1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2019 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 if (chan == 14)
84 return 2484;
85 else if (chan < 14)
86 return 2407 + chan * 5;
87 break;
88 case NL80211_BAND_5GHZ:
89 if (chan >= 182 && chan <= 196)
90 return 4000 + chan * 5;
91 else
92 return 5000 + chan * 5;
93 break;
94 case NL80211_BAND_6GHZ:
95 /* see 802.11ax D4.1 27.3.22.2 */
96 if (chan <= 253)
97 return 5940 + chan * 5;
98 break;
99 case NL80211_BAND_60GHZ:
100 if (chan < 7)
101 return 56160 + chan * 2160;
102 break;
103 default:
104 ;
105 }
106 return 0; /* not supported */
107 }
108 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
109
ieee80211_frequency_to_channel(int freq)110 int ieee80211_frequency_to_channel(int freq)
111 {
112 /* see 802.11 17.3.8.3.2 and Annex J */
113 if (freq == 2484)
114 return 14;
115 else if (freq < 2484)
116 return (freq - 2407) / 5;
117 else if (freq >= 4910 && freq <= 4980)
118 return (freq - 4000) / 5;
119 else if (freq < 5945)
120 return (freq - 5000) / 5;
121 else if (freq <= 45000) /* DMG band lower limit */
122 /* see 802.11ax D4.1 27.3.22.2 */
123 return (freq - 5940) / 5;
124 else if (freq >= 58320 && freq <= 70200)
125 return (freq - 56160) / 2160;
126 else
127 return 0;
128 }
129 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
130
ieee80211_get_channel(struct wiphy * wiphy,int freq)131 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
132 {
133 enum nl80211_band band;
134 struct ieee80211_supported_band *sband;
135 int i;
136
137 for (band = 0; band < NUM_NL80211_BANDS; band++) {
138 sband = wiphy->bands[band];
139
140 if (!sband)
141 continue;
142
143 for (i = 0; i < sband->n_channels; i++) {
144 if (sband->channels[i].center_freq == freq)
145 return &sband->channels[i];
146 }
147 }
148
149 return NULL;
150 }
151 EXPORT_SYMBOL(ieee80211_get_channel);
152
set_mandatory_flags_band(struct ieee80211_supported_band * sband)153 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
154 {
155 int i, want;
156
157 switch (sband->band) {
158 case NL80211_BAND_5GHZ:
159 case NL80211_BAND_6GHZ:
160 want = 3;
161 for (i = 0; i < sband->n_bitrates; i++) {
162 if (sband->bitrates[i].bitrate == 60 ||
163 sband->bitrates[i].bitrate == 120 ||
164 sband->bitrates[i].bitrate == 240) {
165 sband->bitrates[i].flags |=
166 IEEE80211_RATE_MANDATORY_A;
167 want--;
168 }
169 }
170 WARN_ON(want);
171 break;
172 case NL80211_BAND_2GHZ:
173 want = 7;
174 for (i = 0; i < sband->n_bitrates; i++) {
175 switch (sband->bitrates[i].bitrate) {
176 case 10:
177 case 20:
178 case 55:
179 case 110:
180 sband->bitrates[i].flags |=
181 IEEE80211_RATE_MANDATORY_B |
182 IEEE80211_RATE_MANDATORY_G;
183 want--;
184 break;
185 case 60:
186 case 120:
187 case 240:
188 sband->bitrates[i].flags |=
189 IEEE80211_RATE_MANDATORY_G;
190 want--;
191 /* fall through */
192 default:
193 sband->bitrates[i].flags |=
194 IEEE80211_RATE_ERP_G;
195 break;
196 }
197 }
198 WARN_ON(want != 0 && want != 3);
199 break;
200 case NL80211_BAND_60GHZ:
201 /* check for mandatory HT MCS 1..4 */
202 WARN_ON(!sband->ht_cap.ht_supported);
203 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
204 break;
205 case NUM_NL80211_BANDS:
206 default:
207 WARN_ON(1);
208 break;
209 }
210 }
211
ieee80211_set_bitrate_flags(struct wiphy * wiphy)212 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
213 {
214 enum nl80211_band band;
215
216 for (band = 0; band < NUM_NL80211_BANDS; band++)
217 if (wiphy->bands[band])
218 set_mandatory_flags_band(wiphy->bands[band]);
219 }
220
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)221 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
222 {
223 int i;
224 for (i = 0; i < wiphy->n_cipher_suites; i++)
225 if (cipher == wiphy->cipher_suites[i])
226 return true;
227 return false;
228 }
229
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)230 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
231 struct key_params *params, int key_idx,
232 bool pairwise, const u8 *mac_addr)
233 {
234 if (key_idx < 0 || key_idx > 5)
235 return -EINVAL;
236
237 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
238 return -EINVAL;
239
240 if (pairwise && !mac_addr)
241 return -EINVAL;
242
243 switch (params->cipher) {
244 case WLAN_CIPHER_SUITE_TKIP:
245 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
246 if ((pairwise && key_idx) ||
247 params->mode != NL80211_KEY_RX_TX)
248 return -EINVAL;
249 break;
250 case WLAN_CIPHER_SUITE_CCMP:
251 case WLAN_CIPHER_SUITE_CCMP_256:
252 case WLAN_CIPHER_SUITE_GCMP:
253 case WLAN_CIPHER_SUITE_GCMP_256:
254 /* IEEE802.11-2016 allows only 0 and - when supporting
255 * Extended Key ID - 1 as index for pairwise keys.
256 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
257 * the driver supports Extended Key ID.
258 * @NL80211_KEY_SET_TX can't be set when installing and
259 * validating a key.
260 */
261 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
262 params->mode == NL80211_KEY_SET_TX)
263 return -EINVAL;
264 if (wiphy_ext_feature_isset(&rdev->wiphy,
265 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
266 if (pairwise && (key_idx < 0 || key_idx > 1))
267 return -EINVAL;
268 } else if (pairwise && key_idx) {
269 return -EINVAL;
270 }
271 break;
272 case WLAN_CIPHER_SUITE_AES_CMAC:
273 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
274 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
275 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
276 /* Disallow BIP (group-only) cipher as pairwise cipher */
277 if (pairwise)
278 return -EINVAL;
279 if (key_idx < 4)
280 return -EINVAL;
281 break;
282 case WLAN_CIPHER_SUITE_WEP40:
283 case WLAN_CIPHER_SUITE_WEP104:
284 if (key_idx > 3)
285 return -EINVAL;
286 default:
287 break;
288 }
289
290 switch (params->cipher) {
291 case WLAN_CIPHER_SUITE_WEP40:
292 if (params->key_len != WLAN_KEY_LEN_WEP40)
293 return -EINVAL;
294 break;
295 case WLAN_CIPHER_SUITE_TKIP:
296 if (params->key_len != WLAN_KEY_LEN_TKIP)
297 return -EINVAL;
298 break;
299 case WLAN_CIPHER_SUITE_CCMP:
300 if (params->key_len != WLAN_KEY_LEN_CCMP)
301 return -EINVAL;
302 break;
303 case WLAN_CIPHER_SUITE_CCMP_256:
304 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
305 return -EINVAL;
306 break;
307 case WLAN_CIPHER_SUITE_GCMP:
308 if (params->key_len != WLAN_KEY_LEN_GCMP)
309 return -EINVAL;
310 break;
311 case WLAN_CIPHER_SUITE_GCMP_256:
312 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
313 return -EINVAL;
314 break;
315 case WLAN_CIPHER_SUITE_WEP104:
316 if (params->key_len != WLAN_KEY_LEN_WEP104)
317 return -EINVAL;
318 break;
319 case WLAN_CIPHER_SUITE_AES_CMAC:
320 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
321 return -EINVAL;
322 break;
323 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
324 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
325 return -EINVAL;
326 break;
327 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
328 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
329 return -EINVAL;
330 break;
331 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
332 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
333 return -EINVAL;
334 break;
335 default:
336 /*
337 * We don't know anything about this algorithm,
338 * allow using it -- but the driver must check
339 * all parameters! We still check below whether
340 * or not the driver supports this algorithm,
341 * of course.
342 */
343 break;
344 }
345
346 if (params->seq) {
347 switch (params->cipher) {
348 case WLAN_CIPHER_SUITE_WEP40:
349 case WLAN_CIPHER_SUITE_WEP104:
350 /* These ciphers do not use key sequence */
351 return -EINVAL;
352 case WLAN_CIPHER_SUITE_TKIP:
353 case WLAN_CIPHER_SUITE_CCMP:
354 case WLAN_CIPHER_SUITE_CCMP_256:
355 case WLAN_CIPHER_SUITE_GCMP:
356 case WLAN_CIPHER_SUITE_GCMP_256:
357 case WLAN_CIPHER_SUITE_AES_CMAC:
358 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
359 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
360 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
361 if (params->seq_len != 6)
362 return -EINVAL;
363 break;
364 }
365 }
366
367 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
368 return -EINVAL;
369
370 return 0;
371 }
372
ieee80211_hdrlen(__le16 fc)373 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
374 {
375 unsigned int hdrlen = 24;
376
377 if (ieee80211_is_data(fc)) {
378 if (ieee80211_has_a4(fc))
379 hdrlen = 30;
380 if (ieee80211_is_data_qos(fc)) {
381 hdrlen += IEEE80211_QOS_CTL_LEN;
382 if (ieee80211_has_order(fc))
383 hdrlen += IEEE80211_HT_CTL_LEN;
384 }
385 goto out;
386 }
387
388 if (ieee80211_is_mgmt(fc)) {
389 if (ieee80211_has_order(fc))
390 hdrlen += IEEE80211_HT_CTL_LEN;
391 goto out;
392 }
393
394 if (ieee80211_is_ctl(fc)) {
395 /*
396 * ACK and CTS are 10 bytes, all others 16. To see how
397 * to get this condition consider
398 * subtype mask: 0b0000000011110000 (0x00F0)
399 * ACK subtype: 0b0000000011010000 (0x00D0)
400 * CTS subtype: 0b0000000011000000 (0x00C0)
401 * bits that matter: ^^^ (0x00E0)
402 * value of those: 0b0000000011000000 (0x00C0)
403 */
404 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
405 hdrlen = 10;
406 else
407 hdrlen = 16;
408 }
409 out:
410 return hdrlen;
411 }
412 EXPORT_SYMBOL(ieee80211_hdrlen);
413
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)414 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
415 {
416 const struct ieee80211_hdr *hdr =
417 (const struct ieee80211_hdr *)skb->data;
418 unsigned int hdrlen;
419
420 if (unlikely(skb->len < 10))
421 return 0;
422 hdrlen = ieee80211_hdrlen(hdr->frame_control);
423 if (unlikely(hdrlen > skb->len))
424 return 0;
425 return hdrlen;
426 }
427 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
428
__ieee80211_get_mesh_hdrlen(u8 flags)429 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
430 {
431 int ae = flags & MESH_FLAGS_AE;
432 /* 802.11-2012, 8.2.4.7.3 */
433 switch (ae) {
434 default:
435 case 0:
436 return 6;
437 case MESH_FLAGS_AE_A4:
438 return 12;
439 case MESH_FLAGS_AE_A5_A6:
440 return 18;
441 }
442 }
443
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)444 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
445 {
446 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
447 }
448 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
449
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset)450 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
451 const u8 *addr, enum nl80211_iftype iftype,
452 u8 data_offset)
453 {
454 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
455 struct {
456 u8 hdr[ETH_ALEN] __aligned(2);
457 __be16 proto;
458 } payload;
459 struct ethhdr tmp;
460 u16 hdrlen;
461 u8 mesh_flags = 0;
462
463 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
464 return -1;
465
466 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
467 if (skb->len < hdrlen + 8)
468 return -1;
469
470 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
471 * header
472 * IEEE 802.11 address fields:
473 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
474 * 0 0 DA SA BSSID n/a
475 * 0 1 DA BSSID SA n/a
476 * 1 0 BSSID SA DA n/a
477 * 1 1 RA TA DA SA
478 */
479 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
480 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
481
482 if (iftype == NL80211_IFTYPE_MESH_POINT)
483 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
484
485 mesh_flags &= MESH_FLAGS_AE;
486
487 switch (hdr->frame_control &
488 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
489 case cpu_to_le16(IEEE80211_FCTL_TODS):
490 if (unlikely(iftype != NL80211_IFTYPE_AP &&
491 iftype != NL80211_IFTYPE_AP_VLAN &&
492 iftype != NL80211_IFTYPE_P2P_GO))
493 return -1;
494 break;
495 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
496 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
497 iftype != NL80211_IFTYPE_MESH_POINT &&
498 iftype != NL80211_IFTYPE_AP_VLAN &&
499 iftype != NL80211_IFTYPE_STATION))
500 return -1;
501 if (iftype == NL80211_IFTYPE_MESH_POINT) {
502 if (mesh_flags == MESH_FLAGS_AE_A4)
503 return -1;
504 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
505 skb_copy_bits(skb, hdrlen +
506 offsetof(struct ieee80211s_hdr, eaddr1),
507 tmp.h_dest, 2 * ETH_ALEN);
508 }
509 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
510 }
511 break;
512 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
513 if ((iftype != NL80211_IFTYPE_STATION &&
514 iftype != NL80211_IFTYPE_P2P_CLIENT &&
515 iftype != NL80211_IFTYPE_MESH_POINT) ||
516 (is_multicast_ether_addr(tmp.h_dest) &&
517 ether_addr_equal(tmp.h_source, addr)))
518 return -1;
519 if (iftype == NL80211_IFTYPE_MESH_POINT) {
520 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
521 return -1;
522 if (mesh_flags == MESH_FLAGS_AE_A4)
523 skb_copy_bits(skb, hdrlen +
524 offsetof(struct ieee80211s_hdr, eaddr1),
525 tmp.h_source, ETH_ALEN);
526 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
527 }
528 break;
529 case cpu_to_le16(0):
530 if (iftype != NL80211_IFTYPE_ADHOC &&
531 iftype != NL80211_IFTYPE_STATION &&
532 iftype != NL80211_IFTYPE_OCB)
533 return -1;
534 break;
535 }
536
537 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
538 tmp.h_proto = payload.proto;
539
540 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
541 tmp.h_proto != htons(ETH_P_AARP) &&
542 tmp.h_proto != htons(ETH_P_IPX)) ||
543 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
544 /* remove RFC1042 or Bridge-Tunnel encapsulation and
545 * replace EtherType */
546 hdrlen += ETH_ALEN + 2;
547 else
548 tmp.h_proto = htons(skb->len - hdrlen);
549
550 pskb_pull(skb, hdrlen);
551
552 if (!ehdr)
553 ehdr = skb_push(skb, sizeof(struct ethhdr));
554 memcpy(ehdr, &tmp, sizeof(tmp));
555
556 return 0;
557 }
558 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
559
560 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)561 __frame_add_frag(struct sk_buff *skb, struct page *page,
562 void *ptr, int len, int size)
563 {
564 struct skb_shared_info *sh = skb_shinfo(skb);
565 int page_offset;
566
567 get_page(page);
568 page_offset = ptr - page_address(page);
569 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
570 }
571
572 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)573 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
574 int offset, int len)
575 {
576 struct skb_shared_info *sh = skb_shinfo(skb);
577 const skb_frag_t *frag = &sh->frags[0];
578 struct page *frag_page;
579 void *frag_ptr;
580 int frag_len, frag_size;
581 int head_size = skb->len - skb->data_len;
582 int cur_len;
583
584 frag_page = virt_to_head_page(skb->head);
585 frag_ptr = skb->data;
586 frag_size = head_size;
587
588 while (offset >= frag_size) {
589 offset -= frag_size;
590 frag_page = skb_frag_page(frag);
591 frag_ptr = skb_frag_address(frag);
592 frag_size = skb_frag_size(frag);
593 frag++;
594 }
595
596 frag_ptr += offset;
597 frag_len = frag_size - offset;
598
599 cur_len = min(len, frag_len);
600
601 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
602 len -= cur_len;
603
604 while (len > 0) {
605 frag_len = skb_frag_size(frag);
606 cur_len = min(len, frag_len);
607 __frame_add_frag(frame, skb_frag_page(frag),
608 skb_frag_address(frag), cur_len, frag_len);
609 len -= cur_len;
610 frag++;
611 }
612 }
613
614 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)615 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
616 int offset, int len, bool reuse_frag)
617 {
618 struct sk_buff *frame;
619 int cur_len = len;
620
621 if (skb->len - offset < len)
622 return NULL;
623
624 /*
625 * When reusing framents, copy some data to the head to simplify
626 * ethernet header handling and speed up protocol header processing
627 * in the stack later.
628 */
629 if (reuse_frag)
630 cur_len = min_t(int, len, 32);
631
632 /*
633 * Allocate and reserve two bytes more for payload
634 * alignment since sizeof(struct ethhdr) is 14.
635 */
636 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
637 if (!frame)
638 return NULL;
639
640 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
641 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
642
643 len -= cur_len;
644 if (!len)
645 return frame;
646
647 offset += cur_len;
648 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
649
650 return frame;
651 }
652
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)653 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
654 const u8 *addr, enum nl80211_iftype iftype,
655 const unsigned int extra_headroom,
656 const u8 *check_da, const u8 *check_sa)
657 {
658 unsigned int hlen = ALIGN(extra_headroom, 4);
659 struct sk_buff *frame = NULL;
660 u16 ethertype;
661 u8 *payload;
662 int offset = 0, remaining;
663 struct ethhdr eth;
664 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
665 bool reuse_skb = false;
666 bool last = false;
667
668 while (!last) {
669 unsigned int subframe_len;
670 int len;
671 u8 padding;
672
673 skb_copy_bits(skb, offset, ð, sizeof(eth));
674 len = ntohs(eth.h_proto);
675 subframe_len = sizeof(struct ethhdr) + len;
676 padding = (4 - subframe_len) & 0x3;
677
678 /* the last MSDU has no padding */
679 remaining = skb->len - offset;
680 if (subframe_len > remaining)
681 goto purge;
682
683 offset += sizeof(struct ethhdr);
684 last = remaining <= subframe_len + padding;
685
686 /* FIXME: should we really accept multicast DA? */
687 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
688 !ether_addr_equal(check_da, eth.h_dest)) ||
689 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
690 offset += len + padding;
691 continue;
692 }
693
694 /* reuse skb for the last subframe */
695 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
696 skb_pull(skb, offset);
697 frame = skb;
698 reuse_skb = true;
699 } else {
700 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
701 reuse_frag);
702 if (!frame)
703 goto purge;
704
705 offset += len + padding;
706 }
707
708 skb_reset_network_header(frame);
709 frame->dev = skb->dev;
710 frame->priority = skb->priority;
711
712 payload = frame->data;
713 ethertype = (payload[6] << 8) | payload[7];
714 if (likely((ether_addr_equal(payload, rfc1042_header) &&
715 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
716 ether_addr_equal(payload, bridge_tunnel_header))) {
717 eth.h_proto = htons(ethertype);
718 skb_pull(frame, ETH_ALEN + 2);
719 }
720
721 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
722 __skb_queue_tail(list, frame);
723 }
724
725 if (!reuse_skb)
726 dev_kfree_skb(skb);
727
728 return;
729
730 purge:
731 __skb_queue_purge(list);
732 dev_kfree_skb(skb);
733 }
734 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
735
736 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)737 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
738 struct cfg80211_qos_map *qos_map)
739 {
740 unsigned int dscp;
741 unsigned char vlan_priority;
742 unsigned int ret;
743
744 /* skb->priority values from 256->263 are magic values to
745 * directly indicate a specific 802.1d priority. This is used
746 * to allow 802.1d priority to be passed directly in from VLAN
747 * tags, etc.
748 */
749 if (skb->priority >= 256 && skb->priority <= 263) {
750 ret = skb->priority - 256;
751 goto out;
752 }
753
754 if (skb_vlan_tag_present(skb)) {
755 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
756 >> VLAN_PRIO_SHIFT;
757 if (vlan_priority > 0) {
758 ret = vlan_priority;
759 goto out;
760 }
761 }
762
763 switch (skb->protocol) {
764 case htons(ETH_P_IP):
765 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
766 break;
767 case htons(ETH_P_IPV6):
768 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
769 break;
770 case htons(ETH_P_MPLS_UC):
771 case htons(ETH_P_MPLS_MC): {
772 struct mpls_label mpls_tmp, *mpls;
773
774 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
775 sizeof(*mpls), &mpls_tmp);
776 if (!mpls)
777 return 0;
778
779 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
780 >> MPLS_LS_TC_SHIFT;
781 goto out;
782 }
783 case htons(ETH_P_80221):
784 /* 802.21 is always network control traffic */
785 return 7;
786 default:
787 return 0;
788 }
789
790 if (qos_map) {
791 unsigned int i, tmp_dscp = dscp >> 2;
792
793 for (i = 0; i < qos_map->num_des; i++) {
794 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
795 ret = qos_map->dscp_exception[i].up;
796 goto out;
797 }
798 }
799
800 for (i = 0; i < 8; i++) {
801 if (tmp_dscp >= qos_map->up[i].low &&
802 tmp_dscp <= qos_map->up[i].high) {
803 ret = i;
804 goto out;
805 }
806 }
807 }
808
809 ret = dscp >> 5;
810 out:
811 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
812 }
813 EXPORT_SYMBOL(cfg80211_classify8021d);
814
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)815 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
816 {
817 const struct cfg80211_bss_ies *ies;
818
819 ies = rcu_dereference(bss->ies);
820 if (!ies)
821 return NULL;
822
823 return cfg80211_find_elem(id, ies->data, ies->len);
824 }
825 EXPORT_SYMBOL(ieee80211_bss_get_elem);
826
cfg80211_upload_connect_keys(struct wireless_dev * wdev)827 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
828 {
829 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
830 struct net_device *dev = wdev->netdev;
831 int i;
832
833 if (!wdev->connect_keys)
834 return;
835
836 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
837 if (!wdev->connect_keys->params[i].cipher)
838 continue;
839 if (rdev_add_key(rdev, dev, i, false, NULL,
840 &wdev->connect_keys->params[i])) {
841 netdev_err(dev, "failed to set key %d\n", i);
842 continue;
843 }
844 if (wdev->connect_keys->def == i &&
845 rdev_set_default_key(rdev, dev, i, true, true)) {
846 netdev_err(dev, "failed to set defkey %d\n", i);
847 continue;
848 }
849 }
850
851 kzfree(wdev->connect_keys);
852 wdev->connect_keys = NULL;
853 }
854
cfg80211_process_wdev_events(struct wireless_dev * wdev)855 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
856 {
857 struct cfg80211_event *ev;
858 unsigned long flags;
859
860 spin_lock_irqsave(&wdev->event_lock, flags);
861 while (!list_empty(&wdev->event_list)) {
862 ev = list_first_entry(&wdev->event_list,
863 struct cfg80211_event, list);
864 list_del(&ev->list);
865 spin_unlock_irqrestore(&wdev->event_lock, flags);
866
867 wdev_lock(wdev);
868 switch (ev->type) {
869 case EVENT_CONNECT_RESULT:
870 __cfg80211_connect_result(
871 wdev->netdev,
872 &ev->cr,
873 ev->cr.status == WLAN_STATUS_SUCCESS);
874 break;
875 case EVENT_ROAMED:
876 __cfg80211_roamed(wdev, &ev->rm);
877 break;
878 case EVENT_DISCONNECTED:
879 __cfg80211_disconnected(wdev->netdev,
880 ev->dc.ie, ev->dc.ie_len,
881 ev->dc.reason,
882 !ev->dc.locally_generated);
883 break;
884 case EVENT_IBSS_JOINED:
885 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
886 ev->ij.channel);
887 break;
888 case EVENT_STOPPED:
889 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
890 break;
891 case EVENT_PORT_AUTHORIZED:
892 __cfg80211_port_authorized(wdev, ev->pa.bssid);
893 break;
894 }
895 wdev_unlock(wdev);
896
897 kfree(ev);
898
899 spin_lock_irqsave(&wdev->event_lock, flags);
900 }
901 spin_unlock_irqrestore(&wdev->event_lock, flags);
902 }
903
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)904 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
905 {
906 struct wireless_dev *wdev;
907
908 ASSERT_RTNL();
909
910 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
911 cfg80211_process_wdev_events(wdev);
912 }
913
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)914 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
915 struct net_device *dev, enum nl80211_iftype ntype,
916 struct vif_params *params)
917 {
918 int err;
919 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
920
921 ASSERT_RTNL();
922
923 /* don't support changing VLANs, you just re-create them */
924 if (otype == NL80211_IFTYPE_AP_VLAN)
925 return -EOPNOTSUPP;
926
927 /* cannot change into P2P device or NAN */
928 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
929 ntype == NL80211_IFTYPE_NAN)
930 return -EOPNOTSUPP;
931
932 if (!rdev->ops->change_virtual_intf ||
933 !(rdev->wiphy.interface_modes & (1 << ntype)))
934 return -EOPNOTSUPP;
935
936 /* if it's part of a bridge, reject changing type to station/ibss */
937 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
938 (ntype == NL80211_IFTYPE_ADHOC ||
939 ntype == NL80211_IFTYPE_STATION ||
940 ntype == NL80211_IFTYPE_P2P_CLIENT))
941 return -EBUSY;
942
943 if (ntype != otype) {
944 dev->ieee80211_ptr->use_4addr = false;
945 dev->ieee80211_ptr->mesh_id_up_len = 0;
946 wdev_lock(dev->ieee80211_ptr);
947 rdev_set_qos_map(rdev, dev, NULL);
948 wdev_unlock(dev->ieee80211_ptr);
949
950 switch (otype) {
951 case NL80211_IFTYPE_AP:
952 cfg80211_stop_ap(rdev, dev, true);
953 break;
954 case NL80211_IFTYPE_ADHOC:
955 cfg80211_leave_ibss(rdev, dev, false);
956 break;
957 case NL80211_IFTYPE_STATION:
958 case NL80211_IFTYPE_P2P_CLIENT:
959 wdev_lock(dev->ieee80211_ptr);
960 cfg80211_disconnect(rdev, dev,
961 WLAN_REASON_DEAUTH_LEAVING, true);
962 wdev_unlock(dev->ieee80211_ptr);
963 break;
964 case NL80211_IFTYPE_MESH_POINT:
965 /* mesh should be handled? */
966 break;
967 default:
968 break;
969 }
970
971 cfg80211_process_rdev_events(rdev);
972 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
973 }
974
975 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
976
977 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
978
979 if (!err && params && params->use_4addr != -1)
980 dev->ieee80211_ptr->use_4addr = params->use_4addr;
981
982 if (!err) {
983 dev->priv_flags &= ~IFF_DONT_BRIDGE;
984 switch (ntype) {
985 case NL80211_IFTYPE_STATION:
986 if (dev->ieee80211_ptr->use_4addr)
987 break;
988 /* fall through */
989 case NL80211_IFTYPE_OCB:
990 case NL80211_IFTYPE_P2P_CLIENT:
991 case NL80211_IFTYPE_ADHOC:
992 dev->priv_flags |= IFF_DONT_BRIDGE;
993 break;
994 case NL80211_IFTYPE_P2P_GO:
995 case NL80211_IFTYPE_AP:
996 case NL80211_IFTYPE_AP_VLAN:
997 case NL80211_IFTYPE_WDS:
998 case NL80211_IFTYPE_MESH_POINT:
999 /* bridging OK */
1000 break;
1001 case NL80211_IFTYPE_MONITOR:
1002 /* monitor can't bridge anyway */
1003 break;
1004 case NL80211_IFTYPE_UNSPECIFIED:
1005 case NUM_NL80211_IFTYPES:
1006 /* not happening */
1007 break;
1008 case NL80211_IFTYPE_P2P_DEVICE:
1009 case NL80211_IFTYPE_NAN:
1010 WARN_ON(1);
1011 break;
1012 }
1013 }
1014
1015 if (!err && ntype != otype && netif_running(dev)) {
1016 cfg80211_update_iface_num(rdev, ntype, 1);
1017 cfg80211_update_iface_num(rdev, otype, -1);
1018 }
1019
1020 return err;
1021 }
1022
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1023 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1024 {
1025 int modulation, streams, bitrate;
1026
1027 /* the formula below does only work for MCS values smaller than 32 */
1028 if (WARN_ON_ONCE(rate->mcs >= 32))
1029 return 0;
1030
1031 modulation = rate->mcs & 7;
1032 streams = (rate->mcs >> 3) + 1;
1033
1034 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1035
1036 if (modulation < 4)
1037 bitrate *= (modulation + 1);
1038 else if (modulation == 4)
1039 bitrate *= (modulation + 2);
1040 else
1041 bitrate *= (modulation + 3);
1042
1043 bitrate *= streams;
1044
1045 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1046 bitrate = (bitrate / 9) * 10;
1047
1048 /* do NOT round down here */
1049 return (bitrate + 50000) / 100000;
1050 }
1051
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1052 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1053 {
1054 static const u32 __mcs2bitrate[] = {
1055 /* control PHY */
1056 [0] = 275,
1057 /* SC PHY */
1058 [1] = 3850,
1059 [2] = 7700,
1060 [3] = 9625,
1061 [4] = 11550,
1062 [5] = 12512, /* 1251.25 mbps */
1063 [6] = 15400,
1064 [7] = 19250,
1065 [8] = 23100,
1066 [9] = 25025,
1067 [10] = 30800,
1068 [11] = 38500,
1069 [12] = 46200,
1070 /* OFDM PHY */
1071 [13] = 6930,
1072 [14] = 8662, /* 866.25 mbps */
1073 [15] = 13860,
1074 [16] = 17325,
1075 [17] = 20790,
1076 [18] = 27720,
1077 [19] = 34650,
1078 [20] = 41580,
1079 [21] = 45045,
1080 [22] = 51975,
1081 [23] = 62370,
1082 [24] = 67568, /* 6756.75 mbps */
1083 /* LP-SC PHY */
1084 [25] = 6260,
1085 [26] = 8340,
1086 [27] = 11120,
1087 [28] = 12510,
1088 [29] = 16680,
1089 [30] = 22240,
1090 [31] = 25030,
1091 };
1092
1093 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1094 return 0;
1095
1096 return __mcs2bitrate[rate->mcs];
1097 }
1098
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1099 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1100 {
1101 static const u32 __mcs2bitrate[] = {
1102 /* control PHY */
1103 [0] = 275,
1104 /* SC PHY */
1105 [1] = 3850,
1106 [2] = 7700,
1107 [3] = 9625,
1108 [4] = 11550,
1109 [5] = 12512, /* 1251.25 mbps */
1110 [6] = 13475,
1111 [7] = 15400,
1112 [8] = 19250,
1113 [9] = 23100,
1114 [10] = 25025,
1115 [11] = 26950,
1116 [12] = 30800,
1117 [13] = 38500,
1118 [14] = 46200,
1119 [15] = 50050,
1120 [16] = 53900,
1121 [17] = 57750,
1122 [18] = 69300,
1123 [19] = 75075,
1124 [20] = 80850,
1125 };
1126
1127 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1128 return 0;
1129
1130 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1131 }
1132
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1133 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1134 {
1135 static const u32 base[4][10] = {
1136 { 6500000,
1137 13000000,
1138 19500000,
1139 26000000,
1140 39000000,
1141 52000000,
1142 58500000,
1143 65000000,
1144 78000000,
1145 /* not in the spec, but some devices use this: */
1146 86500000,
1147 },
1148 { 13500000,
1149 27000000,
1150 40500000,
1151 54000000,
1152 81000000,
1153 108000000,
1154 121500000,
1155 135000000,
1156 162000000,
1157 180000000,
1158 },
1159 { 29300000,
1160 58500000,
1161 87800000,
1162 117000000,
1163 175500000,
1164 234000000,
1165 263300000,
1166 292500000,
1167 351000000,
1168 390000000,
1169 },
1170 { 58500000,
1171 117000000,
1172 175500000,
1173 234000000,
1174 351000000,
1175 468000000,
1176 526500000,
1177 585000000,
1178 702000000,
1179 780000000,
1180 },
1181 };
1182 u32 bitrate;
1183 int idx;
1184
1185 if (rate->mcs > 9)
1186 goto warn;
1187
1188 switch (rate->bw) {
1189 case RATE_INFO_BW_160:
1190 idx = 3;
1191 break;
1192 case RATE_INFO_BW_80:
1193 idx = 2;
1194 break;
1195 case RATE_INFO_BW_40:
1196 idx = 1;
1197 break;
1198 case RATE_INFO_BW_5:
1199 case RATE_INFO_BW_10:
1200 default:
1201 goto warn;
1202 case RATE_INFO_BW_20:
1203 idx = 0;
1204 }
1205
1206 bitrate = base[idx][rate->mcs];
1207 bitrate *= rate->nss;
1208
1209 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1210 bitrate = (bitrate / 9) * 10;
1211
1212 /* do NOT round down here */
1213 return (bitrate + 50000) / 100000;
1214 warn:
1215 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1216 rate->bw, rate->mcs, rate->nss);
1217 return 0;
1218 }
1219
cfg80211_calculate_bitrate_he(struct rate_info * rate)1220 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1221 {
1222 #define SCALE 2048
1223 u16 mcs_divisors[12] = {
1224 34133, /* 16.666666... */
1225 17067, /* 8.333333... */
1226 11378, /* 5.555555... */
1227 8533, /* 4.166666... */
1228 5689, /* 2.777777... */
1229 4267, /* 2.083333... */
1230 3923, /* 1.851851... */
1231 3413, /* 1.666666... */
1232 2844, /* 1.388888... */
1233 2560, /* 1.250000... */
1234 2276, /* 1.111111... */
1235 2048, /* 1.000000... */
1236 };
1237 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1238 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1239 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1240 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1241 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1242 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1243 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1244 u64 tmp;
1245 u32 result;
1246
1247 if (WARN_ON_ONCE(rate->mcs > 11))
1248 return 0;
1249
1250 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1251 return 0;
1252 if (WARN_ON_ONCE(rate->he_ru_alloc >
1253 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1254 return 0;
1255 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1256 return 0;
1257
1258 if (rate->bw == RATE_INFO_BW_160)
1259 result = rates_160M[rate->he_gi];
1260 else if (rate->bw == RATE_INFO_BW_80 ||
1261 (rate->bw == RATE_INFO_BW_HE_RU &&
1262 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1263 result = rates_969[rate->he_gi];
1264 else if (rate->bw == RATE_INFO_BW_40 ||
1265 (rate->bw == RATE_INFO_BW_HE_RU &&
1266 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1267 result = rates_484[rate->he_gi];
1268 else if (rate->bw == RATE_INFO_BW_20 ||
1269 (rate->bw == RATE_INFO_BW_HE_RU &&
1270 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1271 result = rates_242[rate->he_gi];
1272 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1273 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1274 result = rates_106[rate->he_gi];
1275 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1276 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1277 result = rates_52[rate->he_gi];
1278 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1279 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1280 result = rates_26[rate->he_gi];
1281 else {
1282 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1283 rate->bw, rate->he_ru_alloc);
1284 return 0;
1285 }
1286
1287 /* now scale to the appropriate MCS */
1288 tmp = result;
1289 tmp *= SCALE;
1290 do_div(tmp, mcs_divisors[rate->mcs]);
1291 result = tmp;
1292
1293 /* and take NSS, DCM into account */
1294 result = (result * rate->nss) / 8;
1295 if (rate->he_dcm)
1296 result /= 2;
1297
1298 return result / 10000;
1299 }
1300
cfg80211_calculate_bitrate(struct rate_info * rate)1301 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1302 {
1303 if (rate->flags & RATE_INFO_FLAGS_MCS)
1304 return cfg80211_calculate_bitrate_ht(rate);
1305 if (rate->flags & RATE_INFO_FLAGS_DMG)
1306 return cfg80211_calculate_bitrate_dmg(rate);
1307 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1308 return cfg80211_calculate_bitrate_edmg(rate);
1309 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1310 return cfg80211_calculate_bitrate_vht(rate);
1311 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1312 return cfg80211_calculate_bitrate_he(rate);
1313
1314 return rate->legacy;
1315 }
1316 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1317
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1318 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1319 enum ieee80211_p2p_attr_id attr,
1320 u8 *buf, unsigned int bufsize)
1321 {
1322 u8 *out = buf;
1323 u16 attr_remaining = 0;
1324 bool desired_attr = false;
1325 u16 desired_len = 0;
1326
1327 while (len > 0) {
1328 unsigned int iedatalen;
1329 unsigned int copy;
1330 const u8 *iedata;
1331
1332 if (len < 2)
1333 return -EILSEQ;
1334 iedatalen = ies[1];
1335 if (iedatalen + 2 > len)
1336 return -EILSEQ;
1337
1338 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1339 goto cont;
1340
1341 if (iedatalen < 4)
1342 goto cont;
1343
1344 iedata = ies + 2;
1345
1346 /* check WFA OUI, P2P subtype */
1347 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1348 iedata[2] != 0x9a || iedata[3] != 0x09)
1349 goto cont;
1350
1351 iedatalen -= 4;
1352 iedata += 4;
1353
1354 /* check attribute continuation into this IE */
1355 copy = min_t(unsigned int, attr_remaining, iedatalen);
1356 if (copy && desired_attr) {
1357 desired_len += copy;
1358 if (out) {
1359 memcpy(out, iedata, min(bufsize, copy));
1360 out += min(bufsize, copy);
1361 bufsize -= min(bufsize, copy);
1362 }
1363
1364
1365 if (copy == attr_remaining)
1366 return desired_len;
1367 }
1368
1369 attr_remaining -= copy;
1370 if (attr_remaining)
1371 goto cont;
1372
1373 iedatalen -= copy;
1374 iedata += copy;
1375
1376 while (iedatalen > 0) {
1377 u16 attr_len;
1378
1379 /* P2P attribute ID & size must fit */
1380 if (iedatalen < 3)
1381 return -EILSEQ;
1382 desired_attr = iedata[0] == attr;
1383 attr_len = get_unaligned_le16(iedata + 1);
1384 iedatalen -= 3;
1385 iedata += 3;
1386
1387 copy = min_t(unsigned int, attr_len, iedatalen);
1388
1389 if (desired_attr) {
1390 desired_len += copy;
1391 if (out) {
1392 memcpy(out, iedata, min(bufsize, copy));
1393 out += min(bufsize, copy);
1394 bufsize -= min(bufsize, copy);
1395 }
1396
1397 if (copy == attr_len)
1398 return desired_len;
1399 }
1400
1401 iedata += copy;
1402 iedatalen -= copy;
1403 attr_remaining = attr_len - copy;
1404 }
1405
1406 cont:
1407 len -= ies[1] + 2;
1408 ies += ies[1] + 2;
1409 }
1410
1411 if (attr_remaining && desired_attr)
1412 return -EILSEQ;
1413
1414 return -ENOENT;
1415 }
1416 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1417
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1418 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1419 {
1420 int i;
1421
1422 /* Make sure array values are legal */
1423 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1424 return false;
1425
1426 i = 0;
1427 while (i < n_ids) {
1428 if (ids[i] == WLAN_EID_EXTENSION) {
1429 if (id_ext && (ids[i + 1] == id))
1430 return true;
1431
1432 i += 2;
1433 continue;
1434 }
1435
1436 if (ids[i] == id && !id_ext)
1437 return true;
1438
1439 i++;
1440 }
1441 return false;
1442 }
1443
skip_ie(const u8 * ies,size_t ielen,size_t pos)1444 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1445 {
1446 /* we assume a validly formed IEs buffer */
1447 u8 len = ies[pos + 1];
1448
1449 pos += 2 + len;
1450
1451 /* the IE itself must have 255 bytes for fragments to follow */
1452 if (len < 255)
1453 return pos;
1454
1455 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1456 len = ies[pos + 1];
1457 pos += 2 + len;
1458 }
1459
1460 return pos;
1461 }
1462
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1463 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1464 const u8 *ids, int n_ids,
1465 const u8 *after_ric, int n_after_ric,
1466 size_t offset)
1467 {
1468 size_t pos = offset;
1469
1470 while (pos < ielen) {
1471 u8 ext = 0;
1472
1473 if (ies[pos] == WLAN_EID_EXTENSION)
1474 ext = 2;
1475 if ((pos + ext) >= ielen)
1476 break;
1477
1478 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1479 ies[pos] == WLAN_EID_EXTENSION))
1480 break;
1481
1482 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1483 pos = skip_ie(ies, ielen, pos);
1484
1485 while (pos < ielen) {
1486 if (ies[pos] == WLAN_EID_EXTENSION)
1487 ext = 2;
1488 else
1489 ext = 0;
1490
1491 if ((pos + ext) >= ielen)
1492 break;
1493
1494 if (!ieee80211_id_in_list(after_ric,
1495 n_after_ric,
1496 ies[pos + ext],
1497 ext == 2))
1498 pos = skip_ie(ies, ielen, pos);
1499 else
1500 break;
1501 }
1502 } else {
1503 pos = skip_ie(ies, ielen, pos);
1504 }
1505 }
1506
1507 return pos;
1508 }
1509 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1510
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1511 bool ieee80211_operating_class_to_band(u8 operating_class,
1512 enum nl80211_band *band)
1513 {
1514 switch (operating_class) {
1515 case 112:
1516 case 115 ... 127:
1517 case 128 ... 130:
1518 *band = NL80211_BAND_5GHZ;
1519 return true;
1520 case 131 ... 135:
1521 *band = NL80211_BAND_6GHZ;
1522 return true;
1523 case 81:
1524 case 82:
1525 case 83:
1526 case 84:
1527 *band = NL80211_BAND_2GHZ;
1528 return true;
1529 case 180:
1530 *band = NL80211_BAND_60GHZ;
1531 return true;
1532 }
1533
1534 return false;
1535 }
1536 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1537
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1538 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1539 u8 *op_class)
1540 {
1541 u8 vht_opclass;
1542 u32 freq = chandef->center_freq1;
1543
1544 if (freq >= 2412 && freq <= 2472) {
1545 if (chandef->width > NL80211_CHAN_WIDTH_40)
1546 return false;
1547
1548 /* 2.407 GHz, channels 1..13 */
1549 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1550 if (freq > chandef->chan->center_freq)
1551 *op_class = 83; /* HT40+ */
1552 else
1553 *op_class = 84; /* HT40- */
1554 } else {
1555 *op_class = 81;
1556 }
1557
1558 return true;
1559 }
1560
1561 if (freq == 2484) {
1562 /* channel 14 is only for IEEE 802.11b */
1563 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1564 return false;
1565
1566 *op_class = 82; /* channel 14 */
1567 return true;
1568 }
1569
1570 switch (chandef->width) {
1571 case NL80211_CHAN_WIDTH_80:
1572 vht_opclass = 128;
1573 break;
1574 case NL80211_CHAN_WIDTH_160:
1575 vht_opclass = 129;
1576 break;
1577 case NL80211_CHAN_WIDTH_80P80:
1578 vht_opclass = 130;
1579 break;
1580 case NL80211_CHAN_WIDTH_10:
1581 case NL80211_CHAN_WIDTH_5:
1582 return false; /* unsupported for now */
1583 default:
1584 vht_opclass = 0;
1585 break;
1586 }
1587
1588 /* 5 GHz, channels 36..48 */
1589 if (freq >= 5180 && freq <= 5240) {
1590 if (vht_opclass) {
1591 *op_class = vht_opclass;
1592 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1593 if (freq > chandef->chan->center_freq)
1594 *op_class = 116;
1595 else
1596 *op_class = 117;
1597 } else {
1598 *op_class = 115;
1599 }
1600
1601 return true;
1602 }
1603
1604 /* 5 GHz, channels 52..64 */
1605 if (freq >= 5260 && freq <= 5320) {
1606 if (vht_opclass) {
1607 *op_class = vht_opclass;
1608 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1609 if (freq > chandef->chan->center_freq)
1610 *op_class = 119;
1611 else
1612 *op_class = 120;
1613 } else {
1614 *op_class = 118;
1615 }
1616
1617 return true;
1618 }
1619
1620 /* 5 GHz, channels 100..144 */
1621 if (freq >= 5500 && freq <= 5720) {
1622 if (vht_opclass) {
1623 *op_class = vht_opclass;
1624 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1625 if (freq > chandef->chan->center_freq)
1626 *op_class = 122;
1627 else
1628 *op_class = 123;
1629 } else {
1630 *op_class = 121;
1631 }
1632
1633 return true;
1634 }
1635
1636 /* 5 GHz, channels 149..169 */
1637 if (freq >= 5745 && freq <= 5845) {
1638 if (vht_opclass) {
1639 *op_class = vht_opclass;
1640 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1641 if (freq > chandef->chan->center_freq)
1642 *op_class = 126;
1643 else
1644 *op_class = 127;
1645 } else if (freq <= 5805) {
1646 *op_class = 124;
1647 } else {
1648 *op_class = 125;
1649 }
1650
1651 return true;
1652 }
1653
1654 /* 56.16 GHz, channel 1..4 */
1655 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1656 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1657 return false;
1658
1659 *op_class = 180;
1660 return true;
1661 }
1662
1663 /* not supported yet */
1664 return false;
1665 }
1666 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1667
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1668 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1669 u32 *beacon_int_gcd,
1670 bool *beacon_int_different)
1671 {
1672 struct wireless_dev *wdev;
1673
1674 *beacon_int_gcd = 0;
1675 *beacon_int_different = false;
1676
1677 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1678 if (!wdev->beacon_interval)
1679 continue;
1680
1681 if (!*beacon_int_gcd) {
1682 *beacon_int_gcd = wdev->beacon_interval;
1683 continue;
1684 }
1685
1686 if (wdev->beacon_interval == *beacon_int_gcd)
1687 continue;
1688
1689 *beacon_int_different = true;
1690 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1691 }
1692
1693 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1694 if (*beacon_int_gcd)
1695 *beacon_int_different = true;
1696 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1697 }
1698 }
1699
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1700 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1701 enum nl80211_iftype iftype, u32 beacon_int)
1702 {
1703 /*
1704 * This is just a basic pre-condition check; if interface combinations
1705 * are possible the driver must already be checking those with a call
1706 * to cfg80211_check_combinations(), in which case we'll validate more
1707 * through the cfg80211_calculate_bi_data() call and code in
1708 * cfg80211_iter_combinations().
1709 */
1710
1711 if (beacon_int < 10 || beacon_int > 10000)
1712 return -EINVAL;
1713
1714 return 0;
1715 }
1716
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1717 int cfg80211_iter_combinations(struct wiphy *wiphy,
1718 struct iface_combination_params *params,
1719 void (*iter)(const struct ieee80211_iface_combination *c,
1720 void *data),
1721 void *data)
1722 {
1723 const struct ieee80211_regdomain *regdom;
1724 enum nl80211_dfs_regions region = 0;
1725 int i, j, iftype;
1726 int num_interfaces = 0;
1727 u32 used_iftypes = 0;
1728 u32 beacon_int_gcd;
1729 bool beacon_int_different;
1730
1731 /*
1732 * This is a bit strange, since the iteration used to rely only on
1733 * the data given by the driver, but here it now relies on context,
1734 * in form of the currently operating interfaces.
1735 * This is OK for all current users, and saves us from having to
1736 * push the GCD calculations into all the drivers.
1737 * In the future, this should probably rely more on data that's in
1738 * cfg80211 already - the only thing not would appear to be any new
1739 * interfaces (while being brought up) and channel/radar data.
1740 */
1741 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1742 &beacon_int_gcd, &beacon_int_different);
1743
1744 if (params->radar_detect) {
1745 rcu_read_lock();
1746 regdom = rcu_dereference(cfg80211_regdomain);
1747 if (regdom)
1748 region = regdom->dfs_region;
1749 rcu_read_unlock();
1750 }
1751
1752 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1753 num_interfaces += params->iftype_num[iftype];
1754 if (params->iftype_num[iftype] > 0 &&
1755 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1756 used_iftypes |= BIT(iftype);
1757 }
1758
1759 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1760 const struct ieee80211_iface_combination *c;
1761 struct ieee80211_iface_limit *limits;
1762 u32 all_iftypes = 0;
1763
1764 c = &wiphy->iface_combinations[i];
1765
1766 if (num_interfaces > c->max_interfaces)
1767 continue;
1768 if (params->num_different_channels > c->num_different_channels)
1769 continue;
1770
1771 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1772 GFP_KERNEL);
1773 if (!limits)
1774 return -ENOMEM;
1775
1776 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1777 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1778 continue;
1779 for (j = 0; j < c->n_limits; j++) {
1780 all_iftypes |= limits[j].types;
1781 if (!(limits[j].types & BIT(iftype)))
1782 continue;
1783 if (limits[j].max < params->iftype_num[iftype])
1784 goto cont;
1785 limits[j].max -= params->iftype_num[iftype];
1786 }
1787 }
1788
1789 if (params->radar_detect !=
1790 (c->radar_detect_widths & params->radar_detect))
1791 goto cont;
1792
1793 if (params->radar_detect && c->radar_detect_regions &&
1794 !(c->radar_detect_regions & BIT(region)))
1795 goto cont;
1796
1797 /* Finally check that all iftypes that we're currently
1798 * using are actually part of this combination. If they
1799 * aren't then we can't use this combination and have
1800 * to continue to the next.
1801 */
1802 if ((all_iftypes & used_iftypes) != used_iftypes)
1803 goto cont;
1804
1805 if (beacon_int_gcd) {
1806 if (c->beacon_int_min_gcd &&
1807 beacon_int_gcd < c->beacon_int_min_gcd)
1808 goto cont;
1809 if (!c->beacon_int_min_gcd && beacon_int_different)
1810 goto cont;
1811 }
1812
1813 /* This combination covered all interface types and
1814 * supported the requested numbers, so we're good.
1815 */
1816
1817 (*iter)(c, data);
1818 cont:
1819 kfree(limits);
1820 }
1821
1822 return 0;
1823 }
1824 EXPORT_SYMBOL(cfg80211_iter_combinations);
1825
1826 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1827 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1828 void *data)
1829 {
1830 int *num = data;
1831 (*num)++;
1832 }
1833
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1834 int cfg80211_check_combinations(struct wiphy *wiphy,
1835 struct iface_combination_params *params)
1836 {
1837 int err, num = 0;
1838
1839 err = cfg80211_iter_combinations(wiphy, params,
1840 cfg80211_iter_sum_ifcombs, &num);
1841 if (err)
1842 return err;
1843 if (num == 0)
1844 return -EBUSY;
1845
1846 return 0;
1847 }
1848 EXPORT_SYMBOL(cfg80211_check_combinations);
1849
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1850 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1851 const u8 *rates, unsigned int n_rates,
1852 u32 *mask)
1853 {
1854 int i, j;
1855
1856 if (!sband)
1857 return -EINVAL;
1858
1859 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1860 return -EINVAL;
1861
1862 *mask = 0;
1863
1864 for (i = 0; i < n_rates; i++) {
1865 int rate = (rates[i] & 0x7f) * 5;
1866 bool found = false;
1867
1868 for (j = 0; j < sband->n_bitrates; j++) {
1869 if (sband->bitrates[j].bitrate == rate) {
1870 found = true;
1871 *mask |= BIT(j);
1872 break;
1873 }
1874 }
1875 if (!found)
1876 return -EINVAL;
1877 }
1878
1879 /*
1880 * mask must have at least one bit set here since we
1881 * didn't accept a 0-length rates array nor allowed
1882 * entries in the array that didn't exist
1883 */
1884
1885 return 0;
1886 }
1887
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1888 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1889 {
1890 enum nl80211_band band;
1891 unsigned int n_channels = 0;
1892
1893 for (band = 0; band < NUM_NL80211_BANDS; band++)
1894 if (wiphy->bands[band])
1895 n_channels += wiphy->bands[band]->n_channels;
1896
1897 return n_channels;
1898 }
1899 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1900
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)1901 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1902 struct station_info *sinfo)
1903 {
1904 struct cfg80211_registered_device *rdev;
1905 struct wireless_dev *wdev;
1906
1907 wdev = dev->ieee80211_ptr;
1908 if (!wdev)
1909 return -EOPNOTSUPP;
1910
1911 rdev = wiphy_to_rdev(wdev->wiphy);
1912 if (!rdev->ops->get_station)
1913 return -EOPNOTSUPP;
1914
1915 memset(sinfo, 0, sizeof(*sinfo));
1916
1917 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1918 }
1919 EXPORT_SYMBOL(cfg80211_get_station);
1920
cfg80211_free_nan_func(struct cfg80211_nan_func * f)1921 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1922 {
1923 int i;
1924
1925 if (!f)
1926 return;
1927
1928 kfree(f->serv_spec_info);
1929 kfree(f->srf_bf);
1930 kfree(f->srf_macs);
1931 for (i = 0; i < f->num_rx_filters; i++)
1932 kfree(f->rx_filters[i].filter);
1933
1934 for (i = 0; i < f->num_tx_filters; i++)
1935 kfree(f->tx_filters[i].filter);
1936
1937 kfree(f->rx_filters);
1938 kfree(f->tx_filters);
1939 kfree(f);
1940 }
1941 EXPORT_SYMBOL(cfg80211_free_nan_func);
1942
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)1943 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1944 u32 center_freq_khz, u32 bw_khz)
1945 {
1946 u32 start_freq_khz, end_freq_khz;
1947
1948 start_freq_khz = center_freq_khz - (bw_khz / 2);
1949 end_freq_khz = center_freq_khz + (bw_khz / 2);
1950
1951 if (start_freq_khz >= freq_range->start_freq_khz &&
1952 end_freq_khz <= freq_range->end_freq_khz)
1953 return true;
1954
1955 return false;
1956 }
1957
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)1958 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1959 {
1960 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1961 sizeof(*(sinfo->pertid)),
1962 gfp);
1963 if (!sinfo->pertid)
1964 return -ENOMEM;
1965
1966 return 0;
1967 }
1968 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1969
1970 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1971 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1972 const unsigned char rfc1042_header[] __aligned(2) =
1973 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1974 EXPORT_SYMBOL(rfc1042_header);
1975
1976 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1977 const unsigned char bridge_tunnel_header[] __aligned(2) =
1978 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1979 EXPORT_SYMBOL(bridge_tunnel_header);
1980
1981 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1982 struct iapp_layer2_update {
1983 u8 da[ETH_ALEN]; /* broadcast */
1984 u8 sa[ETH_ALEN]; /* STA addr */
1985 __be16 len; /* 6 */
1986 u8 dsap; /* 0 */
1987 u8 ssap; /* 0 */
1988 u8 control;
1989 u8 xid_info[3];
1990 } __packed;
1991
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)1992 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1993 {
1994 struct iapp_layer2_update *msg;
1995 struct sk_buff *skb;
1996
1997 /* Send Level 2 Update Frame to update forwarding tables in layer 2
1998 * bridge devices */
1999
2000 skb = dev_alloc_skb(sizeof(*msg));
2001 if (!skb)
2002 return;
2003 msg = skb_put(skb, sizeof(*msg));
2004
2005 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2006 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2007
2008 eth_broadcast_addr(msg->da);
2009 ether_addr_copy(msg->sa, addr);
2010 msg->len = htons(6);
2011 msg->dsap = 0;
2012 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2013 msg->control = 0xaf; /* XID response lsb.1111F101.
2014 * F=0 (no poll command; unsolicited frame) */
2015 msg->xid_info[0] = 0x81; /* XID format identifier */
2016 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2017 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2018
2019 skb->dev = dev;
2020 skb->protocol = eth_type_trans(skb, dev);
2021 memset(skb->cb, 0, sizeof(skb->cb));
2022 netif_rx_ni(skb);
2023 }
2024 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2025
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable)2026 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2027 enum ieee80211_vht_chanwidth bw,
2028 int mcs, bool ext_nss_bw_capable)
2029 {
2030 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2031 int max_vht_nss = 0;
2032 int ext_nss_bw;
2033 int supp_width;
2034 int i, mcs_encoding;
2035
2036 if (map == 0xffff)
2037 return 0;
2038
2039 if (WARN_ON(mcs > 9))
2040 return 0;
2041 if (mcs <= 7)
2042 mcs_encoding = 0;
2043 else if (mcs == 8)
2044 mcs_encoding = 1;
2045 else
2046 mcs_encoding = 2;
2047
2048 /* find max_vht_nss for the given MCS */
2049 for (i = 7; i >= 0; i--) {
2050 int supp = (map >> (2 * i)) & 3;
2051
2052 if (supp == 3)
2053 continue;
2054
2055 if (supp >= mcs_encoding) {
2056 max_vht_nss = i + 1;
2057 break;
2058 }
2059 }
2060
2061 if (!(cap->supp_mcs.tx_mcs_map &
2062 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2063 return max_vht_nss;
2064
2065 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2066 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2067 supp_width = le32_get_bits(cap->vht_cap_info,
2068 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2069
2070 /* if not capable, treat ext_nss_bw as 0 */
2071 if (!ext_nss_bw_capable)
2072 ext_nss_bw = 0;
2073
2074 /* This is invalid */
2075 if (supp_width == 3)
2076 return 0;
2077
2078 /* This is an invalid combination so pretend nothing is supported */
2079 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2080 return 0;
2081
2082 /*
2083 * Cover all the special cases according to IEEE 802.11-2016
2084 * Table 9-250. All other cases are either factor of 1 or not
2085 * valid/supported.
2086 */
2087 switch (bw) {
2088 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2089 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2090 if ((supp_width == 1 || supp_width == 2) &&
2091 ext_nss_bw == 3)
2092 return 2 * max_vht_nss;
2093 break;
2094 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2095 if (supp_width == 0 &&
2096 (ext_nss_bw == 1 || ext_nss_bw == 2))
2097 return max_vht_nss / 2;
2098 if (supp_width == 0 &&
2099 ext_nss_bw == 3)
2100 return (3 * max_vht_nss) / 4;
2101 if (supp_width == 1 &&
2102 ext_nss_bw == 3)
2103 return 2 * max_vht_nss;
2104 break;
2105 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2106 if (supp_width == 0 && ext_nss_bw == 1)
2107 return 0; /* not possible */
2108 if (supp_width == 0 &&
2109 ext_nss_bw == 2)
2110 return max_vht_nss / 2;
2111 if (supp_width == 0 &&
2112 ext_nss_bw == 3)
2113 return (3 * max_vht_nss) / 4;
2114 if (supp_width == 1 &&
2115 ext_nss_bw == 0)
2116 return 0; /* not possible */
2117 if (supp_width == 1 &&
2118 ext_nss_bw == 1)
2119 return max_vht_nss / 2;
2120 if (supp_width == 1 &&
2121 ext_nss_bw == 2)
2122 return (3 * max_vht_nss) / 4;
2123 break;
2124 }
2125
2126 /* not covered or invalid combination received */
2127 return max_vht_nss;
2128 }
2129 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2130
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2131 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2132 bool is_4addr, u8 check_swif)
2133
2134 {
2135 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2136
2137 switch (check_swif) {
2138 case 0:
2139 if (is_vlan && is_4addr)
2140 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2141 return wiphy->interface_modes & BIT(iftype);
2142 case 1:
2143 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2144 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2145 return wiphy->software_iftypes & BIT(iftype);
2146 default:
2147 break;
2148 }
2149
2150 return false;
2151 }
2152 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2153