CLIENT_DATA_REGISTERED) {
1843 struct ib_client *client = xa_load(&clients, index);
1844
1845 if (!client || strcmp(client->name, client_name) != 0)
1846 continue;
1847 if (!client->get_nl_info) {
1848 ret = -EOPNOTSUPP;
1849 break;
1850 }
1851 ret = client->get_nl_info(ibdev, client_data, res);
1852 if (WARN_ON(ret == -ENOENT))
1853 ret = -EINVAL;
1854
1855 /*
1856 * The cdev is guaranteed valid as long as we are inside the
1857 * client_data_rwsem as remove_one can't be called. Keep it
1858 * valid for the caller.
1859 */
1860 if (!ret && res->cdev)
1861 get_device(res->cdev);
1862 break;
1863 }
1864 up_read(&ibdev->client_data_rwsem);
1865
1866 return ret;
1867 }
1868
1869 /**
1870 * ib_get_client_nl_info - Fetch the nl_info from a client
1871 * @device - IB device
1872 * @client_name - Name of the client
1873 * @res - Result of the query
1874 */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1875 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1876 struct ib_client_nl_info *res)
1877 {
1878 int ret;
1879
1880 if (ibdev)
1881 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1882 else
1883 ret = __ib_get_global_client_nl_info(client_name, res);
1884 #ifdef CONFIG_MODULES
1885 if (ret == -ENOENT) {
1886 request_module("rdma-client-%s", client_name);
1887 if (ibdev)
1888 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1889 else
1890 ret = __ib_get_global_client_nl_info(client_name, res);
1891 }
1892 #endif
1893 if (ret) {
1894 if (ret == -ENOENT)
1895 return -EOPNOTSUPP;
1896 return ret;
1897 }
1898
1899 if (WARN_ON(!res->cdev))
1900 return -EINVAL;
1901 return 0;
1902 }
1903
1904 /**
1905 * ib_set_client_data - Set IB client context
1906 * @device:Device to set context for
1907 * @client:Client to set context for
1908 * @data:Context to set
1909 *
1910 * ib_set_client_data() sets client context data that can be retrieved with
1911 * ib_get_client_data(). This can only be called while the client is
1912 * registered to the device, once the ib_client remove() callback returns this
1913 * cannot be called.
1914 */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)1915 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1916 void *data)
1917 {
1918 void *rc;
1919
1920 if (WARN_ON(IS_ERR(data)))
1921 data = NULL;
1922
1923 rc = xa_store(&device->client_data, client->client_id, data,
1924 GFP_KERNEL);
1925 WARN_ON(xa_is_err(rc));
1926 }
1927 EXPORT_SYMBOL(ib_set_client_data);
1928
1929 /**
1930 * ib_register_event_handler - Register an IB event handler
1931 * @event_handler:Handler to register
1932 *
1933 * ib_register_event_handler() registers an event handler that will be
1934 * called back when asynchronous IB events occur (as defined in
1935 * chapter 11 of the InfiniBand Architecture Specification). This
1936 * callback may occur in interrupt context.
1937 */
ib_register_event_handler(struct ib_event_handler * event_handler)1938 void ib_register_event_handler(struct ib_event_handler *event_handler)
1939 {
1940 unsigned long flags;
1941
1942 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1943 list_add_tail(&event_handler->list,
1944 &event_handler->device->event_handler_list);
1945 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1946 }
1947 EXPORT_SYMBOL(ib_register_event_handler);
1948
1949 /**
1950 * ib_unregister_event_handler - Unregister an event handler
1951 * @event_handler:Handler to unregister
1952 *
1953 * Unregister an event handler registered with
1954 * ib_register_event_handler().
1955 */
ib_unregister_event_handler(struct ib_event_handler * event_handler)1956 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1957 {
1958 unsigned long flags;
1959
1960 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1961 list_del(&event_handler->list);
1962 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1963 }
1964 EXPORT_SYMBOL(ib_unregister_event_handler);
1965
1966 /**
1967 * ib_dispatch_event - Dispatch an asynchronous event
1968 * @event:Event to dispatch
1969 *
1970 * Low-level drivers must call ib_dispatch_event() to dispatch the
1971 * event to all registered event handlers when an asynchronous event
1972 * occurs.
1973 */
ib_dispatch_event(struct ib_event * event)1974 void ib_dispatch_event(struct ib_event *event)
1975 {
1976 unsigned long flags;
1977 struct ib_event_handler *handler;
1978
1979 spin_lock_irqsave(&event->device->event_handler_lock, flags);
1980
1981 list_for_each_entry(handler, &event->device->event_handler_list, list)
1982 handler->handler(handler, event);
1983
1984 spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
1985 }
1986 EXPORT_SYMBOL(ib_dispatch_event);
1987
iw_query_port(struct ib_device * device,u8 port_num,struct ib_port_attr * port_attr)1988 static int iw_query_port(struct ib_device *device,
1989 u8 port_num,
1990 struct ib_port_attr *port_attr)
1991 {
1992 struct in_device *inetdev;
1993 struct net_device *netdev;
1994 int err;
1995
1996 memset(port_attr, 0, sizeof(*port_attr));
1997
1998 netdev = ib_device_get_netdev(device, port_num);
1999 if (!netdev)
2000 return -ENODEV;
2001
2002 port_attr->max_mtu = IB_MTU_4096;
2003 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2004
2005 if (!netif_carrier_ok(netdev)) {
2006 port_attr->state = IB_PORT_DOWN;
2007 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2008 } else {
2009 rcu_read_lock();
2010 inetdev = __in_dev_get_rcu(netdev);
2011
2012 if (inetdev && inetdev->ifa_list) {
2013 port_attr->state = IB_PORT_ACTIVE;
2014 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2015 } else {
2016 port_attr->state = IB_PORT_INIT;
2017 port_attr->phys_state =
2018 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2019 }
2020
2021 rcu_read_unlock();
2022 }
2023
2024 dev_put(netdev);
2025 err = device->ops.query_port(device, port_num, port_attr);
2026 if (err)
2027 return err;
2028
2029 return 0;
2030 }
2031
__ib_query_port(struct ib_device * device,u8 port_num,struct ib_port_attr * port_attr)2032 static int __ib_query_port(struct ib_device *device,
2033 u8 port_num,
2034 struct ib_port_attr *port_attr)
2035 {
2036 union ib_gid gid = {};
2037 int err;
2038
2039 memset(port_attr, 0, sizeof(*port_attr));
2040
2041 err = device->ops.query_port(device, port_num, port_attr);
2042 if (err || port_attr->subnet_prefix)
2043 return err;
2044
2045 if (rdma_port_get_link_layer(device, port_num) !=
2046 IB_LINK_LAYER_INFINIBAND)
2047 return 0;
2048
2049 err = device->ops.query_gid(device, port_num, 0, &gid);
2050 if (err)
2051 return err;
2052
2053 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2054 return 0;
2055 }
2056
2057 /**
2058 * ib_query_port - Query IB port attributes
2059 * @device:Device to query
2060 * @port_num:Port number to query
2061 * @port_attr:Port attributes
2062 *
2063 * ib_query_port() returns the attributes of a port through the
2064 * @port_attr pointer.
2065 */
ib_query_port(struct ib_device * device,u8 port_num,struct ib_port_attr * port_attr)2066 int ib_query_port(struct ib_device *device,
2067 u8 port_num,
2068 struct ib_port_attr *port_attr)
2069 {
2070 if (!rdma_is_port_valid(device, port_num))
2071 return -EINVAL;
2072
2073 if (rdma_protocol_iwarp(device, port_num))
2074 return iw_query_port(device, port_num, port_attr);
2075 else
2076 return __ib_query_port(device, port_num, port_attr);
2077 }
2078 EXPORT_SYMBOL(ib_query_port);
2079
add_ndev_hash(struct ib_port_data * pdata)2080 static void add_ndev_hash(struct ib_port_data *pdata)
2081 {
2082 unsigned long flags;
2083
2084 might_sleep();
2085
2086 spin_lock_irqsave(&ndev_hash_lock, flags);
2087 if (hash_hashed(&pdata->ndev_hash_link)) {
2088 hash_del_rcu(&pdata->ndev_hash_link);
2089 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2090 /*
2091 * We cannot do hash_add_rcu after a hash_del_rcu until the
2092 * grace period
2093 */
2094 synchronize_rcu();
2095 spin_lock_irqsave(&ndev_hash_lock, flags);
2096 }
2097 if (pdata->netdev)
2098 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2099 (uintptr_t)pdata->netdev);
2100 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2101 }
2102
2103 /**
2104 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2105 * @ib_dev: Device to modify
2106 * @ndev: net_device to affiliate, may be NULL
2107 * @port: IB port the net_device is connected to
2108 *
2109 * Drivers should use this to link the ib_device to a netdev so the netdev
2110 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2111 * affiliated with any port.
2112 *
2113 * The caller must ensure that the given ndev is not unregistered or
2114 * unregistering, and that either the ib_device is unregistered or
2115 * ib_device_set_netdev() is called with NULL when the ndev sends a
2116 * NETDEV_UNREGISTER event.
2117 */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,unsigned int port)2118 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2119 unsigned int port)
2120 {
2121 struct net_device *old_ndev;
2122 struct ib_port_data *pdata;
2123 unsigned long flags;
2124 int ret;
2125
2126 /*
2127 * Drivers wish to call this before ib_register_driver, so we have to
2128 * setup the port data early.
2129 */
2130 ret = alloc_port_data(ib_dev);
2131 if (ret)
2132 return ret;
2133
2134 if (!rdma_is_port_valid(ib_dev, port))
2135 return -EINVAL;
2136
2137 pdata = &ib_dev->port_data[port];
2138 spin_lock_irqsave(&pdata->netdev_lock, flags);
2139 old_ndev = rcu_dereference_protected(
2140 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2141 if (old_ndev == ndev) {
2142 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2143 return 0;
2144 }
2145
2146 if (ndev)
2147 dev_hold(ndev);
2148 rcu_assign_pointer(pdata->netdev, ndev);
2149 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2150
2151 add_ndev_hash(pdata);
2152 if (old_ndev)
2153 dev_put(old_ndev);
2154
2155 return 0;
2156 }
2157 EXPORT_SYMBOL(ib_device_set_netdev);
2158
free_netdevs(struct ib_device * ib_dev)2159 static void free_netdevs(struct ib_device *ib_dev)
2160 {
2161 unsigned long flags;
2162 unsigned int port;
2163
2164 if (!ib_dev->port_data)
2165 return;
2166
2167 rdma_for_each_port (ib_dev, port) {
2168 struct ib_port_data *pdata = &ib_dev->port_data[port];
2169 struct net_device *ndev;
2170
2171 spin_lock_irqsave(&pdata->netdev_lock, flags);
2172 ndev = rcu_dereference_protected(
2173 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2174 if (ndev) {
2175 spin_lock(&ndev_hash_lock);
2176 hash_del_rcu(&pdata->ndev_hash_link);
2177 spin_unlock(&ndev_hash_lock);
2178
2179 /*
2180 * If this is the last dev_put there is still a
2181 * synchronize_rcu before the netdev is kfreed, so we
2182 * can continue to rely on unlocked pointer
2183 * comparisons after the put
2184 */
2185 rcu_assign_pointer(pdata->netdev, NULL);
2186 dev_put(ndev);
2187 }
2188 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2189 }
2190 }
2191
ib_device_get_netdev(struct ib_device * ib_dev,unsigned int port)2192 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2193 unsigned int port)
2194 {
2195 struct ib_port_data *pdata;
2196 struct net_device *res;
2197
2198 if (!rdma_is_port_valid(ib_dev, port))
2199 return NULL;
2200
2201 pdata = &ib_dev->port_data[port];
2202
2203 /*
2204 * New drivers should use ib_device_set_netdev() not the legacy
2205 * get_netdev().
2206 */
2207 if (ib_dev->ops.get_netdev)
2208 res = ib_dev->ops.get_netdev(ib_dev, port);
2209 else {
2210 spin_lock(&pdata->netdev_lock);
2211 res = rcu_dereference_protected(
2212 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2213 if (res)
2214 dev_hold(res);
2215 spin_unlock(&pdata->netdev_lock);
2216 }
2217
2218 /*
2219 * If we are starting to unregister expedite things by preventing
2220 * propagation of an unregistering netdev.
2221 */
2222 if (res && res->reg_state != NETREG_REGISTERED) {
2223 dev_put(res);
2224 return NULL;
2225 }
2226
2227 return res;
2228 }
2229
2230 /**
2231 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2232 * @ndev: netdev to locate
2233 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2234 *
2235 * Find and hold an ib_device that is associated with a netdev via
2236 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2237 * returned pointer.
2238 */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2239 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2240 enum rdma_driver_id driver_id)
2241 {
2242 struct ib_device *res = NULL;
2243 struct ib_port_data *cur;
2244
2245 rcu_read_lock();
2246 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2247 (uintptr_t)ndev) {
2248 if (rcu_access_pointer(cur->netdev) == ndev &&
2249 (driver_id == RDMA_DRIVER_UNKNOWN ||
2250 cur->ib_dev->ops.driver_id == driver_id) &&
2251 ib_device_try_get(cur->ib_dev)) {
2252 res = cur->ib_dev;
2253 break;
2254 }
2255 }
2256 rcu_read_unlock();
2257
2258 return res;
2259 }
2260 EXPORT_SYMBOL(ib_device_get_by_netdev);
2261
2262 /**
2263 * ib_enum_roce_netdev - enumerate all RoCE ports
2264 * @ib_dev : IB device we want to query
2265 * @filter: Should we call the callback?
2266 * @filter_cookie: Cookie passed to filter
2267 * @cb: Callback to call for each found RoCE ports
2268 * @cookie: Cookie passed back to the callback
2269 *
2270 * Enumerates all of the physical RoCE ports of ib_dev
2271 * which are related to netdevice and calls callback() on each
2272 * device for which filter() function returns non zero.
2273 */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2274 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2275 roce_netdev_filter filter,
2276 void *filter_cookie,
2277 roce_netdev_callback cb,
2278 void *cookie)
2279 {
2280 unsigned int port;
2281
2282 rdma_for_each_port (ib_dev, port)
2283 if (rdma_protocol_roce(ib_dev, port)) {
2284 struct net_device *idev =
2285 ib_device_get_netdev(ib_dev, port);
2286
2287 if (filter(ib_dev, port, idev, filter_cookie))
2288 cb(ib_dev, port, idev, cookie);
2289
2290 if (idev)
2291 dev_put(idev);
2292 }
2293 }
2294
2295 /**
2296 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2297 * @filter: Should we call the callback?
2298 * @filter_cookie: Cookie passed to filter
2299 * @cb: Callback to call for each found RoCE ports
2300 * @cookie: Cookie passed back to the callback
2301 *
2302 * Enumerates all RoCE devices' physical ports which are related
2303 * to netdevices and calls callback() on each device for which
2304 * filter() function returns non zero.
2305 */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2306 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2307 void *filter_cookie,
2308 roce_netdev_callback cb,
2309 void *cookie)
2310 {
2311 struct ib_device *dev;
2312 unsigned long index;
2313
2314 down_read(&devices_rwsem);
2315 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2316 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2317 up_read(&devices_rwsem);
2318 }
2319
2320 /**
2321 * ib_enum_all_devs - enumerate all ib_devices
2322 * @cb: Callback to call for each found ib_device
2323 *
2324 * Enumerates all ib_devices and calls callback() on each device.
2325 */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2326 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2327 struct netlink_callback *cb)
2328 {
2329 unsigned long index;
2330 struct ib_device *dev;
2331 unsigned int idx = 0;
2332 int ret = 0;
2333
2334 down_read(&devices_rwsem);
2335 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2336 if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2337 continue;
2338
2339 ret = nldev_cb(dev, skb, cb, idx);
2340 if (ret)
2341 break;
2342 idx++;
2343 }
2344 up_read(&devices_rwsem);
2345 return ret;
2346 }
2347
2348 /**
2349 * ib_query_pkey - Get P_Key table entry
2350 * @device:Device to query
2351 * @port_num:Port number to query
2352 * @index:P_Key table index to query
2353 * @pkey:Returned P_Key
2354 *
2355 * ib_query_pkey() fetches the specified P_Key table entry.
2356 */
ib_query_pkey(struct ib_device * device,u8 port_num,u16 index,u16 * pkey)2357 int ib_query_pkey(struct ib_device *device,
2358 u8 port_num, u16 index, u16 *pkey)
2359 {
2360 if (!rdma_is_port_valid(device, port_num))
2361 return -EINVAL;
2362
2363 return device->ops.query_pkey(device, port_num, index, pkey);
2364 }
2365 EXPORT_SYMBOL(ib_query_pkey);
2366
2367 /**
2368 * ib_modify_device - Change IB device attributes
2369 * @device:Device to modify
2370 * @device_modify_mask:Mask of attributes to change
2371 * @device_modify:New attribute values
2372 *
2373 * ib_modify_device() changes a device's attributes as specified by
2374 * the @device_modify_mask and @device_modify structure.
2375 */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2376 int ib_modify_device(struct ib_device *device,
2377 int device_modify_mask,
2378 struct ib_device_modify *device_modify)
2379 {
2380 if (!device->ops.modify_device)
2381 return -ENOSYS;
2382
2383 return device->ops.modify_device(device, device_modify_mask,
2384 device_modify);
2385 }
2386 EXPORT_SYMBOL(ib_modify_device);
2387
2388 /**
2389 * ib_modify_port - Modifies the attributes for the specified port.
2390 * @device: The device to modify.
2391 * @port_num: The number of the port to modify.
2392 * @port_modify_mask: Mask used to specify which attributes of the port
2393 * to change.
2394 * @port_modify: New attribute values for the port.
2395 *
2396 * ib_modify_port() changes a port's attributes as specified by the
2397 * @port_modify_mask and @port_modify structure.
2398 */
ib_modify_port(struct ib_device * device,u8 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2399 int ib_modify_port(struct ib_device *device,
2400 u8 port_num, int port_modify_mask,
2401 struct ib_port_modify *port_modify)
2402 {
2403 int rc;
2404
2405 if (!rdma_is_port_valid(device, port_num))
2406 return -EINVAL;
2407
2408 if (device->ops.modify_port)
2409 rc = device->ops.modify_port(device, port_num,
2410 port_modify_mask,
2411 port_modify);
2412 else if (rdma_protocol_roce(device, port_num) &&
2413 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2414 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2415 rc = 0;
2416 else
2417 rc = -EOPNOTSUPP;
2418 return rc;
2419 }
2420 EXPORT_SYMBOL(ib_modify_port);
2421
2422 /**
2423 * ib_find_gid - Returns the port number and GID table index where
2424 * a specified GID value occurs. Its searches only for IB link layer.
2425 * @device: The device to query.
2426 * @gid: The GID value to search for.
2427 * @port_num: The port number of the device where the GID value was found.
2428 * @index: The index into the GID table where the GID was found. This
2429 * parameter may be NULL.
2430 */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u8 * port_num,u16 * index)2431 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2432 u8 *port_num, u16 *index)
2433 {
2434 union ib_gid tmp_gid;
2435 unsigned int port;
2436 int ret, i;
2437
2438 rdma_for_each_port (device, port) {
2439 if (!rdma_protocol_ib(device, port))
2440 continue;
2441
2442 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2443 ++i) {
2444 ret = rdma_query_gid(device, port, i, &tmp_gid);
2445 if (ret)
2446 return ret;
2447 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2448 *port_num = port;
2449 if (index)
2450 *index = i;
2451 return 0;
2452 }
2453 }
2454 }
2455
2456 return -ENOENT;
2457 }
2458 EXPORT_SYMBOL(ib_find_gid);
2459
2460 /**
2461 * ib_find_pkey - Returns the PKey table index where a specified
2462 * PKey value occurs.
2463 * @device: The device to query.
2464 * @port_num: The port number of the device to search for the PKey.
2465 * @pkey: The PKey value to search for.
2466 * @index: The index into the PKey table where the PKey was found.
2467 */
ib_find_pkey(struct ib_device * device,u8 port_num,u16 pkey,u16 * index)2468 int ib_find_pkey(struct ib_device *device,
2469 u8 port_num, u16 pkey, u16 *index)
2470 {
2471 int ret, i;
2472 u16 tmp_pkey;
2473 int partial_ix = -1;
2474
2475 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2476 ++i) {
2477 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2478 if (ret)
2479 return ret;
2480 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2481 /* if there is full-member pkey take it.*/
2482 if (tmp_pkey & 0x8000) {
2483 *index = i;
2484 return 0;
2485 }
2486 if (partial_ix < 0)
2487 partial_ix = i;
2488 }
2489 }
2490
2491 /*no full-member, if exists take the limited*/
2492 if (partial_ix >= 0) {
2493 *index = partial_ix;
2494 return 0;
2495 }
2496 return -ENOENT;
2497 }
2498 EXPORT_SYMBOL(ib_find_pkey);
2499
2500 /**
2501 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2502 * for a received CM request
2503 * @dev: An RDMA device on which the request has been received.
2504 * @port: Port number on the RDMA device.
2505 * @pkey: The Pkey the request came on.
2506 * @gid: A GID that the net_dev uses to communicate.
2507 * @addr: Contains the IP address that the request specified as its
2508 * destination.
2509 *
2510 */
ib_get_net_dev_by_params(struct ib_device * dev,u8 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2511 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2512 u8 port,
2513 u16 pkey,
2514 const union ib_gid *gid,
2515 const struct sockaddr *addr)
2516 {
2517 struct net_device *net_dev = NULL;
2518 unsigned long index;
2519 void *client_data;
2520
2521 if (!rdma_protocol_ib(dev, port))
2522 return NULL;
2523
2524 /*
2525 * Holding the read side guarantees that the client will not become
2526 * unregistered while we are calling get_net_dev_by_params()
2527 */
2528 down_read(&dev->client_data_rwsem);
2529 xan_for_each_marked (&dev->client_data, index, client_data,
2530 CLIENT_DATA_REGISTERED) {
2531 struct ib_client *client = xa_load(&clients, index);
2532
2533 if (!client || !client->get_net_dev_by_params)
2534 continue;
2535
2536 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2537 addr, client_data);
2538 if (net_dev)
2539 break;
2540 }
2541 up_read(&dev->client_data_rwsem);
2542
2543 return net_dev;
2544 }
2545 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2546
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2547 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2548 {
2549 struct ib_device_ops *dev_ops = &dev->ops;
2550 #define SET_DEVICE_OP(ptr, name) \
2551 do { \
2552 if (ops->name) \
2553 if (!((ptr)->name)) \
2554 (ptr)->name = ops->name; \
2555 } while (0)
2556
2557 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2558
2559 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2560 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2561 dev_ops->driver_id != ops->driver_id);
2562 dev_ops->driver_id = ops->driver_id;
2563 }
2564 if (ops->owner) {
2565 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2566 dev_ops->owner = ops->owner;
2567 }
2568 if (ops->uverbs_abi_ver)
2569 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2570
2571 dev_ops->uverbs_no_driver_id_binding |=
2572 ops->uverbs_no_driver_id_binding;
2573
2574 SET_DEVICE_OP(dev_ops, add_gid);
2575 SET_DEVICE_OP(dev_ops, advise_mr);
2576 SET_DEVICE_OP(dev_ops, alloc_dm);
2577 SET_DEVICE_OP(dev_ops, alloc_fmr);
2578 SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2579 SET_DEVICE_OP(dev_ops, alloc_mr);
2580 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2581 SET_DEVICE_OP(dev_ops, alloc_mw);
2582 SET_DEVICE_OP(dev_ops, alloc_pd);
2583 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2584 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2585 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2586 SET_DEVICE_OP(dev_ops, attach_mcast);
2587 SET_DEVICE_OP(dev_ops, check_mr_status);
2588 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2589 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2590 SET_DEVICE_OP(dev_ops, counter_dealloc);
2591 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2592 SET_DEVICE_OP(dev_ops, counter_update_stats);
2593 SET_DEVICE_OP(dev_ops, create_ah);
2594 SET_DEVICE_OP(dev_ops, create_counters);
2595 SET_DEVICE_OP(dev_ops, create_cq);
2596 SET_DEVICE_OP(dev_ops, create_flow);
2597 SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2598 SET_DEVICE_OP(dev_ops, create_qp);
2599 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2600 SET_DEVICE_OP(dev_ops, create_srq);
2601 SET_DEVICE_OP(dev_ops, create_wq);
2602 SET_DEVICE_OP(dev_ops, dealloc_dm);
2603 SET_DEVICE_OP(dev_ops, dealloc_driver);
2604 SET_DEVICE_OP(dev_ops, dealloc_fmr);
2605 SET_DEVICE_OP(dev_ops, dealloc_mw);
2606 SET_DEVICE_OP(dev_ops, dealloc_pd);
2607 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2608 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2609 SET_DEVICE_OP(dev_ops, del_gid);
2610 SET_DEVICE_OP(dev_ops, dereg_mr);
2611 SET_DEVICE_OP(dev_ops, destroy_ah);
2612 SET_DEVICE_OP(dev_ops, destroy_counters);
2613 SET_DEVICE_OP(dev_ops, destroy_cq);
2614 SET_DEVICE_OP(dev_ops, destroy_flow);
2615 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2616 SET_DEVICE_OP(dev_ops, destroy_qp);
2617 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2618 SET_DEVICE_OP(dev_ops, destroy_srq);
2619 SET_DEVICE_OP(dev_ops, destroy_wq);
2620 SET_DEVICE_OP(dev_ops, detach_mcast);
2621 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2622 SET_DEVICE_OP(dev_ops, drain_rq);
2623 SET_DEVICE_OP(dev_ops, drain_sq);
2624 SET_DEVICE_OP(dev_ops, enable_driver);
2625 SET_DEVICE_OP(dev_ops, fill_res_entry);
2626 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2627 SET_DEVICE_OP(dev_ops, get_dma_mr);
2628 SET_DEVICE_OP(dev_ops, get_hw_stats);
2629 SET_DEVICE_OP(dev_ops, get_link_layer);
2630 SET_DEVICE_OP(dev_ops, get_netdev);
2631 SET_DEVICE_OP(dev_ops, get_port_immutable);
2632 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2633 SET_DEVICE_OP(dev_ops, get_vf_config);
2634 SET_DEVICE_OP(dev_ops, get_vf_stats);
2635 SET_DEVICE_OP(dev_ops, init_port);
2636 SET_DEVICE_OP(dev_ops, invalidate_range);
2637 SET_DEVICE_OP(dev_ops, iw_accept);
2638 SET_DEVICE_OP(dev_ops, iw_add_ref);
2639 SET_DEVICE_OP(dev_ops, iw_connect);
2640 SET_DEVICE_OP(dev_ops, iw_create_listen);
2641 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2642 SET_DEVICE_OP(dev_ops, iw_get_qp);
2643 SET_DEVICE_OP(dev_ops, iw_reject);
2644 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2645 SET_DEVICE_OP(dev_ops, map_mr_sg);
2646 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2647 SET_DEVICE_OP(dev_ops, map_phys_fmr);
2648 SET_DEVICE_OP(dev_ops, mmap);
2649 SET_DEVICE_OP(dev_ops, modify_ah);
2650 SET_DEVICE_OP(dev_ops, modify_cq);
2651 SET_DEVICE_OP(dev_ops, modify_device);
2652 SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2653 SET_DEVICE_OP(dev_ops, modify_port);
2654 SET_DEVICE_OP(dev_ops, modify_qp);
2655 SET_DEVICE_OP(dev_ops, modify_srq);
2656 SET_DEVICE_OP(dev_ops, modify_wq);
2657 SET_DEVICE_OP(dev_ops, peek_cq);
2658 SET_DEVICE_OP(dev_ops, poll_cq);
2659 SET_DEVICE_OP(dev_ops, post_recv);
2660 SET_DEVICE_OP(dev_ops, post_send);
2661 SET_DEVICE_OP(dev_ops, post_srq_recv);
2662 SET_DEVICE_OP(dev_ops, process_mad);
2663 SET_DEVICE_OP(dev_ops, query_ah);
2664 SET_DEVICE_OP(dev_ops, query_device);
2665 SET_DEVICE_OP(dev_ops, query_gid);
2666 SET_DEVICE_OP(dev_ops, query_pkey);
2667 SET_DEVICE_OP(dev_ops, query_port);
2668 SET_DEVICE_OP(dev_ops, query_qp);
2669 SET_DEVICE_OP(dev_ops, query_srq);
2670 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2671 SET_DEVICE_OP(dev_ops, read_counters);
2672 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2673 SET_DEVICE_OP(dev_ops, reg_user_mr);
2674 SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2675 SET_DEVICE_OP(dev_ops, req_notify_cq);
2676 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2677 SET_DEVICE_OP(dev_ops, resize_cq);
2678 SET_DEVICE_OP(dev_ops, set_vf_guid);
2679 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2680 SET_DEVICE_OP(dev_ops, unmap_fmr);
2681
2682 SET_OBJ_SIZE(dev_ops, ib_ah);
2683 SET_OBJ_SIZE(dev_ops, ib_cq);
2684 SET_OBJ_SIZE(dev_ops, ib_pd);
2685 SET_OBJ_SIZE(dev_ops, ib_srq);
2686 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2687 }
2688 EXPORT_SYMBOL(ib_set_device_ops);
2689
2690 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2691 [RDMA_NL_LS_OP_RESOLVE] = {
2692 .doit = ib_nl_handle_resolve_resp,
2693 .flags = RDMA_NL_ADMIN_PERM,
2694 },
2695 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2696 .doit = ib_nl_handle_set_timeout,
2697 .flags = RDMA_NL_ADMIN_PERM,
2698 },
2699 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2700 .doit = ib_nl_handle_ip_res_resp,
2701 .flags = RDMA_NL_ADMIN_PERM,
2702 },
2703 };
2704
ib_core_init(void)2705 static int __init ib_core_init(void)
2706 {
2707 int ret;
2708
2709 ib_wq = alloc_workqueue("infiniband", 0, 0);
2710 if (!ib_wq)
2711 return -ENOMEM;
2712
2713 ib_comp_wq = alloc_workqueue("ib-comp-wq",
2714 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2715 if (!ib_comp_wq) {
2716 ret = -ENOMEM;
2717 goto err;
2718 }
2719
2720 ib_comp_unbound_wq =
2721 alloc_workqueue("ib-comp-unb-wq",
2722 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2723 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2724 if (!ib_comp_unbound_wq) {
2725 ret = -ENOMEM;
2726 goto err_comp;
2727 }
2728
2729 ret = class_register(&ib_class);
2730 if (ret) {
2731 pr_warn("Couldn't create InfiniBand device class\n");
2732 goto err_comp_unbound;
2733 }
2734
2735 rdma_nl_init();
2736
2737 ret = addr_init();
2738 if (ret) {
2739 pr_warn("Could't init IB address resolution\n");
2740 goto err_ibnl;
2741 }
2742
2743 ret = ib_mad_init();
2744 if (ret) {
2745 pr_warn("Couldn't init IB MAD\n");
2746 goto err_addr;
2747 }
2748
2749 ret = ib_sa_init();
2750 if (ret) {
2751 pr_warn("Couldn't init SA\n");
2752 goto err_mad;
2753 }
2754
2755 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2756 if (ret) {
2757 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2758 goto err_sa;
2759 }
2760
2761 ret = register_pernet_device(&rdma_dev_net_ops);
2762 if (ret) {
2763 pr_warn("Couldn't init compat dev. ret %d\n", ret);
2764 goto err_compat;
2765 }
2766
2767 nldev_init();
2768 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2769 roce_gid_mgmt_init();
2770
2771 return 0;
2772
2773 err_compat:
2774 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2775 err_sa:
2776 ib_sa_cleanup();
2777 err_mad:
2778 ib_mad_cleanup();
2779 err_addr:
2780 addr_cleanup();
2781 err_ibnl:
2782 class_unregister(&ib_class);
2783 err_comp_unbound:
2784 destroy_workqueue(ib_comp_unbound_wq);
2785 err_comp:
2786 destroy_workqueue(ib_comp_wq);
2787 err:
2788 destroy_workqueue(ib_wq);
2789 return ret;
2790 }
2791
ib_core_cleanup(void)2792 static void __exit ib_core_cleanup(void)
2793 {
2794 roce_gid_mgmt_cleanup();
2795 nldev_exit();
2796 rdma_nl_unregister(RDMA_NL_LS);
2797 unregister_pernet_device(&rdma_dev_net_ops);
2798 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2799 ib_sa_cleanup();
2800 ib_mad_cleanup();
2801 addr_cleanup();
2802 rdma_nl_exit();
2803 class_unregister(&ib_class);
2804 destroy_workqueue(ib_comp_unbound_wq);
2805 destroy_workqueue(ib_comp_wq);
2806 /* Make sure that any pending umem accounting work is done. */
2807 destroy_workqueue(ib_wq);
2808 flush_workqueue(system_unbound_wq);
2809 WARN_ON(!xa_empty(&clients));
2810 WARN_ON(!xa_empty(&devices));
2811 }
2812
2813 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2814
2815 /* ib core relies on netdev stack to first register net_ns_type_operations
2816 * ns kobject type before ib_core initialization.
2817 */
2818 fs_initcall(ib_core_init);
2819 module_exit(ib_core_cleanup);
2820