1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 ** ccio-dma.c:
4 ** DMA management routines for first generation cache-coherent machines.
5 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
6 **
7 ** (c) Copyright 2000 Grant Grundler
8 ** (c) Copyright 2000 Ryan Bradetich
9 ** (c) Copyright 2000 Hewlett-Packard Company
10 **
11 **
12 **
13 ** "Real Mode" operation refers to U2/Uturn chip operation.
14 ** U2/Uturn were designed to perform coherency checks w/o using
15 ** the I/O MMU - basically what x86 does.
16 **
17 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
18 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
19 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
20 **
21 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
22 **
23 ** Drawbacks of using Real Mode are:
24 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
25 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
26 ** o Ability to do scatter/gather in HW is lost.
27 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
28 ** the coherency design originally worked out. Only PCX-W does.
29 */
30
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/mm.h>
35 #include <linux/spinlock.h>
36 #include <linux/slab.h>
37 #include <linux/string.h>
38 #include <linux/pci.h>
39 #include <linux/reboot.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/scatterlist.h>
43 #include <linux/iommu-helper.h>
44 #include <linux/export.h>
45
46 #include <asm/byteorder.h>
47 #include <asm/cache.h> /* for L1_CACHE_BYTES */
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 #include <asm/dma.h>
51 #include <asm/io.h>
52 #include <asm/hardware.h> /* for register_module() */
53 #include <asm/parisc-device.h>
54
55 #include "iommu.h"
56
57 /*
58 ** Choose "ccio" since that's what HP-UX calls it.
59 ** Make it easier for folks to migrate from one to the other :^)
60 */
61 #define MODULE_NAME "ccio"
62
63 #undef DEBUG_CCIO_RES
64 #undef DEBUG_CCIO_RUN
65 #undef DEBUG_CCIO_INIT
66 #undef DEBUG_CCIO_RUN_SG
67
68 #ifdef CONFIG_PROC_FS
69 /* depends on proc fs support. But costs CPU performance. */
70 #undef CCIO_COLLECT_STATS
71 #endif
72
73 #include <asm/runway.h> /* for proc_runway_root */
74
75 #ifdef DEBUG_CCIO_INIT
76 #define DBG_INIT(x...) printk(x)
77 #else
78 #define DBG_INIT(x...)
79 #endif
80
81 #ifdef DEBUG_CCIO_RUN
82 #define DBG_RUN(x...) printk(x)
83 #else
84 #define DBG_RUN(x...)
85 #endif
86
87 #ifdef DEBUG_CCIO_RES
88 #define DBG_RES(x...) printk(x)
89 #else
90 #define DBG_RES(x...)
91 #endif
92
93 #ifdef DEBUG_CCIO_RUN_SG
94 #define DBG_RUN_SG(x...) printk(x)
95 #else
96 #define DBG_RUN_SG(x...)
97 #endif
98
99 #define CCIO_INLINE inline
100 #define WRITE_U32(value, addr) __raw_writel(value, addr)
101 #define READ_U32(addr) __raw_readl(addr)
102
103 #define U2_IOA_RUNWAY 0x580
104 #define U2_BC_GSC 0x501
105 #define UTURN_IOA_RUNWAY 0x581
106 #define UTURN_BC_GSC 0x502
107
108 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
109 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
110 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
111
112 struct ioa_registers {
113 /* Runway Supervisory Set */
114 int32_t unused1[12];
115 uint32_t io_command; /* Offset 12 */
116 uint32_t io_status; /* Offset 13 */
117 uint32_t io_control; /* Offset 14 */
118 int32_t unused2[1];
119
120 /* Runway Auxiliary Register Set */
121 uint32_t io_err_resp; /* Offset 0 */
122 uint32_t io_err_info; /* Offset 1 */
123 uint32_t io_err_req; /* Offset 2 */
124 uint32_t io_err_resp_hi; /* Offset 3 */
125 uint32_t io_tlb_entry_m; /* Offset 4 */
126 uint32_t io_tlb_entry_l; /* Offset 5 */
127 uint32_t unused3[1];
128 uint32_t io_pdir_base; /* Offset 7 */
129 uint32_t io_io_low_hv; /* Offset 8 */
130 uint32_t io_io_high_hv; /* Offset 9 */
131 uint32_t unused4[1];
132 uint32_t io_chain_id_mask; /* Offset 11 */
133 uint32_t unused5[2];
134 uint32_t io_io_low; /* Offset 14 */
135 uint32_t io_io_high; /* Offset 15 */
136 };
137
138 /*
139 ** IOA Registers
140 ** -------------
141 **
142 ** Runway IO_CONTROL Register (+0x38)
143 **
144 ** The Runway IO_CONTROL register controls the forwarding of transactions.
145 **
146 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
147 ** | HV | TLB | reserved | HV | mode | reserved |
148 **
149 ** o mode field indicates the address translation of transactions
150 ** forwarded from Runway to GSC+:
151 ** Mode Name Value Definition
152 ** Off (default) 0 Opaque to matching addresses.
153 ** Include 1 Transparent for matching addresses.
154 ** Peek 3 Map matching addresses.
155 **
156 ** + "Off" mode: Runway transactions which match the I/O range
157 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
158 ** + "Include" mode: all addresses within the I/O range specified
159 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
160 ** forwarded. This is the I/O Adapter's normal operating mode.
161 ** + "Peek" mode: used during system configuration to initialize the
162 ** GSC+ bus. Runway Write_Shorts in the address range specified by
163 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
164 ** *AND* the GSC+ address is remapped to the Broadcast Physical
165 ** Address space by setting the 14 high order address bits of the
166 ** 32 bit GSC+ address to ones.
167 **
168 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
169 ** "Real" mode is the poweron default.
170 **
171 ** TLB Mode Value Description
172 ** Real 0 No TLB translation. Address is directly mapped and the
173 ** virtual address is composed of selected physical bits.
174 ** Error 1 Software fills the TLB manually.
175 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
176 **
177 **
178 ** IO_IO_LOW_HV +0x60 (HV dependent)
179 ** IO_IO_HIGH_HV +0x64 (HV dependent)
180 ** IO_IO_LOW +0x78 (Architected register)
181 ** IO_IO_HIGH +0x7c (Architected register)
182 **
183 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
184 ** I/O Adapter address space, respectively.
185 **
186 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
187 ** 11111111 | 11111111 | address |
188 **
189 ** Each LOW/HIGH pair describes a disjoint address space region.
190 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
191 ** with both sets of LOW/HIGH registers. If the address is in the range
192 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
193 ** for forwarded to the respective GSC+ bus.
194 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
195 ** an address space region.
196 **
197 ** In order for a Runway address to reside within GSC+ extended address space:
198 ** Runway Address [0:7] must identically compare to 8'b11111111
199 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
200 ** Runway Address [12:23] must be greater than or equal to
201 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
202 ** Runway Address [24:39] is not used in the comparison.
203 **
204 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
205 ** as follows:
206 ** GSC+ Address[0:3] 4'b1111
207 ** GSC+ Address[4:29] Runway Address[12:37]
208 ** GSC+ Address[30:31] 2'b00
209 **
210 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
211 ** is interrogated and address space is defined. The operating system will
212 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
213 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
214 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
215 **
216 ** Writes to both sets of registers will take effect immediately, bypassing
217 ** the queues, which ensures that subsequent Runway transactions are checked
218 ** against the updated bounds values. However reads are queued, introducing
219 ** the possibility of a read being bypassed by a subsequent write to the same
220 ** register. This sequence can be avoided by having software wait for read
221 ** returns before issuing subsequent writes.
222 */
223
224 struct ioc {
225 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
226 u8 *res_map; /* resource map, bit == pdir entry */
227 u64 *pdir_base; /* physical base address */
228 u32 pdir_size; /* bytes, function of IOV Space size */
229 u32 res_hint; /* next available IOVP -
230 circular search */
231 u32 res_size; /* size of resource map in bytes */
232 spinlock_t res_lock;
233
234 #ifdef CCIO_COLLECT_STATS
235 #define CCIO_SEARCH_SAMPLE 0x100
236 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
237 unsigned long avg_idx; /* current index into avg_search */
238 unsigned long used_pages;
239 unsigned long msingle_calls;
240 unsigned long msingle_pages;
241 unsigned long msg_calls;
242 unsigned long msg_pages;
243 unsigned long usingle_calls;
244 unsigned long usingle_pages;
245 unsigned long usg_calls;
246 unsigned long usg_pages;
247 #endif
248 unsigned short cujo20_bug;
249
250 /* STUFF We don't need in performance path */
251 u32 chainid_shift; /* specify bit location of chain_id */
252 struct ioc *next; /* Linked list of discovered iocs */
253 const char *name; /* device name from firmware */
254 unsigned int hw_path; /* the hardware path this ioc is associatd with */
255 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
256 struct resource mmio_region[2]; /* The "routed" MMIO regions */
257 };
258
259 static struct ioc *ioc_list;
260 static int ioc_count;
261
262 /**************************************************************
263 *
264 * I/O Pdir Resource Management
265 *
266 * Bits set in the resource map are in use.
267 * Each bit can represent a number of pages.
268 * LSbs represent lower addresses (IOVA's).
269 *
270 * This was was copied from sba_iommu.c. Don't try to unify
271 * the two resource managers unless a way to have different
272 * allocation policies is also adjusted. We'd like to avoid
273 * I/O TLB thrashing by having resource allocation policy
274 * match the I/O TLB replacement policy.
275 *
276 ***************************************************************/
277 #define IOVP_SIZE PAGE_SIZE
278 #define IOVP_SHIFT PAGE_SHIFT
279 #define IOVP_MASK PAGE_MASK
280
281 /* Convert from IOVP to IOVA and vice versa. */
282 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
283 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
284
285 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
286 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
287 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
288
289 /*
290 ** Don't worry about the 150% average search length on a miss.
291 ** If the search wraps around, and passes the res_hint, it will
292 ** cause the kernel to panic anyhow.
293 */
294 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
295 for(; res_ptr < res_end; ++res_ptr) { \
296 int ret;\
297 unsigned int idx;\
298 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
299 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
300 if ((0 == (*res_ptr & mask)) && !ret) { \
301 *res_ptr |= mask; \
302 res_idx = idx;\
303 ioc->res_hint = res_idx + (size >> 3); \
304 goto resource_found; \
305 } \
306 }
307
308 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
309 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
310 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
311 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
312 res_ptr = (u##size *)&(ioc)->res_map[0]; \
313 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
314
315 /*
316 ** Find available bit in this ioa's resource map.
317 ** Use a "circular" search:
318 ** o Most IOVA's are "temporary" - avg search time should be small.
319 ** o keep a history of what happened for debugging
320 ** o KISS.
321 **
322 ** Perf optimizations:
323 ** o search for log2(size) bits at a time.
324 ** o search for available resource bits using byte/word/whatever.
325 ** o use different search for "large" (eg > 4 pages) or "very large"
326 ** (eg > 16 pages) mappings.
327 */
328
329 /**
330 * ccio_alloc_range - Allocate pages in the ioc's resource map.
331 * @ioc: The I/O Controller.
332 * @pages_needed: The requested number of pages to be mapped into the
333 * I/O Pdir...
334 *
335 * This function searches the resource map of the ioc to locate a range
336 * of available pages for the requested size.
337 */
338 static int
ccio_alloc_range(struct ioc * ioc,struct device * dev,size_t size)339 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
340 {
341 unsigned int pages_needed = size >> IOVP_SHIFT;
342 unsigned int res_idx;
343 unsigned long boundary_size;
344 #ifdef CCIO_COLLECT_STATS
345 unsigned long cr_start = mfctl(16);
346 #endif
347
348 BUG_ON(pages_needed == 0);
349 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
350
351 DBG_RES("%s() size: %d pages_needed %d\n",
352 __func__, size, pages_needed);
353
354 /*
355 ** "seek and ye shall find"...praying never hurts either...
356 ** ggg sacrifices another 710 to the computer gods.
357 */
358
359 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
360 1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
361
362 if (pages_needed <= 8) {
363 /*
364 * LAN traffic will not thrash the TLB IFF the same NIC
365 * uses 8 adjacent pages to map separate payload data.
366 * ie the same byte in the resource bit map.
367 */
368 #if 0
369 /* FIXME: bit search should shift it's way through
370 * an unsigned long - not byte at a time. As it is now,
371 * we effectively allocate this byte to this mapping.
372 */
373 unsigned long mask = ~(~0UL >> pages_needed);
374 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
375 #else
376 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
377 #endif
378 } else if (pages_needed <= 16) {
379 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
380 } else if (pages_needed <= 32) {
381 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
382 #ifdef __LP64__
383 } else if (pages_needed <= 64) {
384 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
385 #endif
386 } else {
387 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
388 __FILE__, __func__, pages_needed);
389 }
390
391 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
392 __func__);
393
394 resource_found:
395
396 DBG_RES("%s() res_idx %d res_hint: %d\n",
397 __func__, res_idx, ioc->res_hint);
398
399 #ifdef CCIO_COLLECT_STATS
400 {
401 unsigned long cr_end = mfctl(16);
402 unsigned long tmp = cr_end - cr_start;
403 /* check for roll over */
404 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
405 }
406 ioc->avg_search[ioc->avg_idx++] = cr_start;
407 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
408 ioc->used_pages += pages_needed;
409 #endif
410 /*
411 ** return the bit address.
412 */
413 return res_idx << 3;
414 }
415
416 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
417 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
418 BUG_ON((*res_ptr & mask) != mask); \
419 *res_ptr &= ~(mask);
420
421 /**
422 * ccio_free_range - Free pages from the ioc's resource map.
423 * @ioc: The I/O Controller.
424 * @iova: The I/O Virtual Address.
425 * @pages_mapped: The requested number of pages to be freed from the
426 * I/O Pdir.
427 *
428 * This function frees the resouces allocated for the iova.
429 */
430 static void
ccio_free_range(struct ioc * ioc,dma_addr_t iova,unsigned long pages_mapped)431 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
432 {
433 unsigned long iovp = CCIO_IOVP(iova);
434 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
435
436 BUG_ON(pages_mapped == 0);
437 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
438 BUG_ON(pages_mapped > BITS_PER_LONG);
439
440 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
441 __func__, res_idx, pages_mapped);
442
443 #ifdef CCIO_COLLECT_STATS
444 ioc->used_pages -= pages_mapped;
445 #endif
446
447 if(pages_mapped <= 8) {
448 #if 0
449 /* see matching comments in alloc_range */
450 unsigned long mask = ~(~0UL >> pages_mapped);
451 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
452 #else
453 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
454 #endif
455 } else if(pages_mapped <= 16) {
456 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
457 } else if(pages_mapped <= 32) {
458 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
459 #ifdef __LP64__
460 } else if(pages_mapped <= 64) {
461 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
462 #endif
463 } else {
464 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
465 __func__);
466 }
467 }
468
469 /****************************************************************
470 **
471 ** CCIO dma_ops support routines
472 **
473 *****************************************************************/
474
475 typedef unsigned long space_t;
476 #define KERNEL_SPACE 0
477
478 /*
479 ** DMA "Page Type" and Hints
480 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
481 ** set for subcacheline DMA transfers since we don't want to damage the
482 ** other part of a cacheline.
483 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
484 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
485 ** data can avoid this if the mapping covers full cache lines.
486 ** o STOP_MOST is needed for atomicity across cachelines.
487 ** Apparently only "some EISA devices" need this.
488 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
489 ** to use this hint iff the EISA devices needs this feature.
490 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
491 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
492 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
493 ** device can be fetched and multiply DMA streams will thrash the
494 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
495 ** and Invalidation of Prefetch Entries".
496 **
497 ** FIXME: the default hints need to be per GSC device - not global.
498 **
499 ** HP-UX dorks: linux device driver programming model is totally different
500 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
501 ** do special things to work on non-coherent platforms...linux has to
502 ** be much more careful with this.
503 */
504 #define IOPDIR_VALID 0x01UL
505 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
506 #ifdef CONFIG_EISA
507 #define HINT_STOP_MOST 0x04UL /* LSL support */
508 #else
509 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
510 #endif
511 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
512 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
513
514
515 /*
516 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
517 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
518 ** when it passes in BIDIRECTIONAL flag.
519 */
520 static u32 hint_lookup[] = {
521 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
522 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
523 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
524 };
525
526 /**
527 * ccio_io_pdir_entry - Initialize an I/O Pdir.
528 * @pdir_ptr: A pointer into I/O Pdir.
529 * @sid: The Space Identifier.
530 * @vba: The virtual address.
531 * @hints: The DMA Hint.
532 *
533 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
534 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
535 * entry consists of 8 bytes as shown below (MSB == bit 0):
536 *
537 *
538 * WORD 0:
539 * +------+----------------+-----------------------------------------------+
540 * | Phys | Virtual Index | Phys |
541 * | 0:3 | 0:11 | 4:19 |
542 * |4 bits| 12 bits | 16 bits |
543 * +------+----------------+-----------------------------------------------+
544 * WORD 1:
545 * +-----------------------+-----------------------------------------------+
546 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
547 * | 20:39 | | Enable |Enable | |Enable|DMA | |
548 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
549 * +-----------------------+-----------------------------------------------+
550 *
551 * The virtual index field is filled with the results of the LCI
552 * (Load Coherence Index) instruction. The 8 bits used for the virtual
553 * index are bits 12:19 of the value returned by LCI.
554 */
555 static void CCIO_INLINE
ccio_io_pdir_entry(u64 * pdir_ptr,space_t sid,unsigned long vba,unsigned long hints)556 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
557 unsigned long hints)
558 {
559 register unsigned long pa;
560 register unsigned long ci; /* coherent index */
561
562 /* We currently only support kernel addresses */
563 BUG_ON(sid != KERNEL_SPACE);
564
565 /*
566 ** WORD 1 - low order word
567 ** "hints" parm includes the VALID bit!
568 ** "dep" clobbers the physical address offset bits as well.
569 */
570 pa = lpa(vba);
571 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
572 ((u32 *)pdir_ptr)[1] = (u32) pa;
573
574 /*
575 ** WORD 0 - high order word
576 */
577
578 #ifdef __LP64__
579 /*
580 ** get bits 12:15 of physical address
581 ** shift bits 16:31 of physical address
582 ** and deposit them
583 */
584 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
585 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
586 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
587 #else
588 pa = 0;
589 #endif
590 /*
591 ** get CPU coherency index bits
592 ** Grab virtual index [0:11]
593 ** Deposit virt_idx bits into I/O PDIR word
594 */
595 asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
596 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
597 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
598
599 ((u32 *)pdir_ptr)[0] = (u32) pa;
600
601
602 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
603 ** PCX-U/U+ do. (eg C200/C240)
604 ** PCX-T'? Don't know. (eg C110 or similar K-class)
605 **
606 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
607 **
608 ** "Since PCX-U employs an offset hash that is incompatible with
609 ** the real mode coherence index generation of U2, the PDIR entry
610 ** must be flushed to memory to retain coherence."
611 */
612 asm_io_fdc(pdir_ptr);
613 asm_io_sync();
614 }
615
616 /**
617 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
618 * @ioc: The I/O Controller.
619 * @iovp: The I/O Virtual Page.
620 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
621 *
622 * Purge invalid I/O PDIR entries from the I/O TLB.
623 *
624 * FIXME: Can we change the byte_cnt to pages_mapped?
625 */
626 static CCIO_INLINE void
ccio_clear_io_tlb(struct ioc * ioc,dma_addr_t iovp,size_t byte_cnt)627 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
628 {
629 u32 chain_size = 1 << ioc->chainid_shift;
630
631 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
632 byte_cnt += chain_size;
633
634 while(byte_cnt > chain_size) {
635 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
636 iovp += chain_size;
637 byte_cnt -= chain_size;
638 }
639 }
640
641 /**
642 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
643 * @ioc: The I/O Controller.
644 * @iova: The I/O Virtual Address.
645 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
646 *
647 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
648 * TLB entries.
649 *
650 * FIXME: at some threshold it might be "cheaper" to just blow
651 * away the entire I/O TLB instead of individual entries.
652 *
653 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
654 * PDIR entry - just once for each possible TLB entry.
655 * (We do need to maker I/O PDIR entries invalid regardless).
656 *
657 * FIXME: Can we change byte_cnt to pages_mapped?
658 */
659 static CCIO_INLINE void
ccio_mark_invalid(struct ioc * ioc,dma_addr_t iova,size_t byte_cnt)660 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
661 {
662 u32 iovp = (u32)CCIO_IOVP(iova);
663 size_t saved_byte_cnt;
664
665 /* round up to nearest page size */
666 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
667
668 while(byte_cnt > 0) {
669 /* invalidate one page at a time */
670 unsigned int idx = PDIR_INDEX(iovp);
671 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
672
673 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
674 pdir_ptr[7] = 0; /* clear only VALID bit */
675 /*
676 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
677 ** PCX-U/U+ do. (eg C200/C240)
678 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
679 */
680 asm_io_fdc(pdir_ptr);
681
682 iovp += IOVP_SIZE;
683 byte_cnt -= IOVP_SIZE;
684 }
685
686 asm_io_sync();
687 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
688 }
689
690 /****************************************************************
691 **
692 ** CCIO dma_ops
693 **
694 *****************************************************************/
695
696 /**
697 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
698 * @dev: The PCI device.
699 * @mask: A bit mask describing the DMA address range of the device.
700 */
701 static int
ccio_dma_supported(struct device * dev,u64 mask)702 ccio_dma_supported(struct device *dev, u64 mask)
703 {
704 if(dev == NULL) {
705 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
706 BUG();
707 return 0;
708 }
709
710 /* only support 32-bit or better devices (ie PCI/GSC) */
711 return (int)(mask >= 0xffffffffUL);
712 }
713
714 /**
715 * ccio_map_single - Map an address range into the IOMMU.
716 * @dev: The PCI device.
717 * @addr: The start address of the DMA region.
718 * @size: The length of the DMA region.
719 * @direction: The direction of the DMA transaction (to/from device).
720 *
721 * This function implements the pci_map_single function.
722 */
723 static dma_addr_t
ccio_map_single(struct device * dev,void * addr,size_t size,enum dma_data_direction direction)724 ccio_map_single(struct device *dev, void *addr, size_t size,
725 enum dma_data_direction direction)
726 {
727 int idx;
728 struct ioc *ioc;
729 unsigned long flags;
730 dma_addr_t iovp;
731 dma_addr_t offset;
732 u64 *pdir_start;
733 unsigned long hint = hint_lookup[(int)direction];
734
735 BUG_ON(!dev);
736 ioc = GET_IOC(dev);
737 if (!ioc)
738 return DMA_MAPPING_ERROR;
739
740 BUG_ON(size <= 0);
741
742 /* save offset bits */
743 offset = ((unsigned long) addr) & ~IOVP_MASK;
744
745 /* round up to nearest IOVP_SIZE */
746 size = ALIGN(size + offset, IOVP_SIZE);
747 spin_lock_irqsave(&ioc->res_lock, flags);
748
749 #ifdef CCIO_COLLECT_STATS
750 ioc->msingle_calls++;
751 ioc->msingle_pages += size >> IOVP_SHIFT;
752 #endif
753
754 idx = ccio_alloc_range(ioc, dev, size);
755 iovp = (dma_addr_t)MKIOVP(idx);
756
757 pdir_start = &(ioc->pdir_base[idx]);
758
759 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
760 __func__, addr, (long)iovp | offset, size);
761
762 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
763 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
764 hint |= HINT_SAFE_DMA;
765
766 while(size > 0) {
767 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
768
769 DBG_RUN(" pdir %p %08x%08x\n",
770 pdir_start,
771 (u32) (((u32 *) pdir_start)[0]),
772 (u32) (((u32 *) pdir_start)[1]));
773 ++pdir_start;
774 addr += IOVP_SIZE;
775 size -= IOVP_SIZE;
776 }
777
778 spin_unlock_irqrestore(&ioc->res_lock, flags);
779
780 /* form complete address */
781 return CCIO_IOVA(iovp, offset);
782 }
783
784
785 static dma_addr_t
ccio_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction,unsigned long attrs)786 ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
787 size_t size, enum dma_data_direction direction,
788 unsigned long attrs)
789 {
790 return ccio_map_single(dev, page_address(page) + offset, size,
791 direction);
792 }
793
794
795 /**
796 * ccio_unmap_page - Unmap an address range from the IOMMU.
797 * @dev: The PCI device.
798 * @addr: The start address of the DMA region.
799 * @size: The length of the DMA region.
800 * @direction: The direction of the DMA transaction (to/from device).
801 */
802 static void
ccio_unmap_page(struct device * dev,dma_addr_t iova,size_t size,enum dma_data_direction direction,unsigned long attrs)803 ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
804 enum dma_data_direction direction, unsigned long attrs)
805 {
806 struct ioc *ioc;
807 unsigned long flags;
808 dma_addr_t offset = iova & ~IOVP_MASK;
809
810 BUG_ON(!dev);
811 ioc = GET_IOC(dev);
812 if (!ioc) {
813 WARN_ON(!ioc);
814 return;
815 }
816
817 DBG_RUN("%s() iovp 0x%lx/%x\n",
818 __func__, (long)iova, size);
819
820 iova ^= offset; /* clear offset bits */
821 size += offset;
822 size = ALIGN(size, IOVP_SIZE);
823
824 spin_lock_irqsave(&ioc->res_lock, flags);
825
826 #ifdef CCIO_COLLECT_STATS
827 ioc->usingle_calls++;
828 ioc->usingle_pages += size >> IOVP_SHIFT;
829 #endif
830
831 ccio_mark_invalid(ioc, iova, size);
832 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
833 spin_unlock_irqrestore(&ioc->res_lock, flags);
834 }
835
836 /**
837 * ccio_alloc - Allocate a consistent DMA mapping.
838 * @dev: The PCI device.
839 * @size: The length of the DMA region.
840 * @dma_handle: The DMA address handed back to the device (not the cpu).
841 *
842 * This function implements the pci_alloc_consistent function.
843 */
844 static void *
ccio_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)845 ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
846 unsigned long attrs)
847 {
848 void *ret;
849 #if 0
850 /* GRANT Need to establish hierarchy for non-PCI devs as well
851 ** and then provide matching gsc_map_xxx() functions for them as well.
852 */
853 if(!hwdev) {
854 /* only support PCI */
855 *dma_handle = 0;
856 return 0;
857 }
858 #endif
859 ret = (void *) __get_free_pages(flag, get_order(size));
860
861 if (ret) {
862 memset(ret, 0, size);
863 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
864 }
865
866 return ret;
867 }
868
869 /**
870 * ccio_free - Free a consistent DMA mapping.
871 * @dev: The PCI device.
872 * @size: The length of the DMA region.
873 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
874 * @dma_handle: The device address returned from the ccio_alloc_consistent.
875 *
876 * This function implements the pci_free_consistent function.
877 */
878 static void
ccio_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)879 ccio_free(struct device *dev, size_t size, void *cpu_addr,
880 dma_addr_t dma_handle, unsigned long attrs)
881 {
882 ccio_unmap_page(dev, dma_handle, size, 0, 0);
883 free_pages((unsigned long)cpu_addr, get_order(size));
884 }
885
886 /*
887 ** Since 0 is a valid pdir_base index value, can't use that
888 ** to determine if a value is valid or not. Use a flag to indicate
889 ** the SG list entry contains a valid pdir index.
890 */
891 #define PIDE_FLAG 0x80000000UL
892
893 #ifdef CCIO_COLLECT_STATS
894 #define IOMMU_MAP_STATS
895 #endif
896 #include "iommu-helpers.h"
897
898 /**
899 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
900 * @dev: The PCI device.
901 * @sglist: The scatter/gather list to be mapped in the IOMMU.
902 * @nents: The number of entries in the scatter/gather list.
903 * @direction: The direction of the DMA transaction (to/from device).
904 *
905 * This function implements the pci_map_sg function.
906 */
907 static int
ccio_map_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction direction,unsigned long attrs)908 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
909 enum dma_data_direction direction, unsigned long attrs)
910 {
911 struct ioc *ioc;
912 int coalesced, filled = 0;
913 unsigned long flags;
914 unsigned long hint = hint_lookup[(int)direction];
915 unsigned long prev_len = 0, current_len = 0;
916 int i;
917
918 BUG_ON(!dev);
919 ioc = GET_IOC(dev);
920 if (!ioc)
921 return 0;
922
923 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
924
925 /* Fast path single entry scatterlists. */
926 if (nents == 1) {
927 sg_dma_address(sglist) = ccio_map_single(dev,
928 sg_virt(sglist), sglist->length,
929 direction);
930 sg_dma_len(sglist) = sglist->length;
931 return 1;
932 }
933
934 for(i = 0; i < nents; i++)
935 prev_len += sglist[i].length;
936
937 spin_lock_irqsave(&ioc->res_lock, flags);
938
939 #ifdef CCIO_COLLECT_STATS
940 ioc->msg_calls++;
941 #endif
942
943 /*
944 ** First coalesce the chunks and allocate I/O pdir space
945 **
946 ** If this is one DMA stream, we can properly map using the
947 ** correct virtual address associated with each DMA page.
948 ** w/o this association, we wouldn't have coherent DMA!
949 ** Access to the virtual address is what forces a two pass algorithm.
950 */
951 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
952
953 /*
954 ** Program the I/O Pdir
955 **
956 ** map the virtual addresses to the I/O Pdir
957 ** o dma_address will contain the pdir index
958 ** o dma_len will contain the number of bytes to map
959 ** o page/offset contain the virtual address.
960 */
961 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
962
963 spin_unlock_irqrestore(&ioc->res_lock, flags);
964
965 BUG_ON(coalesced != filled);
966
967 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
968
969 for (i = 0; i < filled; i++)
970 current_len += sg_dma_len(sglist + i);
971
972 BUG_ON(current_len != prev_len);
973
974 return filled;
975 }
976
977 /**
978 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
979 * @dev: The PCI device.
980 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
981 * @nents: The number of entries in the scatter/gather list.
982 * @direction: The direction of the DMA transaction (to/from device).
983 *
984 * This function implements the pci_unmap_sg function.
985 */
986 static void
ccio_unmap_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction direction,unsigned long attrs)987 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
988 enum dma_data_direction direction, unsigned long attrs)
989 {
990 struct ioc *ioc;
991
992 BUG_ON(!dev);
993 ioc = GET_IOC(dev);
994 if (!ioc) {
995 WARN_ON(!ioc);
996 return;
997 }
998
999 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1000 __func__, nents, sg_virt(sglist), sglist->length);
1001
1002 #ifdef CCIO_COLLECT_STATS
1003 ioc->usg_calls++;
1004 #endif
1005
1006 while(sg_dma_len(sglist) && nents--) {
1007
1008 #ifdef CCIO_COLLECT_STATS
1009 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1010 #endif
1011 ccio_unmap_page(dev, sg_dma_address(sglist),
1012 sg_dma_len(sglist), direction, 0);
1013 ++sglist;
1014 }
1015
1016 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1017 }
1018
1019 static const struct dma_map_ops ccio_ops = {
1020 .dma_supported = ccio_dma_supported,
1021 .alloc = ccio_alloc,
1022 .free = ccio_free,
1023 .map_page = ccio_map_page,
1024 .unmap_page = ccio_unmap_page,
1025 .map_sg = ccio_map_sg,
1026 .unmap_sg = ccio_unmap_sg,
1027 .get_sgtable = dma_common_get_sgtable,
1028 };
1029
1030 #ifdef CONFIG_PROC_FS
ccio_proc_info(struct seq_file * m,void * p)1031 static int ccio_proc_info(struct seq_file *m, void *p)
1032 {
1033 struct ioc *ioc = ioc_list;
1034
1035 while (ioc != NULL) {
1036 unsigned int total_pages = ioc->res_size << 3;
1037 #ifdef CCIO_COLLECT_STATS
1038 unsigned long avg = 0, min, max;
1039 int j;
1040 #endif
1041
1042 seq_printf(m, "%s\n", ioc->name);
1043
1044 seq_printf(m, "Cujo 2.0 bug : %s\n",
1045 (ioc->cujo20_bug ? "yes" : "no"));
1046
1047 seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1048 total_pages * 8, total_pages);
1049
1050 #ifdef CCIO_COLLECT_STATS
1051 seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1052 total_pages - ioc->used_pages, ioc->used_pages,
1053 (int)(ioc->used_pages * 100 / total_pages));
1054 #endif
1055
1056 seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1057 ioc->res_size, total_pages);
1058
1059 #ifdef CCIO_COLLECT_STATS
1060 min = max = ioc->avg_search[0];
1061 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1062 avg += ioc->avg_search[j];
1063 if(ioc->avg_search[j] > max)
1064 max = ioc->avg_search[j];
1065 if(ioc->avg_search[j] < min)
1066 min = ioc->avg_search[j];
1067 }
1068 avg /= CCIO_SEARCH_SAMPLE;
1069 seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1070 min, avg, max);
1071
1072 seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1073 ioc->msingle_calls, ioc->msingle_pages,
1074 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1075
1076 /* KLUGE - unmap_sg calls unmap_page for each mapped page */
1077 min = ioc->usingle_calls - ioc->usg_calls;
1078 max = ioc->usingle_pages - ioc->usg_pages;
1079 seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1080 min, max, (int)((max * 1000)/min));
1081
1082 seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1083 ioc->msg_calls, ioc->msg_pages,
1084 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1085
1086 seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1087 ioc->usg_calls, ioc->usg_pages,
1088 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1089 #endif /* CCIO_COLLECT_STATS */
1090
1091 ioc = ioc->next;
1092 }
1093
1094 return 0;
1095 }
1096
ccio_proc_bitmap_info(struct seq_file * m,void * p)1097 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1098 {
1099 struct ioc *ioc = ioc_list;
1100
1101 while (ioc != NULL) {
1102 seq_hex_dump(m, " ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1103 ioc->res_size, false);
1104 seq_putc(m, '\n');
1105 ioc = ioc->next;
1106 break; /* XXX - remove me */
1107 }
1108
1109 return 0;
1110 }
1111 #endif /* CONFIG_PROC_FS */
1112
1113 /**
1114 * ccio_find_ioc - Find the ioc in the ioc_list
1115 * @hw_path: The hardware path of the ioc.
1116 *
1117 * This function searches the ioc_list for an ioc that matches
1118 * the provide hardware path.
1119 */
ccio_find_ioc(int hw_path)1120 static struct ioc * ccio_find_ioc(int hw_path)
1121 {
1122 int i;
1123 struct ioc *ioc;
1124
1125 ioc = ioc_list;
1126 for (i = 0; i < ioc_count; i++) {
1127 if (ioc->hw_path == hw_path)
1128 return ioc;
1129
1130 ioc = ioc->next;
1131 }
1132
1133 return NULL;
1134 }
1135
1136 /**
1137 * ccio_get_iommu - Find the iommu which controls this device
1138 * @dev: The parisc device.
1139 *
1140 * This function searches through the registered IOMMU's and returns
1141 * the appropriate IOMMU for the device based on its hardware path.
1142 */
ccio_get_iommu(const struct parisc_device * dev)1143 void * ccio_get_iommu(const struct parisc_device *dev)
1144 {
1145 dev = find_pa_parent_type(dev, HPHW_IOA);
1146 if (!dev)
1147 return NULL;
1148
1149 return ccio_find_ioc(dev->hw_path);
1150 }
1151
1152 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1153
1154 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1155 * to/from certain pages. To avoid this happening, we mark these pages
1156 * as `used', and ensure that nothing will try to allocate from them.
1157 */
ccio_cujo20_fixup(struct parisc_device * cujo,u32 iovp)1158 void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1159 {
1160 unsigned int idx;
1161 struct parisc_device *dev = parisc_parent(cujo);
1162 struct ioc *ioc = ccio_get_iommu(dev);
1163 u8 *res_ptr;
1164
1165 ioc->cujo20_bug = 1;
1166 res_ptr = ioc->res_map;
1167 idx = PDIR_INDEX(iovp) >> 3;
1168
1169 while (idx < ioc->res_size) {
1170 res_ptr[idx] |= 0xff;
1171 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1172 }
1173 }
1174
1175 #if 0
1176 /* GRANT - is this needed for U2 or not? */
1177
1178 /*
1179 ** Get the size of the I/O TLB for this I/O MMU.
1180 **
1181 ** If spa_shift is non-zero (ie probably U2),
1182 ** then calculate the I/O TLB size using spa_shift.
1183 **
1184 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1185 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1186 ** I think only Java (K/D/R-class too?) systems don't do this.
1187 */
1188 static int
1189 ccio_get_iotlb_size(struct parisc_device *dev)
1190 {
1191 if (dev->spa_shift == 0) {
1192 panic("%s() : Can't determine I/O TLB size.\n", __func__);
1193 }
1194 return (1 << dev->spa_shift);
1195 }
1196 #else
1197
1198 /* Uturn supports 256 TLB entries */
1199 #define CCIO_CHAINID_SHIFT 8
1200 #define CCIO_CHAINID_MASK 0xff
1201 #endif /* 0 */
1202
1203 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1204 static const struct parisc_device_id ccio_tbl[] __initconst = {
1205 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1206 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1207 { 0, }
1208 };
1209
1210 static int ccio_probe(struct parisc_device *dev);
1211
1212 static struct parisc_driver ccio_driver __refdata = {
1213 .name = "ccio",
1214 .id_table = ccio_tbl,
1215 .probe = ccio_probe,
1216 };
1217
1218 /**
1219 * ccio_ioc_init - Initialize the I/O Controller
1220 * @ioc: The I/O Controller.
1221 *
1222 * Initialize the I/O Controller which includes setting up the
1223 * I/O Page Directory, the resource map, and initalizing the
1224 * U2/Uturn chip into virtual mode.
1225 */
1226 static void __init
ccio_ioc_init(struct ioc * ioc)1227 ccio_ioc_init(struct ioc *ioc)
1228 {
1229 int i;
1230 unsigned int iov_order;
1231 u32 iova_space_size;
1232
1233 /*
1234 ** Determine IOVA Space size from memory size.
1235 **
1236 ** Ideally, PCI drivers would register the maximum number
1237 ** of DMA they can have outstanding for each device they
1238 ** own. Next best thing would be to guess how much DMA
1239 ** can be outstanding based on PCI Class/sub-class. Both
1240 ** methods still require some "extra" to support PCI
1241 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1242 */
1243
1244 iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1245
1246 /* limit IOVA space size to 1MB-1GB */
1247
1248 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1249 iova_space_size = 1 << (20 - PAGE_SHIFT);
1250 #ifdef __LP64__
1251 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1252 iova_space_size = 1 << (30 - PAGE_SHIFT);
1253 #endif
1254 }
1255
1256 /*
1257 ** iova space must be log2() in size.
1258 ** thus, pdir/res_map will also be log2().
1259 */
1260
1261 /* We could use larger page sizes in order to *decrease* the number
1262 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1263 **
1264 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1265 ** since the pages must also be physically contiguous - typically
1266 ** this is the case under linux."
1267 */
1268
1269 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1270
1271 /* iova_space_size is now bytes, not pages */
1272 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1273
1274 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1275
1276 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1277
1278 /* Verify it's a power of two */
1279 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1280
1281 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1282 __func__, ioc->ioc_regs,
1283 (unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1284 iova_space_size>>20,
1285 iov_order + PAGE_SHIFT);
1286
1287 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1288 get_order(ioc->pdir_size));
1289 if(NULL == ioc->pdir_base) {
1290 panic("%s() could not allocate I/O Page Table\n", __func__);
1291 }
1292 memset(ioc->pdir_base, 0, ioc->pdir_size);
1293
1294 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1295 DBG_INIT(" base %p\n", ioc->pdir_base);
1296
1297 /* resource map size dictated by pdir_size */
1298 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1299 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1300
1301 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1302 get_order(ioc->res_size));
1303 if(NULL == ioc->res_map) {
1304 panic("%s() could not allocate resource map\n", __func__);
1305 }
1306 memset(ioc->res_map, 0, ioc->res_size);
1307
1308 /* Initialize the res_hint to 16 */
1309 ioc->res_hint = 16;
1310
1311 /* Initialize the spinlock */
1312 spin_lock_init(&ioc->res_lock);
1313
1314 /*
1315 ** Chainid is the upper most bits of an IOVP used to determine
1316 ** which TLB entry an IOVP will use.
1317 */
1318 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1319 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1320
1321 /*
1322 ** Initialize IOA hardware
1323 */
1324 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1325 &ioc->ioc_regs->io_chain_id_mask);
1326
1327 WRITE_U32(virt_to_phys(ioc->pdir_base),
1328 &ioc->ioc_regs->io_pdir_base);
1329
1330 /*
1331 ** Go to "Virtual Mode"
1332 */
1333 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1334
1335 /*
1336 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1337 */
1338 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1339 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1340
1341 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1342 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1343 &ioc->ioc_regs->io_command);
1344 }
1345 }
1346
1347 static void __init
ccio_init_resource(struct resource * res,char * name,void __iomem * ioaddr)1348 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1349 {
1350 int result;
1351
1352 res->parent = NULL;
1353 res->flags = IORESOURCE_MEM;
1354 /*
1355 * bracing ((signed) ...) are required for 64bit kernel because
1356 * we only want to sign extend the lower 16 bits of the register.
1357 * The upper 16-bits of range registers are hardcoded to 0xffff.
1358 */
1359 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1360 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1361 res->name = name;
1362 /*
1363 * Check if this MMIO range is disable
1364 */
1365 if (res->end + 1 == res->start)
1366 return;
1367
1368 /* On some platforms (e.g. K-Class), we have already registered
1369 * resources for devices reported by firmware. Some are children
1370 * of ccio.
1371 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1372 */
1373 result = insert_resource(&iomem_resource, res);
1374 if (result < 0) {
1375 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1376 __func__, (unsigned long)res->start, (unsigned long)res->end);
1377 }
1378 }
1379
ccio_init_resources(struct ioc * ioc)1380 static void __init ccio_init_resources(struct ioc *ioc)
1381 {
1382 struct resource *res = ioc->mmio_region;
1383 char *name = kmalloc(14, GFP_KERNEL);
1384
1385 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1386
1387 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1388 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1389 }
1390
new_ioc_area(struct resource * res,unsigned long size,unsigned long min,unsigned long max,unsigned long align)1391 static int new_ioc_area(struct resource *res, unsigned long size,
1392 unsigned long min, unsigned long max, unsigned long align)
1393 {
1394 if (max <= min)
1395 return -EBUSY;
1396
1397 res->start = (max - size + 1) &~ (align - 1);
1398 res->end = res->start + size;
1399
1400 /* We might be trying to expand the MMIO range to include
1401 * a child device that has already registered it's MMIO space.
1402 * Use "insert" instead of request_resource().
1403 */
1404 if (!insert_resource(&iomem_resource, res))
1405 return 0;
1406
1407 return new_ioc_area(res, size, min, max - size, align);
1408 }
1409
expand_ioc_area(struct resource * res,unsigned long size,unsigned long min,unsigned long max,unsigned long align)1410 static int expand_ioc_area(struct resource *res, unsigned long size,
1411 unsigned long min, unsigned long max, unsigned long align)
1412 {
1413 unsigned long start, len;
1414
1415 if (!res->parent)
1416 return new_ioc_area(res, size, min, max, align);
1417
1418 start = (res->start - size) &~ (align - 1);
1419 len = res->end - start + 1;
1420 if (start >= min) {
1421 if (!adjust_resource(res, start, len))
1422 return 0;
1423 }
1424
1425 start = res->start;
1426 len = ((size + res->end + align) &~ (align - 1)) - start;
1427 if (start + len <= max) {
1428 if (!adjust_resource(res, start, len))
1429 return 0;
1430 }
1431
1432 return -EBUSY;
1433 }
1434
1435 /*
1436 * Dino calls this function. Beware that we may get called on systems
1437 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1438 * So it's legal to find no parent IOC.
1439 *
1440 * Some other issues: one of the resources in the ioc may be unassigned.
1441 */
ccio_allocate_resource(const struct parisc_device * dev,struct resource * res,unsigned long size,unsigned long min,unsigned long max,unsigned long align)1442 int ccio_allocate_resource(const struct parisc_device *dev,
1443 struct resource *res, unsigned long size,
1444 unsigned long min, unsigned long max, unsigned long align)
1445 {
1446 struct resource *parent = &iomem_resource;
1447 struct ioc *ioc = ccio_get_iommu(dev);
1448 if (!ioc)
1449 goto out;
1450
1451 parent = ioc->mmio_region;
1452 if (parent->parent &&
1453 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1454 return 0;
1455
1456 if ((parent + 1)->parent &&
1457 !allocate_resource(parent + 1, res, size, min, max, align,
1458 NULL, NULL))
1459 return 0;
1460
1461 if (!expand_ioc_area(parent, size, min, max, align)) {
1462 __raw_writel(((parent->start)>>16) | 0xffff0000,
1463 &ioc->ioc_regs->io_io_low);
1464 __raw_writel(((parent->end)>>16) | 0xffff0000,
1465 &ioc->ioc_regs->io_io_high);
1466 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1467 parent++;
1468 __raw_writel(((parent->start)>>16) | 0xffff0000,
1469 &ioc->ioc_regs->io_io_low_hv);
1470 __raw_writel(((parent->end)>>16) | 0xffff0000,
1471 &ioc->ioc_regs->io_io_high_hv);
1472 } else {
1473 return -EBUSY;
1474 }
1475
1476 out:
1477 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1478 }
1479
ccio_request_resource(const struct parisc_device * dev,struct resource * res)1480 int ccio_request_resource(const struct parisc_device *dev,
1481 struct resource *res)
1482 {
1483 struct resource *parent;
1484 struct ioc *ioc = ccio_get_iommu(dev);
1485
1486 if (!ioc) {
1487 parent = &iomem_resource;
1488 } else if ((ioc->mmio_region->start <= res->start) &&
1489 (res->end <= ioc->mmio_region->end)) {
1490 parent = ioc->mmio_region;
1491 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1492 (res->end <= (ioc->mmio_region + 1)->end)) {
1493 parent = ioc->mmio_region + 1;
1494 } else {
1495 return -EBUSY;
1496 }
1497
1498 /* "transparent" bus bridges need to register MMIO resources
1499 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1500 * registered their resources in the PDC "bus walk" (See
1501 * arch/parisc/kernel/inventory.c).
1502 */
1503 return insert_resource(parent, res);
1504 }
1505
1506 /**
1507 * ccio_probe - Determine if ccio should claim this device.
1508 * @dev: The device which has been found
1509 *
1510 * Determine if ccio should claim this chip (return 0) or not (return 1).
1511 * If so, initialize the chip and tell other partners in crime they
1512 * have work to do.
1513 */
ccio_probe(struct parisc_device * dev)1514 static int __init ccio_probe(struct parisc_device *dev)
1515 {
1516 int i;
1517 struct ioc *ioc, **ioc_p = &ioc_list;
1518 struct pci_hba_data *hba;
1519
1520 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1521 if (ioc == NULL) {
1522 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1523 return -ENOMEM;
1524 }
1525
1526 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1527
1528 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1529 (unsigned long)dev->hpa.start);
1530
1531 for (i = 0; i < ioc_count; i++) {
1532 ioc_p = &(*ioc_p)->next;
1533 }
1534 *ioc_p = ioc;
1535
1536 ioc->hw_path = dev->hw_path;
1537 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1538 if (!ioc->ioc_regs) {
1539 kfree(ioc);
1540 return -ENOMEM;
1541 }
1542 ccio_ioc_init(ioc);
1543 ccio_init_resources(ioc);
1544 hppa_dma_ops = &ccio_ops;
1545
1546 hba = kzalloc(sizeof(*hba), GFP_KERNEL);
1547 /* if this fails, no I/O cards will work, so may as well bug */
1548 BUG_ON(hba == NULL);
1549
1550 hba->iommu = ioc;
1551 dev->dev.platform_data = hba;
1552
1553 #ifdef CONFIG_PROC_FS
1554 if (ioc_count == 0) {
1555 proc_create_single(MODULE_NAME, 0, proc_runway_root,
1556 ccio_proc_info);
1557 proc_create_single(MODULE_NAME"-bitmap", 0, proc_runway_root,
1558 ccio_proc_bitmap_info);
1559 }
1560 #endif
1561 ioc_count++;
1562 return 0;
1563 }
1564
1565 /**
1566 * ccio_init - ccio initialization procedure.
1567 *
1568 * Register this driver.
1569 */
ccio_init(void)1570 void __init ccio_init(void)
1571 {
1572 register_parisc_driver(&ccio_driver);
1573 }
1574
1575