• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <linux/log2.h>
31 
32 #include <drm/i915_drm.h>
33 
34 #include "gem/i915_gem_context.h"
35 
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_context.h"
39 #include "intel_gt.h"
40 #include "intel_gt_irq.h"
41 #include "intel_gt_pm_irq.h"
42 #include "intel_reset.h"
43 #include "intel_workarounds.h"
44 
45 /* Rough estimate of the typical request size, performing a flush,
46  * set-context and then emitting the batch.
47  */
48 #define LEGACY_REQUEST_SIZE 200
49 
intel_ring_update_space(struct intel_ring * ring)50 unsigned int intel_ring_update_space(struct intel_ring *ring)
51 {
52 	unsigned int space;
53 
54 	space = __intel_ring_space(ring->head, ring->emit, ring->size);
55 
56 	ring->space = space;
57 	return space;
58 }
59 
60 static int
gen2_render_ring_flush(struct i915_request * rq,u32 mode)61 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
62 {
63 	unsigned int num_store_dw;
64 	u32 cmd, *cs;
65 
66 	cmd = MI_FLUSH;
67 	num_store_dw = 0;
68 	if (mode & EMIT_INVALIDATE)
69 		cmd |= MI_READ_FLUSH;
70 	if (mode & EMIT_FLUSH)
71 		num_store_dw = 4;
72 
73 	cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
74 	if (IS_ERR(cs))
75 		return PTR_ERR(cs);
76 
77 	*cs++ = cmd;
78 	while (num_store_dw--) {
79 		*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
80 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
81 						INTEL_GT_SCRATCH_FIELD_DEFAULT);
82 		*cs++ = 0;
83 	}
84 	*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
85 
86 	intel_ring_advance(rq, cs);
87 
88 	return 0;
89 }
90 
91 static int
gen4_render_ring_flush(struct i915_request * rq,u32 mode)92 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
93 {
94 	u32 cmd, *cs;
95 	int i;
96 
97 	/*
98 	 * read/write caches:
99 	 *
100 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
101 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
102 	 * also flushed at 2d versus 3d pipeline switches.
103 	 *
104 	 * read-only caches:
105 	 *
106 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
107 	 * MI_READ_FLUSH is set, and is always flushed on 965.
108 	 *
109 	 * I915_GEM_DOMAIN_COMMAND may not exist?
110 	 *
111 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
112 	 * invalidated when MI_EXE_FLUSH is set.
113 	 *
114 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
115 	 * invalidated with every MI_FLUSH.
116 	 *
117 	 * TLBs:
118 	 *
119 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
120 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
121 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
122 	 * are flushed at any MI_FLUSH.
123 	 */
124 
125 	cmd = MI_FLUSH;
126 	if (mode & EMIT_INVALIDATE) {
127 		cmd |= MI_EXE_FLUSH;
128 		if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
129 			cmd |= MI_INVALIDATE_ISP;
130 	}
131 
132 	i = 2;
133 	if (mode & EMIT_INVALIDATE)
134 		i += 20;
135 
136 	cs = intel_ring_begin(rq, i);
137 	if (IS_ERR(cs))
138 		return PTR_ERR(cs);
139 
140 	*cs++ = cmd;
141 
142 	/*
143 	 * A random delay to let the CS invalidate take effect? Without this
144 	 * delay, the GPU relocation path fails as the CS does not see
145 	 * the updated contents. Just as important, if we apply the flushes
146 	 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
147 	 * write and before the invalidate on the next batch), the relocations
148 	 * still fail. This implies that is a delay following invalidation
149 	 * that is required to reset the caches as opposed to a delay to
150 	 * ensure the memory is written.
151 	 */
152 	if (mode & EMIT_INVALIDATE) {
153 		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
154 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
155 						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
156 			PIPE_CONTROL_GLOBAL_GTT;
157 		*cs++ = 0;
158 		*cs++ = 0;
159 
160 		for (i = 0; i < 12; i++)
161 			*cs++ = MI_FLUSH;
162 
163 		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
164 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
165 						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
166 			PIPE_CONTROL_GLOBAL_GTT;
167 		*cs++ = 0;
168 		*cs++ = 0;
169 	}
170 
171 	*cs++ = cmd;
172 
173 	intel_ring_advance(rq, cs);
174 
175 	return 0;
176 }
177 
178 /*
179  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
180  * implementing two workarounds on gen6.  From section 1.4.7.1
181  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
182  *
183  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
184  * produced by non-pipelined state commands), software needs to first
185  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
186  * 0.
187  *
188  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
189  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
190  *
191  * And the workaround for these two requires this workaround first:
192  *
193  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
194  * BEFORE the pipe-control with a post-sync op and no write-cache
195  * flushes.
196  *
197  * And this last workaround is tricky because of the requirements on
198  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
199  * volume 2 part 1:
200  *
201  *     "1 of the following must also be set:
202  *      - Render Target Cache Flush Enable ([12] of DW1)
203  *      - Depth Cache Flush Enable ([0] of DW1)
204  *      - Stall at Pixel Scoreboard ([1] of DW1)
205  *      - Depth Stall ([13] of DW1)
206  *      - Post-Sync Operation ([13] of DW1)
207  *      - Notify Enable ([8] of DW1)"
208  *
209  * The cache flushes require the workaround flush that triggered this
210  * one, so we can't use it.  Depth stall would trigger the same.
211  * Post-sync nonzero is what triggered this second workaround, so we
212  * can't use that one either.  Notify enable is IRQs, which aren't
213  * really our business.  That leaves only stall at scoreboard.
214  */
215 static int
gen6_emit_post_sync_nonzero_flush(struct i915_request * rq)216 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
217 {
218 	u32 scratch_addr =
219 		intel_gt_scratch_offset(rq->engine->gt,
220 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
221 	u32 *cs;
222 
223 	cs = intel_ring_begin(rq, 6);
224 	if (IS_ERR(cs))
225 		return PTR_ERR(cs);
226 
227 	*cs++ = GFX_OP_PIPE_CONTROL(5);
228 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
229 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
230 	*cs++ = 0; /* low dword */
231 	*cs++ = 0; /* high dword */
232 	*cs++ = MI_NOOP;
233 	intel_ring_advance(rq, cs);
234 
235 	cs = intel_ring_begin(rq, 6);
236 	if (IS_ERR(cs))
237 		return PTR_ERR(cs);
238 
239 	*cs++ = GFX_OP_PIPE_CONTROL(5);
240 	*cs++ = PIPE_CONTROL_QW_WRITE;
241 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
242 	*cs++ = 0;
243 	*cs++ = 0;
244 	*cs++ = MI_NOOP;
245 	intel_ring_advance(rq, cs);
246 
247 	return 0;
248 }
249 
250 static int
gen6_render_ring_flush(struct i915_request * rq,u32 mode)251 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
252 {
253 	u32 scratch_addr =
254 		intel_gt_scratch_offset(rq->engine->gt,
255 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
256 	u32 *cs, flags = 0;
257 	int ret;
258 
259 	/* Force SNB workarounds for PIPE_CONTROL flushes */
260 	ret = gen6_emit_post_sync_nonzero_flush(rq);
261 	if (ret)
262 		return ret;
263 
264 	/* Just flush everything.  Experiments have shown that reducing the
265 	 * number of bits based on the write domains has little performance
266 	 * impact.
267 	 */
268 	if (mode & EMIT_FLUSH) {
269 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
270 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
271 		/*
272 		 * Ensure that any following seqno writes only happen
273 		 * when the render cache is indeed flushed.
274 		 */
275 		flags |= PIPE_CONTROL_CS_STALL;
276 	}
277 	if (mode & EMIT_INVALIDATE) {
278 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
279 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
280 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
281 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
282 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
283 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
284 		/*
285 		 * TLB invalidate requires a post-sync write.
286 		 */
287 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
288 	}
289 
290 	cs = intel_ring_begin(rq, 4);
291 	if (IS_ERR(cs))
292 		return PTR_ERR(cs);
293 
294 	*cs++ = GFX_OP_PIPE_CONTROL(4);
295 	*cs++ = flags;
296 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
297 	*cs++ = 0;
298 	intel_ring_advance(rq, cs);
299 
300 	return 0;
301 }
302 
gen6_rcs_emit_breadcrumb(struct i915_request * rq,u32 * cs)303 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
304 {
305 	/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
306 	*cs++ = GFX_OP_PIPE_CONTROL(4);
307 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
308 	*cs++ = 0;
309 	*cs++ = 0;
310 
311 	*cs++ = GFX_OP_PIPE_CONTROL(4);
312 	*cs++ = PIPE_CONTROL_QW_WRITE;
313 	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
314 					INTEL_GT_SCRATCH_FIELD_DEFAULT) |
315 		PIPE_CONTROL_GLOBAL_GTT;
316 	*cs++ = 0;
317 
318 	/* Finally we can flush and with it emit the breadcrumb */
319 	*cs++ = GFX_OP_PIPE_CONTROL(4);
320 	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
321 		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
322 		 PIPE_CONTROL_DC_FLUSH_ENABLE |
323 		 PIPE_CONTROL_QW_WRITE |
324 		 PIPE_CONTROL_CS_STALL);
325 	*cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT;
326 	*cs++ = rq->fence.seqno;
327 
328 	*cs++ = MI_USER_INTERRUPT;
329 	*cs++ = MI_NOOP;
330 
331 	rq->tail = intel_ring_offset(rq, cs);
332 	assert_ring_tail_valid(rq->ring, rq->tail);
333 
334 	return cs;
335 }
336 
337 static int
gen7_render_ring_cs_stall_wa(struct i915_request * rq)338 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
339 {
340 	u32 *cs;
341 
342 	cs = intel_ring_begin(rq, 4);
343 	if (IS_ERR(cs))
344 		return PTR_ERR(cs);
345 
346 	*cs++ = GFX_OP_PIPE_CONTROL(4);
347 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
348 	*cs++ = 0;
349 	*cs++ = 0;
350 	intel_ring_advance(rq, cs);
351 
352 	return 0;
353 }
354 
355 static int
gen7_render_ring_flush(struct i915_request * rq,u32 mode)356 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
357 {
358 	u32 scratch_addr =
359 		intel_gt_scratch_offset(rq->engine->gt,
360 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
361 	u32 *cs, flags = 0;
362 
363 	/*
364 	 * Ensure that any following seqno writes only happen when the render
365 	 * cache is indeed flushed.
366 	 *
367 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
368 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
369 	 * don't try to be clever and just set it unconditionally.
370 	 */
371 	flags |= PIPE_CONTROL_CS_STALL;
372 
373 	/* Just flush everything.  Experiments have shown that reducing the
374 	 * number of bits based on the write domains has little performance
375 	 * impact.
376 	 */
377 	if (mode & EMIT_FLUSH) {
378 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
379 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
380 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
381 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
382 	}
383 	if (mode & EMIT_INVALIDATE) {
384 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
385 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
386 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
387 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
388 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
389 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
390 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
391 		/*
392 		 * TLB invalidate requires a post-sync write.
393 		 */
394 		flags |= PIPE_CONTROL_QW_WRITE;
395 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
396 
397 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
398 
399 		/* Workaround: we must issue a pipe_control with CS-stall bit
400 		 * set before a pipe_control command that has the state cache
401 		 * invalidate bit set. */
402 		gen7_render_ring_cs_stall_wa(rq);
403 	}
404 
405 	cs = intel_ring_begin(rq, 4);
406 	if (IS_ERR(cs))
407 		return PTR_ERR(cs);
408 
409 	*cs++ = GFX_OP_PIPE_CONTROL(4);
410 	*cs++ = flags;
411 	*cs++ = scratch_addr;
412 	*cs++ = 0;
413 	intel_ring_advance(rq, cs);
414 
415 	return 0;
416 }
417 
gen7_rcs_emit_breadcrumb(struct i915_request * rq,u32 * cs)418 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
419 {
420 	*cs++ = GFX_OP_PIPE_CONTROL(4);
421 	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
422 		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
423 		 PIPE_CONTROL_DC_FLUSH_ENABLE |
424 		 PIPE_CONTROL_FLUSH_ENABLE |
425 		 PIPE_CONTROL_QW_WRITE |
426 		 PIPE_CONTROL_GLOBAL_GTT_IVB |
427 		 PIPE_CONTROL_CS_STALL);
428 	*cs++ = rq->timeline->hwsp_offset;
429 	*cs++ = rq->fence.seqno;
430 
431 	*cs++ = MI_USER_INTERRUPT;
432 	*cs++ = MI_NOOP;
433 
434 	rq->tail = intel_ring_offset(rq, cs);
435 	assert_ring_tail_valid(rq->ring, rq->tail);
436 
437 	return cs;
438 }
439 
gen6_xcs_emit_breadcrumb(struct i915_request * rq,u32 * cs)440 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
441 {
442 	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
443 	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
444 
445 	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
446 	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
447 	*cs++ = rq->fence.seqno;
448 
449 	*cs++ = MI_USER_INTERRUPT;
450 
451 	rq->tail = intel_ring_offset(rq, cs);
452 	assert_ring_tail_valid(rq->ring, rq->tail);
453 
454 	return cs;
455 }
456 
457 #define GEN7_XCS_WA 32
gen7_xcs_emit_breadcrumb(struct i915_request * rq,u32 * cs)458 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
459 {
460 	int i;
461 
462 	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
463 	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
464 
465 	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
466 	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
467 	*cs++ = rq->fence.seqno;
468 
469 	for (i = 0; i < GEN7_XCS_WA; i++) {
470 		*cs++ = MI_STORE_DWORD_INDEX;
471 		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
472 		*cs++ = rq->fence.seqno;
473 	}
474 
475 	*cs++ = MI_FLUSH_DW;
476 	*cs++ = 0;
477 	*cs++ = 0;
478 
479 	*cs++ = MI_USER_INTERRUPT;
480 	*cs++ = MI_NOOP;
481 
482 	rq->tail = intel_ring_offset(rq, cs);
483 	assert_ring_tail_valid(rq->ring, rq->tail);
484 
485 	return cs;
486 }
487 #undef GEN7_XCS_WA
488 
set_hwstam(struct intel_engine_cs * engine,u32 mask)489 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
490 {
491 	/*
492 	 * Keep the render interrupt unmasked as this papers over
493 	 * lost interrupts following a reset.
494 	 */
495 	if (engine->class == RENDER_CLASS) {
496 		if (INTEL_GEN(engine->i915) >= 6)
497 			mask &= ~BIT(0);
498 		else
499 			mask &= ~I915_USER_INTERRUPT;
500 	}
501 
502 	intel_engine_set_hwsp_writemask(engine, mask);
503 }
504 
set_hws_pga(struct intel_engine_cs * engine,phys_addr_t phys)505 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
506 {
507 	struct drm_i915_private *dev_priv = engine->i915;
508 	u32 addr;
509 
510 	addr = lower_32_bits(phys);
511 	if (INTEL_GEN(dev_priv) >= 4)
512 		addr |= (phys >> 28) & 0xf0;
513 
514 	I915_WRITE(HWS_PGA, addr);
515 }
516 
status_page(struct intel_engine_cs * engine)517 static struct page *status_page(struct intel_engine_cs *engine)
518 {
519 	struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
520 
521 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
522 	return sg_page(obj->mm.pages->sgl);
523 }
524 
ring_setup_phys_status_page(struct intel_engine_cs * engine)525 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
526 {
527 	set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
528 	set_hwstam(engine, ~0u);
529 }
530 
set_hwsp(struct intel_engine_cs * engine,u32 offset)531 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
532 {
533 	struct drm_i915_private *dev_priv = engine->i915;
534 	i915_reg_t hwsp;
535 
536 	/*
537 	 * The ring status page addresses are no longer next to the rest of
538 	 * the ring registers as of gen7.
539 	 */
540 	if (IS_GEN(dev_priv, 7)) {
541 		switch (engine->id) {
542 		/*
543 		 * No more rings exist on Gen7. Default case is only to shut up
544 		 * gcc switch check warning.
545 		 */
546 		default:
547 			GEM_BUG_ON(engine->id);
548 			/* fallthrough */
549 		case RCS0:
550 			hwsp = RENDER_HWS_PGA_GEN7;
551 			break;
552 		case BCS0:
553 			hwsp = BLT_HWS_PGA_GEN7;
554 			break;
555 		case VCS0:
556 			hwsp = BSD_HWS_PGA_GEN7;
557 			break;
558 		case VECS0:
559 			hwsp = VEBOX_HWS_PGA_GEN7;
560 			break;
561 		}
562 	} else if (IS_GEN(dev_priv, 6)) {
563 		hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
564 	} else {
565 		hwsp = RING_HWS_PGA(engine->mmio_base);
566 	}
567 
568 	I915_WRITE(hwsp, offset);
569 	POSTING_READ(hwsp);
570 }
571 
flush_cs_tlb(struct intel_engine_cs * engine)572 static void flush_cs_tlb(struct intel_engine_cs *engine)
573 {
574 	struct drm_i915_private *dev_priv = engine->i915;
575 
576 	if (!IS_GEN_RANGE(dev_priv, 6, 7))
577 		return;
578 
579 	/* ring should be idle before issuing a sync flush*/
580 	WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
581 
582 	ENGINE_WRITE(engine, RING_INSTPM,
583 		     _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
584 					INSTPM_SYNC_FLUSH));
585 	if (intel_wait_for_register(engine->uncore,
586 				    RING_INSTPM(engine->mmio_base),
587 				    INSTPM_SYNC_FLUSH, 0,
588 				    1000))
589 		DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
590 			  engine->name);
591 }
592 
ring_setup_status_page(struct intel_engine_cs * engine)593 static void ring_setup_status_page(struct intel_engine_cs *engine)
594 {
595 	set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
596 	set_hwstam(engine, ~0u);
597 
598 	flush_cs_tlb(engine);
599 }
600 
stop_ring(struct intel_engine_cs * engine)601 static bool stop_ring(struct intel_engine_cs *engine)
602 {
603 	struct drm_i915_private *dev_priv = engine->i915;
604 
605 	if (INTEL_GEN(dev_priv) > 2) {
606 		ENGINE_WRITE(engine,
607 			     RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
608 		if (intel_wait_for_register(engine->uncore,
609 					    RING_MI_MODE(engine->mmio_base),
610 					    MODE_IDLE,
611 					    MODE_IDLE,
612 					    1000)) {
613 			DRM_ERROR("%s : timed out trying to stop ring\n",
614 				  engine->name);
615 
616 			/*
617 			 * Sometimes we observe that the idle flag is not
618 			 * set even though the ring is empty. So double
619 			 * check before giving up.
620 			 */
621 			if (ENGINE_READ(engine, RING_HEAD) !=
622 			    ENGINE_READ(engine, RING_TAIL))
623 				return false;
624 		}
625 	}
626 
627 	ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
628 
629 	ENGINE_WRITE(engine, RING_HEAD, 0);
630 	ENGINE_WRITE(engine, RING_TAIL, 0);
631 
632 	/* The ring must be empty before it is disabled */
633 	ENGINE_WRITE(engine, RING_CTL, 0);
634 
635 	return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
636 }
637 
xcs_resume(struct intel_engine_cs * engine)638 static int xcs_resume(struct intel_engine_cs *engine)
639 {
640 	struct drm_i915_private *dev_priv = engine->i915;
641 	struct intel_ring *ring = engine->legacy.ring;
642 	int ret = 0;
643 
644 	GEM_TRACE("%s: ring:{HEAD:%04x, TAIL:%04x}\n",
645 		  engine->name, ring->head, ring->tail);
646 
647 	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
648 
649 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
650 	if (!stop_ring(engine)) {
651 		/* G45 ring initialization often fails to reset head to zero */
652 		DRM_DEBUG_DRIVER("%s head not reset to zero "
653 				"ctl %08x head %08x tail %08x start %08x\n",
654 				engine->name,
655 				ENGINE_READ(engine, RING_CTL),
656 				ENGINE_READ(engine, RING_HEAD),
657 				ENGINE_READ(engine, RING_TAIL),
658 				ENGINE_READ(engine, RING_START));
659 
660 		if (!stop_ring(engine)) {
661 			DRM_ERROR("failed to set %s head to zero "
662 				  "ctl %08x head %08x tail %08x start %08x\n",
663 				  engine->name,
664 				  ENGINE_READ(engine, RING_CTL),
665 				  ENGINE_READ(engine, RING_HEAD),
666 				  ENGINE_READ(engine, RING_TAIL),
667 				  ENGINE_READ(engine, RING_START));
668 			ret = -EIO;
669 			goto out;
670 		}
671 	}
672 
673 	if (HWS_NEEDS_PHYSICAL(dev_priv))
674 		ring_setup_phys_status_page(engine);
675 	else
676 		ring_setup_status_page(engine);
677 
678 	intel_engine_reset_breadcrumbs(engine);
679 
680 	/* Enforce ordering by reading HEAD register back */
681 	ENGINE_POSTING_READ(engine, RING_HEAD);
682 
683 	/*
684 	 * Initialize the ring. This must happen _after_ we've cleared the ring
685 	 * registers with the above sequence (the readback of the HEAD registers
686 	 * also enforces ordering), otherwise the hw might lose the new ring
687 	 * register values.
688 	 */
689 	ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
690 
691 	/* Check that the ring offsets point within the ring! */
692 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
693 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
694 	intel_ring_update_space(ring);
695 
696 	/* First wake the ring up to an empty/idle ring */
697 	ENGINE_WRITE(engine, RING_HEAD, ring->head);
698 	ENGINE_WRITE(engine, RING_TAIL, ring->head);
699 	ENGINE_POSTING_READ(engine, RING_TAIL);
700 
701 	ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
702 
703 	/* If the head is still not zero, the ring is dead */
704 	if (intel_wait_for_register(engine->uncore,
705 				    RING_CTL(engine->mmio_base),
706 				    RING_VALID, RING_VALID,
707 				    50)) {
708 		DRM_ERROR("%s initialization failed "
709 			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
710 			  engine->name,
711 			  ENGINE_READ(engine, RING_CTL),
712 			  ENGINE_READ(engine, RING_CTL) & RING_VALID,
713 			  ENGINE_READ(engine, RING_HEAD), ring->head,
714 			  ENGINE_READ(engine, RING_TAIL), ring->tail,
715 			  ENGINE_READ(engine, RING_START),
716 			  i915_ggtt_offset(ring->vma));
717 		ret = -EIO;
718 		goto out;
719 	}
720 
721 	if (INTEL_GEN(dev_priv) > 2)
722 		ENGINE_WRITE(engine,
723 			     RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
724 
725 	/* Now awake, let it get started */
726 	if (ring->tail != ring->head) {
727 		ENGINE_WRITE(engine, RING_TAIL, ring->tail);
728 		ENGINE_POSTING_READ(engine, RING_TAIL);
729 	}
730 
731 	/* Papering over lost _interrupts_ immediately following the restart */
732 	intel_engine_queue_breadcrumbs(engine);
733 out:
734 	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
735 
736 	return ret;
737 }
738 
reset_prepare(struct intel_engine_cs * engine)739 static void reset_prepare(struct intel_engine_cs *engine)
740 {
741 	struct intel_uncore *uncore = engine->uncore;
742 	const u32 base = engine->mmio_base;
743 
744 	/*
745 	 * We stop engines, otherwise we might get failed reset and a
746 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
747 	 * from system hang if batchbuffer is progressing when
748 	 * the reset is issued, regardless of READY_TO_RESET ack.
749 	 * Thus assume it is best to stop engines on all gens
750 	 * where we have a gpu reset.
751 	 *
752 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
753 	 *
754 	 * WaMediaResetMainRingCleanup:ctg,elk (presumably)
755 	 *
756 	 * FIXME: Wa for more modern gens needs to be validated
757 	 */
758 	GEM_TRACE("%s\n", engine->name);
759 
760 	if (intel_engine_stop_cs(engine))
761 		GEM_TRACE("%s: timed out on STOP_RING\n", engine->name);
762 
763 	intel_uncore_write_fw(uncore,
764 			      RING_HEAD(base),
765 			      intel_uncore_read_fw(uncore, RING_TAIL(base)));
766 	intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */
767 
768 	intel_uncore_write_fw(uncore, RING_HEAD(base), 0);
769 	intel_uncore_write_fw(uncore, RING_TAIL(base), 0);
770 	intel_uncore_posting_read_fw(uncore, RING_TAIL(base));
771 
772 	/* The ring must be empty before it is disabled */
773 	intel_uncore_write_fw(uncore, RING_CTL(base), 0);
774 
775 	/* Check acts as a post */
776 	if (intel_uncore_read_fw(uncore, RING_HEAD(base)))
777 		GEM_TRACE("%s: ring head [%x] not parked\n",
778 			  engine->name,
779 			  intel_uncore_read_fw(uncore, RING_HEAD(base)));
780 }
781 
reset_ring(struct intel_engine_cs * engine,bool stalled)782 static void reset_ring(struct intel_engine_cs *engine, bool stalled)
783 {
784 	struct i915_request *pos, *rq;
785 	unsigned long flags;
786 	u32 head;
787 
788 	rq = NULL;
789 	spin_lock_irqsave(&engine->active.lock, flags);
790 	list_for_each_entry(pos, &engine->active.requests, sched.link) {
791 		if (!i915_request_completed(pos)) {
792 			rq = pos;
793 			break;
794 		}
795 	}
796 
797 	/*
798 	 * The guilty request will get skipped on a hung engine.
799 	 *
800 	 * Users of client default contexts do not rely on logical
801 	 * state preserved between batches so it is safe to execute
802 	 * queued requests following the hang. Non default contexts
803 	 * rely on preserved state, so skipping a batch loses the
804 	 * evolution of the state and it needs to be considered corrupted.
805 	 * Executing more queued batches on top of corrupted state is
806 	 * risky. But we take the risk by trying to advance through
807 	 * the queued requests in order to make the client behaviour
808 	 * more predictable around resets, by not throwing away random
809 	 * amount of batches it has prepared for execution. Sophisticated
810 	 * clients can use gem_reset_stats_ioctl and dma fence status
811 	 * (exported via sync_file info ioctl on explicit fences) to observe
812 	 * when it loses the context state and should rebuild accordingly.
813 	 *
814 	 * The context ban, and ultimately the client ban, mechanism are safety
815 	 * valves if client submission ends up resulting in nothing more than
816 	 * subsequent hangs.
817 	 */
818 
819 	if (rq) {
820 		/*
821 		 * Try to restore the logical GPU state to match the
822 		 * continuation of the request queue. If we skip the
823 		 * context/PD restore, then the next request may try to execute
824 		 * assuming that its context is valid and loaded on the GPU and
825 		 * so may try to access invalid memory, prompting repeated GPU
826 		 * hangs.
827 		 *
828 		 * If the request was guilty, we still restore the logical
829 		 * state in case the next request requires it (e.g. the
830 		 * aliasing ppgtt), but skip over the hung batch.
831 		 *
832 		 * If the request was innocent, we try to replay the request
833 		 * with the restored context.
834 		 */
835 		__i915_request_reset(rq, stalled);
836 
837 		GEM_BUG_ON(rq->ring != engine->legacy.ring);
838 		head = rq->head;
839 	} else {
840 		head = engine->legacy.ring->tail;
841 	}
842 	engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head);
843 
844 	spin_unlock_irqrestore(&engine->active.lock, flags);
845 }
846 
reset_finish(struct intel_engine_cs * engine)847 static void reset_finish(struct intel_engine_cs *engine)
848 {
849 }
850 
rcs_resume(struct intel_engine_cs * engine)851 static int rcs_resume(struct intel_engine_cs *engine)
852 {
853 	struct drm_i915_private *dev_priv = engine->i915;
854 
855 	/*
856 	 * Disable CONSTANT_BUFFER before it is loaded from the context
857 	 * image. For as it is loaded, it is executed and the stored
858 	 * address may no longer be valid, leading to a GPU hang.
859 	 *
860 	 * This imposes the requirement that userspace reload their
861 	 * CONSTANT_BUFFER on every batch, fortunately a requirement
862 	 * they are already accustomed to from before contexts were
863 	 * enabled.
864 	 */
865 	if (IS_GEN(dev_priv, 4))
866 		I915_WRITE(ECOSKPD,
867 			   _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));
868 
869 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
870 	if (IS_GEN_RANGE(dev_priv, 4, 6))
871 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
872 
873 	/* We need to disable the AsyncFlip performance optimisations in order
874 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
875 	 * programmed to '1' on all products.
876 	 *
877 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
878 	 */
879 	if (IS_GEN_RANGE(dev_priv, 6, 7))
880 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
881 
882 	/* Required for the hardware to program scanline values for waiting */
883 	/* WaEnableFlushTlbInvalidationMode:snb */
884 	if (IS_GEN(dev_priv, 6))
885 		I915_WRITE(GFX_MODE,
886 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
887 
888 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
889 	if (IS_GEN(dev_priv, 7))
890 		I915_WRITE(GFX_MODE_GEN7,
891 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
892 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
893 
894 	if (IS_GEN(dev_priv, 6)) {
895 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
896 		 * "If this bit is set, STCunit will have LRA as replacement
897 		 *  policy. [...] This bit must be reset.  LRA replacement
898 		 *  policy is not supported."
899 		 */
900 		I915_WRITE(CACHE_MODE_0,
901 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
902 	}
903 
904 	if (IS_GEN_RANGE(dev_priv, 6, 7))
905 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
906 
907 	return xcs_resume(engine);
908 }
909 
cancel_requests(struct intel_engine_cs * engine)910 static void cancel_requests(struct intel_engine_cs *engine)
911 {
912 	struct i915_request *request;
913 	unsigned long flags;
914 
915 	spin_lock_irqsave(&engine->active.lock, flags);
916 
917 	/* Mark all submitted requests as skipped. */
918 	list_for_each_entry(request, &engine->active.requests, sched.link) {
919 		if (!i915_request_signaled(request))
920 			dma_fence_set_error(&request->fence, -EIO);
921 
922 		i915_request_mark_complete(request);
923 	}
924 
925 	/* Remaining _unready_ requests will be nop'ed when submitted */
926 
927 	spin_unlock_irqrestore(&engine->active.lock, flags);
928 }
929 
i9xx_submit_request(struct i915_request * request)930 static void i9xx_submit_request(struct i915_request *request)
931 {
932 	i915_request_submit(request);
933 
934 	ENGINE_WRITE(request->engine, RING_TAIL,
935 		     intel_ring_set_tail(request->ring, request->tail));
936 }
937 
i9xx_emit_breadcrumb(struct i915_request * rq,u32 * cs)938 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
939 {
940 	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
941 	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
942 
943 	*cs++ = MI_FLUSH;
944 
945 	*cs++ = MI_STORE_DWORD_INDEX;
946 	*cs++ = I915_GEM_HWS_SEQNO_ADDR;
947 	*cs++ = rq->fence.seqno;
948 
949 	*cs++ = MI_USER_INTERRUPT;
950 	*cs++ = MI_NOOP;
951 
952 	rq->tail = intel_ring_offset(rq, cs);
953 	assert_ring_tail_valid(rq->ring, rq->tail);
954 
955 	return cs;
956 }
957 
958 #define GEN5_WA_STORES 8 /* must be at least 1! */
gen5_emit_breadcrumb(struct i915_request * rq,u32 * cs)959 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
960 {
961 	int i;
962 
963 	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
964 	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
965 
966 	*cs++ = MI_FLUSH;
967 
968 	BUILD_BUG_ON(GEN5_WA_STORES < 1);
969 	for (i = 0; i < GEN5_WA_STORES; i++) {
970 		*cs++ = MI_STORE_DWORD_INDEX;
971 		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
972 		*cs++ = rq->fence.seqno;
973 	}
974 
975 	*cs++ = MI_USER_INTERRUPT;
976 
977 	rq->tail = intel_ring_offset(rq, cs);
978 	assert_ring_tail_valid(rq->ring, rq->tail);
979 
980 	return cs;
981 }
982 #undef GEN5_WA_STORES
983 
984 static void
gen5_irq_enable(struct intel_engine_cs * engine)985 gen5_irq_enable(struct intel_engine_cs *engine)
986 {
987 	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
988 }
989 
990 static void
gen5_irq_disable(struct intel_engine_cs * engine)991 gen5_irq_disable(struct intel_engine_cs *engine)
992 {
993 	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
994 }
995 
996 static void
i9xx_irq_enable(struct intel_engine_cs * engine)997 i9xx_irq_enable(struct intel_engine_cs *engine)
998 {
999 	engine->i915->irq_mask &= ~engine->irq_enable_mask;
1000 	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1001 	intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
1002 }
1003 
1004 static void
i9xx_irq_disable(struct intel_engine_cs * engine)1005 i9xx_irq_disable(struct intel_engine_cs *engine)
1006 {
1007 	engine->i915->irq_mask |= engine->irq_enable_mask;
1008 	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1009 }
1010 
1011 static void
i8xx_irq_enable(struct intel_engine_cs * engine)1012 i8xx_irq_enable(struct intel_engine_cs *engine)
1013 {
1014 	struct drm_i915_private *i915 = engine->i915;
1015 
1016 	i915->irq_mask &= ~engine->irq_enable_mask;
1017 	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1018 	ENGINE_POSTING_READ16(engine, RING_IMR);
1019 }
1020 
1021 static void
i8xx_irq_disable(struct intel_engine_cs * engine)1022 i8xx_irq_disable(struct intel_engine_cs *engine)
1023 {
1024 	struct drm_i915_private *i915 = engine->i915;
1025 
1026 	i915->irq_mask |= engine->irq_enable_mask;
1027 	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1028 }
1029 
1030 static int
bsd_ring_flush(struct i915_request * rq,u32 mode)1031 bsd_ring_flush(struct i915_request *rq, u32 mode)
1032 {
1033 	u32 *cs;
1034 
1035 	cs = intel_ring_begin(rq, 2);
1036 	if (IS_ERR(cs))
1037 		return PTR_ERR(cs);
1038 
1039 	*cs++ = MI_FLUSH;
1040 	*cs++ = MI_NOOP;
1041 	intel_ring_advance(rq, cs);
1042 	return 0;
1043 }
1044 
1045 static void
gen6_irq_enable(struct intel_engine_cs * engine)1046 gen6_irq_enable(struct intel_engine_cs *engine)
1047 {
1048 	ENGINE_WRITE(engine, RING_IMR,
1049 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
1050 
1051 	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1052 	ENGINE_POSTING_READ(engine, RING_IMR);
1053 
1054 	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
1055 }
1056 
1057 static void
gen6_irq_disable(struct intel_engine_cs * engine)1058 gen6_irq_disable(struct intel_engine_cs *engine)
1059 {
1060 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1061 	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
1062 }
1063 
1064 static void
hsw_vebox_irq_enable(struct intel_engine_cs * engine)1065 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1066 {
1067 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1068 
1069 	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1070 	ENGINE_POSTING_READ(engine, RING_IMR);
1071 
1072 	gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
1073 }
1074 
1075 static void
hsw_vebox_irq_disable(struct intel_engine_cs * engine)1076 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1077 {
1078 	ENGINE_WRITE(engine, RING_IMR, ~0);
1079 	gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
1080 }
1081 
1082 static int
i965_emit_bb_start(struct i915_request * rq,u64 offset,u32 length,unsigned int dispatch_flags)1083 i965_emit_bb_start(struct i915_request *rq,
1084 		   u64 offset, u32 length,
1085 		   unsigned int dispatch_flags)
1086 {
1087 	u32 *cs;
1088 
1089 	cs = intel_ring_begin(rq, 2);
1090 	if (IS_ERR(cs))
1091 		return PTR_ERR(cs);
1092 
1093 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1094 		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1095 	*cs++ = offset;
1096 	intel_ring_advance(rq, cs);
1097 
1098 	return 0;
1099 }
1100 
1101 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1102 #define I830_BATCH_LIMIT SZ_256K
1103 #define I830_TLB_ENTRIES (2)
1104 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1105 static int
i830_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)1106 i830_emit_bb_start(struct i915_request *rq,
1107 		   u64 offset, u32 len,
1108 		   unsigned int dispatch_flags)
1109 {
1110 	u32 *cs, cs_offset =
1111 		intel_gt_scratch_offset(rq->engine->gt,
1112 					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1113 
1114 	GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1115 
1116 	cs = intel_ring_begin(rq, 6);
1117 	if (IS_ERR(cs))
1118 		return PTR_ERR(cs);
1119 
1120 	/* Evict the invalid PTE TLBs */
1121 	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1122 	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1123 	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1124 	*cs++ = cs_offset;
1125 	*cs++ = 0xdeadbeef;
1126 	*cs++ = MI_NOOP;
1127 	intel_ring_advance(rq, cs);
1128 
1129 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1130 		if (len > I830_BATCH_LIMIT)
1131 			return -ENOSPC;
1132 
1133 		cs = intel_ring_begin(rq, 6 + 2);
1134 		if (IS_ERR(cs))
1135 			return PTR_ERR(cs);
1136 
1137 		/* Blit the batch (which has now all relocs applied) to the
1138 		 * stable batch scratch bo area (so that the CS never
1139 		 * stumbles over its tlb invalidation bug) ...
1140 		 */
1141 		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
1142 		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1143 		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1144 		*cs++ = cs_offset;
1145 		*cs++ = 4096;
1146 		*cs++ = offset;
1147 
1148 		*cs++ = MI_FLUSH;
1149 		*cs++ = MI_NOOP;
1150 		intel_ring_advance(rq, cs);
1151 
1152 		/* ... and execute it. */
1153 		offset = cs_offset;
1154 	}
1155 
1156 	cs = intel_ring_begin(rq, 2);
1157 	if (IS_ERR(cs))
1158 		return PTR_ERR(cs);
1159 
1160 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1161 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1162 		MI_BATCH_NON_SECURE);
1163 	intel_ring_advance(rq, cs);
1164 
1165 	return 0;
1166 }
1167 
1168 static int
i915_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)1169 i915_emit_bb_start(struct i915_request *rq,
1170 		   u64 offset, u32 len,
1171 		   unsigned int dispatch_flags)
1172 {
1173 	u32 *cs;
1174 
1175 	cs = intel_ring_begin(rq, 2);
1176 	if (IS_ERR(cs))
1177 		return PTR_ERR(cs);
1178 
1179 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1180 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1181 		MI_BATCH_NON_SECURE);
1182 	intel_ring_advance(rq, cs);
1183 
1184 	return 0;
1185 }
1186 
intel_ring_pin(struct intel_ring * ring)1187 int intel_ring_pin(struct intel_ring *ring)
1188 {
1189 	struct i915_vma *vma = ring->vma;
1190 	unsigned int flags;
1191 	void *addr;
1192 	int ret;
1193 
1194 	if (atomic_fetch_inc(&ring->pin_count))
1195 		return 0;
1196 
1197 	flags = PIN_GLOBAL;
1198 
1199 	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1200 	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1201 
1202 	if (vma->obj->stolen)
1203 		flags |= PIN_MAPPABLE;
1204 	else
1205 		flags |= PIN_HIGH;
1206 
1207 	ret = i915_vma_pin(vma, 0, 0, flags);
1208 	if (unlikely(ret))
1209 		goto err_unpin;
1210 
1211 	if (i915_vma_is_map_and_fenceable(vma))
1212 		addr = (void __force *)i915_vma_pin_iomap(vma);
1213 	else
1214 		addr = i915_gem_object_pin_map(vma->obj,
1215 					       i915_coherent_map_type(vma->vm->i915));
1216 	if (IS_ERR(addr)) {
1217 		ret = PTR_ERR(addr);
1218 		goto err_ring;
1219 	}
1220 
1221 	i915_vma_make_unshrinkable(vma);
1222 
1223 	GEM_BUG_ON(ring->vaddr);
1224 	ring->vaddr = addr;
1225 
1226 	return 0;
1227 
1228 err_ring:
1229 	i915_vma_unpin(vma);
1230 err_unpin:
1231 	atomic_dec(&ring->pin_count);
1232 	return ret;
1233 }
1234 
intel_ring_reset(struct intel_ring * ring,u32 tail)1235 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1236 {
1237 	tail = intel_ring_wrap(ring, tail);
1238 	ring->tail = tail;
1239 	ring->head = tail;
1240 	ring->emit = tail;
1241 	intel_ring_update_space(ring);
1242 }
1243 
intel_ring_unpin(struct intel_ring * ring)1244 void intel_ring_unpin(struct intel_ring *ring)
1245 {
1246 	struct i915_vma *vma = ring->vma;
1247 
1248 	if (!atomic_dec_and_test(&ring->pin_count))
1249 		return;
1250 
1251 	/* Discard any unused bytes beyond that submitted to hw. */
1252 	intel_ring_reset(ring, ring->emit);
1253 
1254 	i915_vma_unset_ggtt_write(vma);
1255 	if (i915_vma_is_map_and_fenceable(vma))
1256 		i915_vma_unpin_iomap(vma);
1257 	else
1258 		i915_gem_object_unpin_map(vma->obj);
1259 
1260 	GEM_BUG_ON(!ring->vaddr);
1261 	ring->vaddr = NULL;
1262 
1263 	i915_vma_unpin(vma);
1264 	i915_vma_make_purgeable(vma);
1265 }
1266 
create_ring_vma(struct i915_ggtt * ggtt,int size)1267 static struct i915_vma *create_ring_vma(struct i915_ggtt *ggtt, int size)
1268 {
1269 	struct i915_address_space *vm = &ggtt->vm;
1270 	struct drm_i915_private *i915 = vm->i915;
1271 	struct drm_i915_gem_object *obj;
1272 	struct i915_vma *vma;
1273 
1274 	obj = i915_gem_object_create_stolen(i915, size);
1275 	if (!obj)
1276 		obj = i915_gem_object_create_internal(i915, size);
1277 	if (IS_ERR(obj))
1278 		return ERR_CAST(obj);
1279 
1280 	/*
1281 	 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1282 	 * if supported by the platform's GGTT.
1283 	 */
1284 	if (vm->has_read_only)
1285 		i915_gem_object_set_readonly(obj);
1286 
1287 	vma = i915_vma_instance(obj, vm, NULL);
1288 	if (IS_ERR(vma))
1289 		goto err;
1290 
1291 	return vma;
1292 
1293 err:
1294 	i915_gem_object_put(obj);
1295 	return vma;
1296 }
1297 
1298 struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs * engine,int size)1299 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1300 {
1301 	struct drm_i915_private *i915 = engine->i915;
1302 	struct intel_ring *ring;
1303 	struct i915_vma *vma;
1304 
1305 	GEM_BUG_ON(!is_power_of_2(size));
1306 	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1307 
1308 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1309 	if (!ring)
1310 		return ERR_PTR(-ENOMEM);
1311 
1312 	kref_init(&ring->ref);
1313 
1314 	ring->size = size;
1315 	/* Workaround an erratum on the i830 which causes a hang if
1316 	 * the TAIL pointer points to within the last 2 cachelines
1317 	 * of the buffer.
1318 	 */
1319 	ring->effective_size = size;
1320 	if (IS_I830(i915) || IS_I845G(i915))
1321 		ring->effective_size -= 2 * CACHELINE_BYTES;
1322 
1323 	intel_ring_update_space(ring);
1324 
1325 	vma = create_ring_vma(engine->gt->ggtt, size);
1326 	if (IS_ERR(vma)) {
1327 		kfree(ring);
1328 		return ERR_CAST(vma);
1329 	}
1330 	ring->vma = vma;
1331 
1332 	return ring;
1333 }
1334 
intel_ring_free(struct kref * ref)1335 void intel_ring_free(struct kref *ref)
1336 {
1337 	struct intel_ring *ring = container_of(ref, typeof(*ring), ref);
1338 
1339 	i915_vma_close(ring->vma);
1340 	i915_vma_put(ring->vma);
1341 
1342 	kfree(ring);
1343 }
1344 
__ring_context_fini(struct intel_context * ce)1345 static void __ring_context_fini(struct intel_context *ce)
1346 {
1347 	i915_gem_object_put(ce->state->obj);
1348 }
1349 
ring_context_destroy(struct kref * ref)1350 static void ring_context_destroy(struct kref *ref)
1351 {
1352 	struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1353 
1354 	GEM_BUG_ON(intel_context_is_pinned(ce));
1355 
1356 	if (ce->state)
1357 		__ring_context_fini(ce);
1358 
1359 	intel_context_fini(ce);
1360 	intel_context_free(ce);
1361 }
1362 
vm_alias(struct intel_context * ce)1363 static struct i915_address_space *vm_alias(struct intel_context *ce)
1364 {
1365 	struct i915_address_space *vm;
1366 
1367 	vm = ce->vm;
1368 	if (i915_is_ggtt(vm))
1369 		vm = &i915_vm_to_ggtt(vm)->alias->vm;
1370 
1371 	return vm;
1372 }
1373 
__context_pin_ppgtt(struct intel_context * ce)1374 static int __context_pin_ppgtt(struct intel_context *ce)
1375 {
1376 	struct i915_address_space *vm;
1377 	int err = 0;
1378 
1379 	vm = vm_alias(ce);
1380 	if (vm)
1381 		err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1382 
1383 	return err;
1384 }
1385 
__context_unpin_ppgtt(struct intel_context * ce)1386 static void __context_unpin_ppgtt(struct intel_context *ce)
1387 {
1388 	struct i915_address_space *vm;
1389 
1390 	vm = vm_alias(ce);
1391 	if (vm)
1392 		gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1393 }
1394 
ring_context_unpin(struct intel_context * ce)1395 static void ring_context_unpin(struct intel_context *ce)
1396 {
1397 	__context_unpin_ppgtt(ce);
1398 }
1399 
1400 static struct i915_vma *
alloc_context_vma(struct intel_engine_cs * engine)1401 alloc_context_vma(struct intel_engine_cs *engine)
1402 {
1403 	struct drm_i915_private *i915 = engine->i915;
1404 	struct drm_i915_gem_object *obj;
1405 	struct i915_vma *vma;
1406 	int err;
1407 
1408 	obj = i915_gem_object_create_shmem(i915, engine->context_size);
1409 	if (IS_ERR(obj))
1410 		return ERR_CAST(obj);
1411 
1412 	/*
1413 	 * Try to make the context utilize L3 as well as LLC.
1414 	 *
1415 	 * On VLV we don't have L3 controls in the PTEs so we
1416 	 * shouldn't touch the cache level, especially as that
1417 	 * would make the object snooped which might have a
1418 	 * negative performance impact.
1419 	 *
1420 	 * Snooping is required on non-llc platforms in execlist
1421 	 * mode, but since all GGTT accesses use PAT entry 0 we
1422 	 * get snooping anyway regardless of cache_level.
1423 	 *
1424 	 * This is only applicable for Ivy Bridge devices since
1425 	 * later platforms don't have L3 control bits in the PTE.
1426 	 */
1427 	if (IS_IVYBRIDGE(i915))
1428 		i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1429 
1430 	if (engine->default_state) {
1431 		void *defaults, *vaddr;
1432 
1433 		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1434 		if (IS_ERR(vaddr)) {
1435 			err = PTR_ERR(vaddr);
1436 			goto err_obj;
1437 		}
1438 
1439 		defaults = i915_gem_object_pin_map(engine->default_state,
1440 						   I915_MAP_WB);
1441 		if (IS_ERR(defaults)) {
1442 			err = PTR_ERR(defaults);
1443 			goto err_map;
1444 		}
1445 
1446 		memcpy(vaddr, defaults, engine->context_size);
1447 		i915_gem_object_unpin_map(engine->default_state);
1448 
1449 		i915_gem_object_flush_map(obj);
1450 		i915_gem_object_unpin_map(obj);
1451 	}
1452 
1453 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1454 	if (IS_ERR(vma)) {
1455 		err = PTR_ERR(vma);
1456 		goto err_obj;
1457 	}
1458 
1459 	return vma;
1460 
1461 err_map:
1462 	i915_gem_object_unpin_map(obj);
1463 err_obj:
1464 	i915_gem_object_put(obj);
1465 	return ERR_PTR(err);
1466 }
1467 
ring_context_alloc(struct intel_context * ce)1468 static int ring_context_alloc(struct intel_context *ce)
1469 {
1470 	struct intel_engine_cs *engine = ce->engine;
1471 
1472 	/* One ringbuffer to rule them all */
1473 	GEM_BUG_ON(!engine->legacy.ring);
1474 	ce->ring = engine->legacy.ring;
1475 	ce->timeline = intel_timeline_get(engine->legacy.timeline);
1476 
1477 	GEM_BUG_ON(ce->state);
1478 	if (engine->context_size) {
1479 		struct i915_vma *vma;
1480 
1481 		vma = alloc_context_vma(engine);
1482 		if (IS_ERR(vma))
1483 			return PTR_ERR(vma);
1484 
1485 		ce->state = vma;
1486 	}
1487 
1488 	return 0;
1489 }
1490 
ring_context_pin(struct intel_context * ce)1491 static int ring_context_pin(struct intel_context *ce)
1492 {
1493 	int err;
1494 
1495 	err = intel_context_active_acquire(ce);
1496 	if (err)
1497 		return err;
1498 
1499 	err = __context_pin_ppgtt(ce);
1500 	if (err)
1501 		goto err_active;
1502 
1503 	return 0;
1504 
1505 err_active:
1506 	intel_context_active_release(ce);
1507 	return err;
1508 }
1509 
ring_context_reset(struct intel_context * ce)1510 static void ring_context_reset(struct intel_context *ce)
1511 {
1512 	intel_ring_reset(ce->ring, 0);
1513 }
1514 
1515 static const struct intel_context_ops ring_context_ops = {
1516 	.alloc = ring_context_alloc,
1517 
1518 	.pin = ring_context_pin,
1519 	.unpin = ring_context_unpin,
1520 
1521 	.enter = intel_context_enter_engine,
1522 	.exit = intel_context_exit_engine,
1523 
1524 	.reset = ring_context_reset,
1525 	.destroy = ring_context_destroy,
1526 };
1527 
load_pd_dir(struct i915_request * rq,const struct i915_ppgtt * ppgtt)1528 static int load_pd_dir(struct i915_request *rq, const struct i915_ppgtt *ppgtt)
1529 {
1530 	const struct intel_engine_cs * const engine = rq->engine;
1531 	u32 *cs;
1532 
1533 	cs = intel_ring_begin(rq, 6);
1534 	if (IS_ERR(cs))
1535 		return PTR_ERR(cs);
1536 
1537 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1538 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1539 	*cs++ = PP_DIR_DCLV_2G;
1540 
1541 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1542 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1543 	*cs++ = px_base(ppgtt->pd)->ggtt_offset << 10;
1544 
1545 	intel_ring_advance(rq, cs);
1546 
1547 	return 0;
1548 }
1549 
flush_pd_dir(struct i915_request * rq)1550 static int flush_pd_dir(struct i915_request *rq)
1551 {
1552 	const struct intel_engine_cs * const engine = rq->engine;
1553 	u32 *cs;
1554 
1555 	cs = intel_ring_begin(rq, 4);
1556 	if (IS_ERR(cs))
1557 		return PTR_ERR(cs);
1558 
1559 	/* Stall until the page table load is complete */
1560 	*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1561 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1562 	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
1563 					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1564 	*cs++ = MI_NOOP;
1565 
1566 	intel_ring_advance(rq, cs);
1567 	return 0;
1568 }
1569 
mi_set_context(struct i915_request * rq,u32 flags)1570 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1571 {
1572 	struct drm_i915_private *i915 = rq->i915;
1573 	struct intel_engine_cs *engine = rq->engine;
1574 	enum intel_engine_id id;
1575 	const int num_engines =
1576 		IS_HASWELL(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1577 	bool force_restore = false;
1578 	int len;
1579 	u32 *cs;
1580 
1581 	flags |= MI_MM_SPACE_GTT;
1582 	if (IS_HASWELL(i915))
1583 		/* These flags are for resource streamer on HSW+ */
1584 		flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1585 	else
1586 		/* We need to save the extended state for powersaving modes */
1587 		flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1588 
1589 	len = 4;
1590 	if (IS_GEN(i915, 7))
1591 		len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1592 	else if (IS_GEN(i915, 5))
1593 		len += 2;
1594 	if (flags & MI_FORCE_RESTORE) {
1595 		GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1596 		flags &= ~MI_FORCE_RESTORE;
1597 		force_restore = true;
1598 		len += 2;
1599 	}
1600 
1601 	cs = intel_ring_begin(rq, len);
1602 	if (IS_ERR(cs))
1603 		return PTR_ERR(cs);
1604 
1605 	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1606 	if (IS_GEN(i915, 7)) {
1607 		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1608 		if (num_engines) {
1609 			struct intel_engine_cs *signaller;
1610 
1611 			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1612 			for_each_engine(signaller, i915, id) {
1613 				if (signaller == engine)
1614 					continue;
1615 
1616 				*cs++ = i915_mmio_reg_offset(
1617 					   RING_PSMI_CTL(signaller->mmio_base));
1618 				*cs++ = _MASKED_BIT_ENABLE(
1619 						GEN6_PSMI_SLEEP_MSG_DISABLE);
1620 			}
1621 		}
1622 	} else if (IS_GEN(i915, 5)) {
1623 		/*
1624 		 * This w/a is only listed for pre-production ilk a/b steppings,
1625 		 * but is also mentioned for programming the powerctx. To be
1626 		 * safe, just apply the workaround; we do not use SyncFlush so
1627 		 * this should never take effect and so be a no-op!
1628 		 */
1629 		*cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1630 	}
1631 
1632 	if (force_restore) {
1633 		/*
1634 		 * The HW doesn't handle being told to restore the current
1635 		 * context very well. Quite often it likes goes to go off and
1636 		 * sulk, especially when it is meant to be reloading PP_DIR.
1637 		 * A very simple fix to force the reload is to simply switch
1638 		 * away from the current context and back again.
1639 		 *
1640 		 * Note that the kernel_context will contain random state
1641 		 * following the INHIBIT_RESTORE. We accept this since we
1642 		 * never use the kernel_context state; it is merely a
1643 		 * placeholder we use to flush other contexts.
1644 		 */
1645 		*cs++ = MI_SET_CONTEXT;
1646 		*cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1647 			MI_MM_SPACE_GTT |
1648 			MI_RESTORE_INHIBIT;
1649 	}
1650 
1651 	*cs++ = MI_NOOP;
1652 	*cs++ = MI_SET_CONTEXT;
1653 	*cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1654 	/*
1655 	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1656 	 * WaMiSetContext_Hang:snb,ivb,vlv
1657 	 */
1658 	*cs++ = MI_NOOP;
1659 
1660 	if (IS_GEN(i915, 7)) {
1661 		if (num_engines) {
1662 			struct intel_engine_cs *signaller;
1663 			i915_reg_t last_reg = {}; /* keep gcc quiet */
1664 
1665 			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1666 			for_each_engine(signaller, i915, id) {
1667 				if (signaller == engine)
1668 					continue;
1669 
1670 				last_reg = RING_PSMI_CTL(signaller->mmio_base);
1671 				*cs++ = i915_mmio_reg_offset(last_reg);
1672 				*cs++ = _MASKED_BIT_DISABLE(
1673 						GEN6_PSMI_SLEEP_MSG_DISABLE);
1674 			}
1675 
1676 			/* Insert a delay before the next switch! */
1677 			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1678 			*cs++ = i915_mmio_reg_offset(last_reg);
1679 			*cs++ = intel_gt_scratch_offset(rq->engine->gt,
1680 							INTEL_GT_SCRATCH_FIELD_DEFAULT);
1681 			*cs++ = MI_NOOP;
1682 		}
1683 		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1684 	} else if (IS_GEN(i915, 5)) {
1685 		*cs++ = MI_SUSPEND_FLUSH;
1686 	}
1687 
1688 	intel_ring_advance(rq, cs);
1689 
1690 	return 0;
1691 }
1692 
remap_l3_slice(struct i915_request * rq,int slice)1693 static int remap_l3_slice(struct i915_request *rq, int slice)
1694 {
1695 	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1696 	int i;
1697 
1698 	if (!remap_info)
1699 		return 0;
1700 
1701 	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1702 	if (IS_ERR(cs))
1703 		return PTR_ERR(cs);
1704 
1705 	/*
1706 	 * Note: We do not worry about the concurrent register cacheline hang
1707 	 * here because no other code should access these registers other than
1708 	 * at initialization time.
1709 	 */
1710 	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1711 	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1712 		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1713 		*cs++ = remap_info[i];
1714 	}
1715 	*cs++ = MI_NOOP;
1716 	intel_ring_advance(rq, cs);
1717 
1718 	return 0;
1719 }
1720 
remap_l3(struct i915_request * rq)1721 static int remap_l3(struct i915_request *rq)
1722 {
1723 	struct i915_gem_context *ctx = rq->gem_context;
1724 	int i, err;
1725 
1726 	if (!ctx->remap_slice)
1727 		return 0;
1728 
1729 	for (i = 0; i < MAX_L3_SLICES; i++) {
1730 		if (!(ctx->remap_slice & BIT(i)))
1731 			continue;
1732 
1733 		err = remap_l3_slice(rq, i);
1734 		if (err)
1735 			return err;
1736 	}
1737 
1738 	ctx->remap_slice = 0;
1739 	return 0;
1740 }
1741 
switch_context(struct i915_request * rq)1742 static int switch_context(struct i915_request *rq)
1743 {
1744 	struct intel_engine_cs *engine = rq->engine;
1745 	struct i915_address_space *vm = vm_alias(rq->hw_context);
1746 	unsigned int unwind_mm = 0;
1747 	u32 hw_flags = 0;
1748 	int ret;
1749 
1750 	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1751 
1752 	if (vm) {
1753 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1754 		int loops;
1755 
1756 		/*
1757 		 * Baytail takes a little more convincing that it really needs
1758 		 * to reload the PD between contexts. It is not just a little
1759 		 * longer, as adding more stalls after the load_pd_dir (i.e.
1760 		 * adding a long loop around flush_pd_dir) is not as effective
1761 		 * as reloading the PD umpteen times. 32 is derived from
1762 		 * experimentation (gem_exec_parallel/fds) and has no good
1763 		 * explanation.
1764 		 */
1765 		loops = 1;
1766 		if (engine->id == BCS0 && IS_VALLEYVIEW(engine->i915))
1767 			loops = 32;
1768 
1769 		do {
1770 			ret = load_pd_dir(rq, ppgtt);
1771 			if (ret)
1772 				goto err;
1773 		} while (--loops);
1774 
1775 		if (ppgtt->pd_dirty_engines & engine->mask) {
1776 			unwind_mm = engine->mask;
1777 			ppgtt->pd_dirty_engines &= ~unwind_mm;
1778 			hw_flags = MI_FORCE_RESTORE;
1779 		}
1780 	}
1781 
1782 	if (rq->hw_context->state) {
1783 		GEM_BUG_ON(engine->id != RCS0);
1784 
1785 		/*
1786 		 * The kernel context(s) is treated as pure scratch and is not
1787 		 * expected to retain any state (as we sacrifice it during
1788 		 * suspend and on resume it may be corrupted). This is ok,
1789 		 * as nothing actually executes using the kernel context; it
1790 		 * is purely used for flushing user contexts.
1791 		 */
1792 		if (i915_gem_context_is_kernel(rq->gem_context))
1793 			hw_flags = MI_RESTORE_INHIBIT;
1794 
1795 		ret = mi_set_context(rq, hw_flags);
1796 		if (ret)
1797 			goto err_mm;
1798 	}
1799 
1800 	if (vm) {
1801 		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1802 		if (ret)
1803 			goto err_mm;
1804 
1805 		ret = flush_pd_dir(rq);
1806 		if (ret)
1807 			goto err_mm;
1808 
1809 		/*
1810 		 * Not only do we need a full barrier (post-sync write) after
1811 		 * invalidating the TLBs, but we need to wait a little bit
1812 		 * longer. Whether this is merely delaying us, or the
1813 		 * subsequent flush is a key part of serialising with the
1814 		 * post-sync op, this extra pass appears vital before a
1815 		 * mm switch!
1816 		 */
1817 		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1818 		if (ret)
1819 			goto err_mm;
1820 
1821 		ret = engine->emit_flush(rq, EMIT_FLUSH);
1822 		if (ret)
1823 			goto err_mm;
1824 	}
1825 
1826 	ret = remap_l3(rq);
1827 	if (ret)
1828 		goto err_mm;
1829 
1830 	return 0;
1831 
1832 err_mm:
1833 	if (unwind_mm)
1834 		i915_vm_to_ppgtt(vm)->pd_dirty_engines |= unwind_mm;
1835 err:
1836 	return ret;
1837 }
1838 
ring_request_alloc(struct i915_request * request)1839 static int ring_request_alloc(struct i915_request *request)
1840 {
1841 	int ret;
1842 
1843 	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1844 	GEM_BUG_ON(request->timeline->has_initial_breadcrumb);
1845 
1846 	/*
1847 	 * Flush enough space to reduce the likelihood of waiting after
1848 	 * we start building the request - in which case we will just
1849 	 * have to repeat work.
1850 	 */
1851 	request->reserved_space += LEGACY_REQUEST_SIZE;
1852 
1853 	/* Unconditionally invalidate GPU caches and TLBs. */
1854 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1855 	if (ret)
1856 		return ret;
1857 
1858 	ret = switch_context(request);
1859 	if (ret)
1860 		return ret;
1861 
1862 	request->reserved_space -= LEGACY_REQUEST_SIZE;
1863 	return 0;
1864 }
1865 
1866 static noinline int
wait_for_space(struct intel_ring * ring,struct intel_timeline * tl,unsigned int bytes)1867 wait_for_space(struct intel_ring *ring,
1868 	       struct intel_timeline *tl,
1869 	       unsigned int bytes)
1870 {
1871 	struct i915_request *target;
1872 	long timeout;
1873 
1874 	if (intel_ring_update_space(ring) >= bytes)
1875 		return 0;
1876 
1877 	GEM_BUG_ON(list_empty(&tl->requests));
1878 	list_for_each_entry(target, &tl->requests, link) {
1879 		if (target->ring != ring)
1880 			continue;
1881 
1882 		/* Would completion of this request free enough space? */
1883 		if (bytes <= __intel_ring_space(target->postfix,
1884 						ring->emit, ring->size))
1885 			break;
1886 	}
1887 
1888 	if (GEM_WARN_ON(&target->link == &tl->requests))
1889 		return -ENOSPC;
1890 
1891 	timeout = i915_request_wait(target,
1892 				    I915_WAIT_INTERRUPTIBLE,
1893 				    MAX_SCHEDULE_TIMEOUT);
1894 	if (timeout < 0)
1895 		return timeout;
1896 
1897 	i915_request_retire_upto(target);
1898 
1899 	intel_ring_update_space(ring);
1900 	GEM_BUG_ON(ring->space < bytes);
1901 	return 0;
1902 }
1903 
intel_ring_begin(struct i915_request * rq,unsigned int num_dwords)1904 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1905 {
1906 	struct intel_ring *ring = rq->ring;
1907 	const unsigned int remain_usable = ring->effective_size - ring->emit;
1908 	const unsigned int bytes = num_dwords * sizeof(u32);
1909 	unsigned int need_wrap = 0;
1910 	unsigned int total_bytes;
1911 	u32 *cs;
1912 
1913 	/* Packets must be qword aligned. */
1914 	GEM_BUG_ON(num_dwords & 1);
1915 
1916 	total_bytes = bytes + rq->reserved_space;
1917 	GEM_BUG_ON(total_bytes > ring->effective_size);
1918 
1919 	if (unlikely(total_bytes > remain_usable)) {
1920 		const int remain_actual = ring->size - ring->emit;
1921 
1922 		if (bytes > remain_usable) {
1923 			/*
1924 			 * Not enough space for the basic request. So need to
1925 			 * flush out the remainder and then wait for
1926 			 * base + reserved.
1927 			 */
1928 			total_bytes += remain_actual;
1929 			need_wrap = remain_actual | 1;
1930 		} else  {
1931 			/*
1932 			 * The base request will fit but the reserved space
1933 			 * falls off the end. So we don't need an immediate
1934 			 * wrap and only need to effectively wait for the
1935 			 * reserved size from the start of ringbuffer.
1936 			 */
1937 			total_bytes = rq->reserved_space + remain_actual;
1938 		}
1939 	}
1940 
1941 	if (unlikely(total_bytes > ring->space)) {
1942 		int ret;
1943 
1944 		/*
1945 		 * Space is reserved in the ringbuffer for finalising the
1946 		 * request, as that cannot be allowed to fail. During request
1947 		 * finalisation, reserved_space is set to 0 to stop the
1948 		 * overallocation and the assumption is that then we never need
1949 		 * to wait (which has the risk of failing with EINTR).
1950 		 *
1951 		 * See also i915_request_alloc() and i915_request_add().
1952 		 */
1953 		GEM_BUG_ON(!rq->reserved_space);
1954 
1955 		ret = wait_for_space(ring, rq->timeline, total_bytes);
1956 		if (unlikely(ret))
1957 			return ERR_PTR(ret);
1958 	}
1959 
1960 	if (unlikely(need_wrap)) {
1961 		need_wrap &= ~1;
1962 		GEM_BUG_ON(need_wrap > ring->space);
1963 		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1964 		GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1965 
1966 		/* Fill the tail with MI_NOOP */
1967 		memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1968 		ring->space -= need_wrap;
1969 		ring->emit = 0;
1970 	}
1971 
1972 	GEM_BUG_ON(ring->emit > ring->size - bytes);
1973 	GEM_BUG_ON(ring->space < bytes);
1974 	cs = ring->vaddr + ring->emit;
1975 	GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1976 	ring->emit += bytes;
1977 	ring->space -= bytes;
1978 
1979 	return cs;
1980 }
1981 
1982 /* Align the ring tail to a cacheline boundary */
intel_ring_cacheline_align(struct i915_request * rq)1983 int intel_ring_cacheline_align(struct i915_request *rq)
1984 {
1985 	int num_dwords;
1986 	void *cs;
1987 
1988 	num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1989 	if (num_dwords == 0)
1990 		return 0;
1991 
1992 	num_dwords = CACHELINE_DWORDS - num_dwords;
1993 	GEM_BUG_ON(num_dwords & 1);
1994 
1995 	cs = intel_ring_begin(rq, num_dwords);
1996 	if (IS_ERR(cs))
1997 		return PTR_ERR(cs);
1998 
1999 	memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
2000 	intel_ring_advance(rq, cs);
2001 
2002 	GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
2003 	return 0;
2004 }
2005 
gen6_bsd_submit_request(struct i915_request * request)2006 static void gen6_bsd_submit_request(struct i915_request *request)
2007 {
2008 	struct intel_uncore *uncore = request->engine->uncore;
2009 
2010 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2011 
2012        /* Every tail move must follow the sequence below */
2013 
2014 	/* Disable notification that the ring is IDLE. The GT
2015 	 * will then assume that it is busy and bring it out of rc6.
2016 	 */
2017 	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2018 			      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2019 
2020 	/* Clear the context id. Here be magic! */
2021 	intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
2022 
2023 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2024 	if (__intel_wait_for_register_fw(uncore,
2025 					 GEN6_BSD_SLEEP_PSMI_CONTROL,
2026 					 GEN6_BSD_SLEEP_INDICATOR,
2027 					 0,
2028 					 1000, 0, NULL))
2029 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2030 
2031 	/* Now that the ring is fully powered up, update the tail */
2032 	i9xx_submit_request(request);
2033 
2034 	/* Let the ring send IDLE messages to the GT again,
2035 	 * and so let it sleep to conserve power when idle.
2036 	 */
2037 	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2038 			      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2039 
2040 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2041 }
2042 
mi_flush_dw(struct i915_request * rq,u32 flags)2043 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2044 {
2045 	u32 cmd, *cs;
2046 
2047 	cs = intel_ring_begin(rq, 4);
2048 	if (IS_ERR(cs))
2049 		return PTR_ERR(cs);
2050 
2051 	cmd = MI_FLUSH_DW;
2052 
2053 	/*
2054 	 * We always require a command barrier so that subsequent
2055 	 * commands, such as breadcrumb interrupts, are strictly ordered
2056 	 * wrt the contents of the write cache being flushed to memory
2057 	 * (and thus being coherent from the CPU).
2058 	 */
2059 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2060 
2061 	/*
2062 	 * Bspec vol 1c.3 - blitter engine command streamer:
2063 	 * "If ENABLED, all TLBs will be invalidated once the flush
2064 	 * operation is complete. This bit is only valid when the
2065 	 * Post-Sync Operation field is a value of 1h or 3h."
2066 	 */
2067 	cmd |= flags;
2068 
2069 	*cs++ = cmd;
2070 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2071 	*cs++ = 0;
2072 	*cs++ = MI_NOOP;
2073 
2074 	intel_ring_advance(rq, cs);
2075 
2076 	return 0;
2077 }
2078 
gen6_flush_dw(struct i915_request * rq,u32 mode,u32 invflags)2079 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2080 {
2081 	return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2082 }
2083 
gen6_bsd_ring_flush(struct i915_request * rq,u32 mode)2084 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2085 {
2086 	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2087 }
2088 
2089 static int
hsw_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)2090 hsw_emit_bb_start(struct i915_request *rq,
2091 		  u64 offset, u32 len,
2092 		  unsigned int dispatch_flags)
2093 {
2094 	u32 *cs;
2095 
2096 	cs = intel_ring_begin(rq, 2);
2097 	if (IS_ERR(cs))
2098 		return PTR_ERR(cs);
2099 
2100 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2101 		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2102 	/* bit0-7 is the length on GEN6+ */
2103 	*cs++ = offset;
2104 	intel_ring_advance(rq, cs);
2105 
2106 	return 0;
2107 }
2108 
2109 static int
gen6_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)2110 gen6_emit_bb_start(struct i915_request *rq,
2111 		   u64 offset, u32 len,
2112 		   unsigned int dispatch_flags)
2113 {
2114 	u32 *cs;
2115 
2116 	cs = intel_ring_begin(rq, 2);
2117 	if (IS_ERR(cs))
2118 		return PTR_ERR(cs);
2119 
2120 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2121 		0 : MI_BATCH_NON_SECURE_I965);
2122 	/* bit0-7 is the length on GEN6+ */
2123 	*cs++ = offset;
2124 	intel_ring_advance(rq, cs);
2125 
2126 	return 0;
2127 }
2128 
2129 /* Blitter support (SandyBridge+) */
2130 
gen6_ring_flush(struct i915_request * rq,u32 mode)2131 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2132 {
2133 	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2134 }
2135 
i9xx_set_default_submission(struct intel_engine_cs * engine)2136 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2137 {
2138 	engine->submit_request = i9xx_submit_request;
2139 	engine->cancel_requests = cancel_requests;
2140 
2141 	engine->park = NULL;
2142 	engine->unpark = NULL;
2143 }
2144 
gen6_bsd_set_default_submission(struct intel_engine_cs * engine)2145 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2146 {
2147 	i9xx_set_default_submission(engine);
2148 	engine->submit_request = gen6_bsd_submit_request;
2149 }
2150 
ring_destroy(struct intel_engine_cs * engine)2151 static void ring_destroy(struct intel_engine_cs *engine)
2152 {
2153 	struct drm_i915_private *dev_priv = engine->i915;
2154 
2155 	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2156 		(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
2157 
2158 	intel_engine_cleanup_common(engine);
2159 
2160 	intel_ring_unpin(engine->legacy.ring);
2161 	intel_ring_put(engine->legacy.ring);
2162 
2163 	intel_timeline_unpin(engine->legacy.timeline);
2164 	intel_timeline_put(engine->legacy.timeline);
2165 
2166 	kfree(engine);
2167 }
2168 
setup_irq(struct intel_engine_cs * engine)2169 static void setup_irq(struct intel_engine_cs *engine)
2170 {
2171 	struct drm_i915_private *i915 = engine->i915;
2172 
2173 	if (INTEL_GEN(i915) >= 6) {
2174 		engine->irq_enable = gen6_irq_enable;
2175 		engine->irq_disable = gen6_irq_disable;
2176 	} else if (INTEL_GEN(i915) >= 5) {
2177 		engine->irq_enable = gen5_irq_enable;
2178 		engine->irq_disable = gen5_irq_disable;
2179 	} else if (INTEL_GEN(i915) >= 3) {
2180 		engine->irq_enable = i9xx_irq_enable;
2181 		engine->irq_disable = i9xx_irq_disable;
2182 	} else {
2183 		engine->irq_enable = i8xx_irq_enable;
2184 		engine->irq_disable = i8xx_irq_disable;
2185 	}
2186 }
2187 
setup_common(struct intel_engine_cs * engine)2188 static void setup_common(struct intel_engine_cs *engine)
2189 {
2190 	struct drm_i915_private *i915 = engine->i915;
2191 
2192 	/* gen8+ are only supported with execlists */
2193 	GEM_BUG_ON(INTEL_GEN(i915) >= 8);
2194 
2195 	setup_irq(engine);
2196 
2197 	engine->destroy = ring_destroy;
2198 
2199 	engine->resume = xcs_resume;
2200 	engine->reset.prepare = reset_prepare;
2201 	engine->reset.reset = reset_ring;
2202 	engine->reset.finish = reset_finish;
2203 
2204 	engine->cops = &ring_context_ops;
2205 	engine->request_alloc = ring_request_alloc;
2206 
2207 	/*
2208 	 * Using a global execution timeline; the previous final breadcrumb is
2209 	 * equivalent to our next initial bread so we can elide
2210 	 * engine->emit_init_breadcrumb().
2211 	 */
2212 	engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
2213 	if (IS_GEN(i915, 5))
2214 		engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
2215 
2216 	engine->set_default_submission = i9xx_set_default_submission;
2217 
2218 	if (INTEL_GEN(i915) >= 6)
2219 		engine->emit_bb_start = gen6_emit_bb_start;
2220 	else if (INTEL_GEN(i915) >= 4)
2221 		engine->emit_bb_start = i965_emit_bb_start;
2222 	else if (IS_I830(i915) || IS_I845G(i915))
2223 		engine->emit_bb_start = i830_emit_bb_start;
2224 	else
2225 		engine->emit_bb_start = i915_emit_bb_start;
2226 }
2227 
setup_rcs(struct intel_engine_cs * engine)2228 static void setup_rcs(struct intel_engine_cs *engine)
2229 {
2230 	struct drm_i915_private *i915 = engine->i915;
2231 
2232 	if (HAS_L3_DPF(i915))
2233 		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2234 
2235 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2236 
2237 	if (INTEL_GEN(i915) >= 7) {
2238 		engine->emit_flush = gen7_render_ring_flush;
2239 		engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
2240 	} else if (IS_GEN(i915, 6)) {
2241 		engine->emit_flush = gen6_render_ring_flush;
2242 		engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
2243 	} else if (IS_GEN(i915, 5)) {
2244 		engine->emit_flush = gen4_render_ring_flush;
2245 	} else {
2246 		if (INTEL_GEN(i915) < 4)
2247 			engine->emit_flush = gen2_render_ring_flush;
2248 		else
2249 			engine->emit_flush = gen4_render_ring_flush;
2250 		engine->irq_enable_mask = I915_USER_INTERRUPT;
2251 	}
2252 
2253 	if (IS_HASWELL(i915))
2254 		engine->emit_bb_start = hsw_emit_bb_start;
2255 
2256 	engine->resume = rcs_resume;
2257 }
2258 
setup_vcs(struct intel_engine_cs * engine)2259 static void setup_vcs(struct intel_engine_cs *engine)
2260 {
2261 	struct drm_i915_private *i915 = engine->i915;
2262 
2263 	if (INTEL_GEN(i915) >= 6) {
2264 		/* gen6 bsd needs a special wa for tail updates */
2265 		if (IS_GEN(i915, 6))
2266 			engine->set_default_submission = gen6_bsd_set_default_submission;
2267 		engine->emit_flush = gen6_bsd_ring_flush;
2268 		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2269 
2270 		if (IS_GEN(i915, 6))
2271 			engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2272 		else
2273 			engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2274 	} else {
2275 		engine->emit_flush = bsd_ring_flush;
2276 		if (IS_GEN(i915, 5))
2277 			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2278 		else
2279 			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2280 	}
2281 }
2282 
setup_bcs(struct intel_engine_cs * engine)2283 static void setup_bcs(struct intel_engine_cs *engine)
2284 {
2285 	struct drm_i915_private *i915 = engine->i915;
2286 
2287 	engine->emit_flush = gen6_ring_flush;
2288 	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2289 
2290 	if (IS_GEN(i915, 6))
2291 		engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2292 	else
2293 		engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2294 }
2295 
setup_vecs(struct intel_engine_cs * engine)2296 static void setup_vecs(struct intel_engine_cs *engine)
2297 {
2298 	struct drm_i915_private *i915 = engine->i915;
2299 
2300 	GEM_BUG_ON(INTEL_GEN(i915) < 7);
2301 
2302 	engine->emit_flush = gen6_ring_flush;
2303 	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2304 	engine->irq_enable = hsw_vebox_irq_enable;
2305 	engine->irq_disable = hsw_vebox_irq_disable;
2306 
2307 	engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2308 }
2309 
intel_ring_submission_setup(struct intel_engine_cs * engine)2310 int intel_ring_submission_setup(struct intel_engine_cs *engine)
2311 {
2312 	setup_common(engine);
2313 
2314 	switch (engine->class) {
2315 	case RENDER_CLASS:
2316 		setup_rcs(engine);
2317 		break;
2318 	case VIDEO_DECODE_CLASS:
2319 		setup_vcs(engine);
2320 		break;
2321 	case COPY_ENGINE_CLASS:
2322 		setup_bcs(engine);
2323 		break;
2324 	case VIDEO_ENHANCEMENT_CLASS:
2325 		setup_vecs(engine);
2326 		break;
2327 	default:
2328 		MISSING_CASE(engine->class);
2329 		return -ENODEV;
2330 	}
2331 
2332 	return 0;
2333 }
2334 
intel_ring_submission_init(struct intel_engine_cs * engine)2335 int intel_ring_submission_init(struct intel_engine_cs *engine)
2336 {
2337 	struct intel_timeline *timeline;
2338 	struct intel_ring *ring;
2339 	int err;
2340 
2341 	timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
2342 	if (IS_ERR(timeline)) {
2343 		err = PTR_ERR(timeline);
2344 		goto err;
2345 	}
2346 	GEM_BUG_ON(timeline->has_initial_breadcrumb);
2347 
2348 	err = intel_timeline_pin(timeline);
2349 	if (err)
2350 		goto err_timeline;
2351 
2352 	ring = intel_engine_create_ring(engine, SZ_16K);
2353 	if (IS_ERR(ring)) {
2354 		err = PTR_ERR(ring);
2355 		goto err_timeline_unpin;
2356 	}
2357 
2358 	err = intel_ring_pin(ring);
2359 	if (err)
2360 		goto err_ring;
2361 
2362 	GEM_BUG_ON(engine->legacy.ring);
2363 	engine->legacy.ring = ring;
2364 	engine->legacy.timeline = timeline;
2365 
2366 	err = intel_engine_init_common(engine);
2367 	if (err)
2368 		goto err_ring_unpin;
2369 
2370 	GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma);
2371 
2372 	return 0;
2373 
2374 err_ring_unpin:
2375 	intel_ring_unpin(ring);
2376 err_ring:
2377 	intel_ring_put(ring);
2378 err_timeline_unpin:
2379 	intel_timeline_unpin(timeline);
2380 err_timeline:
2381 	intel_timeline_put(timeline);
2382 err:
2383 	intel_engine_cleanup_common(engine);
2384 	return err;
2385 }
2386