1 /*
2 * Copyright © 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drm_dp_helper.h>
29 #include <drm/i915_drm.h>
30
31 #include "display/intel_display.h"
32 #include "display/intel_gmbus.h"
33
34 #include "i915_drv.h"
35
36 #define _INTEL_BIOS_PRIVATE
37 #include "intel_vbt_defs.h"
38
39 /**
40 * DOC: Video BIOS Table (VBT)
41 *
42 * The Video BIOS Table, or VBT, provides platform and board specific
43 * configuration information to the driver that is not discoverable or available
44 * through other means. The configuration is mostly related to display
45 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
46 * the PCI ROM.
47 *
48 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
49 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
50 * contain the actual configuration information. The VBT Header, and thus the
51 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
52 * BDB Header. The data blocks are concatenated after the BDB Header. The data
53 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
54 * data. (Block 53, the MIPI Sequence Block is an exception.)
55 *
56 * The driver parses the VBT during load. The relevant information is stored in
57 * driver private data for ease of use, and the actual VBT is not read after
58 * that.
59 */
60
61 #define SLAVE_ADDR1 0x70
62 #define SLAVE_ADDR2 0x72
63
64 /* Get BDB block size given a pointer to Block ID. */
_get_blocksize(const u8 * block_base)65 static u32 _get_blocksize(const u8 *block_base)
66 {
67 /* The MIPI Sequence Block v3+ has a separate size field. */
68 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
69 return *((const u32 *)(block_base + 4));
70 else
71 return *((const u16 *)(block_base + 1));
72 }
73
74 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
get_blocksize(const void * block_data)75 static u32 get_blocksize(const void *block_data)
76 {
77 return _get_blocksize(block_data - 3);
78 }
79
80 static const void *
find_section(const void * _bdb,enum bdb_block_id section_id)81 find_section(const void *_bdb, enum bdb_block_id section_id)
82 {
83 const struct bdb_header *bdb = _bdb;
84 const u8 *base = _bdb;
85 int index = 0;
86 u32 total, current_size;
87 enum bdb_block_id current_id;
88
89 /* skip to first section */
90 index += bdb->header_size;
91 total = bdb->bdb_size;
92
93 /* walk the sections looking for section_id */
94 while (index + 3 < total) {
95 current_id = *(base + index);
96 current_size = _get_blocksize(base + index);
97 index += 3;
98
99 if (index + current_size > total)
100 return NULL;
101
102 if (current_id == section_id)
103 return base + index;
104
105 index += current_size;
106 }
107
108 return NULL;
109 }
110
111 static void
fill_detail_timing_data(struct drm_display_mode * panel_fixed_mode,const struct lvds_dvo_timing * dvo_timing)112 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
113 const struct lvds_dvo_timing *dvo_timing)
114 {
115 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
116 dvo_timing->hactive_lo;
117 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
118 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
119 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
120 ((dvo_timing->hsync_pulse_width_hi << 8) |
121 dvo_timing->hsync_pulse_width_lo);
122 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
123 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
124
125 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
126 dvo_timing->vactive_lo;
127 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
128 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
129 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
130 ((dvo_timing->vsync_pulse_width_hi << 4) |
131 dvo_timing->vsync_pulse_width_lo);
132 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
133 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
134 panel_fixed_mode->clock = dvo_timing->clock * 10;
135 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
136
137 if (dvo_timing->hsync_positive)
138 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
139 else
140 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
141
142 if (dvo_timing->vsync_positive)
143 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
144 else
145 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
146
147 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
148 dvo_timing->himage_lo;
149 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
150 dvo_timing->vimage_lo;
151
152 /* Some VBTs have bogus h/vtotal values */
153 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
154 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
155 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
156 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
157
158 drm_mode_set_name(panel_fixed_mode);
159 }
160
161 static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data * lvds_lfp_data,const struct bdb_lvds_lfp_data_ptrs * lvds_lfp_data_ptrs,int index)162 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
163 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
164 int index)
165 {
166 /*
167 * the size of fp_timing varies on the different platform.
168 * So calculate the DVO timing relative offset in LVDS data
169 * entry to get the DVO timing entry
170 */
171
172 int lfp_data_size =
173 lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
174 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
175 int dvo_timing_offset =
176 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
177 lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
178 char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
179
180 return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
181 }
182
183 /* get lvds_fp_timing entry
184 * this function may return NULL if the corresponding entry is invalid
185 */
186 static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_header * bdb,const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs,int index)187 get_lvds_fp_timing(const struct bdb_header *bdb,
188 const struct bdb_lvds_lfp_data *data,
189 const struct bdb_lvds_lfp_data_ptrs *ptrs,
190 int index)
191 {
192 size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
193 u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
194 size_t ofs;
195
196 if (index >= ARRAY_SIZE(ptrs->ptr))
197 return NULL;
198 ofs = ptrs->ptr[index].fp_timing_offset;
199 if (ofs < data_ofs ||
200 ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
201 return NULL;
202 return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
203 }
204
205 /* Try to find integrated panel data */
206 static void
parse_lfp_panel_data(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)207 parse_lfp_panel_data(struct drm_i915_private *dev_priv,
208 const struct bdb_header *bdb)
209 {
210 const struct bdb_lvds_options *lvds_options;
211 const struct bdb_lvds_lfp_data *lvds_lfp_data;
212 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
213 const struct lvds_dvo_timing *panel_dvo_timing;
214 const struct lvds_fp_timing *fp_timing;
215 struct drm_display_mode *panel_fixed_mode;
216 int panel_type;
217 int drrs_mode;
218 int ret;
219
220 lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
221 if (!lvds_options)
222 return;
223
224 dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
225
226 ret = intel_opregion_get_panel_type(dev_priv);
227 if (ret >= 0) {
228 WARN_ON(ret > 0xf);
229 panel_type = ret;
230 DRM_DEBUG_KMS("Panel type: %d (OpRegion)\n", panel_type);
231 } else {
232 if (lvds_options->panel_type > 0xf) {
233 DRM_DEBUG_KMS("Invalid VBT panel type 0x%x\n",
234 lvds_options->panel_type);
235 return;
236 }
237 panel_type = lvds_options->panel_type;
238 DRM_DEBUG_KMS("Panel type: %d (VBT)\n", panel_type);
239 }
240
241 dev_priv->vbt.panel_type = panel_type;
242
243 drrs_mode = (lvds_options->dps_panel_type_bits
244 >> (panel_type * 2)) & MODE_MASK;
245 /*
246 * VBT has static DRRS = 0 and seamless DRRS = 2.
247 * The below piece of code is required to adjust vbt.drrs_type
248 * to match the enum drrs_support_type.
249 */
250 switch (drrs_mode) {
251 case 0:
252 dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
253 DRM_DEBUG_KMS("DRRS supported mode is static\n");
254 break;
255 case 2:
256 dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
257 DRM_DEBUG_KMS("DRRS supported mode is seamless\n");
258 break;
259 default:
260 dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
261 DRM_DEBUG_KMS("DRRS not supported (VBT input)\n");
262 break;
263 }
264
265 lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
266 if (!lvds_lfp_data)
267 return;
268
269 lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
270 if (!lvds_lfp_data_ptrs)
271 return;
272
273 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
274 lvds_lfp_data_ptrs,
275 panel_type);
276
277 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
278 if (!panel_fixed_mode)
279 return;
280
281 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
282
283 dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
284
285 DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
286 drm_mode_debug_printmodeline(panel_fixed_mode);
287
288 fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
289 lvds_lfp_data_ptrs,
290 panel_type);
291 if (fp_timing) {
292 /* check the resolution, just to be sure */
293 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
294 fp_timing->y_res == panel_fixed_mode->vdisplay) {
295 dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
296 DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
297 dev_priv->vbt.bios_lvds_val);
298 }
299 }
300 }
301
302 static void
parse_lfp_backlight(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)303 parse_lfp_backlight(struct drm_i915_private *dev_priv,
304 const struct bdb_header *bdb)
305 {
306 const struct bdb_lfp_backlight_data *backlight_data;
307 const struct lfp_backlight_data_entry *entry;
308 int panel_type = dev_priv->vbt.panel_type;
309
310 backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
311 if (!backlight_data)
312 return;
313
314 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
315 DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n",
316 backlight_data->entry_size);
317 return;
318 }
319
320 entry = &backlight_data->data[panel_type];
321
322 dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
323 if (!dev_priv->vbt.backlight.present) {
324 DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n",
325 entry->type);
326 return;
327 }
328
329 dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
330 if (bdb->version >= 191 &&
331 get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
332 const struct lfp_backlight_control_method *method;
333
334 method = &backlight_data->backlight_control[panel_type];
335 dev_priv->vbt.backlight.type = method->type;
336 dev_priv->vbt.backlight.controller = method->controller;
337 }
338
339 dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
340 dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
341 dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
342 DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, "
343 "active %s, min brightness %u, level %u, controller %u\n",
344 dev_priv->vbt.backlight.pwm_freq_hz,
345 dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
346 dev_priv->vbt.backlight.min_brightness,
347 backlight_data->level[panel_type],
348 dev_priv->vbt.backlight.controller);
349 }
350
351 /* Try to find sdvo panel data */
352 static void
parse_sdvo_panel_data(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)353 parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
354 const struct bdb_header *bdb)
355 {
356 const struct bdb_sdvo_panel_dtds *dtds;
357 struct drm_display_mode *panel_fixed_mode;
358 int index;
359
360 index = i915_modparams.vbt_sdvo_panel_type;
361 if (index == -2) {
362 DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
363 return;
364 }
365
366 if (index == -1) {
367 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
368
369 sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
370 if (!sdvo_lvds_options)
371 return;
372
373 index = sdvo_lvds_options->panel_type;
374 }
375
376 dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
377 if (!dtds)
378 return;
379
380 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
381 if (!panel_fixed_mode)
382 return;
383
384 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
385
386 dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
387
388 DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
389 drm_mode_debug_printmodeline(panel_fixed_mode);
390 }
391
intel_bios_ssc_frequency(struct drm_i915_private * dev_priv,bool alternate)392 static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
393 bool alternate)
394 {
395 switch (INTEL_GEN(dev_priv)) {
396 case 2:
397 return alternate ? 66667 : 48000;
398 case 3:
399 case 4:
400 return alternate ? 100000 : 96000;
401 default:
402 return alternate ? 100000 : 120000;
403 }
404 }
405
406 static void
parse_general_features(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)407 parse_general_features(struct drm_i915_private *dev_priv,
408 const struct bdb_header *bdb)
409 {
410 const struct bdb_general_features *general;
411
412 general = find_section(bdb, BDB_GENERAL_FEATURES);
413 if (!general)
414 return;
415
416 dev_priv->vbt.int_tv_support = general->int_tv_support;
417 /* int_crt_support can't be trusted on earlier platforms */
418 if (bdb->version >= 155 &&
419 (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
420 dev_priv->vbt.int_crt_support = general->int_crt_support;
421 dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
422 dev_priv->vbt.lvds_ssc_freq =
423 intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
424 dev_priv->vbt.display_clock_mode = general->display_clock_mode;
425 dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
426 if (bdb->version >= 181) {
427 dev_priv->vbt.orientation = general->rotate_180 ?
428 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
429 DRM_MODE_PANEL_ORIENTATION_NORMAL;
430 } else {
431 dev_priv->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
432 }
433 DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
434 dev_priv->vbt.int_tv_support,
435 dev_priv->vbt.int_crt_support,
436 dev_priv->vbt.lvds_use_ssc,
437 dev_priv->vbt.lvds_ssc_freq,
438 dev_priv->vbt.display_clock_mode,
439 dev_priv->vbt.fdi_rx_polarity_inverted);
440 }
441
442 static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions * defs,int i)443 child_device_ptr(const struct bdb_general_definitions *defs, int i)
444 {
445 return (const void *) &defs->devices[i * defs->child_dev_size];
446 }
447
448 static void
parse_sdvo_device_mapping(struct drm_i915_private * dev_priv,u8 bdb_version)449 parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, u8 bdb_version)
450 {
451 struct sdvo_device_mapping *mapping;
452 const struct child_device_config *child;
453 int i, count = 0;
454
455 /*
456 * Only parse SDVO mappings on gens that could have SDVO. This isn't
457 * accurate and doesn't have to be, as long as it's not too strict.
458 */
459 if (!IS_GEN_RANGE(dev_priv, 3, 7)) {
460 DRM_DEBUG_KMS("Skipping SDVO device mapping\n");
461 return;
462 }
463
464 for (i = 0, count = 0; i < dev_priv->vbt.child_dev_num; i++) {
465 child = dev_priv->vbt.child_dev + i;
466
467 if (child->slave_addr != SLAVE_ADDR1 &&
468 child->slave_addr != SLAVE_ADDR2) {
469 /*
470 * If the slave address is neither 0x70 nor 0x72,
471 * it is not a SDVO device. Skip it.
472 */
473 continue;
474 }
475 if (child->dvo_port != DEVICE_PORT_DVOB &&
476 child->dvo_port != DEVICE_PORT_DVOC) {
477 /* skip the incorrect SDVO port */
478 DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
479 continue;
480 }
481 DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
482 " %s port\n",
483 child->slave_addr,
484 (child->dvo_port == DEVICE_PORT_DVOB) ?
485 "SDVOB" : "SDVOC");
486 mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
487 if (!mapping->initialized) {
488 mapping->dvo_port = child->dvo_port;
489 mapping->slave_addr = child->slave_addr;
490 mapping->dvo_wiring = child->dvo_wiring;
491 mapping->ddc_pin = child->ddc_pin;
492 mapping->i2c_pin = child->i2c_pin;
493 mapping->initialized = 1;
494 DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
495 mapping->dvo_port,
496 mapping->slave_addr,
497 mapping->dvo_wiring,
498 mapping->ddc_pin,
499 mapping->i2c_pin);
500 } else {
501 DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
502 "two SDVO device.\n");
503 }
504 if (child->slave2_addr) {
505 /* Maybe this is a SDVO device with multiple inputs */
506 /* And the mapping info is not added */
507 DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
508 " is a SDVO device with multiple inputs.\n");
509 }
510 count++;
511 }
512
513 if (!count) {
514 /* No SDVO device info is found */
515 DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
516 }
517 }
518
519 static void
parse_driver_features(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)520 parse_driver_features(struct drm_i915_private *dev_priv,
521 const struct bdb_header *bdb)
522 {
523 const struct bdb_driver_features *driver;
524
525 driver = find_section(bdb, BDB_DRIVER_FEATURES);
526 if (!driver)
527 return;
528
529 if (INTEL_GEN(dev_priv) >= 5) {
530 /*
531 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
532 * to mean "eDP". The VBT spec doesn't agree with that
533 * interpretation, but real world VBTs seem to.
534 */
535 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
536 dev_priv->vbt.int_lvds_support = 0;
537 } else {
538 /*
539 * FIXME it's not clear which BDB version has the LVDS config
540 * bits defined. Revision history in the VBT spec says:
541 * "0.92 | Add two definitions for VBT value of LVDS Active
542 * Config (00b and 11b values defined) | 06/13/2005"
543 * but does not the specify the BDB version.
544 *
545 * So far version 134 (on i945gm) is the oldest VBT observed
546 * in the wild with the bits correctly populated. Version
547 * 108 (on i85x) does not have the bits correctly populated.
548 */
549 if (bdb->version >= 134 &&
550 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
551 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
552 dev_priv->vbt.int_lvds_support = 0;
553 }
554
555 DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
556 /*
557 * If DRRS is not supported, drrs_type has to be set to 0.
558 * This is because, VBT is configured in such a way that
559 * static DRRS is 0 and DRRS not supported is represented by
560 * driver->drrs_enabled=false
561 */
562 if (!driver->drrs_enabled)
563 dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
564 dev_priv->vbt.psr.enable = driver->psr_enabled;
565 }
566
567 static void
parse_edp(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)568 parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
569 {
570 const struct bdb_edp *edp;
571 const struct edp_power_seq *edp_pps;
572 const struct edp_fast_link_params *edp_link_params;
573 int panel_type = dev_priv->vbt.panel_type;
574
575 edp = find_section(bdb, BDB_EDP);
576 if (!edp)
577 return;
578
579 switch ((edp->color_depth >> (panel_type * 2)) & 3) {
580 case EDP_18BPP:
581 dev_priv->vbt.edp.bpp = 18;
582 break;
583 case EDP_24BPP:
584 dev_priv->vbt.edp.bpp = 24;
585 break;
586 case EDP_30BPP:
587 dev_priv->vbt.edp.bpp = 30;
588 break;
589 }
590
591 /* Get the eDP sequencing and link info */
592 edp_pps = &edp->power_seqs[panel_type];
593 edp_link_params = &edp->fast_link_params[panel_type];
594
595 dev_priv->vbt.edp.pps = *edp_pps;
596
597 switch (edp_link_params->rate) {
598 case EDP_RATE_1_62:
599 dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
600 break;
601 case EDP_RATE_2_7:
602 dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
603 break;
604 default:
605 DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
606 edp_link_params->rate);
607 break;
608 }
609
610 switch (edp_link_params->lanes) {
611 case EDP_LANE_1:
612 dev_priv->vbt.edp.lanes = 1;
613 break;
614 case EDP_LANE_2:
615 dev_priv->vbt.edp.lanes = 2;
616 break;
617 case EDP_LANE_4:
618 dev_priv->vbt.edp.lanes = 4;
619 break;
620 default:
621 DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
622 edp_link_params->lanes);
623 break;
624 }
625
626 switch (edp_link_params->preemphasis) {
627 case EDP_PREEMPHASIS_NONE:
628 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
629 break;
630 case EDP_PREEMPHASIS_3_5dB:
631 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
632 break;
633 case EDP_PREEMPHASIS_6dB:
634 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
635 break;
636 case EDP_PREEMPHASIS_9_5dB:
637 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
638 break;
639 default:
640 DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
641 edp_link_params->preemphasis);
642 break;
643 }
644
645 switch (edp_link_params->vswing) {
646 case EDP_VSWING_0_4V:
647 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
648 break;
649 case EDP_VSWING_0_6V:
650 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
651 break;
652 case EDP_VSWING_0_8V:
653 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
654 break;
655 case EDP_VSWING_1_2V:
656 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
657 break;
658 default:
659 DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
660 edp_link_params->vswing);
661 break;
662 }
663
664 if (bdb->version >= 173) {
665 u8 vswing;
666
667 /* Don't read from VBT if module parameter has valid value*/
668 if (i915_modparams.edp_vswing) {
669 dev_priv->vbt.edp.low_vswing =
670 i915_modparams.edp_vswing == 1;
671 } else {
672 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
673 dev_priv->vbt.edp.low_vswing = vswing == 0;
674 }
675 }
676 }
677
678 static void
parse_psr(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)679 parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
680 {
681 const struct bdb_psr *psr;
682 const struct psr_table *psr_table;
683 int panel_type = dev_priv->vbt.panel_type;
684
685 psr = find_section(bdb, BDB_PSR);
686 if (!psr) {
687 DRM_DEBUG_KMS("No PSR BDB found.\n");
688 return;
689 }
690
691 psr_table = &psr->psr_table[panel_type];
692
693 dev_priv->vbt.psr.full_link = psr_table->full_link;
694 dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
695
696 /* Allowed VBT values goes from 0 to 15 */
697 dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
698 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
699
700 switch (psr_table->lines_to_wait) {
701 case 0:
702 dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
703 break;
704 case 1:
705 dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
706 break;
707 case 2:
708 dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
709 break;
710 case 3:
711 dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
712 break;
713 default:
714 DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n",
715 psr_table->lines_to_wait);
716 break;
717 }
718
719 /*
720 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
721 * Old decimal value is wake up time in multiples of 100 us.
722 */
723 if (bdb->version >= 205 &&
724 (IS_GEN9_BC(dev_priv) || IS_GEMINILAKE(dev_priv) ||
725 INTEL_GEN(dev_priv) >= 10)) {
726 switch (psr_table->tp1_wakeup_time) {
727 case 0:
728 dev_priv->vbt.psr.tp1_wakeup_time_us = 500;
729 break;
730 case 1:
731 dev_priv->vbt.psr.tp1_wakeup_time_us = 100;
732 break;
733 case 3:
734 dev_priv->vbt.psr.tp1_wakeup_time_us = 0;
735 break;
736 default:
737 DRM_DEBUG_KMS("VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
738 psr_table->tp1_wakeup_time);
739 /* fallthrough */
740 case 2:
741 dev_priv->vbt.psr.tp1_wakeup_time_us = 2500;
742 break;
743 }
744
745 switch (psr_table->tp2_tp3_wakeup_time) {
746 case 0:
747 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 500;
748 break;
749 case 1:
750 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 100;
751 break;
752 case 3:
753 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 0;
754 break;
755 default:
756 DRM_DEBUG_KMS("VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
757 psr_table->tp2_tp3_wakeup_time);
758 /* fallthrough */
759 case 2:
760 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
761 break;
762 }
763 } else {
764 dev_priv->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
765 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
766 }
767
768 if (bdb->version >= 226) {
769 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
770
771 wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
772 switch (wakeup_time) {
773 case 0:
774 wakeup_time = 500;
775 break;
776 case 1:
777 wakeup_time = 100;
778 break;
779 case 3:
780 wakeup_time = 50;
781 break;
782 default:
783 case 2:
784 wakeup_time = 2500;
785 break;
786 }
787 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
788 } else {
789 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
790 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = dev_priv->vbt.psr.tp2_tp3_wakeup_time_us;
791 }
792 }
793
parse_dsi_backlight_ports(struct drm_i915_private * dev_priv,u16 version,enum port port)794 static void parse_dsi_backlight_ports(struct drm_i915_private *dev_priv,
795 u16 version, enum port port)
796 {
797 if (!dev_priv->vbt.dsi.config->dual_link || version < 197) {
798 dev_priv->vbt.dsi.bl_ports = BIT(port);
799 if (dev_priv->vbt.dsi.config->cabc_supported)
800 dev_priv->vbt.dsi.cabc_ports = BIT(port);
801
802 return;
803 }
804
805 switch (dev_priv->vbt.dsi.config->dl_dcs_backlight_ports) {
806 case DL_DCS_PORT_A:
807 dev_priv->vbt.dsi.bl_ports = BIT(PORT_A);
808 break;
809 case DL_DCS_PORT_C:
810 dev_priv->vbt.dsi.bl_ports = BIT(PORT_C);
811 break;
812 default:
813 case DL_DCS_PORT_A_AND_C:
814 dev_priv->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
815 break;
816 }
817
818 if (!dev_priv->vbt.dsi.config->cabc_supported)
819 return;
820
821 switch (dev_priv->vbt.dsi.config->dl_dcs_cabc_ports) {
822 case DL_DCS_PORT_A:
823 dev_priv->vbt.dsi.cabc_ports = BIT(PORT_A);
824 break;
825 case DL_DCS_PORT_C:
826 dev_priv->vbt.dsi.cabc_ports = BIT(PORT_C);
827 break;
828 default:
829 case DL_DCS_PORT_A_AND_C:
830 dev_priv->vbt.dsi.cabc_ports =
831 BIT(PORT_A) | BIT(PORT_C);
832 break;
833 }
834 }
835
836 static void
parse_mipi_config(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)837 parse_mipi_config(struct drm_i915_private *dev_priv,
838 const struct bdb_header *bdb)
839 {
840 const struct bdb_mipi_config *start;
841 const struct mipi_config *config;
842 const struct mipi_pps_data *pps;
843 int panel_type = dev_priv->vbt.panel_type;
844 enum port port;
845
846 /* parse MIPI blocks only if LFP type is MIPI */
847 if (!intel_bios_is_dsi_present(dev_priv, &port))
848 return;
849
850 /* Initialize this to undefined indicating no generic MIPI support */
851 dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
852
853 /* Block #40 is already parsed and panel_fixed_mode is
854 * stored in dev_priv->lfp_lvds_vbt_mode
855 * resuse this when needed
856 */
857
858 /* Parse #52 for panel index used from panel_type already
859 * parsed
860 */
861 start = find_section(bdb, BDB_MIPI_CONFIG);
862 if (!start) {
863 DRM_DEBUG_KMS("No MIPI config BDB found");
864 return;
865 }
866
867 DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n",
868 panel_type);
869
870 /*
871 * get hold of the correct configuration block and pps data as per
872 * the panel_type as index
873 */
874 config = &start->config[panel_type];
875 pps = &start->pps[panel_type];
876
877 /* store as of now full data. Trim when we realise all is not needed */
878 dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
879 if (!dev_priv->vbt.dsi.config)
880 return;
881
882 dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
883 if (!dev_priv->vbt.dsi.pps) {
884 kfree(dev_priv->vbt.dsi.config);
885 return;
886 }
887
888 parse_dsi_backlight_ports(dev_priv, bdb->version, port);
889
890 /* FIXME is the 90 vs. 270 correct? */
891 switch (config->rotation) {
892 case ENABLE_ROTATION_0:
893 /*
894 * Most (all?) VBTs claim 0 degrees despite having
895 * an upside down panel, thus we do not trust this.
896 */
897 dev_priv->vbt.dsi.orientation =
898 DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
899 break;
900 case ENABLE_ROTATION_90:
901 dev_priv->vbt.dsi.orientation =
902 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
903 break;
904 case ENABLE_ROTATION_180:
905 dev_priv->vbt.dsi.orientation =
906 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
907 break;
908 case ENABLE_ROTATION_270:
909 dev_priv->vbt.dsi.orientation =
910 DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
911 break;
912 }
913
914 /* We have mandatory mipi config blocks. Initialize as generic panel */
915 dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
916 }
917
918 /* Find the sequence block and size for the given panel. */
919 static const u8 *
find_panel_sequence_block(const struct bdb_mipi_sequence * sequence,u16 panel_id,u32 * seq_size)920 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
921 u16 panel_id, u32 *seq_size)
922 {
923 u32 total = get_blocksize(sequence);
924 const u8 *data = &sequence->data[0];
925 u8 current_id;
926 u32 current_size;
927 int header_size = sequence->version >= 3 ? 5 : 3;
928 int index = 0;
929 int i;
930
931 /* skip new block size */
932 if (sequence->version >= 3)
933 data += 4;
934
935 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
936 if (index + header_size > total) {
937 DRM_ERROR("Invalid sequence block (header)\n");
938 return NULL;
939 }
940
941 current_id = *(data + index);
942 if (sequence->version >= 3)
943 current_size = *((const u32 *)(data + index + 1));
944 else
945 current_size = *((const u16 *)(data + index + 1));
946
947 index += header_size;
948
949 if (index + current_size > total) {
950 DRM_ERROR("Invalid sequence block\n");
951 return NULL;
952 }
953
954 if (current_id == panel_id) {
955 *seq_size = current_size;
956 return data + index;
957 }
958
959 index += current_size;
960 }
961
962 DRM_ERROR("Sequence block detected but no valid configuration\n");
963
964 return NULL;
965 }
966
goto_next_sequence(const u8 * data,int index,int total)967 static int goto_next_sequence(const u8 *data, int index, int total)
968 {
969 u16 len;
970
971 /* Skip Sequence Byte. */
972 for (index = index + 1; index < total; index += len) {
973 u8 operation_byte = *(data + index);
974 index++;
975
976 switch (operation_byte) {
977 case MIPI_SEQ_ELEM_END:
978 return index;
979 case MIPI_SEQ_ELEM_SEND_PKT:
980 if (index + 4 > total)
981 return 0;
982
983 len = *((const u16 *)(data + index + 2)) + 4;
984 break;
985 case MIPI_SEQ_ELEM_DELAY:
986 len = 4;
987 break;
988 case MIPI_SEQ_ELEM_GPIO:
989 len = 2;
990 break;
991 case MIPI_SEQ_ELEM_I2C:
992 if (index + 7 > total)
993 return 0;
994 len = *(data + index + 6) + 7;
995 break;
996 default:
997 DRM_ERROR("Unknown operation byte\n");
998 return 0;
999 }
1000 }
1001
1002 return 0;
1003 }
1004
goto_next_sequence_v3(const u8 * data,int index,int total)1005 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1006 {
1007 int seq_end;
1008 u16 len;
1009 u32 size_of_sequence;
1010
1011 /*
1012 * Could skip sequence based on Size of Sequence alone, but also do some
1013 * checking on the structure.
1014 */
1015 if (total < 5) {
1016 DRM_ERROR("Too small sequence size\n");
1017 return 0;
1018 }
1019
1020 /* Skip Sequence Byte. */
1021 index++;
1022
1023 /*
1024 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1025 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1026 * byte.
1027 */
1028 size_of_sequence = *((const u32 *)(data + index));
1029 index += 4;
1030
1031 seq_end = index + size_of_sequence;
1032 if (seq_end > total) {
1033 DRM_ERROR("Invalid sequence size\n");
1034 return 0;
1035 }
1036
1037 for (; index < total; index += len) {
1038 u8 operation_byte = *(data + index);
1039 index++;
1040
1041 if (operation_byte == MIPI_SEQ_ELEM_END) {
1042 if (index != seq_end) {
1043 DRM_ERROR("Invalid element structure\n");
1044 return 0;
1045 }
1046 return index;
1047 }
1048
1049 len = *(data + index);
1050 index++;
1051
1052 /*
1053 * FIXME: Would be nice to check elements like for v1/v2 in
1054 * goto_next_sequence() above.
1055 */
1056 switch (operation_byte) {
1057 case MIPI_SEQ_ELEM_SEND_PKT:
1058 case MIPI_SEQ_ELEM_DELAY:
1059 case MIPI_SEQ_ELEM_GPIO:
1060 case MIPI_SEQ_ELEM_I2C:
1061 case MIPI_SEQ_ELEM_SPI:
1062 case MIPI_SEQ_ELEM_PMIC:
1063 break;
1064 default:
1065 DRM_ERROR("Unknown operation byte %u\n",
1066 operation_byte);
1067 break;
1068 }
1069 }
1070
1071 return 0;
1072 }
1073
1074 /*
1075 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1076 * skip all delay + gpio operands and stop at the first DSI packet op.
1077 */
get_init_otp_deassert_fragment_len(struct drm_i915_private * dev_priv)1078 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *dev_priv)
1079 {
1080 const u8 *data = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1081 int index, len;
1082
1083 if (WARN_ON(!data || dev_priv->vbt.dsi.seq_version != 1))
1084 return 0;
1085
1086 /* index = 1 to skip sequence byte */
1087 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1088 switch (data[index]) {
1089 case MIPI_SEQ_ELEM_SEND_PKT:
1090 return index == 1 ? 0 : index;
1091 case MIPI_SEQ_ELEM_DELAY:
1092 len = 5; /* 1 byte for operand + uint32 */
1093 break;
1094 case MIPI_SEQ_ELEM_GPIO:
1095 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1096 break;
1097 default:
1098 return 0;
1099 }
1100 }
1101
1102 return 0;
1103 }
1104
1105 /*
1106 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1107 * The deassert must be done before calling intel_dsi_device_ready, so for
1108 * these devices we split the init OTP sequence into a deassert sequence and
1109 * the actual init OTP part.
1110 */
fixup_mipi_sequences(struct drm_i915_private * dev_priv)1111 static void fixup_mipi_sequences(struct drm_i915_private *dev_priv)
1112 {
1113 u8 *init_otp;
1114 int len;
1115
1116 /* Limit this to VLV for now. */
1117 if (!IS_VALLEYVIEW(dev_priv))
1118 return;
1119
1120 /* Limit this to v1 vid-mode sequences */
1121 if (dev_priv->vbt.dsi.config->is_cmd_mode ||
1122 dev_priv->vbt.dsi.seq_version != 1)
1123 return;
1124
1125 /* Only do this if there are otp and assert seqs and no deassert seq */
1126 if (!dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1127 !dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1128 dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1129 return;
1130
1131 /* The deassert-sequence ends at the first DSI packet */
1132 len = get_init_otp_deassert_fragment_len(dev_priv);
1133 if (!len)
1134 return;
1135
1136 DRM_DEBUG_KMS("Using init OTP fragment to deassert reset\n");
1137
1138 /* Copy the fragment, update seq byte and terminate it */
1139 init_otp = (u8 *)dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1140 dev_priv->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1141 if (!dev_priv->vbt.dsi.deassert_seq)
1142 return;
1143 dev_priv->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1144 dev_priv->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1145 /* Use the copy for deassert */
1146 dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1147 dev_priv->vbt.dsi.deassert_seq;
1148 /* Replace the last byte of the fragment with init OTP seq byte */
1149 init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1150 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1151 dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1152 }
1153
1154 static void
parse_mipi_sequence(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)1155 parse_mipi_sequence(struct drm_i915_private *dev_priv,
1156 const struct bdb_header *bdb)
1157 {
1158 int panel_type = dev_priv->vbt.panel_type;
1159 const struct bdb_mipi_sequence *sequence;
1160 const u8 *seq_data;
1161 u32 seq_size;
1162 u8 *data;
1163 int index = 0;
1164
1165 /* Only our generic panel driver uses the sequence block. */
1166 if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1167 return;
1168
1169 sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1170 if (!sequence) {
1171 DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n");
1172 return;
1173 }
1174
1175 /* Fail gracefully for forward incompatible sequence block. */
1176 if (sequence->version >= 4) {
1177 DRM_ERROR("Unable to parse MIPI Sequence Block v%u\n",
1178 sequence->version);
1179 return;
1180 }
1181
1182 DRM_DEBUG_DRIVER("Found MIPI sequence block v%u\n", sequence->version);
1183
1184 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1185 if (!seq_data)
1186 return;
1187
1188 data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1189 if (!data)
1190 return;
1191
1192 /* Parse the sequences, store pointers to each sequence. */
1193 for (;;) {
1194 u8 seq_id = *(data + index);
1195 if (seq_id == MIPI_SEQ_END)
1196 break;
1197
1198 if (seq_id >= MIPI_SEQ_MAX) {
1199 DRM_ERROR("Unknown sequence %u\n", seq_id);
1200 goto err;
1201 }
1202
1203 /* Log about presence of sequences we won't run. */
1204 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1205 DRM_DEBUG_KMS("Unsupported sequence %u\n", seq_id);
1206
1207 dev_priv->vbt.dsi.sequence[seq_id] = data + index;
1208
1209 if (sequence->version >= 3)
1210 index = goto_next_sequence_v3(data, index, seq_size);
1211 else
1212 index = goto_next_sequence(data, index, seq_size);
1213 if (!index) {
1214 DRM_ERROR("Invalid sequence %u\n", seq_id);
1215 goto err;
1216 }
1217 }
1218
1219 dev_priv->vbt.dsi.data = data;
1220 dev_priv->vbt.dsi.size = seq_size;
1221 dev_priv->vbt.dsi.seq_version = sequence->version;
1222
1223 fixup_mipi_sequences(dev_priv);
1224
1225 DRM_DEBUG_DRIVER("MIPI related VBT parsing complete\n");
1226 return;
1227
1228 err:
1229 kfree(data);
1230 memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
1231 }
1232
translate_iboost(u8 val)1233 static u8 translate_iboost(u8 val)
1234 {
1235 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1236
1237 if (val >= ARRAY_SIZE(mapping)) {
1238 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1239 return 0;
1240 }
1241 return mapping[val];
1242 }
1243
get_port_by_ddc_pin(struct drm_i915_private * i915,u8 ddc_pin)1244 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1245 {
1246 const struct ddi_vbt_port_info *info;
1247 enum port port;
1248
1249 for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1250 info = &i915->vbt.ddi_port_info[port];
1251
1252 if (info->child && ddc_pin == info->alternate_ddc_pin)
1253 return port;
1254 }
1255
1256 return PORT_NONE;
1257 }
1258
sanitize_ddc_pin(struct drm_i915_private * dev_priv,enum port port)1259 static void sanitize_ddc_pin(struct drm_i915_private *dev_priv,
1260 enum port port)
1261 {
1262 struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1263 enum port p;
1264
1265 if (!info->alternate_ddc_pin)
1266 return;
1267
1268 p = get_port_by_ddc_pin(dev_priv, info->alternate_ddc_pin);
1269 if (p != PORT_NONE) {
1270 DRM_DEBUG_KMS("port %c trying to use the same DDC pin (0x%x) as port %c, "
1271 "disabling port %c DVI/HDMI support\n",
1272 port_name(port), info->alternate_ddc_pin,
1273 port_name(p), port_name(p));
1274
1275 /*
1276 * If we have multiple ports supposedly sharing the
1277 * pin, then dvi/hdmi couldn't exist on the shared
1278 * port. Otherwise they share the same ddc bin and
1279 * system couldn't communicate with them separately.
1280 *
1281 * Give inverse child device order the priority,
1282 * last one wins. Yes, there are real machines
1283 * (eg. Asrock B250M-HDV) where VBT has both
1284 * port A and port E with the same AUX ch and
1285 * we must pick port E :(
1286 */
1287 info = &dev_priv->vbt.ddi_port_info[p];
1288
1289 info->supports_dvi = false;
1290 info->supports_hdmi = false;
1291 info->alternate_ddc_pin = 0;
1292 }
1293 }
1294
get_port_by_aux_ch(struct drm_i915_private * i915,u8 aux_ch)1295 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1296 {
1297 const struct ddi_vbt_port_info *info;
1298 enum port port;
1299
1300 for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1301 info = &i915->vbt.ddi_port_info[port];
1302
1303 if (info->child && aux_ch == info->alternate_aux_channel)
1304 return port;
1305 }
1306
1307 return PORT_NONE;
1308 }
1309
sanitize_aux_ch(struct drm_i915_private * dev_priv,enum port port)1310 static void sanitize_aux_ch(struct drm_i915_private *dev_priv,
1311 enum port port)
1312 {
1313 struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1314 enum port p;
1315
1316 if (!info->alternate_aux_channel)
1317 return;
1318
1319 p = get_port_by_aux_ch(dev_priv, info->alternate_aux_channel);
1320 if (p != PORT_NONE) {
1321 DRM_DEBUG_KMS("port %c trying to use the same AUX CH (0x%x) as port %c, "
1322 "disabling port %c DP support\n",
1323 port_name(port), info->alternate_aux_channel,
1324 port_name(p), port_name(p));
1325
1326 /*
1327 * If we have multiple ports supposedlt sharing the
1328 * aux channel, then DP couldn't exist on the shared
1329 * port. Otherwise they share the same aux channel
1330 * and system couldn't communicate with them separately.
1331 *
1332 * Give inverse child device order the priority,
1333 * last one wins. Yes, there are real machines
1334 * (eg. Asrock B250M-HDV) where VBT has both
1335 * port A and port E with the same AUX ch and
1336 * we must pick port E :(
1337 */
1338 info = &dev_priv->vbt.ddi_port_info[p];
1339
1340 info->supports_dp = false;
1341 info->alternate_aux_channel = 0;
1342 }
1343 }
1344
1345 static const u8 cnp_ddc_pin_map[] = {
1346 [0] = 0, /* N/A */
1347 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1348 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1349 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1350 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1351 };
1352
1353 static const u8 icp_ddc_pin_map[] = {
1354 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1355 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1356 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1357 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1358 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1359 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1360 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1361 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1362 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1363 };
1364
map_ddc_pin(struct drm_i915_private * dev_priv,u8 vbt_pin)1365 static u8 map_ddc_pin(struct drm_i915_private *dev_priv, u8 vbt_pin)
1366 {
1367 const u8 *ddc_pin_map;
1368 int n_entries;
1369
1370 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
1371 ddc_pin_map = icp_ddc_pin_map;
1372 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1373 } else if (HAS_PCH_CNP(dev_priv)) {
1374 ddc_pin_map = cnp_ddc_pin_map;
1375 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1376 } else {
1377 /* Assuming direct map */
1378 return vbt_pin;
1379 }
1380
1381 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1382 return ddc_pin_map[vbt_pin];
1383
1384 DRM_DEBUG_KMS("Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1385 vbt_pin);
1386 return 0;
1387 }
1388
dvo_port_to_port(u8 dvo_port)1389 static enum port dvo_port_to_port(u8 dvo_port)
1390 {
1391 /*
1392 * Each DDI port can have more than one value on the "DVO Port" field,
1393 * so look for all the possible values for each port.
1394 */
1395 static const int dvo_ports[][3] = {
1396 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
1397 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
1398 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
1399 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1},
1400 [PORT_E] = { DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
1401 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1},
1402 };
1403 enum port port;
1404 int i;
1405
1406 for (port = PORT_A; port < ARRAY_SIZE(dvo_ports); port++) {
1407 for (i = 0; i < ARRAY_SIZE(dvo_ports[port]); i++) {
1408 if (dvo_ports[port][i] == -1)
1409 break;
1410
1411 if (dvo_port == dvo_ports[port][i])
1412 return port;
1413 }
1414 }
1415
1416 return PORT_NONE;
1417 }
1418
parse_ddi_port(struct drm_i915_private * dev_priv,const struct child_device_config * child,u8 bdb_version)1419 static void parse_ddi_port(struct drm_i915_private *dev_priv,
1420 const struct child_device_config *child,
1421 u8 bdb_version)
1422 {
1423 struct ddi_vbt_port_info *info;
1424 bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
1425 enum port port;
1426
1427 port = dvo_port_to_port(child->dvo_port);
1428 if (port == PORT_NONE)
1429 return;
1430
1431 info = &dev_priv->vbt.ddi_port_info[port];
1432
1433 if (info->child) {
1434 DRM_DEBUG_KMS("More than one child device for port %c in VBT, using the first.\n",
1435 port_name(port));
1436 return;
1437 }
1438
1439 is_dvi = child->device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1440 is_dp = child->device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1441 is_crt = child->device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1442 is_hdmi = is_dvi && (child->device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1443 is_edp = is_dp && (child->device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
1444
1445 if (port == PORT_A && is_dvi) {
1446 DRM_DEBUG_KMS("VBT claims port A supports DVI%s, ignoring\n",
1447 is_hdmi ? "/HDMI" : "");
1448 is_dvi = false;
1449 is_hdmi = false;
1450 }
1451
1452 info->supports_dvi = is_dvi;
1453 info->supports_hdmi = is_hdmi;
1454 info->supports_dp = is_dp;
1455 info->supports_edp = is_edp;
1456
1457 if (bdb_version >= 195)
1458 info->supports_typec_usb = child->dp_usb_type_c;
1459
1460 if (bdb_version >= 209)
1461 info->supports_tbt = child->tbt;
1462
1463 DRM_DEBUG_KMS("Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d\n",
1464 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
1465 HAS_LSPCON(dev_priv) && child->lspcon,
1466 info->supports_typec_usb, info->supports_tbt);
1467
1468 if (is_edp && is_dvi)
1469 DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n",
1470 port_name(port));
1471 if (is_crt && port != PORT_E)
1472 DRM_DEBUG_KMS("Port %c is analog\n", port_name(port));
1473 if (is_crt && (is_dvi || is_dp))
1474 DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n",
1475 port_name(port));
1476 if (is_dvi && (port == PORT_A || port == PORT_E))
1477 DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port));
1478 if (!is_dvi && !is_dp && !is_crt)
1479 DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n",
1480 port_name(port));
1481 if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E))
1482 DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port));
1483
1484 if (is_dvi) {
1485 u8 ddc_pin;
1486
1487 ddc_pin = map_ddc_pin(dev_priv, child->ddc_pin);
1488 if (intel_gmbus_is_valid_pin(dev_priv, ddc_pin)) {
1489 info->alternate_ddc_pin = ddc_pin;
1490 sanitize_ddc_pin(dev_priv, port);
1491 } else {
1492 DRM_DEBUG_KMS("Port %c has invalid DDC pin %d, "
1493 "sticking to defaults\n",
1494 port_name(port), ddc_pin);
1495 }
1496 }
1497
1498 if (is_dp) {
1499 info->alternate_aux_channel = child->aux_channel;
1500
1501 sanitize_aux_ch(dev_priv, port);
1502 }
1503
1504 if (bdb_version >= 158) {
1505 /* The VBT HDMI level shift values match the table we have. */
1506 u8 hdmi_level_shift = child->hdmi_level_shifter_value;
1507 DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n",
1508 port_name(port),
1509 hdmi_level_shift);
1510 info->hdmi_level_shift = hdmi_level_shift;
1511 }
1512
1513 if (bdb_version >= 204) {
1514 int max_tmds_clock;
1515
1516 switch (child->hdmi_max_data_rate) {
1517 default:
1518 MISSING_CASE(child->hdmi_max_data_rate);
1519 /* fall through */
1520 case HDMI_MAX_DATA_RATE_PLATFORM:
1521 max_tmds_clock = 0;
1522 break;
1523 case HDMI_MAX_DATA_RATE_297:
1524 max_tmds_clock = 297000;
1525 break;
1526 case HDMI_MAX_DATA_RATE_165:
1527 max_tmds_clock = 165000;
1528 break;
1529 }
1530
1531 if (max_tmds_clock)
1532 DRM_DEBUG_KMS("VBT HDMI max TMDS clock for port %c: %d kHz\n",
1533 port_name(port), max_tmds_clock);
1534 info->max_tmds_clock = max_tmds_clock;
1535 }
1536
1537 /* Parse the I_boost config for SKL and above */
1538 if (bdb_version >= 196 && child->iboost) {
1539 info->dp_boost_level = translate_iboost(child->dp_iboost_level);
1540 DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n",
1541 port_name(port), info->dp_boost_level);
1542 info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level);
1543 DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n",
1544 port_name(port), info->hdmi_boost_level);
1545 }
1546
1547 /* DP max link rate for CNL+ */
1548 if (bdb_version >= 216) {
1549 switch (child->dp_max_link_rate) {
1550 default:
1551 case VBT_DP_MAX_LINK_RATE_HBR3:
1552 info->dp_max_link_rate = 810000;
1553 break;
1554 case VBT_DP_MAX_LINK_RATE_HBR2:
1555 info->dp_max_link_rate = 540000;
1556 break;
1557 case VBT_DP_MAX_LINK_RATE_HBR:
1558 info->dp_max_link_rate = 270000;
1559 break;
1560 case VBT_DP_MAX_LINK_RATE_LBR:
1561 info->dp_max_link_rate = 162000;
1562 break;
1563 }
1564 DRM_DEBUG_KMS("VBT DP max link rate for port %c: %d\n",
1565 port_name(port), info->dp_max_link_rate);
1566 }
1567
1568 info->child = child;
1569 }
1570
parse_ddi_ports(struct drm_i915_private * dev_priv,u8 bdb_version)1571 static void parse_ddi_ports(struct drm_i915_private *dev_priv, u8 bdb_version)
1572 {
1573 const struct child_device_config *child;
1574 int i;
1575
1576 if (!HAS_DDI(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1577 return;
1578
1579 if (bdb_version < 155)
1580 return;
1581
1582 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1583 child = dev_priv->vbt.child_dev + i;
1584
1585 parse_ddi_port(dev_priv, child, bdb_version);
1586 }
1587 }
1588
1589 static void
parse_general_definitions(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)1590 parse_general_definitions(struct drm_i915_private *dev_priv,
1591 const struct bdb_header *bdb)
1592 {
1593 const struct bdb_general_definitions *defs;
1594 const struct child_device_config *child;
1595 int i, child_device_num, count;
1596 u8 expected_size;
1597 u16 block_size;
1598 int bus_pin;
1599
1600 defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
1601 if (!defs) {
1602 DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
1603 return;
1604 }
1605
1606 block_size = get_blocksize(defs);
1607 if (block_size < sizeof(*defs)) {
1608 DRM_DEBUG_KMS("General definitions block too small (%u)\n",
1609 block_size);
1610 return;
1611 }
1612
1613 bus_pin = defs->crt_ddc_gmbus_pin;
1614 DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
1615 if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
1616 dev_priv->vbt.crt_ddc_pin = bus_pin;
1617
1618 if (bdb->version < 106) {
1619 expected_size = 22;
1620 } else if (bdb->version < 111) {
1621 expected_size = 27;
1622 } else if (bdb->version < 195) {
1623 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
1624 } else if (bdb->version == 195) {
1625 expected_size = 37;
1626 } else if (bdb->version <= 215) {
1627 expected_size = 38;
1628 } else if (bdb->version <= 216) {
1629 expected_size = 39;
1630 } else {
1631 expected_size = sizeof(*child);
1632 BUILD_BUG_ON(sizeof(*child) < 39);
1633 DRM_DEBUG_DRIVER("Expected child device config size for VBT version %u not known; assuming %u\n",
1634 bdb->version, expected_size);
1635 }
1636
1637 /* Flag an error for unexpected size, but continue anyway. */
1638 if (defs->child_dev_size != expected_size)
1639 DRM_ERROR("Unexpected child device config size %u (expected %u for VBT version %u)\n",
1640 defs->child_dev_size, expected_size, bdb->version);
1641
1642 /* The legacy sized child device config is the minimum we need. */
1643 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
1644 DRM_DEBUG_KMS("Child device config size %u is too small.\n",
1645 defs->child_dev_size);
1646 return;
1647 }
1648
1649 /* get the number of child device */
1650 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
1651 count = 0;
1652 /* get the number of child device that is present */
1653 for (i = 0; i < child_device_num; i++) {
1654 child = child_device_ptr(defs, i);
1655 if (!child->device_type)
1656 continue;
1657 count++;
1658 }
1659 if (!count) {
1660 DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
1661 return;
1662 }
1663 dev_priv->vbt.child_dev = kcalloc(count, sizeof(*child), GFP_KERNEL);
1664 if (!dev_priv->vbt.child_dev) {
1665 DRM_DEBUG_KMS("No memory space for child device\n");
1666 return;
1667 }
1668
1669 dev_priv->vbt.child_dev_num = count;
1670 count = 0;
1671 for (i = 0; i < child_device_num; i++) {
1672 child = child_device_ptr(defs, i);
1673 if (!child->device_type)
1674 continue;
1675
1676 DRM_DEBUG_KMS("Found VBT child device with type 0x%x\n",
1677 child->device_type);
1678
1679 /*
1680 * Copy as much as we know (sizeof) and is available
1681 * (child_dev_size) of the child device. Accessing the data must
1682 * depend on VBT version.
1683 */
1684 memcpy(dev_priv->vbt.child_dev + count, child,
1685 min_t(size_t, defs->child_dev_size, sizeof(*child)));
1686 count++;
1687 }
1688 }
1689
1690 /* Common defaults which may be overridden by VBT. */
1691 static void
init_vbt_defaults(struct drm_i915_private * dev_priv)1692 init_vbt_defaults(struct drm_i915_private *dev_priv)
1693 {
1694 enum port port;
1695
1696 dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
1697
1698 /* Default to having backlight */
1699 dev_priv->vbt.backlight.present = true;
1700
1701 /* LFP panel data */
1702 dev_priv->vbt.lvds_dither = 1;
1703
1704 /* SDVO panel data */
1705 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1706
1707 /* general features */
1708 dev_priv->vbt.int_tv_support = 1;
1709 dev_priv->vbt.int_crt_support = 1;
1710
1711 /* driver features */
1712 dev_priv->vbt.int_lvds_support = 1;
1713
1714 /* Default to using SSC */
1715 dev_priv->vbt.lvds_use_ssc = 1;
1716 /*
1717 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
1718 * clock for LVDS.
1719 */
1720 dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
1721 !HAS_PCH_SPLIT(dev_priv));
1722 DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq);
1723
1724 for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1725 struct ddi_vbt_port_info *info =
1726 &dev_priv->vbt.ddi_port_info[port];
1727
1728 info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN;
1729 }
1730 }
1731
1732 /* Defaults to initialize only if there is no VBT. */
1733 static void
init_vbt_missing_defaults(struct drm_i915_private * dev_priv)1734 init_vbt_missing_defaults(struct drm_i915_private *dev_priv)
1735 {
1736 enum port port;
1737
1738 for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1739 struct ddi_vbt_port_info *info =
1740 &dev_priv->vbt.ddi_port_info[port];
1741 enum phy phy = intel_port_to_phy(dev_priv, port);
1742
1743 /*
1744 * VBT has the TypeC mode (native,TBT/USB) and we don't want
1745 * to detect it.
1746 */
1747 if (intel_phy_is_tc(dev_priv, phy))
1748 continue;
1749
1750 info->supports_dvi = (port != PORT_A && port != PORT_E);
1751 info->supports_hdmi = info->supports_dvi;
1752 info->supports_dp = (port != PORT_E);
1753 info->supports_edp = (port == PORT_A);
1754 }
1755 }
1756
get_bdb_header(const struct vbt_header * vbt)1757 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
1758 {
1759 const void *_vbt = vbt;
1760
1761 return _vbt + vbt->bdb_offset;
1762 }
1763
1764 /**
1765 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
1766 * @buf: pointer to a buffer to validate
1767 * @size: size of the buffer
1768 *
1769 * Returns true on valid VBT.
1770 */
intel_bios_is_valid_vbt(const void * buf,size_t size)1771 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
1772 {
1773 const struct vbt_header *vbt = buf;
1774 const struct bdb_header *bdb;
1775
1776 if (!vbt)
1777 return false;
1778
1779 if (sizeof(struct vbt_header) > size) {
1780 DRM_DEBUG_DRIVER("VBT header incomplete\n");
1781 return false;
1782 }
1783
1784 if (memcmp(vbt->signature, "$VBT", 4)) {
1785 DRM_DEBUG_DRIVER("VBT invalid signature\n");
1786 return false;
1787 }
1788
1789 if (range_overflows_t(size_t,
1790 vbt->bdb_offset,
1791 sizeof(struct bdb_header),
1792 size)) {
1793 DRM_DEBUG_DRIVER("BDB header incomplete\n");
1794 return false;
1795 }
1796
1797 bdb = get_bdb_header(vbt);
1798 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
1799 DRM_DEBUG_DRIVER("BDB incomplete\n");
1800 return false;
1801 }
1802
1803 return vbt;
1804 }
1805
find_vbt(void __iomem * bios,size_t size)1806 static const struct vbt_header *find_vbt(void __iomem *bios, size_t size)
1807 {
1808 size_t i;
1809
1810 /* Scour memory looking for the VBT signature. */
1811 for (i = 0; i + 4 < size; i++) {
1812 void *vbt;
1813
1814 if (ioread32(bios + i) != *((const u32 *) "$VBT"))
1815 continue;
1816
1817 /*
1818 * This is the one place where we explicitly discard the address
1819 * space (__iomem) of the BIOS/VBT.
1820 */
1821 vbt = (void __force *) bios + i;
1822 if (intel_bios_is_valid_vbt(vbt, size - i))
1823 return vbt;
1824
1825 break;
1826 }
1827
1828 return NULL;
1829 }
1830
1831 /**
1832 * intel_bios_init - find VBT and initialize settings from the BIOS
1833 * @dev_priv: i915 device instance
1834 *
1835 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
1836 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
1837 * initialize some defaults if the VBT is not present at all.
1838 */
intel_bios_init(struct drm_i915_private * dev_priv)1839 void intel_bios_init(struct drm_i915_private *dev_priv)
1840 {
1841 struct pci_dev *pdev = dev_priv->drm.pdev;
1842 const struct vbt_header *vbt = dev_priv->opregion.vbt;
1843 const struct bdb_header *bdb;
1844 u8 __iomem *bios = NULL;
1845
1846 if (!HAS_DISPLAY(dev_priv)) {
1847 DRM_DEBUG_KMS("Skipping VBT init due to disabled display.\n");
1848 return;
1849 }
1850
1851 init_vbt_defaults(dev_priv);
1852
1853 /* If the OpRegion does not have VBT, look in PCI ROM. */
1854 if (!vbt) {
1855 size_t size;
1856
1857 bios = pci_map_rom(pdev, &size);
1858 if (!bios)
1859 goto out;
1860
1861 vbt = find_vbt(bios, size);
1862 if (!vbt)
1863 goto out;
1864
1865 DRM_DEBUG_KMS("Found valid VBT in PCI ROM\n");
1866 }
1867
1868 bdb = get_bdb_header(vbt);
1869
1870 DRM_DEBUG_KMS("VBT signature \"%.*s\", BDB version %d\n",
1871 (int)sizeof(vbt->signature), vbt->signature, bdb->version);
1872
1873 /* Grab useful general definitions */
1874 parse_general_features(dev_priv, bdb);
1875 parse_general_definitions(dev_priv, bdb);
1876 parse_lfp_panel_data(dev_priv, bdb);
1877 parse_lfp_backlight(dev_priv, bdb);
1878 parse_sdvo_panel_data(dev_priv, bdb);
1879 parse_driver_features(dev_priv, bdb);
1880 parse_edp(dev_priv, bdb);
1881 parse_psr(dev_priv, bdb);
1882 parse_mipi_config(dev_priv, bdb);
1883 parse_mipi_sequence(dev_priv, bdb);
1884
1885 /* Further processing on pre-parsed data */
1886 parse_sdvo_device_mapping(dev_priv, bdb->version);
1887 parse_ddi_ports(dev_priv, bdb->version);
1888
1889 out:
1890 if (!vbt) {
1891 DRM_INFO("Failed to find VBIOS tables (VBT)\n");
1892 init_vbt_missing_defaults(dev_priv);
1893 }
1894
1895 if (bios)
1896 pci_unmap_rom(pdev, bios);
1897 }
1898
1899 /**
1900 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
1901 * @dev_priv: i915 device instance
1902 */
intel_bios_driver_remove(struct drm_i915_private * dev_priv)1903 void intel_bios_driver_remove(struct drm_i915_private *dev_priv)
1904 {
1905 kfree(dev_priv->vbt.child_dev);
1906 dev_priv->vbt.child_dev = NULL;
1907 dev_priv->vbt.child_dev_num = 0;
1908 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1909 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1910 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1911 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1912 kfree(dev_priv->vbt.dsi.data);
1913 dev_priv->vbt.dsi.data = NULL;
1914 kfree(dev_priv->vbt.dsi.pps);
1915 dev_priv->vbt.dsi.pps = NULL;
1916 kfree(dev_priv->vbt.dsi.config);
1917 dev_priv->vbt.dsi.config = NULL;
1918 kfree(dev_priv->vbt.dsi.deassert_seq);
1919 dev_priv->vbt.dsi.deassert_seq = NULL;
1920 }
1921
1922 /**
1923 * intel_bios_is_tv_present - is integrated TV present in VBT
1924 * @dev_priv: i915 device instance
1925 *
1926 * Return true if TV is present. If no child devices were parsed from VBT,
1927 * assume TV is present.
1928 */
intel_bios_is_tv_present(struct drm_i915_private * dev_priv)1929 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
1930 {
1931 const struct child_device_config *child;
1932 int i;
1933
1934 if (!dev_priv->vbt.int_tv_support)
1935 return false;
1936
1937 if (!dev_priv->vbt.child_dev_num)
1938 return true;
1939
1940 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1941 child = dev_priv->vbt.child_dev + i;
1942 /*
1943 * If the device type is not TV, continue.
1944 */
1945 switch (child->device_type) {
1946 case DEVICE_TYPE_INT_TV:
1947 case DEVICE_TYPE_TV:
1948 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
1949 break;
1950 default:
1951 continue;
1952 }
1953 /* Only when the addin_offset is non-zero, it is regarded
1954 * as present.
1955 */
1956 if (child->addin_offset)
1957 return true;
1958 }
1959
1960 return false;
1961 }
1962
1963 /**
1964 * intel_bios_is_lvds_present - is LVDS present in VBT
1965 * @dev_priv: i915 device instance
1966 * @i2c_pin: i2c pin for LVDS if present
1967 *
1968 * Return true if LVDS is present. If no child devices were parsed from VBT,
1969 * assume LVDS is present.
1970 */
intel_bios_is_lvds_present(struct drm_i915_private * dev_priv,u8 * i2c_pin)1971 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
1972 {
1973 const struct child_device_config *child;
1974 int i;
1975
1976 if (!dev_priv->vbt.child_dev_num)
1977 return true;
1978
1979 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1980 child = dev_priv->vbt.child_dev + i;
1981
1982 /* If the device type is not LFP, continue.
1983 * We have to check both the new identifiers as well as the
1984 * old for compatibility with some BIOSes.
1985 */
1986 if (child->device_type != DEVICE_TYPE_INT_LFP &&
1987 child->device_type != DEVICE_TYPE_LFP)
1988 continue;
1989
1990 if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
1991 *i2c_pin = child->i2c_pin;
1992
1993 /* However, we cannot trust the BIOS writers to populate
1994 * the VBT correctly. Since LVDS requires additional
1995 * information from AIM blocks, a non-zero addin offset is
1996 * a good indicator that the LVDS is actually present.
1997 */
1998 if (child->addin_offset)
1999 return true;
2000
2001 /* But even then some BIOS writers perform some black magic
2002 * and instantiate the device without reference to any
2003 * additional data. Trust that if the VBT was written into
2004 * the OpRegion then they have validated the LVDS's existence.
2005 */
2006 if (dev_priv->opregion.vbt)
2007 return true;
2008 }
2009
2010 return false;
2011 }
2012
2013 /**
2014 * intel_bios_is_port_present - is the specified digital port present
2015 * @dev_priv: i915 device instance
2016 * @port: port to check
2017 *
2018 * Return true if the device in %port is present.
2019 */
intel_bios_is_port_present(struct drm_i915_private * dev_priv,enum port port)2020 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
2021 {
2022 const struct child_device_config *child;
2023 static const struct {
2024 u16 dp, hdmi;
2025 } port_mapping[] = {
2026 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2027 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2028 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2029 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2030 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2031 };
2032 int i;
2033
2034 if (HAS_DDI(dev_priv)) {
2035 const struct ddi_vbt_port_info *port_info =
2036 &dev_priv->vbt.ddi_port_info[port];
2037
2038 return port_info->supports_dp ||
2039 port_info->supports_dvi ||
2040 port_info->supports_hdmi;
2041 }
2042
2043 /* FIXME maybe deal with port A as well? */
2044 if (WARN_ON(port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2045 return false;
2046
2047 if (!dev_priv->vbt.child_dev_num)
2048 return false;
2049
2050 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2051 child = dev_priv->vbt.child_dev + i;
2052
2053 if ((child->dvo_port == port_mapping[port].dp ||
2054 child->dvo_port == port_mapping[port].hdmi) &&
2055 (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2056 DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2057 return true;
2058 }
2059
2060 return false;
2061 }
2062
2063 /**
2064 * intel_bios_is_port_edp - is the device in given port eDP
2065 * @dev_priv: i915 device instance
2066 * @port: port to check
2067 *
2068 * Return true if the device in %port is eDP.
2069 */
intel_bios_is_port_edp(struct drm_i915_private * dev_priv,enum port port)2070 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
2071 {
2072 const struct child_device_config *child;
2073 static const short port_mapping[] = {
2074 [PORT_B] = DVO_PORT_DPB,
2075 [PORT_C] = DVO_PORT_DPC,
2076 [PORT_D] = DVO_PORT_DPD,
2077 [PORT_E] = DVO_PORT_DPE,
2078 [PORT_F] = DVO_PORT_DPF,
2079 };
2080 int i;
2081
2082 if (HAS_DDI(dev_priv))
2083 return dev_priv->vbt.ddi_port_info[port].supports_edp;
2084
2085 if (!dev_priv->vbt.child_dev_num)
2086 return false;
2087
2088 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2089 child = dev_priv->vbt.child_dev + i;
2090
2091 if (child->dvo_port == port_mapping[port] &&
2092 (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2093 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2094 return true;
2095 }
2096
2097 return false;
2098 }
2099
child_dev_is_dp_dual_mode(const struct child_device_config * child,enum port port)2100 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
2101 enum port port)
2102 {
2103 static const struct {
2104 u16 dp, hdmi;
2105 } port_mapping[] = {
2106 /*
2107 * Buggy VBTs may declare DP ports as having
2108 * HDMI type dvo_port :( So let's check both.
2109 */
2110 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2111 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2112 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2113 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2114 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2115 };
2116
2117 if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2118 return false;
2119
2120 if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2121 (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2122 return false;
2123
2124 if (child->dvo_port == port_mapping[port].dp)
2125 return true;
2126
2127 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2128 if (child->dvo_port == port_mapping[port].hdmi &&
2129 child->aux_channel != 0)
2130 return true;
2131
2132 return false;
2133 }
2134
intel_bios_is_port_dp_dual_mode(struct drm_i915_private * dev_priv,enum port port)2135 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv,
2136 enum port port)
2137 {
2138 const struct child_device_config *child;
2139 int i;
2140
2141 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2142 child = dev_priv->vbt.child_dev + i;
2143
2144 if (child_dev_is_dp_dual_mode(child, port))
2145 return true;
2146 }
2147
2148 return false;
2149 }
2150
2151 /**
2152 * intel_bios_is_dsi_present - is DSI present in VBT
2153 * @dev_priv: i915 device instance
2154 * @port: port for DSI if present
2155 *
2156 * Return true if DSI is present, and return the port in %port.
2157 */
intel_bios_is_dsi_present(struct drm_i915_private * dev_priv,enum port * port)2158 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
2159 enum port *port)
2160 {
2161 const struct child_device_config *child;
2162 u8 dvo_port;
2163 int i;
2164
2165 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2166 child = dev_priv->vbt.child_dev + i;
2167
2168 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2169 continue;
2170
2171 dvo_port = child->dvo_port;
2172
2173 if (dvo_port == DVO_PORT_MIPIA ||
2174 (dvo_port == DVO_PORT_MIPIB && INTEL_GEN(dev_priv) >= 11) ||
2175 (dvo_port == DVO_PORT_MIPIC && INTEL_GEN(dev_priv) < 11)) {
2176 if (port)
2177 *port = dvo_port - DVO_PORT_MIPIA;
2178 return true;
2179 } else if (dvo_port == DVO_PORT_MIPIB ||
2180 dvo_port == DVO_PORT_MIPIC ||
2181 dvo_port == DVO_PORT_MIPID) {
2182 DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n",
2183 port_name(dvo_port - DVO_PORT_MIPIA));
2184 }
2185 }
2186
2187 return false;
2188 }
2189
2190 /**
2191 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2192 * @i915: i915 device instance
2193 * @port: port to check
2194 *
2195 * Return true if HPD should be inverted for %port.
2196 */
2197 bool
intel_bios_is_port_hpd_inverted(const struct drm_i915_private * i915,enum port port)2198 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2199 enum port port)
2200 {
2201 const struct child_device_config *child =
2202 i915->vbt.ddi_port_info[port].child;
2203
2204 if (WARN_ON_ONCE(!IS_GEN9_LP(i915)))
2205 return false;
2206
2207 return child && child->hpd_invert;
2208 }
2209
2210 /**
2211 * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2212 * @i915: i915 device instance
2213 * @port: port to check
2214 *
2215 * Return true if LSPCON is present on this port
2216 */
2217 bool
intel_bios_is_lspcon_present(const struct drm_i915_private * i915,enum port port)2218 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2219 enum port port)
2220 {
2221 const struct child_device_config *child =
2222 i915->vbt.ddi_port_info[port].child;
2223
2224 return HAS_LSPCON(i915) && child && child->lspcon;
2225 }
2226
intel_bios_port_aux_ch(struct drm_i915_private * dev_priv,enum port port)2227 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv,
2228 enum port port)
2229 {
2230 const struct ddi_vbt_port_info *info =
2231 &dev_priv->vbt.ddi_port_info[port];
2232 enum aux_ch aux_ch;
2233
2234 if (!info->alternate_aux_channel) {
2235 aux_ch = (enum aux_ch)port;
2236
2237 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
2238 aux_ch_name(aux_ch), port_name(port));
2239 return aux_ch;
2240 }
2241
2242 switch (info->alternate_aux_channel) {
2243 case DP_AUX_A:
2244 aux_ch = AUX_CH_A;
2245 break;
2246 case DP_AUX_B:
2247 aux_ch = AUX_CH_B;
2248 break;
2249 case DP_AUX_C:
2250 aux_ch = AUX_CH_C;
2251 break;
2252 case DP_AUX_D:
2253 aux_ch = AUX_CH_D;
2254 break;
2255 case DP_AUX_E:
2256 aux_ch = AUX_CH_E;
2257 break;
2258 case DP_AUX_F:
2259 aux_ch = AUX_CH_F;
2260 break;
2261 default:
2262 MISSING_CASE(info->alternate_aux_channel);
2263 aux_ch = AUX_CH_A;
2264 break;
2265 }
2266
2267 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
2268 aux_ch_name(aux_ch), port_name(port));
2269
2270 return aux_ch;
2271 }
2272