• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlb.h>
35 
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
43 
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
47 /*
48  * Minimum page order among possible hugepage sizes, set to a proper value
49  * at boot time.
50  */
51 static unsigned int minimum_order __read_mostly = UINT_MAX;
52 
53 __initdata LIST_HEAD(huge_boot_pages);
54 
55 /* for command line parsing */
56 static struct hstate * __initdata parsed_hstate;
57 static unsigned long __initdata default_hstate_max_huge_pages;
58 static unsigned long __initdata default_hstate_size;
59 static bool __initdata parsed_valid_hugepagesz = true;
60 
61 /*
62  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63  * free_huge_pages, and surplus_huge_pages.
64  */
65 DEFINE_SPINLOCK(hugetlb_lock);
66 
67 /*
68  * Serializes faults on the same logical page.  This is used to
69  * prevent spurious OOMs when the hugepage pool is fully utilized.
70  */
71 static int num_fault_mutexes;
72 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
73 
74 /* Forward declaration */
75 static int hugetlb_acct_memory(struct hstate *h, long delta);
76 
unlock_or_release_subpool(struct hugepage_subpool * spool)77 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
78 {
79 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
80 
81 	spin_unlock(&spool->lock);
82 
83 	/* If no pages are used, and no other handles to the subpool
84 	 * remain, give up any reservations mased on minimum size and
85 	 * free the subpool */
86 	if (free) {
87 		if (spool->min_hpages != -1)
88 			hugetlb_acct_memory(spool->hstate,
89 						-spool->min_hpages);
90 		kfree(spool);
91 	}
92 }
93 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)94 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
95 						long min_hpages)
96 {
97 	struct hugepage_subpool *spool;
98 
99 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
100 	if (!spool)
101 		return NULL;
102 
103 	spin_lock_init(&spool->lock);
104 	spool->count = 1;
105 	spool->max_hpages = max_hpages;
106 	spool->hstate = h;
107 	spool->min_hpages = min_hpages;
108 
109 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 		kfree(spool);
111 		return NULL;
112 	}
113 	spool->rsv_hpages = min_hpages;
114 
115 	return spool;
116 }
117 
hugepage_put_subpool(struct hugepage_subpool * spool)118 void hugepage_put_subpool(struct hugepage_subpool *spool)
119 {
120 	spin_lock(&spool->lock);
121 	BUG_ON(!spool->count);
122 	spool->count--;
123 	unlock_or_release_subpool(spool);
124 }
125 
126 /*
127  * Subpool accounting for allocating and reserving pages.
128  * Return -ENOMEM if there are not enough resources to satisfy the
129  * the request.  Otherwise, return the number of pages by which the
130  * global pools must be adjusted (upward).  The returned value may
131  * only be different than the passed value (delta) in the case where
132  * a subpool minimum size must be manitained.
133  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)134 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
135 				      long delta)
136 {
137 	long ret = delta;
138 
139 	if (!spool)
140 		return ret;
141 
142 	spin_lock(&spool->lock);
143 
144 	if (spool->max_hpages != -1) {		/* maximum size accounting */
145 		if ((spool->used_hpages + delta) <= spool->max_hpages)
146 			spool->used_hpages += delta;
147 		else {
148 			ret = -ENOMEM;
149 			goto unlock_ret;
150 		}
151 	}
152 
153 	/* minimum size accounting */
154 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
155 		if (delta > spool->rsv_hpages) {
156 			/*
157 			 * Asking for more reserves than those already taken on
158 			 * behalf of subpool.  Return difference.
159 			 */
160 			ret = delta - spool->rsv_hpages;
161 			spool->rsv_hpages = 0;
162 		} else {
163 			ret = 0;	/* reserves already accounted for */
164 			spool->rsv_hpages -= delta;
165 		}
166 	}
167 
168 unlock_ret:
169 	spin_unlock(&spool->lock);
170 	return ret;
171 }
172 
173 /*
174  * Subpool accounting for freeing and unreserving pages.
175  * Return the number of global page reservations that must be dropped.
176  * The return value may only be different than the passed value (delta)
177  * in the case where a subpool minimum size must be maintained.
178  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)179 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
180 				       long delta)
181 {
182 	long ret = delta;
183 
184 	if (!spool)
185 		return delta;
186 
187 	spin_lock(&spool->lock);
188 
189 	if (spool->max_hpages != -1)		/* maximum size accounting */
190 		spool->used_hpages -= delta;
191 
192 	 /* minimum size accounting */
193 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
194 		if (spool->rsv_hpages + delta <= spool->min_hpages)
195 			ret = 0;
196 		else
197 			ret = spool->rsv_hpages + delta - spool->min_hpages;
198 
199 		spool->rsv_hpages += delta;
200 		if (spool->rsv_hpages > spool->min_hpages)
201 			spool->rsv_hpages = spool->min_hpages;
202 	}
203 
204 	/*
205 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 	 * quota reference, free it now.
207 	 */
208 	unlock_or_release_subpool(spool);
209 
210 	return ret;
211 }
212 
subpool_inode(struct inode * inode)213 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
214 {
215 	return HUGETLBFS_SB(inode->i_sb)->spool;
216 }
217 
subpool_vma(struct vm_area_struct * vma)218 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
219 {
220 	return subpool_inode(file_inode(vma->vm_file));
221 }
222 
223 /*
224  * Region tracking -- allows tracking of reservations and instantiated pages
225  *                    across the pages in a mapping.
226  *
227  * The region data structures are embedded into a resv_map and protected
228  * by a resv_map's lock.  The set of regions within the resv_map represent
229  * reservations for huge pages, or huge pages that have already been
230  * instantiated within the map.  The from and to elements are huge page
231  * indicies into the associated mapping.  from indicates the starting index
232  * of the region.  to represents the first index past the end of  the region.
233  *
234  * For example, a file region structure with from == 0 and to == 4 represents
235  * four huge pages in a mapping.  It is important to note that the to element
236  * represents the first element past the end of the region. This is used in
237  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
238  *
239  * Interval notation of the form [from, to) will be used to indicate that
240  * the endpoint from is inclusive and to is exclusive.
241  */
242 struct file_region {
243 	struct list_head link;
244 	long from;
245 	long to;
246 };
247 
248 /*
249  * Add the huge page range represented by [f, t) to the reserve
250  * map.  In the normal case, existing regions will be expanded
251  * to accommodate the specified range.  Sufficient regions should
252  * exist for expansion due to the previous call to region_chg
253  * with the same range.  However, it is possible that region_del
254  * could have been called after region_chg and modifed the map
255  * in such a way that no region exists to be expanded.  In this
256  * case, pull a region descriptor from the cache associated with
257  * the map and use that for the new range.
258  *
259  * Return the number of new huge pages added to the map.  This
260  * number is greater than or equal to zero.
261  */
region_add(struct resv_map * resv,long f,long t)262 static long region_add(struct resv_map *resv, long f, long t)
263 {
264 	struct list_head *head = &resv->regions;
265 	struct file_region *rg, *nrg, *trg;
266 	long add = 0;
267 
268 	spin_lock(&resv->lock);
269 	/* Locate the region we are either in or before. */
270 	list_for_each_entry(rg, head, link)
271 		if (f <= rg->to)
272 			break;
273 
274 	/*
275 	 * If no region exists which can be expanded to include the
276 	 * specified range, the list must have been modified by an
277 	 * interleving call to region_del().  Pull a region descriptor
278 	 * from the cache and use it for this range.
279 	 */
280 	if (&rg->link == head || t < rg->from) {
281 		VM_BUG_ON(resv->region_cache_count <= 0);
282 
283 		resv->region_cache_count--;
284 		nrg = list_first_entry(&resv->region_cache, struct file_region,
285 					link);
286 		list_del(&nrg->link);
287 
288 		nrg->from = f;
289 		nrg->to = t;
290 		list_add(&nrg->link, rg->link.prev);
291 
292 		add += t - f;
293 		goto out_locked;
294 	}
295 
296 	/* Round our left edge to the current segment if it encloses us. */
297 	if (f > rg->from)
298 		f = rg->from;
299 
300 	/* Check for and consume any regions we now overlap with. */
301 	nrg = rg;
302 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
303 		if (&rg->link == head)
304 			break;
305 		if (rg->from > t)
306 			break;
307 
308 		/* If this area reaches higher then extend our area to
309 		 * include it completely.  If this is not the first area
310 		 * which we intend to reuse, free it. */
311 		if (rg->to > t)
312 			t = rg->to;
313 		if (rg != nrg) {
314 			/* Decrement return value by the deleted range.
315 			 * Another range will span this area so that by
316 			 * end of routine add will be >= zero
317 			 */
318 			add -= (rg->to - rg->from);
319 			list_del(&rg->link);
320 			kfree(rg);
321 		}
322 	}
323 
324 	add += (nrg->from - f);		/* Added to beginning of region */
325 	nrg->from = f;
326 	add += t - nrg->to;		/* Added to end of region */
327 	nrg->to = t;
328 
329 out_locked:
330 	resv->adds_in_progress--;
331 	spin_unlock(&resv->lock);
332 	VM_BUG_ON(add < 0);
333 	return add;
334 }
335 
336 /*
337  * Examine the existing reserve map and determine how many
338  * huge pages in the specified range [f, t) are NOT currently
339  * represented.  This routine is called before a subsequent
340  * call to region_add that will actually modify the reserve
341  * map to add the specified range [f, t).  region_chg does
342  * not change the number of huge pages represented by the
343  * map.  However, if the existing regions in the map can not
344  * be expanded to represent the new range, a new file_region
345  * structure is added to the map as a placeholder.  This is
346  * so that the subsequent region_add call will have all the
347  * regions it needs and will not fail.
348  *
349  * Upon entry, region_chg will also examine the cache of region descriptors
350  * associated with the map.  If there are not enough descriptors cached, one
351  * will be allocated for the in progress add operation.
352  *
353  * Returns the number of huge pages that need to be added to the existing
354  * reservation map for the range [f, t).  This number is greater or equal to
355  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
356  * is needed and can not be allocated.
357  */
region_chg(struct resv_map * resv,long f,long t)358 static long region_chg(struct resv_map *resv, long f, long t)
359 {
360 	struct list_head *head = &resv->regions;
361 	struct file_region *rg, *nrg = NULL;
362 	long chg = 0;
363 
364 retry:
365 	spin_lock(&resv->lock);
366 retry_locked:
367 	resv->adds_in_progress++;
368 
369 	/*
370 	 * Check for sufficient descriptors in the cache to accommodate
371 	 * the number of in progress add operations.
372 	 */
373 	if (resv->adds_in_progress > resv->region_cache_count) {
374 		struct file_region *trg;
375 
376 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
377 		/* Must drop lock to allocate a new descriptor. */
378 		resv->adds_in_progress--;
379 		spin_unlock(&resv->lock);
380 
381 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
382 		if (!trg) {
383 			kfree(nrg);
384 			return -ENOMEM;
385 		}
386 
387 		spin_lock(&resv->lock);
388 		list_add(&trg->link, &resv->region_cache);
389 		resv->region_cache_count++;
390 		goto retry_locked;
391 	}
392 
393 	/* Locate the region we are before or in. */
394 	list_for_each_entry(rg, head, link)
395 		if (f <= rg->to)
396 			break;
397 
398 	/* If we are below the current region then a new region is required.
399 	 * Subtle, allocate a new region at the position but make it zero
400 	 * size such that we can guarantee to record the reservation. */
401 	if (&rg->link == head || t < rg->from) {
402 		if (!nrg) {
403 			resv->adds_in_progress--;
404 			spin_unlock(&resv->lock);
405 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
406 			if (!nrg)
407 				return -ENOMEM;
408 
409 			nrg->from = f;
410 			nrg->to   = f;
411 			INIT_LIST_HEAD(&nrg->link);
412 			goto retry;
413 		}
414 
415 		list_add(&nrg->link, rg->link.prev);
416 		chg = t - f;
417 		goto out_nrg;
418 	}
419 
420 	/* Round our left edge to the current segment if it encloses us. */
421 	if (f > rg->from)
422 		f = rg->from;
423 	chg = t - f;
424 
425 	/* Check for and consume any regions we now overlap with. */
426 	list_for_each_entry(rg, rg->link.prev, link) {
427 		if (&rg->link == head)
428 			break;
429 		if (rg->from > t)
430 			goto out;
431 
432 		/* We overlap with this area, if it extends further than
433 		 * us then we must extend ourselves.  Account for its
434 		 * existing reservation. */
435 		if (rg->to > t) {
436 			chg += rg->to - t;
437 			t = rg->to;
438 		}
439 		chg -= rg->to - rg->from;
440 	}
441 
442 out:
443 	spin_unlock(&resv->lock);
444 	/*  We already know we raced and no longer need the new region */
445 	kfree(nrg);
446 	return chg;
447 out_nrg:
448 	spin_unlock(&resv->lock);
449 	return chg;
450 }
451 
452 /*
453  * Abort the in progress add operation.  The adds_in_progress field
454  * of the resv_map keeps track of the operations in progress between
455  * calls to region_chg and region_add.  Operations are sometimes
456  * aborted after the call to region_chg.  In such cases, region_abort
457  * is called to decrement the adds_in_progress counter.
458  *
459  * NOTE: The range arguments [f, t) are not needed or used in this
460  * routine.  They are kept to make reading the calling code easier as
461  * arguments will match the associated region_chg call.
462  */
region_abort(struct resv_map * resv,long f,long t)463 static void region_abort(struct resv_map *resv, long f, long t)
464 {
465 	spin_lock(&resv->lock);
466 	VM_BUG_ON(!resv->region_cache_count);
467 	resv->adds_in_progress--;
468 	spin_unlock(&resv->lock);
469 }
470 
471 /*
472  * Delete the specified range [f, t) from the reserve map.  If the
473  * t parameter is LONG_MAX, this indicates that ALL regions after f
474  * should be deleted.  Locate the regions which intersect [f, t)
475  * and either trim, delete or split the existing regions.
476  *
477  * Returns the number of huge pages deleted from the reserve map.
478  * In the normal case, the return value is zero or more.  In the
479  * case where a region must be split, a new region descriptor must
480  * be allocated.  If the allocation fails, -ENOMEM will be returned.
481  * NOTE: If the parameter t == LONG_MAX, then we will never split
482  * a region and possibly return -ENOMEM.  Callers specifying
483  * t == LONG_MAX do not need to check for -ENOMEM error.
484  */
region_del(struct resv_map * resv,long f,long t)485 static long region_del(struct resv_map *resv, long f, long t)
486 {
487 	struct list_head *head = &resv->regions;
488 	struct file_region *rg, *trg;
489 	struct file_region *nrg = NULL;
490 	long del = 0;
491 
492 retry:
493 	spin_lock(&resv->lock);
494 	list_for_each_entry_safe(rg, trg, head, link) {
495 		/*
496 		 * Skip regions before the range to be deleted.  file_region
497 		 * ranges are normally of the form [from, to).  However, there
498 		 * may be a "placeholder" entry in the map which is of the form
499 		 * (from, to) with from == to.  Check for placeholder entries
500 		 * at the beginning of the range to be deleted.
501 		 */
502 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
503 			continue;
504 
505 		if (rg->from >= t)
506 			break;
507 
508 		if (f > rg->from && t < rg->to) { /* Must split region */
509 			/*
510 			 * Check for an entry in the cache before dropping
511 			 * lock and attempting allocation.
512 			 */
513 			if (!nrg &&
514 			    resv->region_cache_count > resv->adds_in_progress) {
515 				nrg = list_first_entry(&resv->region_cache,
516 							struct file_region,
517 							link);
518 				list_del(&nrg->link);
519 				resv->region_cache_count--;
520 			}
521 
522 			if (!nrg) {
523 				spin_unlock(&resv->lock);
524 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
525 				if (!nrg)
526 					return -ENOMEM;
527 				goto retry;
528 			}
529 
530 			del += t - f;
531 
532 			/* New entry for end of split region */
533 			nrg->from = t;
534 			nrg->to = rg->to;
535 			INIT_LIST_HEAD(&nrg->link);
536 
537 			/* Original entry is trimmed */
538 			rg->to = f;
539 
540 			list_add(&nrg->link, &rg->link);
541 			nrg = NULL;
542 			break;
543 		}
544 
545 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
546 			del += rg->to - rg->from;
547 			list_del(&rg->link);
548 			kfree(rg);
549 			continue;
550 		}
551 
552 		if (f <= rg->from) {	/* Trim beginning of region */
553 			del += t - rg->from;
554 			rg->from = t;
555 		} else {		/* Trim end of region */
556 			del += rg->to - f;
557 			rg->to = f;
558 		}
559 	}
560 
561 	spin_unlock(&resv->lock);
562 	kfree(nrg);
563 	return del;
564 }
565 
566 /*
567  * A rare out of memory error was encountered which prevented removal of
568  * the reserve map region for a page.  The huge page itself was free'ed
569  * and removed from the page cache.  This routine will adjust the subpool
570  * usage count, and the global reserve count if needed.  By incrementing
571  * these counts, the reserve map entry which could not be deleted will
572  * appear as a "reserved" entry instead of simply dangling with incorrect
573  * counts.
574  */
hugetlb_fix_reserve_counts(struct inode * inode)575 void hugetlb_fix_reserve_counts(struct inode *inode)
576 {
577 	struct hugepage_subpool *spool = subpool_inode(inode);
578 	long rsv_adjust;
579 
580 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
581 	if (rsv_adjust) {
582 		struct hstate *h = hstate_inode(inode);
583 
584 		hugetlb_acct_memory(h, 1);
585 	}
586 }
587 
588 /*
589  * Count and return the number of huge pages in the reserve map
590  * that intersect with the range [f, t).
591  */
region_count(struct resv_map * resv,long f,long t)592 static long region_count(struct resv_map *resv, long f, long t)
593 {
594 	struct list_head *head = &resv->regions;
595 	struct file_region *rg;
596 	long chg = 0;
597 
598 	spin_lock(&resv->lock);
599 	/* Locate each segment we overlap with, and count that overlap. */
600 	list_for_each_entry(rg, head, link) {
601 		long seg_from;
602 		long seg_to;
603 
604 		if (rg->to <= f)
605 			continue;
606 		if (rg->from >= t)
607 			break;
608 
609 		seg_from = max(rg->from, f);
610 		seg_to = min(rg->to, t);
611 
612 		chg += seg_to - seg_from;
613 	}
614 	spin_unlock(&resv->lock);
615 
616 	return chg;
617 }
618 
619 /*
620  * Convert the address within this vma to the page offset within
621  * the mapping, in pagecache page units; huge pages here.
622  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)623 static pgoff_t vma_hugecache_offset(struct hstate *h,
624 			struct vm_area_struct *vma, unsigned long address)
625 {
626 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
627 			(vma->vm_pgoff >> huge_page_order(h));
628 }
629 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)630 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
631 				     unsigned long address)
632 {
633 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
634 }
635 EXPORT_SYMBOL_GPL(linear_hugepage_index);
636 
637 /*
638  * Return the size of the pages allocated when backing a VMA. In the majority
639  * cases this will be same size as used by the page table entries.
640  */
vma_kernel_pagesize(struct vm_area_struct * vma)641 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
642 {
643 	if (vma->vm_ops && vma->vm_ops->pagesize)
644 		return vma->vm_ops->pagesize(vma);
645 	return PAGE_SIZE;
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648 
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific 'strong'
653  * version of this symbol is required.
654  */
vma_mmu_pagesize(struct vm_area_struct * vma)655 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
656 {
657 	return vma_kernel_pagesize(vma);
658 }
659 
660 /*
661  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
662  * bits of the reservation map pointer, which are always clear due to
663  * alignment.
664  */
665 #define HPAGE_RESV_OWNER    (1UL << 0)
666 #define HPAGE_RESV_UNMAPPED (1UL << 1)
667 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
668 
669 /*
670  * These helpers are used to track how many pages are reserved for
671  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
672  * is guaranteed to have their future faults succeed.
673  *
674  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
675  * the reserve counters are updated with the hugetlb_lock held. It is safe
676  * to reset the VMA at fork() time as it is not in use yet and there is no
677  * chance of the global counters getting corrupted as a result of the values.
678  *
679  * The private mapping reservation is represented in a subtly different
680  * manner to a shared mapping.  A shared mapping has a region map associated
681  * with the underlying file, this region map represents the backing file
682  * pages which have ever had a reservation assigned which this persists even
683  * after the page is instantiated.  A private mapping has a region map
684  * associated with the original mmap which is attached to all VMAs which
685  * reference it, this region map represents those offsets which have consumed
686  * reservation ie. where pages have been instantiated.
687  */
get_vma_private_data(struct vm_area_struct * vma)688 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
689 {
690 	return (unsigned long)vma->vm_private_data;
691 }
692 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)693 static void set_vma_private_data(struct vm_area_struct *vma,
694 							unsigned long value)
695 {
696 	vma->vm_private_data = (void *)value;
697 }
698 
resv_map_alloc(void)699 struct resv_map *resv_map_alloc(void)
700 {
701 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
702 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
703 
704 	if (!resv_map || !rg) {
705 		kfree(resv_map);
706 		kfree(rg);
707 		return NULL;
708 	}
709 
710 	kref_init(&resv_map->refs);
711 	spin_lock_init(&resv_map->lock);
712 	INIT_LIST_HEAD(&resv_map->regions);
713 
714 	resv_map->adds_in_progress = 0;
715 
716 	INIT_LIST_HEAD(&resv_map->region_cache);
717 	list_add(&rg->link, &resv_map->region_cache);
718 	resv_map->region_cache_count = 1;
719 
720 	return resv_map;
721 }
722 
resv_map_release(struct kref * ref)723 void resv_map_release(struct kref *ref)
724 {
725 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
726 	struct list_head *head = &resv_map->region_cache;
727 	struct file_region *rg, *trg;
728 
729 	/* Clear out any active regions before we release the map. */
730 	region_del(resv_map, 0, LONG_MAX);
731 
732 	/* ... and any entries left in the cache */
733 	list_for_each_entry_safe(rg, trg, head, link) {
734 		list_del(&rg->link);
735 		kfree(rg);
736 	}
737 
738 	VM_BUG_ON(resv_map->adds_in_progress);
739 
740 	kfree(resv_map);
741 }
742 
inode_resv_map(struct inode * inode)743 static inline struct resv_map *inode_resv_map(struct inode *inode)
744 {
745 	/*
746 	 * At inode evict time, i_mapping may not point to the original
747 	 * address space within the inode.  This original address space
748 	 * contains the pointer to the resv_map.  So, always use the
749 	 * address space embedded within the inode.
750 	 * The VERY common case is inode->mapping == &inode->i_data but,
751 	 * this may not be true for device special inodes.
752 	 */
753 	return (struct resv_map *)(&inode->i_data)->private_data;
754 }
755 
vma_resv_map(struct vm_area_struct * vma)756 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
757 {
758 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
759 	if (vma->vm_flags & VM_MAYSHARE) {
760 		struct address_space *mapping = vma->vm_file->f_mapping;
761 		struct inode *inode = mapping->host;
762 
763 		return inode_resv_map(inode);
764 
765 	} else {
766 		return (struct resv_map *)(get_vma_private_data(vma) &
767 							~HPAGE_RESV_MASK);
768 	}
769 }
770 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)771 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
772 {
773 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
774 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
775 
776 	set_vma_private_data(vma, (get_vma_private_data(vma) &
777 				HPAGE_RESV_MASK) | (unsigned long)map);
778 }
779 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)780 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
781 {
782 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
783 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
784 
785 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
786 }
787 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)788 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
789 {
790 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
791 
792 	return (get_vma_private_data(vma) & flag) != 0;
793 }
794 
795 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)796 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
797 {
798 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
799 	if (!(vma->vm_flags & VM_MAYSHARE))
800 		vma->vm_private_data = (void *)0;
801 }
802 
803 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)804 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
805 {
806 	if (vma->vm_flags & VM_NORESERVE) {
807 		/*
808 		 * This address is already reserved by other process(chg == 0),
809 		 * so, we should decrement reserved count. Without decrementing,
810 		 * reserve count remains after releasing inode, because this
811 		 * allocated page will go into page cache and is regarded as
812 		 * coming from reserved pool in releasing step.  Currently, we
813 		 * don't have any other solution to deal with this situation
814 		 * properly, so add work-around here.
815 		 */
816 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
817 			return true;
818 		else
819 			return false;
820 	}
821 
822 	/* Shared mappings always use reserves */
823 	if (vma->vm_flags & VM_MAYSHARE) {
824 		/*
825 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
826 		 * be a region map for all pages.  The only situation where
827 		 * there is no region map is if a hole was punched via
828 		 * fallocate.  In this case, there really are no reverves to
829 		 * use.  This situation is indicated if chg != 0.
830 		 */
831 		if (chg)
832 			return false;
833 		else
834 			return true;
835 	}
836 
837 	/*
838 	 * Only the process that called mmap() has reserves for
839 	 * private mappings.
840 	 */
841 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
842 		/*
843 		 * Like the shared case above, a hole punch or truncate
844 		 * could have been performed on the private mapping.
845 		 * Examine the value of chg to determine if reserves
846 		 * actually exist or were previously consumed.
847 		 * Very Subtle - The value of chg comes from a previous
848 		 * call to vma_needs_reserves().  The reserve map for
849 		 * private mappings has different (opposite) semantics
850 		 * than that of shared mappings.  vma_needs_reserves()
851 		 * has already taken this difference in semantics into
852 		 * account.  Therefore, the meaning of chg is the same
853 		 * as in the shared case above.  Code could easily be
854 		 * combined, but keeping it separate draws attention to
855 		 * subtle differences.
856 		 */
857 		if (chg)
858 			return false;
859 		else
860 			return true;
861 	}
862 
863 	return false;
864 }
865 
enqueue_huge_page(struct hstate * h,struct page * page)866 static void enqueue_huge_page(struct hstate *h, struct page *page)
867 {
868 	int nid = page_to_nid(page);
869 	list_move(&page->lru, &h->hugepage_freelists[nid]);
870 	h->free_huge_pages++;
871 	h->free_huge_pages_node[nid]++;
872 }
873 
dequeue_huge_page_node_exact(struct hstate * h,int nid)874 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
875 {
876 	struct page *page;
877 
878 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
879 		if (!PageHWPoison(page))
880 			break;
881 	/*
882 	 * if 'non-isolated free hugepage' not found on the list,
883 	 * the allocation fails.
884 	 */
885 	if (&h->hugepage_freelists[nid] == &page->lru)
886 		return NULL;
887 	list_move(&page->lru, &h->hugepage_activelist);
888 	set_page_refcounted(page);
889 	h->free_huge_pages--;
890 	h->free_huge_pages_node[nid]--;
891 	return page;
892 }
893 
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)894 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
895 		nodemask_t *nmask)
896 {
897 	unsigned int cpuset_mems_cookie;
898 	struct zonelist *zonelist;
899 	struct zone *zone;
900 	struct zoneref *z;
901 	int node = NUMA_NO_NODE;
902 
903 	zonelist = node_zonelist(nid, gfp_mask);
904 
905 retry_cpuset:
906 	cpuset_mems_cookie = read_mems_allowed_begin();
907 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
908 		struct page *page;
909 
910 		if (!cpuset_zone_allowed(zone, gfp_mask))
911 			continue;
912 		/*
913 		 * no need to ask again on the same node. Pool is node rather than
914 		 * zone aware
915 		 */
916 		if (zone_to_nid(zone) == node)
917 			continue;
918 		node = zone_to_nid(zone);
919 
920 		page = dequeue_huge_page_node_exact(h, node);
921 		if (page)
922 			return page;
923 	}
924 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
925 		goto retry_cpuset;
926 
927 	return NULL;
928 }
929 
930 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)931 static inline gfp_t htlb_alloc_mask(struct hstate *h)
932 {
933 	if (hugepage_movable_supported(h))
934 		return GFP_HIGHUSER_MOVABLE;
935 	else
936 		return GFP_HIGHUSER;
937 }
938 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)939 static struct page *dequeue_huge_page_vma(struct hstate *h,
940 				struct vm_area_struct *vma,
941 				unsigned long address, int avoid_reserve,
942 				long chg)
943 {
944 	struct page *page;
945 	struct mempolicy *mpol;
946 	gfp_t gfp_mask;
947 	nodemask_t *nodemask;
948 	int nid;
949 
950 	/*
951 	 * A child process with MAP_PRIVATE mappings created by their parent
952 	 * have no page reserves. This check ensures that reservations are
953 	 * not "stolen". The child may still get SIGKILLed
954 	 */
955 	if (!vma_has_reserves(vma, chg) &&
956 			h->free_huge_pages - h->resv_huge_pages == 0)
957 		goto err;
958 
959 	/* If reserves cannot be used, ensure enough pages are in the pool */
960 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
961 		goto err;
962 
963 	gfp_mask = htlb_alloc_mask(h);
964 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
965 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
966 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
967 		SetPagePrivate(page);
968 		h->resv_huge_pages--;
969 	}
970 
971 	mpol_cond_put(mpol);
972 	return page;
973 
974 err:
975 	return NULL;
976 }
977 
978 /*
979  * common helper functions for hstate_next_node_to_{alloc|free}.
980  * We may have allocated or freed a huge page based on a different
981  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
982  * be outside of *nodes_allowed.  Ensure that we use an allowed
983  * node for alloc or free.
984  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)985 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
986 {
987 	nid = next_node_in(nid, *nodes_allowed);
988 	VM_BUG_ON(nid >= MAX_NUMNODES);
989 
990 	return nid;
991 }
992 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)993 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
994 {
995 	if (!node_isset(nid, *nodes_allowed))
996 		nid = next_node_allowed(nid, nodes_allowed);
997 	return nid;
998 }
999 
1000 /*
1001  * returns the previously saved node ["this node"] from which to
1002  * allocate a persistent huge page for the pool and advance the
1003  * next node from which to allocate, handling wrap at end of node
1004  * mask.
1005  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1006 static int hstate_next_node_to_alloc(struct hstate *h,
1007 					nodemask_t *nodes_allowed)
1008 {
1009 	int nid;
1010 
1011 	VM_BUG_ON(!nodes_allowed);
1012 
1013 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1014 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1015 
1016 	return nid;
1017 }
1018 
1019 /*
1020  * helper for free_pool_huge_page() - return the previously saved
1021  * node ["this node"] from which to free a huge page.  Advance the
1022  * next node id whether or not we find a free huge page to free so
1023  * that the next attempt to free addresses the next node.
1024  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1025 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1026 {
1027 	int nid;
1028 
1029 	VM_BUG_ON(!nodes_allowed);
1030 
1031 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1032 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1033 
1034 	return nid;
1035 }
1036 
1037 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1038 	for (nr_nodes = nodes_weight(*mask);				\
1039 		nr_nodes > 0 &&						\
1040 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1041 		nr_nodes--)
1042 
1043 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1044 	for (nr_nodes = nodes_weight(*mask);				\
1045 		nr_nodes > 0 &&						\
1046 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1047 		nr_nodes--)
1048 
1049 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1050 static void destroy_compound_gigantic_page(struct page *page,
1051 					unsigned int order)
1052 {
1053 	int i;
1054 	int nr_pages = 1 << order;
1055 	struct page *p = page + 1;
1056 
1057 	atomic_set(compound_mapcount_ptr(page), 0);
1058 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1059 		clear_compound_head(p);
1060 		set_page_refcounted(p);
1061 	}
1062 
1063 	set_compound_order(page, 0);
1064 	__ClearPageHead(page);
1065 }
1066 
free_gigantic_page(struct page * page,unsigned int order)1067 static void free_gigantic_page(struct page *page, unsigned int order)
1068 {
1069 	free_contig_range(page_to_pfn(page), 1 << order);
1070 }
1071 
1072 #ifdef CONFIG_CONTIG_ALLOC
__alloc_gigantic_page(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)1073 static int __alloc_gigantic_page(unsigned long start_pfn,
1074 				unsigned long nr_pages, gfp_t gfp_mask)
1075 {
1076 	unsigned long end_pfn = start_pfn + nr_pages;
1077 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1078 				  gfp_mask);
1079 }
1080 
pfn_range_valid_gigantic(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)1081 static bool pfn_range_valid_gigantic(struct zone *z,
1082 			unsigned long start_pfn, unsigned long nr_pages)
1083 {
1084 	unsigned long i, end_pfn = start_pfn + nr_pages;
1085 	struct page *page;
1086 
1087 	for (i = start_pfn; i < end_pfn; i++) {
1088 		page = pfn_to_online_page(i);
1089 		if (!page)
1090 			return false;
1091 
1092 		if (page_zone(page) != z)
1093 			return false;
1094 
1095 		if (PageReserved(page))
1096 			return false;
1097 
1098 		if (page_count(page) > 0)
1099 			return false;
1100 
1101 		if (PageHuge(page))
1102 			return false;
1103 	}
1104 
1105 	return true;
1106 }
1107 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1108 static bool zone_spans_last_pfn(const struct zone *zone,
1109 			unsigned long start_pfn, unsigned long nr_pages)
1110 {
1111 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1112 	return zone_spans_pfn(zone, last_pfn);
1113 }
1114 
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1115 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1116 		int nid, nodemask_t *nodemask)
1117 {
1118 	unsigned int order = huge_page_order(h);
1119 	unsigned long nr_pages = 1 << order;
1120 	unsigned long ret, pfn, flags;
1121 	struct zonelist *zonelist;
1122 	struct zone *zone;
1123 	struct zoneref *z;
1124 
1125 	zonelist = node_zonelist(nid, gfp_mask);
1126 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1127 		spin_lock_irqsave(&zone->lock, flags);
1128 
1129 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1130 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1131 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1132 				/*
1133 				 * We release the zone lock here because
1134 				 * alloc_contig_range() will also lock the zone
1135 				 * at some point. If there's an allocation
1136 				 * spinning on this lock, it may win the race
1137 				 * and cause alloc_contig_range() to fail...
1138 				 */
1139 				spin_unlock_irqrestore(&zone->lock, flags);
1140 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1141 				if (!ret)
1142 					return pfn_to_page(pfn);
1143 				spin_lock_irqsave(&zone->lock, flags);
1144 			}
1145 			pfn += nr_pages;
1146 		}
1147 
1148 		spin_unlock_irqrestore(&zone->lock, flags);
1149 	}
1150 
1151 	return NULL;
1152 }
1153 
1154 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1155 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1156 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1157 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1158 					int nid, nodemask_t *nodemask)
1159 {
1160 	return NULL;
1161 }
1162 #endif /* CONFIG_CONTIG_ALLOC */
1163 
1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1165 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1166 					int nid, nodemask_t *nodemask)
1167 {
1168 	return NULL;
1169 }
free_gigantic_page(struct page * page,unsigned int order)1170 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1171 static inline void destroy_compound_gigantic_page(struct page *page,
1172 						unsigned int order) { }
1173 #endif
1174 
update_and_free_page(struct hstate * h,struct page * page)1175 static void update_and_free_page(struct hstate *h, struct page *page)
1176 {
1177 	int i;
1178 
1179 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1180 		return;
1181 
1182 	h->nr_huge_pages--;
1183 	h->nr_huge_pages_node[page_to_nid(page)]--;
1184 	for (i = 0; i < pages_per_huge_page(h); i++) {
1185 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1186 				1 << PG_referenced | 1 << PG_dirty |
1187 				1 << PG_active | 1 << PG_private |
1188 				1 << PG_writeback);
1189 	}
1190 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1191 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1192 	set_page_refcounted(page);
1193 	if (hstate_is_gigantic(h)) {
1194 		destroy_compound_gigantic_page(page, huge_page_order(h));
1195 		free_gigantic_page(page, huge_page_order(h));
1196 	} else {
1197 		__free_pages(page, huge_page_order(h));
1198 	}
1199 }
1200 
size_to_hstate(unsigned long size)1201 struct hstate *size_to_hstate(unsigned long size)
1202 {
1203 	struct hstate *h;
1204 
1205 	for_each_hstate(h) {
1206 		if (huge_page_size(h) == size)
1207 			return h;
1208 	}
1209 	return NULL;
1210 }
1211 
1212 /*
1213  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214  * to hstate->hugepage_activelist.)
1215  *
1216  * This function can be called for tail pages, but never returns true for them.
1217  */
page_huge_active(struct page * page)1218 bool page_huge_active(struct page *page)
1219 {
1220 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1221 	return PageHead(page) && PagePrivate(&page[1]);
1222 }
1223 
1224 /* never called for tail page */
set_page_huge_active(struct page * page)1225 static void set_page_huge_active(struct page *page)
1226 {
1227 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 	SetPagePrivate(&page[1]);
1229 }
1230 
clear_page_huge_active(struct page * page)1231 static void clear_page_huge_active(struct page *page)
1232 {
1233 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1234 	ClearPagePrivate(&page[1]);
1235 }
1236 
1237 /*
1238  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1239  * code
1240  */
PageHugeTemporary(struct page * page)1241 static inline bool PageHugeTemporary(struct page *page)
1242 {
1243 	if (!PageHuge(page))
1244 		return false;
1245 
1246 	return (unsigned long)page[2].mapping == -1U;
1247 }
1248 
SetPageHugeTemporary(struct page * page)1249 static inline void SetPageHugeTemporary(struct page *page)
1250 {
1251 	page[2].mapping = (void *)-1U;
1252 }
1253 
ClearPageHugeTemporary(struct page * page)1254 static inline void ClearPageHugeTemporary(struct page *page)
1255 {
1256 	page[2].mapping = NULL;
1257 }
1258 
__free_huge_page(struct page * page)1259 static void __free_huge_page(struct page *page)
1260 {
1261 	/*
1262 	 * Can't pass hstate in here because it is called from the
1263 	 * compound page destructor.
1264 	 */
1265 	struct hstate *h = page_hstate(page);
1266 	int nid = page_to_nid(page);
1267 	struct hugepage_subpool *spool =
1268 		(struct hugepage_subpool *)page_private(page);
1269 	bool restore_reserve;
1270 
1271 	VM_BUG_ON_PAGE(page_count(page), page);
1272 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1273 
1274 	set_page_private(page, 0);
1275 	page->mapping = NULL;
1276 	restore_reserve = PagePrivate(page);
1277 	ClearPagePrivate(page);
1278 
1279 	/*
1280 	 * If PagePrivate() was set on page, page allocation consumed a
1281 	 * reservation.  If the page was associated with a subpool, there
1282 	 * would have been a page reserved in the subpool before allocation
1283 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1284 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 	 * remove the reserved page from the subpool.
1286 	 */
1287 	if (!restore_reserve) {
1288 		/*
1289 		 * A return code of zero implies that the subpool will be
1290 		 * under its minimum size if the reservation is not restored
1291 		 * after page is free.  Therefore, force restore_reserve
1292 		 * operation.
1293 		 */
1294 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1295 			restore_reserve = true;
1296 	}
1297 
1298 	spin_lock(&hugetlb_lock);
1299 	clear_page_huge_active(page);
1300 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1301 				     pages_per_huge_page(h), page);
1302 	if (restore_reserve)
1303 		h->resv_huge_pages++;
1304 
1305 	if (PageHugeTemporary(page)) {
1306 		list_del(&page->lru);
1307 		ClearPageHugeTemporary(page);
1308 		update_and_free_page(h, page);
1309 	} else if (h->surplus_huge_pages_node[nid]) {
1310 		/* remove the page from active list */
1311 		list_del(&page->lru);
1312 		update_and_free_page(h, page);
1313 		h->surplus_huge_pages--;
1314 		h->surplus_huge_pages_node[nid]--;
1315 	} else {
1316 		arch_clear_hugepage_flags(page);
1317 		enqueue_huge_page(h, page);
1318 	}
1319 	spin_unlock(&hugetlb_lock);
1320 }
1321 
1322 /*
1323  * As free_huge_page() can be called from a non-task context, we have
1324  * to defer the actual freeing in a workqueue to prevent potential
1325  * hugetlb_lock deadlock.
1326  *
1327  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1328  * be freed and frees them one-by-one. As the page->mapping pointer is
1329  * going to be cleared in __free_huge_page() anyway, it is reused as the
1330  * llist_node structure of a lockless linked list of huge pages to be freed.
1331  */
1332 static LLIST_HEAD(hpage_freelist);
1333 
free_hpage_workfn(struct work_struct * work)1334 static void free_hpage_workfn(struct work_struct *work)
1335 {
1336 	struct llist_node *node;
1337 	struct page *page;
1338 
1339 	node = llist_del_all(&hpage_freelist);
1340 
1341 	while (node) {
1342 		page = container_of((struct address_space **)node,
1343 				     struct page, mapping);
1344 		node = node->next;
1345 		__free_huge_page(page);
1346 	}
1347 }
1348 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1349 
free_huge_page(struct page * page)1350 void free_huge_page(struct page *page)
1351 {
1352 	/*
1353 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1354 	 */
1355 	if (!in_task()) {
1356 		/*
1357 		 * Only call schedule_work() if hpage_freelist is previously
1358 		 * empty. Otherwise, schedule_work() had been called but the
1359 		 * workfn hasn't retrieved the list yet.
1360 		 */
1361 		if (llist_add((struct llist_node *)&page->mapping,
1362 			      &hpage_freelist))
1363 			schedule_work(&free_hpage_work);
1364 		return;
1365 	}
1366 
1367 	__free_huge_page(page);
1368 }
1369 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1370 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1371 {
1372 	INIT_LIST_HEAD(&page->lru);
1373 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1374 	spin_lock(&hugetlb_lock);
1375 	set_hugetlb_cgroup(page, NULL);
1376 	h->nr_huge_pages++;
1377 	h->nr_huge_pages_node[nid]++;
1378 	spin_unlock(&hugetlb_lock);
1379 }
1380 
prep_compound_gigantic_page(struct page * page,unsigned int order)1381 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1382 {
1383 	int i;
1384 	int nr_pages = 1 << order;
1385 	struct page *p = page + 1;
1386 
1387 	/* we rely on prep_new_huge_page to set the destructor */
1388 	set_compound_order(page, order);
1389 	__ClearPageReserved(page);
1390 	__SetPageHead(page);
1391 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1392 		/*
1393 		 * For gigantic hugepages allocated through bootmem at
1394 		 * boot, it's safer to be consistent with the not-gigantic
1395 		 * hugepages and clear the PG_reserved bit from all tail pages
1396 		 * too.  Otherwse drivers using get_user_pages() to access tail
1397 		 * pages may get the reference counting wrong if they see
1398 		 * PG_reserved set on a tail page (despite the head page not
1399 		 * having PG_reserved set).  Enforcing this consistency between
1400 		 * head and tail pages allows drivers to optimize away a check
1401 		 * on the head page when they need know if put_page() is needed
1402 		 * after get_user_pages().
1403 		 */
1404 		__ClearPageReserved(p);
1405 		set_page_count(p, 0);
1406 		set_compound_head(p, page);
1407 	}
1408 	atomic_set(compound_mapcount_ptr(page), -1);
1409 }
1410 
1411 /*
1412  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1413  * transparent huge pages.  See the PageTransHuge() documentation for more
1414  * details.
1415  */
PageHuge(struct page * page)1416 int PageHuge(struct page *page)
1417 {
1418 	if (!PageCompound(page))
1419 		return 0;
1420 
1421 	page = compound_head(page);
1422 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1423 }
1424 EXPORT_SYMBOL_GPL(PageHuge);
1425 
1426 /*
1427  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1428  * normal or transparent huge pages.
1429  */
PageHeadHuge(struct page * page_head)1430 int PageHeadHuge(struct page *page_head)
1431 {
1432 	if (!PageHead(page_head))
1433 		return 0;
1434 
1435 	return get_compound_page_dtor(page_head) == free_huge_page;
1436 }
1437 
__basepage_index(struct page * page)1438 pgoff_t __basepage_index(struct page *page)
1439 {
1440 	struct page *page_head = compound_head(page);
1441 	pgoff_t index = page_index(page_head);
1442 	unsigned long compound_idx;
1443 
1444 	if (!PageHuge(page_head))
1445 		return page_index(page);
1446 
1447 	if (compound_order(page_head) >= MAX_ORDER)
1448 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1449 	else
1450 		compound_idx = page - page_head;
1451 
1452 	return (index << compound_order(page_head)) + compound_idx;
1453 }
1454 
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1455 static struct page *alloc_buddy_huge_page(struct hstate *h,
1456 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1457 		nodemask_t *node_alloc_noretry)
1458 {
1459 	int order = huge_page_order(h);
1460 	struct page *page;
1461 	bool alloc_try_hard = true;
1462 
1463 	/*
1464 	 * By default we always try hard to allocate the page with
1465 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1466 	 * a loop (to adjust global huge page counts) and previous allocation
1467 	 * failed, do not continue to try hard on the same node.  Use the
1468 	 * node_alloc_noretry bitmap to manage this state information.
1469 	 */
1470 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1471 		alloc_try_hard = false;
1472 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1473 	if (alloc_try_hard)
1474 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1475 	if (nid == NUMA_NO_NODE)
1476 		nid = numa_mem_id();
1477 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1478 	if (page)
1479 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1480 	else
1481 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1482 
1483 	/*
1484 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1485 	 * indicates an overall state change.  Clear bit so that we resume
1486 	 * normal 'try hard' allocations.
1487 	 */
1488 	if (node_alloc_noretry && page && !alloc_try_hard)
1489 		node_clear(nid, *node_alloc_noretry);
1490 
1491 	/*
1492 	 * If we tried hard to get a page but failed, set bit so that
1493 	 * subsequent attempts will not try as hard until there is an
1494 	 * overall state change.
1495 	 */
1496 	if (node_alloc_noretry && !page && alloc_try_hard)
1497 		node_set(nid, *node_alloc_noretry);
1498 
1499 	return page;
1500 }
1501 
1502 /*
1503  * Common helper to allocate a fresh hugetlb page. All specific allocators
1504  * should use this function to get new hugetlb pages
1505  */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1506 static struct page *alloc_fresh_huge_page(struct hstate *h,
1507 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1508 		nodemask_t *node_alloc_noretry)
1509 {
1510 	struct page *page;
1511 
1512 	if (hstate_is_gigantic(h))
1513 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1514 	else
1515 		page = alloc_buddy_huge_page(h, gfp_mask,
1516 				nid, nmask, node_alloc_noretry);
1517 	if (!page)
1518 		return NULL;
1519 
1520 	if (hstate_is_gigantic(h))
1521 		prep_compound_gigantic_page(page, huge_page_order(h));
1522 	prep_new_huge_page(h, page, page_to_nid(page));
1523 
1524 	return page;
1525 }
1526 
1527 /*
1528  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1529  * manner.
1530  */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)1531 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1532 				nodemask_t *node_alloc_noretry)
1533 {
1534 	struct page *page;
1535 	int nr_nodes, node;
1536 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1537 
1538 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1539 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1540 						node_alloc_noretry);
1541 		if (page)
1542 			break;
1543 	}
1544 
1545 	if (!page)
1546 		return 0;
1547 
1548 	put_page(page); /* free it into the hugepage allocator */
1549 
1550 	return 1;
1551 }
1552 
1553 /*
1554  * Free huge page from pool from next node to free.
1555  * Attempt to keep persistent huge pages more or less
1556  * balanced over allowed nodes.
1557  * Called with hugetlb_lock locked.
1558  */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1559 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1560 							 bool acct_surplus)
1561 {
1562 	int nr_nodes, node;
1563 	int ret = 0;
1564 
1565 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1566 		/*
1567 		 * If we're returning unused surplus pages, only examine
1568 		 * nodes with surplus pages.
1569 		 */
1570 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1571 		    !list_empty(&h->hugepage_freelists[node])) {
1572 			struct page *page =
1573 				list_entry(h->hugepage_freelists[node].next,
1574 					  struct page, lru);
1575 			list_del(&page->lru);
1576 			h->free_huge_pages--;
1577 			h->free_huge_pages_node[node]--;
1578 			if (acct_surplus) {
1579 				h->surplus_huge_pages--;
1580 				h->surplus_huge_pages_node[node]--;
1581 			}
1582 			update_and_free_page(h, page);
1583 			ret = 1;
1584 			break;
1585 		}
1586 	}
1587 
1588 	return ret;
1589 }
1590 
1591 /*
1592  * Dissolve a given free hugepage into free buddy pages. This function does
1593  * nothing for in-use hugepages and non-hugepages.
1594  * This function returns values like below:
1595  *
1596  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1597  *          (allocated or reserved.)
1598  *       0: successfully dissolved free hugepages or the page is not a
1599  *          hugepage (considered as already dissolved)
1600  */
dissolve_free_huge_page(struct page * page)1601 int dissolve_free_huge_page(struct page *page)
1602 {
1603 	int rc = -EBUSY;
1604 
1605 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1606 	if (!PageHuge(page))
1607 		return 0;
1608 
1609 	spin_lock(&hugetlb_lock);
1610 	if (!PageHuge(page)) {
1611 		rc = 0;
1612 		goto out;
1613 	}
1614 
1615 	if (!page_count(page)) {
1616 		struct page *head = compound_head(page);
1617 		struct hstate *h = page_hstate(head);
1618 		int nid = page_to_nid(head);
1619 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1620 			goto out;
1621 		/*
1622 		 * Move PageHWPoison flag from head page to the raw error page,
1623 		 * which makes any subpages rather than the error page reusable.
1624 		 */
1625 		if (PageHWPoison(head) && page != head) {
1626 			SetPageHWPoison(page);
1627 			ClearPageHWPoison(head);
1628 		}
1629 		list_del(&head->lru);
1630 		h->free_huge_pages--;
1631 		h->free_huge_pages_node[nid]--;
1632 		h->max_huge_pages--;
1633 		update_and_free_page(h, head);
1634 		rc = 0;
1635 	}
1636 out:
1637 	spin_unlock(&hugetlb_lock);
1638 	return rc;
1639 }
1640 
1641 /*
1642  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1643  * make specified memory blocks removable from the system.
1644  * Note that this will dissolve a free gigantic hugepage completely, if any
1645  * part of it lies within the given range.
1646  * Also note that if dissolve_free_huge_page() returns with an error, all
1647  * free hugepages that were dissolved before that error are lost.
1648  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1649 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1650 {
1651 	unsigned long pfn;
1652 	struct page *page;
1653 	int rc = 0;
1654 
1655 	if (!hugepages_supported())
1656 		return rc;
1657 
1658 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1659 		page = pfn_to_page(pfn);
1660 		rc = dissolve_free_huge_page(page);
1661 		if (rc)
1662 			break;
1663 	}
1664 
1665 	return rc;
1666 }
1667 
1668 /*
1669  * Allocates a fresh surplus page from the page allocator.
1670  */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1671 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1672 		int nid, nodemask_t *nmask)
1673 {
1674 	struct page *page = NULL;
1675 
1676 	if (hstate_is_gigantic(h))
1677 		return NULL;
1678 
1679 	spin_lock(&hugetlb_lock);
1680 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1681 		goto out_unlock;
1682 	spin_unlock(&hugetlb_lock);
1683 
1684 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1685 	if (!page)
1686 		return NULL;
1687 
1688 	spin_lock(&hugetlb_lock);
1689 	/*
1690 	 * We could have raced with the pool size change.
1691 	 * Double check that and simply deallocate the new page
1692 	 * if we would end up overcommiting the surpluses. Abuse
1693 	 * temporary page to workaround the nasty free_huge_page
1694 	 * codeflow
1695 	 */
1696 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1697 		SetPageHugeTemporary(page);
1698 		spin_unlock(&hugetlb_lock);
1699 		put_page(page);
1700 		return NULL;
1701 	} else {
1702 		h->surplus_huge_pages++;
1703 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1704 	}
1705 
1706 out_unlock:
1707 	spin_unlock(&hugetlb_lock);
1708 
1709 	return page;
1710 }
1711 
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1712 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1713 				     int nid, nodemask_t *nmask)
1714 {
1715 	struct page *page;
1716 
1717 	if (hstate_is_gigantic(h))
1718 		return NULL;
1719 
1720 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1721 	if (!page)
1722 		return NULL;
1723 
1724 	/*
1725 	 * We do not account these pages as surplus because they are only
1726 	 * temporary and will be released properly on the last reference
1727 	 */
1728 	SetPageHugeTemporary(page);
1729 
1730 	return page;
1731 }
1732 
1733 /*
1734  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1735  */
1736 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1737 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1738 		struct vm_area_struct *vma, unsigned long addr)
1739 {
1740 	struct page *page;
1741 	struct mempolicy *mpol;
1742 	gfp_t gfp_mask = htlb_alloc_mask(h);
1743 	int nid;
1744 	nodemask_t *nodemask;
1745 
1746 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1747 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1748 	mpol_cond_put(mpol);
1749 
1750 	return page;
1751 }
1752 
1753 /* page migration callback function */
alloc_huge_page_node(struct hstate * h,int nid)1754 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1755 {
1756 	gfp_t gfp_mask = htlb_alloc_mask(h);
1757 	struct page *page = NULL;
1758 
1759 	if (nid != NUMA_NO_NODE)
1760 		gfp_mask |= __GFP_THISNODE;
1761 
1762 	spin_lock(&hugetlb_lock);
1763 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1764 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1765 	spin_unlock(&hugetlb_lock);
1766 
1767 	if (!page)
1768 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1769 
1770 	return page;
1771 }
1772 
1773 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask)1774 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1775 		nodemask_t *nmask)
1776 {
1777 	gfp_t gfp_mask = htlb_alloc_mask(h);
1778 
1779 	spin_lock(&hugetlb_lock);
1780 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1781 		struct page *page;
1782 
1783 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1784 		if (page) {
1785 			spin_unlock(&hugetlb_lock);
1786 			return page;
1787 		}
1788 	}
1789 	spin_unlock(&hugetlb_lock);
1790 
1791 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1792 }
1793 
1794 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1795 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1796 		unsigned long address)
1797 {
1798 	struct mempolicy *mpol;
1799 	nodemask_t *nodemask;
1800 	struct page *page;
1801 	gfp_t gfp_mask;
1802 	int node;
1803 
1804 	gfp_mask = htlb_alloc_mask(h);
1805 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1806 	page = alloc_huge_page_nodemask(h, node, nodemask);
1807 	mpol_cond_put(mpol);
1808 
1809 	return page;
1810 }
1811 
1812 /*
1813  * Increase the hugetlb pool such that it can accommodate a reservation
1814  * of size 'delta'.
1815  */
gather_surplus_pages(struct hstate * h,int delta)1816 static int gather_surplus_pages(struct hstate *h, int delta)
1817 {
1818 	struct list_head surplus_list;
1819 	struct page *page, *tmp;
1820 	int ret, i;
1821 	int needed, allocated;
1822 	bool alloc_ok = true;
1823 
1824 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1825 	if (needed <= 0) {
1826 		h->resv_huge_pages += delta;
1827 		return 0;
1828 	}
1829 
1830 	allocated = 0;
1831 	INIT_LIST_HEAD(&surplus_list);
1832 
1833 	ret = -ENOMEM;
1834 retry:
1835 	spin_unlock(&hugetlb_lock);
1836 	for (i = 0; i < needed; i++) {
1837 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1838 				NUMA_NO_NODE, NULL);
1839 		if (!page) {
1840 			alloc_ok = false;
1841 			break;
1842 		}
1843 		list_add(&page->lru, &surplus_list);
1844 		cond_resched();
1845 	}
1846 	allocated += i;
1847 
1848 	/*
1849 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1850 	 * because either resv_huge_pages or free_huge_pages may have changed.
1851 	 */
1852 	spin_lock(&hugetlb_lock);
1853 	needed = (h->resv_huge_pages + delta) -
1854 			(h->free_huge_pages + allocated);
1855 	if (needed > 0) {
1856 		if (alloc_ok)
1857 			goto retry;
1858 		/*
1859 		 * We were not able to allocate enough pages to
1860 		 * satisfy the entire reservation so we free what
1861 		 * we've allocated so far.
1862 		 */
1863 		goto free;
1864 	}
1865 	/*
1866 	 * The surplus_list now contains _at_least_ the number of extra pages
1867 	 * needed to accommodate the reservation.  Add the appropriate number
1868 	 * of pages to the hugetlb pool and free the extras back to the buddy
1869 	 * allocator.  Commit the entire reservation here to prevent another
1870 	 * process from stealing the pages as they are added to the pool but
1871 	 * before they are reserved.
1872 	 */
1873 	needed += allocated;
1874 	h->resv_huge_pages += delta;
1875 	ret = 0;
1876 
1877 	/* Free the needed pages to the hugetlb pool */
1878 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1879 		if ((--needed) < 0)
1880 			break;
1881 		/*
1882 		 * This page is now managed by the hugetlb allocator and has
1883 		 * no users -- drop the buddy allocator's reference.
1884 		 */
1885 		put_page_testzero(page);
1886 		VM_BUG_ON_PAGE(page_count(page), page);
1887 		enqueue_huge_page(h, page);
1888 	}
1889 free:
1890 	spin_unlock(&hugetlb_lock);
1891 
1892 	/* Free unnecessary surplus pages to the buddy allocator */
1893 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1894 		put_page(page);
1895 	spin_lock(&hugetlb_lock);
1896 
1897 	return ret;
1898 }
1899 
1900 /*
1901  * This routine has two main purposes:
1902  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1903  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1904  *    to the associated reservation map.
1905  * 2) Free any unused surplus pages that may have been allocated to satisfy
1906  *    the reservation.  As many as unused_resv_pages may be freed.
1907  *
1908  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1909  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1910  * we must make sure nobody else can claim pages we are in the process of
1911  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1912  * number of huge pages we plan to free when dropping the lock.
1913  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)1914 static void return_unused_surplus_pages(struct hstate *h,
1915 					unsigned long unused_resv_pages)
1916 {
1917 	unsigned long nr_pages;
1918 
1919 	/* Cannot return gigantic pages currently */
1920 	if (hstate_is_gigantic(h))
1921 		goto out;
1922 
1923 	/*
1924 	 * Part (or even all) of the reservation could have been backed
1925 	 * by pre-allocated pages. Only free surplus pages.
1926 	 */
1927 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1928 
1929 	/*
1930 	 * We want to release as many surplus pages as possible, spread
1931 	 * evenly across all nodes with memory. Iterate across these nodes
1932 	 * until we can no longer free unreserved surplus pages. This occurs
1933 	 * when the nodes with surplus pages have no free pages.
1934 	 * free_pool_huge_page() will balance the the freed pages across the
1935 	 * on-line nodes with memory and will handle the hstate accounting.
1936 	 *
1937 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1938 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1939 	 * to cover subsequent pages we may free.
1940 	 */
1941 	while (nr_pages--) {
1942 		h->resv_huge_pages--;
1943 		unused_resv_pages--;
1944 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1945 			goto out;
1946 		cond_resched_lock(&hugetlb_lock);
1947 	}
1948 
1949 out:
1950 	/* Fully uncommit the reservation */
1951 	h->resv_huge_pages -= unused_resv_pages;
1952 }
1953 
1954 
1955 /*
1956  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1957  * are used by the huge page allocation routines to manage reservations.
1958  *
1959  * vma_needs_reservation is called to determine if the huge page at addr
1960  * within the vma has an associated reservation.  If a reservation is
1961  * needed, the value 1 is returned.  The caller is then responsible for
1962  * managing the global reservation and subpool usage counts.  After
1963  * the huge page has been allocated, vma_commit_reservation is called
1964  * to add the page to the reservation map.  If the page allocation fails,
1965  * the reservation must be ended instead of committed.  vma_end_reservation
1966  * is called in such cases.
1967  *
1968  * In the normal case, vma_commit_reservation returns the same value
1969  * as the preceding vma_needs_reservation call.  The only time this
1970  * is not the case is if a reserve map was changed between calls.  It
1971  * is the responsibility of the caller to notice the difference and
1972  * take appropriate action.
1973  *
1974  * vma_add_reservation is used in error paths where a reservation must
1975  * be restored when a newly allocated huge page must be freed.  It is
1976  * to be called after calling vma_needs_reservation to determine if a
1977  * reservation exists.
1978  */
1979 enum vma_resv_mode {
1980 	VMA_NEEDS_RESV,
1981 	VMA_COMMIT_RESV,
1982 	VMA_END_RESV,
1983 	VMA_ADD_RESV,
1984 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)1985 static long __vma_reservation_common(struct hstate *h,
1986 				struct vm_area_struct *vma, unsigned long addr,
1987 				enum vma_resv_mode mode)
1988 {
1989 	struct resv_map *resv;
1990 	pgoff_t idx;
1991 	long ret;
1992 
1993 	resv = vma_resv_map(vma);
1994 	if (!resv)
1995 		return 1;
1996 
1997 	idx = vma_hugecache_offset(h, vma, addr);
1998 	switch (mode) {
1999 	case VMA_NEEDS_RESV:
2000 		ret = region_chg(resv, idx, idx + 1);
2001 		break;
2002 	case VMA_COMMIT_RESV:
2003 		ret = region_add(resv, idx, idx + 1);
2004 		break;
2005 	case VMA_END_RESV:
2006 		region_abort(resv, idx, idx + 1);
2007 		ret = 0;
2008 		break;
2009 	case VMA_ADD_RESV:
2010 		if (vma->vm_flags & VM_MAYSHARE)
2011 			ret = region_add(resv, idx, idx + 1);
2012 		else {
2013 			region_abort(resv, idx, idx + 1);
2014 			ret = region_del(resv, idx, idx + 1);
2015 		}
2016 		break;
2017 	default:
2018 		BUG();
2019 	}
2020 
2021 	if (vma->vm_flags & VM_MAYSHARE)
2022 		return ret;
2023 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2024 		/*
2025 		 * In most cases, reserves always exist for private mappings.
2026 		 * However, a file associated with mapping could have been
2027 		 * hole punched or truncated after reserves were consumed.
2028 		 * As subsequent fault on such a range will not use reserves.
2029 		 * Subtle - The reserve map for private mappings has the
2030 		 * opposite meaning than that of shared mappings.  If NO
2031 		 * entry is in the reserve map, it means a reservation exists.
2032 		 * If an entry exists in the reserve map, it means the
2033 		 * reservation has already been consumed.  As a result, the
2034 		 * return value of this routine is the opposite of the
2035 		 * value returned from reserve map manipulation routines above.
2036 		 */
2037 		if (ret)
2038 			return 0;
2039 		else
2040 			return 1;
2041 	}
2042 	else
2043 		return ret < 0 ? ret : 0;
2044 }
2045 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2046 static long vma_needs_reservation(struct hstate *h,
2047 			struct vm_area_struct *vma, unsigned long addr)
2048 {
2049 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2050 }
2051 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2052 static long vma_commit_reservation(struct hstate *h,
2053 			struct vm_area_struct *vma, unsigned long addr)
2054 {
2055 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2056 }
2057 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2058 static void vma_end_reservation(struct hstate *h,
2059 			struct vm_area_struct *vma, unsigned long addr)
2060 {
2061 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2062 }
2063 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2064 static long vma_add_reservation(struct hstate *h,
2065 			struct vm_area_struct *vma, unsigned long addr)
2066 {
2067 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2068 }
2069 
2070 /*
2071  * This routine is called to restore a reservation on error paths.  In the
2072  * specific error paths, a huge page was allocated (via alloc_huge_page)
2073  * and is about to be freed.  If a reservation for the page existed,
2074  * alloc_huge_page would have consumed the reservation and set PagePrivate
2075  * in the newly allocated page.  When the page is freed via free_huge_page,
2076  * the global reservation count will be incremented if PagePrivate is set.
2077  * However, free_huge_page can not adjust the reserve map.  Adjust the
2078  * reserve map here to be consistent with global reserve count adjustments
2079  * to be made by free_huge_page.
2080  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)2081 static void restore_reserve_on_error(struct hstate *h,
2082 			struct vm_area_struct *vma, unsigned long address,
2083 			struct page *page)
2084 {
2085 	if (unlikely(PagePrivate(page))) {
2086 		long rc = vma_needs_reservation(h, vma, address);
2087 
2088 		if (unlikely(rc < 0)) {
2089 			/*
2090 			 * Rare out of memory condition in reserve map
2091 			 * manipulation.  Clear PagePrivate so that
2092 			 * global reserve count will not be incremented
2093 			 * by free_huge_page.  This will make it appear
2094 			 * as though the reservation for this page was
2095 			 * consumed.  This may prevent the task from
2096 			 * faulting in the page at a later time.  This
2097 			 * is better than inconsistent global huge page
2098 			 * accounting of reserve counts.
2099 			 */
2100 			ClearPagePrivate(page);
2101 		} else if (rc) {
2102 			rc = vma_add_reservation(h, vma, address);
2103 			if (unlikely(rc < 0))
2104 				/*
2105 				 * See above comment about rare out of
2106 				 * memory condition.
2107 				 */
2108 				ClearPagePrivate(page);
2109 		} else
2110 			vma_end_reservation(h, vma, address);
2111 	}
2112 }
2113 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2114 struct page *alloc_huge_page(struct vm_area_struct *vma,
2115 				    unsigned long addr, int avoid_reserve)
2116 {
2117 	struct hugepage_subpool *spool = subpool_vma(vma);
2118 	struct hstate *h = hstate_vma(vma);
2119 	struct page *page;
2120 	long map_chg, map_commit;
2121 	long gbl_chg;
2122 	int ret, idx;
2123 	struct hugetlb_cgroup *h_cg;
2124 
2125 	idx = hstate_index(h);
2126 	/*
2127 	 * Examine the region/reserve map to determine if the process
2128 	 * has a reservation for the page to be allocated.  A return
2129 	 * code of zero indicates a reservation exists (no change).
2130 	 */
2131 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2132 	if (map_chg < 0)
2133 		return ERR_PTR(-ENOMEM);
2134 
2135 	/*
2136 	 * Processes that did not create the mapping will have no
2137 	 * reserves as indicated by the region/reserve map. Check
2138 	 * that the allocation will not exceed the subpool limit.
2139 	 * Allocations for MAP_NORESERVE mappings also need to be
2140 	 * checked against any subpool limit.
2141 	 */
2142 	if (map_chg || avoid_reserve) {
2143 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2144 		if (gbl_chg < 0) {
2145 			vma_end_reservation(h, vma, addr);
2146 			return ERR_PTR(-ENOSPC);
2147 		}
2148 
2149 		/*
2150 		 * Even though there was no reservation in the region/reserve
2151 		 * map, there could be reservations associated with the
2152 		 * subpool that can be used.  This would be indicated if the
2153 		 * return value of hugepage_subpool_get_pages() is zero.
2154 		 * However, if avoid_reserve is specified we still avoid even
2155 		 * the subpool reservations.
2156 		 */
2157 		if (avoid_reserve)
2158 			gbl_chg = 1;
2159 	}
2160 
2161 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2162 	if (ret)
2163 		goto out_subpool_put;
2164 
2165 	spin_lock(&hugetlb_lock);
2166 	/*
2167 	 * glb_chg is passed to indicate whether or not a page must be taken
2168 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2169 	 * a reservation exists for the allocation.
2170 	 */
2171 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2172 	if (!page) {
2173 		spin_unlock(&hugetlb_lock);
2174 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2175 		if (!page)
2176 			goto out_uncharge_cgroup;
2177 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2178 			SetPagePrivate(page);
2179 			h->resv_huge_pages--;
2180 		}
2181 		spin_lock(&hugetlb_lock);
2182 		list_move(&page->lru, &h->hugepage_activelist);
2183 		/* Fall through */
2184 	}
2185 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2186 	spin_unlock(&hugetlb_lock);
2187 
2188 	set_page_private(page, (unsigned long)spool);
2189 
2190 	map_commit = vma_commit_reservation(h, vma, addr);
2191 	if (unlikely(map_chg > map_commit)) {
2192 		/*
2193 		 * The page was added to the reservation map between
2194 		 * vma_needs_reservation and vma_commit_reservation.
2195 		 * This indicates a race with hugetlb_reserve_pages.
2196 		 * Adjust for the subpool count incremented above AND
2197 		 * in hugetlb_reserve_pages for the same page.  Also,
2198 		 * the reservation count added in hugetlb_reserve_pages
2199 		 * no longer applies.
2200 		 */
2201 		long rsv_adjust;
2202 
2203 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2204 		hugetlb_acct_memory(h, -rsv_adjust);
2205 	}
2206 	return page;
2207 
2208 out_uncharge_cgroup:
2209 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2210 out_subpool_put:
2211 	if (map_chg || avoid_reserve)
2212 		hugepage_subpool_put_pages(spool, 1);
2213 	vma_end_reservation(h, vma, addr);
2214 	return ERR_PTR(-ENOSPC);
2215 }
2216 
2217 int alloc_bootmem_huge_page(struct hstate *h)
2218 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h)2219 int __alloc_bootmem_huge_page(struct hstate *h)
2220 {
2221 	struct huge_bootmem_page *m;
2222 	int nr_nodes, node;
2223 
2224 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2225 		void *addr;
2226 
2227 		addr = memblock_alloc_try_nid_raw(
2228 				huge_page_size(h), huge_page_size(h),
2229 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2230 		if (addr) {
2231 			/*
2232 			 * Use the beginning of the huge page to store the
2233 			 * huge_bootmem_page struct (until gather_bootmem
2234 			 * puts them into the mem_map).
2235 			 */
2236 			m = addr;
2237 			goto found;
2238 		}
2239 	}
2240 	return 0;
2241 
2242 found:
2243 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2244 	/* Put them into a private list first because mem_map is not up yet */
2245 	INIT_LIST_HEAD(&m->list);
2246 	list_add(&m->list, &huge_boot_pages);
2247 	m->hstate = h;
2248 	return 1;
2249 }
2250 
prep_compound_huge_page(struct page * page,unsigned int order)2251 static void __init prep_compound_huge_page(struct page *page,
2252 		unsigned int order)
2253 {
2254 	if (unlikely(order > (MAX_ORDER - 1)))
2255 		prep_compound_gigantic_page(page, order);
2256 	else
2257 		prep_compound_page(page, order);
2258 }
2259 
2260 /* Put bootmem huge pages into the standard lists after mem_map is up */
gather_bootmem_prealloc(void)2261 static void __init gather_bootmem_prealloc(void)
2262 {
2263 	struct huge_bootmem_page *m;
2264 
2265 	list_for_each_entry(m, &huge_boot_pages, list) {
2266 		struct page *page = virt_to_page(m);
2267 		struct hstate *h = m->hstate;
2268 
2269 		WARN_ON(page_count(page) != 1);
2270 		prep_compound_huge_page(page, h->order);
2271 		WARN_ON(PageReserved(page));
2272 		prep_new_huge_page(h, page, page_to_nid(page));
2273 		put_page(page); /* free it into the hugepage allocator */
2274 
2275 		/*
2276 		 * If we had gigantic hugepages allocated at boot time, we need
2277 		 * to restore the 'stolen' pages to totalram_pages in order to
2278 		 * fix confusing memory reports from free(1) and another
2279 		 * side-effects, like CommitLimit going negative.
2280 		 */
2281 		if (hstate_is_gigantic(h))
2282 			adjust_managed_page_count(page, 1 << h->order);
2283 		cond_resched();
2284 	}
2285 }
2286 
hugetlb_hstate_alloc_pages(struct hstate * h)2287 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2288 {
2289 	unsigned long i;
2290 	nodemask_t *node_alloc_noretry;
2291 
2292 	if (!hstate_is_gigantic(h)) {
2293 		/*
2294 		 * Bit mask controlling how hard we retry per-node allocations.
2295 		 * Ignore errors as lower level routines can deal with
2296 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2297 		 * time, we are likely in bigger trouble.
2298 		 */
2299 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2300 						GFP_KERNEL);
2301 	} else {
2302 		/* allocations done at boot time */
2303 		node_alloc_noretry = NULL;
2304 	}
2305 
2306 	/* bit mask controlling how hard we retry per-node allocations */
2307 	if (node_alloc_noretry)
2308 		nodes_clear(*node_alloc_noretry);
2309 
2310 	for (i = 0; i < h->max_huge_pages; ++i) {
2311 		if (hstate_is_gigantic(h)) {
2312 			if (!alloc_bootmem_huge_page(h))
2313 				break;
2314 		} else if (!alloc_pool_huge_page(h,
2315 					 &node_states[N_MEMORY],
2316 					 node_alloc_noretry))
2317 			break;
2318 		cond_resched();
2319 	}
2320 	if (i < h->max_huge_pages) {
2321 		char buf[32];
2322 
2323 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2324 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2325 			h->max_huge_pages, buf, i);
2326 		h->max_huge_pages = i;
2327 	}
2328 
2329 	kfree(node_alloc_noretry);
2330 }
2331 
hugetlb_init_hstates(void)2332 static void __init hugetlb_init_hstates(void)
2333 {
2334 	struct hstate *h;
2335 
2336 	for_each_hstate(h) {
2337 		if (minimum_order > huge_page_order(h))
2338 			minimum_order = huge_page_order(h);
2339 
2340 		/* oversize hugepages were init'ed in early boot */
2341 		if (!hstate_is_gigantic(h))
2342 			hugetlb_hstate_alloc_pages(h);
2343 	}
2344 	VM_BUG_ON(minimum_order == UINT_MAX);
2345 }
2346 
report_hugepages(void)2347 static void __init report_hugepages(void)
2348 {
2349 	struct hstate *h;
2350 
2351 	for_each_hstate(h) {
2352 		char buf[32];
2353 
2354 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2355 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2356 			buf, h->free_huge_pages);
2357 	}
2358 }
2359 
2360 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2361 static void try_to_free_low(struct hstate *h, unsigned long count,
2362 						nodemask_t *nodes_allowed)
2363 {
2364 	int i;
2365 
2366 	if (hstate_is_gigantic(h))
2367 		return;
2368 
2369 	for_each_node_mask(i, *nodes_allowed) {
2370 		struct page *page, *next;
2371 		struct list_head *freel = &h->hugepage_freelists[i];
2372 		list_for_each_entry_safe(page, next, freel, lru) {
2373 			if (count >= h->nr_huge_pages)
2374 				return;
2375 			if (PageHighMem(page))
2376 				continue;
2377 			list_del(&page->lru);
2378 			update_and_free_page(h, page);
2379 			h->free_huge_pages--;
2380 			h->free_huge_pages_node[page_to_nid(page)]--;
2381 		}
2382 	}
2383 }
2384 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2385 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2386 						nodemask_t *nodes_allowed)
2387 {
2388 }
2389 #endif
2390 
2391 /*
2392  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2393  * balanced by operating on them in a round-robin fashion.
2394  * Returns 1 if an adjustment was made.
2395  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)2396 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2397 				int delta)
2398 {
2399 	int nr_nodes, node;
2400 
2401 	VM_BUG_ON(delta != -1 && delta != 1);
2402 
2403 	if (delta < 0) {
2404 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2405 			if (h->surplus_huge_pages_node[node])
2406 				goto found;
2407 		}
2408 	} else {
2409 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2410 			if (h->surplus_huge_pages_node[node] <
2411 					h->nr_huge_pages_node[node])
2412 				goto found;
2413 		}
2414 	}
2415 	return 0;
2416 
2417 found:
2418 	h->surplus_huge_pages += delta;
2419 	h->surplus_huge_pages_node[node] += delta;
2420 	return 1;
2421 }
2422 
2423 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)2424 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2425 			      nodemask_t *nodes_allowed)
2426 {
2427 	unsigned long min_count, ret;
2428 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2429 
2430 	/*
2431 	 * Bit mask controlling how hard we retry per-node allocations.
2432 	 * If we can not allocate the bit mask, do not attempt to allocate
2433 	 * the requested huge pages.
2434 	 */
2435 	if (node_alloc_noretry)
2436 		nodes_clear(*node_alloc_noretry);
2437 	else
2438 		return -ENOMEM;
2439 
2440 	spin_lock(&hugetlb_lock);
2441 
2442 	/*
2443 	 * Check for a node specific request.
2444 	 * Changing node specific huge page count may require a corresponding
2445 	 * change to the global count.  In any case, the passed node mask
2446 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2447 	 */
2448 	if (nid != NUMA_NO_NODE) {
2449 		unsigned long old_count = count;
2450 
2451 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2452 		/*
2453 		 * User may have specified a large count value which caused the
2454 		 * above calculation to overflow.  In this case, they wanted
2455 		 * to allocate as many huge pages as possible.  Set count to
2456 		 * largest possible value to align with their intention.
2457 		 */
2458 		if (count < old_count)
2459 			count = ULONG_MAX;
2460 	}
2461 
2462 	/*
2463 	 * Gigantic pages runtime allocation depend on the capability for large
2464 	 * page range allocation.
2465 	 * If the system does not provide this feature, return an error when
2466 	 * the user tries to allocate gigantic pages but let the user free the
2467 	 * boottime allocated gigantic pages.
2468 	 */
2469 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2470 		if (count > persistent_huge_pages(h)) {
2471 			spin_unlock(&hugetlb_lock);
2472 			NODEMASK_FREE(node_alloc_noretry);
2473 			return -EINVAL;
2474 		}
2475 		/* Fall through to decrease pool */
2476 	}
2477 
2478 	/*
2479 	 * Increase the pool size
2480 	 * First take pages out of surplus state.  Then make up the
2481 	 * remaining difference by allocating fresh huge pages.
2482 	 *
2483 	 * We might race with alloc_surplus_huge_page() here and be unable
2484 	 * to convert a surplus huge page to a normal huge page. That is
2485 	 * not critical, though, it just means the overall size of the
2486 	 * pool might be one hugepage larger than it needs to be, but
2487 	 * within all the constraints specified by the sysctls.
2488 	 */
2489 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2490 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2491 			break;
2492 	}
2493 
2494 	while (count > persistent_huge_pages(h)) {
2495 		/*
2496 		 * If this allocation races such that we no longer need the
2497 		 * page, free_huge_page will handle it by freeing the page
2498 		 * and reducing the surplus.
2499 		 */
2500 		spin_unlock(&hugetlb_lock);
2501 
2502 		/* yield cpu to avoid soft lockup */
2503 		cond_resched();
2504 
2505 		ret = alloc_pool_huge_page(h, nodes_allowed,
2506 						node_alloc_noretry);
2507 		spin_lock(&hugetlb_lock);
2508 		if (!ret)
2509 			goto out;
2510 
2511 		/* Bail for signals. Probably ctrl-c from user */
2512 		if (signal_pending(current))
2513 			goto out;
2514 	}
2515 
2516 	/*
2517 	 * Decrease the pool size
2518 	 * First return free pages to the buddy allocator (being careful
2519 	 * to keep enough around to satisfy reservations).  Then place
2520 	 * pages into surplus state as needed so the pool will shrink
2521 	 * to the desired size as pages become free.
2522 	 *
2523 	 * By placing pages into the surplus state independent of the
2524 	 * overcommit value, we are allowing the surplus pool size to
2525 	 * exceed overcommit. There are few sane options here. Since
2526 	 * alloc_surplus_huge_page() is checking the global counter,
2527 	 * though, we'll note that we're not allowed to exceed surplus
2528 	 * and won't grow the pool anywhere else. Not until one of the
2529 	 * sysctls are changed, or the surplus pages go out of use.
2530 	 */
2531 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2532 	min_count = max(count, min_count);
2533 	try_to_free_low(h, min_count, nodes_allowed);
2534 	while (min_count < persistent_huge_pages(h)) {
2535 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2536 			break;
2537 		cond_resched_lock(&hugetlb_lock);
2538 	}
2539 	while (count < persistent_huge_pages(h)) {
2540 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2541 			break;
2542 	}
2543 out:
2544 	h->max_huge_pages = persistent_huge_pages(h);
2545 	spin_unlock(&hugetlb_lock);
2546 
2547 	NODEMASK_FREE(node_alloc_noretry);
2548 
2549 	return 0;
2550 }
2551 
2552 #define HSTATE_ATTR_RO(_name) \
2553 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2554 
2555 #define HSTATE_ATTR(_name) \
2556 	static struct kobj_attribute _name##_attr = \
2557 		__ATTR(_name, 0644, _name##_show, _name##_store)
2558 
2559 static struct kobject *hugepages_kobj;
2560 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2561 
2562 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2563 
kobj_to_hstate(struct kobject * kobj,int * nidp)2564 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2565 {
2566 	int i;
2567 
2568 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2569 		if (hstate_kobjs[i] == kobj) {
2570 			if (nidp)
2571 				*nidp = NUMA_NO_NODE;
2572 			return &hstates[i];
2573 		}
2574 
2575 	return kobj_to_node_hstate(kobj, nidp);
2576 }
2577 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2578 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2579 					struct kobj_attribute *attr, char *buf)
2580 {
2581 	struct hstate *h;
2582 	unsigned long nr_huge_pages;
2583 	int nid;
2584 
2585 	h = kobj_to_hstate(kobj, &nid);
2586 	if (nid == NUMA_NO_NODE)
2587 		nr_huge_pages = h->nr_huge_pages;
2588 	else
2589 		nr_huge_pages = h->nr_huge_pages_node[nid];
2590 
2591 	return sprintf(buf, "%lu\n", nr_huge_pages);
2592 }
2593 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)2594 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2595 					   struct hstate *h, int nid,
2596 					   unsigned long count, size_t len)
2597 {
2598 	int err;
2599 	nodemask_t nodes_allowed, *n_mask;
2600 
2601 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2602 		return -EINVAL;
2603 
2604 	if (nid == NUMA_NO_NODE) {
2605 		/*
2606 		 * global hstate attribute
2607 		 */
2608 		if (!(obey_mempolicy &&
2609 				init_nodemask_of_mempolicy(&nodes_allowed)))
2610 			n_mask = &node_states[N_MEMORY];
2611 		else
2612 			n_mask = &nodes_allowed;
2613 	} else {
2614 		/*
2615 		 * Node specific request.  count adjustment happens in
2616 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2617 		 */
2618 		init_nodemask_of_node(&nodes_allowed, nid);
2619 		n_mask = &nodes_allowed;
2620 	}
2621 
2622 	err = set_max_huge_pages(h, count, nid, n_mask);
2623 
2624 	return err ? err : len;
2625 }
2626 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)2627 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2628 					 struct kobject *kobj, const char *buf,
2629 					 size_t len)
2630 {
2631 	struct hstate *h;
2632 	unsigned long count;
2633 	int nid;
2634 	int err;
2635 
2636 	err = kstrtoul(buf, 10, &count);
2637 	if (err)
2638 		return err;
2639 
2640 	h = kobj_to_hstate(kobj, &nid);
2641 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2642 }
2643 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2644 static ssize_t nr_hugepages_show(struct kobject *kobj,
2645 				       struct kobj_attribute *attr, char *buf)
2646 {
2647 	return nr_hugepages_show_common(kobj, attr, buf);
2648 }
2649 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2650 static ssize_t nr_hugepages_store(struct kobject *kobj,
2651 	       struct kobj_attribute *attr, const char *buf, size_t len)
2652 {
2653 	return nr_hugepages_store_common(false, kobj, buf, len);
2654 }
2655 HSTATE_ATTR(nr_hugepages);
2656 
2657 #ifdef CONFIG_NUMA
2658 
2659 /*
2660  * hstate attribute for optionally mempolicy-based constraint on persistent
2661  * huge page alloc/free.
2662  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2663 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2664 				       struct kobj_attribute *attr, char *buf)
2665 {
2666 	return nr_hugepages_show_common(kobj, attr, buf);
2667 }
2668 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2669 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2670 	       struct kobj_attribute *attr, const char *buf, size_t len)
2671 {
2672 	return nr_hugepages_store_common(true, kobj, buf, len);
2673 }
2674 HSTATE_ATTR(nr_hugepages_mempolicy);
2675 #endif
2676 
2677 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2678 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2679 					struct kobj_attribute *attr, char *buf)
2680 {
2681 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2682 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2683 }
2684 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2685 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2686 		struct kobj_attribute *attr, const char *buf, size_t count)
2687 {
2688 	int err;
2689 	unsigned long input;
2690 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2691 
2692 	if (hstate_is_gigantic(h))
2693 		return -EINVAL;
2694 
2695 	err = kstrtoul(buf, 10, &input);
2696 	if (err)
2697 		return err;
2698 
2699 	spin_lock(&hugetlb_lock);
2700 	h->nr_overcommit_huge_pages = input;
2701 	spin_unlock(&hugetlb_lock);
2702 
2703 	return count;
2704 }
2705 HSTATE_ATTR(nr_overcommit_hugepages);
2706 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2707 static ssize_t free_hugepages_show(struct kobject *kobj,
2708 					struct kobj_attribute *attr, char *buf)
2709 {
2710 	struct hstate *h;
2711 	unsigned long free_huge_pages;
2712 	int nid;
2713 
2714 	h = kobj_to_hstate(kobj, &nid);
2715 	if (nid == NUMA_NO_NODE)
2716 		free_huge_pages = h->free_huge_pages;
2717 	else
2718 		free_huge_pages = h->free_huge_pages_node[nid];
2719 
2720 	return sprintf(buf, "%lu\n", free_huge_pages);
2721 }
2722 HSTATE_ATTR_RO(free_hugepages);
2723 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2724 static ssize_t resv_hugepages_show(struct kobject *kobj,
2725 					struct kobj_attribute *attr, char *buf)
2726 {
2727 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2728 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2729 }
2730 HSTATE_ATTR_RO(resv_hugepages);
2731 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2732 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2733 					struct kobj_attribute *attr, char *buf)
2734 {
2735 	struct hstate *h;
2736 	unsigned long surplus_huge_pages;
2737 	int nid;
2738 
2739 	h = kobj_to_hstate(kobj, &nid);
2740 	if (nid == NUMA_NO_NODE)
2741 		surplus_huge_pages = h->surplus_huge_pages;
2742 	else
2743 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2744 
2745 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2746 }
2747 HSTATE_ATTR_RO(surplus_hugepages);
2748 
2749 static struct attribute *hstate_attrs[] = {
2750 	&nr_hugepages_attr.attr,
2751 	&nr_overcommit_hugepages_attr.attr,
2752 	&free_hugepages_attr.attr,
2753 	&resv_hugepages_attr.attr,
2754 	&surplus_hugepages_attr.attr,
2755 #ifdef CONFIG_NUMA
2756 	&nr_hugepages_mempolicy_attr.attr,
2757 #endif
2758 	NULL,
2759 };
2760 
2761 static const struct attribute_group hstate_attr_group = {
2762 	.attrs = hstate_attrs,
2763 };
2764 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)2765 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2766 				    struct kobject **hstate_kobjs,
2767 				    const struct attribute_group *hstate_attr_group)
2768 {
2769 	int retval;
2770 	int hi = hstate_index(h);
2771 
2772 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2773 	if (!hstate_kobjs[hi])
2774 		return -ENOMEM;
2775 
2776 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2777 	if (retval)
2778 		kobject_put(hstate_kobjs[hi]);
2779 
2780 	return retval;
2781 }
2782 
hugetlb_sysfs_init(void)2783 static void __init hugetlb_sysfs_init(void)
2784 {
2785 	struct hstate *h;
2786 	int err;
2787 
2788 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2789 	if (!hugepages_kobj)
2790 		return;
2791 
2792 	for_each_hstate(h) {
2793 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2794 					 hstate_kobjs, &hstate_attr_group);
2795 		if (err)
2796 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2797 	}
2798 }
2799 
2800 #ifdef CONFIG_NUMA
2801 
2802 /*
2803  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2804  * with node devices in node_devices[] using a parallel array.  The array
2805  * index of a node device or _hstate == node id.
2806  * This is here to avoid any static dependency of the node device driver, in
2807  * the base kernel, on the hugetlb module.
2808  */
2809 struct node_hstate {
2810 	struct kobject		*hugepages_kobj;
2811 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2812 };
2813 static struct node_hstate node_hstates[MAX_NUMNODES];
2814 
2815 /*
2816  * A subset of global hstate attributes for node devices
2817  */
2818 static struct attribute *per_node_hstate_attrs[] = {
2819 	&nr_hugepages_attr.attr,
2820 	&free_hugepages_attr.attr,
2821 	&surplus_hugepages_attr.attr,
2822 	NULL,
2823 };
2824 
2825 static const struct attribute_group per_node_hstate_attr_group = {
2826 	.attrs = per_node_hstate_attrs,
2827 };
2828 
2829 /*
2830  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2831  * Returns node id via non-NULL nidp.
2832  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2833 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2834 {
2835 	int nid;
2836 
2837 	for (nid = 0; nid < nr_node_ids; nid++) {
2838 		struct node_hstate *nhs = &node_hstates[nid];
2839 		int i;
2840 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2841 			if (nhs->hstate_kobjs[i] == kobj) {
2842 				if (nidp)
2843 					*nidp = nid;
2844 				return &hstates[i];
2845 			}
2846 	}
2847 
2848 	BUG();
2849 	return NULL;
2850 }
2851 
2852 /*
2853  * Unregister hstate attributes from a single node device.
2854  * No-op if no hstate attributes attached.
2855  */
hugetlb_unregister_node(struct node * node)2856 static void hugetlb_unregister_node(struct node *node)
2857 {
2858 	struct hstate *h;
2859 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2860 
2861 	if (!nhs->hugepages_kobj)
2862 		return;		/* no hstate attributes */
2863 
2864 	for_each_hstate(h) {
2865 		int idx = hstate_index(h);
2866 		if (nhs->hstate_kobjs[idx]) {
2867 			kobject_put(nhs->hstate_kobjs[idx]);
2868 			nhs->hstate_kobjs[idx] = NULL;
2869 		}
2870 	}
2871 
2872 	kobject_put(nhs->hugepages_kobj);
2873 	nhs->hugepages_kobj = NULL;
2874 }
2875 
2876 
2877 /*
2878  * Register hstate attributes for a single node device.
2879  * No-op if attributes already registered.
2880  */
hugetlb_register_node(struct node * node)2881 static void hugetlb_register_node(struct node *node)
2882 {
2883 	struct hstate *h;
2884 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2885 	int err;
2886 
2887 	if (nhs->hugepages_kobj)
2888 		return;		/* already allocated */
2889 
2890 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2891 							&node->dev.kobj);
2892 	if (!nhs->hugepages_kobj)
2893 		return;
2894 
2895 	for_each_hstate(h) {
2896 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2897 						nhs->hstate_kobjs,
2898 						&per_node_hstate_attr_group);
2899 		if (err) {
2900 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2901 				h->name, node->dev.id);
2902 			hugetlb_unregister_node(node);
2903 			break;
2904 		}
2905 	}
2906 }
2907 
2908 /*
2909  * hugetlb init time:  register hstate attributes for all registered node
2910  * devices of nodes that have memory.  All on-line nodes should have
2911  * registered their associated device by this time.
2912  */
hugetlb_register_all_nodes(void)2913 static void __init hugetlb_register_all_nodes(void)
2914 {
2915 	int nid;
2916 
2917 	for_each_node_state(nid, N_MEMORY) {
2918 		struct node *node = node_devices[nid];
2919 		if (node->dev.id == nid)
2920 			hugetlb_register_node(node);
2921 	}
2922 
2923 	/*
2924 	 * Let the node device driver know we're here so it can
2925 	 * [un]register hstate attributes on node hotplug.
2926 	 */
2927 	register_hugetlbfs_with_node(hugetlb_register_node,
2928 				     hugetlb_unregister_node);
2929 }
2930 #else	/* !CONFIG_NUMA */
2931 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2932 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2933 {
2934 	BUG();
2935 	if (nidp)
2936 		*nidp = -1;
2937 	return NULL;
2938 }
2939 
hugetlb_register_all_nodes(void)2940 static void hugetlb_register_all_nodes(void) { }
2941 
2942 #endif
2943 
hugetlb_init(void)2944 static int __init hugetlb_init(void)
2945 {
2946 	int i;
2947 
2948 	if (!hugepages_supported())
2949 		return 0;
2950 
2951 	if (!size_to_hstate(default_hstate_size)) {
2952 		if (default_hstate_size != 0) {
2953 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2954 			       default_hstate_size, HPAGE_SIZE);
2955 		}
2956 
2957 		default_hstate_size = HPAGE_SIZE;
2958 		if (!size_to_hstate(default_hstate_size))
2959 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2960 	}
2961 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2962 	if (default_hstate_max_huge_pages) {
2963 		if (!default_hstate.max_huge_pages)
2964 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2965 	}
2966 
2967 	hugetlb_init_hstates();
2968 	gather_bootmem_prealloc();
2969 	report_hugepages();
2970 
2971 	hugetlb_sysfs_init();
2972 	hugetlb_register_all_nodes();
2973 	hugetlb_cgroup_file_init();
2974 
2975 #ifdef CONFIG_SMP
2976 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2977 #else
2978 	num_fault_mutexes = 1;
2979 #endif
2980 	hugetlb_fault_mutex_table =
2981 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2982 			      GFP_KERNEL);
2983 	BUG_ON(!hugetlb_fault_mutex_table);
2984 
2985 	for (i = 0; i < num_fault_mutexes; i++)
2986 		mutex_init(&hugetlb_fault_mutex_table[i]);
2987 	return 0;
2988 }
2989 subsys_initcall(hugetlb_init);
2990 
2991 /* Should be called on processing a hugepagesz=... option */
hugetlb_bad_size(void)2992 void __init hugetlb_bad_size(void)
2993 {
2994 	parsed_valid_hugepagesz = false;
2995 }
2996 
hugetlb_add_hstate(unsigned int order)2997 void __init hugetlb_add_hstate(unsigned int order)
2998 {
2999 	struct hstate *h;
3000 	unsigned long i;
3001 
3002 	if (size_to_hstate(PAGE_SIZE << order)) {
3003 		pr_warn("hugepagesz= specified twice, ignoring\n");
3004 		return;
3005 	}
3006 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3007 	BUG_ON(order == 0);
3008 	h = &hstates[hugetlb_max_hstate++];
3009 	h->order = order;
3010 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3011 	h->nr_huge_pages = 0;
3012 	h->free_huge_pages = 0;
3013 	for (i = 0; i < MAX_NUMNODES; ++i)
3014 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3015 	INIT_LIST_HEAD(&h->hugepage_activelist);
3016 	h->next_nid_to_alloc = first_memory_node;
3017 	h->next_nid_to_free = first_memory_node;
3018 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3019 					huge_page_size(h)/1024);
3020 
3021 	parsed_hstate = h;
3022 }
3023 
hugetlb_nrpages_setup(char * s)3024 static int __init hugetlb_nrpages_setup(char *s)
3025 {
3026 	unsigned long *mhp;
3027 	static unsigned long *last_mhp;
3028 
3029 	if (!parsed_valid_hugepagesz) {
3030 		pr_warn("hugepages = %s preceded by "
3031 			"an unsupported hugepagesz, ignoring\n", s);
3032 		parsed_valid_hugepagesz = true;
3033 		return 1;
3034 	}
3035 	/*
3036 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
3037 	 * so this hugepages= parameter goes to the "default hstate".
3038 	 */
3039 	else if (!hugetlb_max_hstate)
3040 		mhp = &default_hstate_max_huge_pages;
3041 	else
3042 		mhp = &parsed_hstate->max_huge_pages;
3043 
3044 	if (mhp == last_mhp) {
3045 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
3046 		return 1;
3047 	}
3048 
3049 	if (sscanf(s, "%lu", mhp) <= 0)
3050 		*mhp = 0;
3051 
3052 	/*
3053 	 * Global state is always initialized later in hugetlb_init.
3054 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3055 	 * use the bootmem allocator.
3056 	 */
3057 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3058 		hugetlb_hstate_alloc_pages(parsed_hstate);
3059 
3060 	last_mhp = mhp;
3061 
3062 	return 1;
3063 }
3064 __setup("hugepages=", hugetlb_nrpages_setup);
3065 
hugetlb_default_setup(char * s)3066 static int __init hugetlb_default_setup(char *s)
3067 {
3068 	default_hstate_size = memparse(s, &s);
3069 	return 1;
3070 }
3071 __setup("default_hugepagesz=", hugetlb_default_setup);
3072 
cpuset_mems_nr(unsigned int * array)3073 static unsigned int cpuset_mems_nr(unsigned int *array)
3074 {
3075 	int node;
3076 	unsigned int nr = 0;
3077 
3078 	for_each_node_mask(node, cpuset_current_mems_allowed)
3079 		nr += array[node];
3080 
3081 	return nr;
3082 }
3083 
3084 #ifdef CONFIG_SYSCTL
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3085 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3086 			 struct ctl_table *table, int write,
3087 			 void __user *buffer, size_t *length, loff_t *ppos)
3088 {
3089 	struct hstate *h = &default_hstate;
3090 	unsigned long tmp = h->max_huge_pages;
3091 	int ret;
3092 
3093 	if (!hugepages_supported())
3094 		return -EOPNOTSUPP;
3095 
3096 	table->data = &tmp;
3097 	table->maxlen = sizeof(unsigned long);
3098 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3099 	if (ret)
3100 		goto out;
3101 
3102 	if (write)
3103 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3104 						  NUMA_NO_NODE, tmp, *length);
3105 out:
3106 	return ret;
3107 }
3108 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3109 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3110 			  void __user *buffer, size_t *length, loff_t *ppos)
3111 {
3112 
3113 	return hugetlb_sysctl_handler_common(false, table, write,
3114 							buffer, length, ppos);
3115 }
3116 
3117 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3118 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3119 			  void __user *buffer, size_t *length, loff_t *ppos)
3120 {
3121 	return hugetlb_sysctl_handler_common(true, table, write,
3122 							buffer, length, ppos);
3123 }
3124 #endif /* CONFIG_NUMA */
3125 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3126 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3127 			void __user *buffer,
3128 			size_t *length, loff_t *ppos)
3129 {
3130 	struct hstate *h = &default_hstate;
3131 	unsigned long tmp;
3132 	int ret;
3133 
3134 	if (!hugepages_supported())
3135 		return -EOPNOTSUPP;
3136 
3137 	tmp = h->nr_overcommit_huge_pages;
3138 
3139 	if (write && hstate_is_gigantic(h))
3140 		return -EINVAL;
3141 
3142 	table->data = &tmp;
3143 	table->maxlen = sizeof(unsigned long);
3144 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3145 	if (ret)
3146 		goto out;
3147 
3148 	if (write) {
3149 		spin_lock(&hugetlb_lock);
3150 		h->nr_overcommit_huge_pages = tmp;
3151 		spin_unlock(&hugetlb_lock);
3152 	}
3153 out:
3154 	return ret;
3155 }
3156 
3157 #endif /* CONFIG_SYSCTL */
3158 
hugetlb_report_meminfo(struct seq_file * m)3159 void hugetlb_report_meminfo(struct seq_file *m)
3160 {
3161 	struct hstate *h;
3162 	unsigned long total = 0;
3163 
3164 	if (!hugepages_supported())
3165 		return;
3166 
3167 	for_each_hstate(h) {
3168 		unsigned long count = h->nr_huge_pages;
3169 
3170 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3171 
3172 		if (h == &default_hstate)
3173 			seq_printf(m,
3174 				   "HugePages_Total:   %5lu\n"
3175 				   "HugePages_Free:    %5lu\n"
3176 				   "HugePages_Rsvd:    %5lu\n"
3177 				   "HugePages_Surp:    %5lu\n"
3178 				   "Hugepagesize:   %8lu kB\n",
3179 				   count,
3180 				   h->free_huge_pages,
3181 				   h->resv_huge_pages,
3182 				   h->surplus_huge_pages,
3183 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3184 	}
3185 
3186 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3187 }
3188 
hugetlb_report_node_meminfo(int nid,char * buf)3189 int hugetlb_report_node_meminfo(int nid, char *buf)
3190 {
3191 	struct hstate *h = &default_hstate;
3192 	if (!hugepages_supported())
3193 		return 0;
3194 	return sprintf(buf,
3195 		"Node %d HugePages_Total: %5u\n"
3196 		"Node %d HugePages_Free:  %5u\n"
3197 		"Node %d HugePages_Surp:  %5u\n",
3198 		nid, h->nr_huge_pages_node[nid],
3199 		nid, h->free_huge_pages_node[nid],
3200 		nid, h->surplus_huge_pages_node[nid]);
3201 }
3202 
hugetlb_show_meminfo(void)3203 void hugetlb_show_meminfo(void)
3204 {
3205 	struct hstate *h;
3206 	int nid;
3207 
3208 	if (!hugepages_supported())
3209 		return;
3210 
3211 	for_each_node_state(nid, N_MEMORY)
3212 		for_each_hstate(h)
3213 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3214 				nid,
3215 				h->nr_huge_pages_node[nid],
3216 				h->free_huge_pages_node[nid],
3217 				h->surplus_huge_pages_node[nid],
3218 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3219 }
3220 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)3221 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3222 {
3223 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3224 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3225 }
3226 
3227 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)3228 unsigned long hugetlb_total_pages(void)
3229 {
3230 	struct hstate *h;
3231 	unsigned long nr_total_pages = 0;
3232 
3233 	for_each_hstate(h)
3234 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3235 	return nr_total_pages;
3236 }
3237 
hugetlb_acct_memory(struct hstate * h,long delta)3238 static int hugetlb_acct_memory(struct hstate *h, long delta)
3239 {
3240 	int ret = -ENOMEM;
3241 
3242 	spin_lock(&hugetlb_lock);
3243 	/*
3244 	 * When cpuset is configured, it breaks the strict hugetlb page
3245 	 * reservation as the accounting is done on a global variable. Such
3246 	 * reservation is completely rubbish in the presence of cpuset because
3247 	 * the reservation is not checked against page availability for the
3248 	 * current cpuset. Application can still potentially OOM'ed by kernel
3249 	 * with lack of free htlb page in cpuset that the task is in.
3250 	 * Attempt to enforce strict accounting with cpuset is almost
3251 	 * impossible (or too ugly) because cpuset is too fluid that
3252 	 * task or memory node can be dynamically moved between cpusets.
3253 	 *
3254 	 * The change of semantics for shared hugetlb mapping with cpuset is
3255 	 * undesirable. However, in order to preserve some of the semantics,
3256 	 * we fall back to check against current free page availability as
3257 	 * a best attempt and hopefully to minimize the impact of changing
3258 	 * semantics that cpuset has.
3259 	 */
3260 	if (delta > 0) {
3261 		if (gather_surplus_pages(h, delta) < 0)
3262 			goto out;
3263 
3264 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3265 			return_unused_surplus_pages(h, delta);
3266 			goto out;
3267 		}
3268 	}
3269 
3270 	ret = 0;
3271 	if (delta < 0)
3272 		return_unused_surplus_pages(h, (unsigned long) -delta);
3273 
3274 out:
3275 	spin_unlock(&hugetlb_lock);
3276 	return ret;
3277 }
3278 
hugetlb_vm_op_open(struct vm_area_struct * vma)3279 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3280 {
3281 	struct resv_map *resv = vma_resv_map(vma);
3282 
3283 	/*
3284 	 * This new VMA should share its siblings reservation map if present.
3285 	 * The VMA will only ever have a valid reservation map pointer where
3286 	 * it is being copied for another still existing VMA.  As that VMA
3287 	 * has a reference to the reservation map it cannot disappear until
3288 	 * after this open call completes.  It is therefore safe to take a
3289 	 * new reference here without additional locking.
3290 	 */
3291 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3292 		kref_get(&resv->refs);
3293 }
3294 
hugetlb_vm_op_close(struct vm_area_struct * vma)3295 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3296 {
3297 	struct hstate *h = hstate_vma(vma);
3298 	struct resv_map *resv = vma_resv_map(vma);
3299 	struct hugepage_subpool *spool = subpool_vma(vma);
3300 	unsigned long reserve, start, end;
3301 	long gbl_reserve;
3302 
3303 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3304 		return;
3305 
3306 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3307 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3308 
3309 	reserve = (end - start) - region_count(resv, start, end);
3310 
3311 	kref_put(&resv->refs, resv_map_release);
3312 
3313 	if (reserve) {
3314 		/*
3315 		 * Decrement reserve counts.  The global reserve count may be
3316 		 * adjusted if the subpool has a minimum size.
3317 		 */
3318 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3319 		hugetlb_acct_memory(h, -gbl_reserve);
3320 	}
3321 }
3322 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)3323 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3324 {
3325 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3326 		return -EINVAL;
3327 	return 0;
3328 }
3329 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)3330 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3331 {
3332 	struct hstate *hstate = hstate_vma(vma);
3333 
3334 	return 1UL << huge_page_shift(hstate);
3335 }
3336 
3337 /*
3338  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3339  * handle_mm_fault() to try to instantiate regular-sized pages in the
3340  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3341  * this far.
3342  */
hugetlb_vm_op_fault(struct vm_fault * vmf)3343 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3344 {
3345 	BUG();
3346 	return 0;
3347 }
3348 
3349 /*
3350  * When a new function is introduced to vm_operations_struct and added
3351  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3352  * This is because under System V memory model, mappings created via
3353  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3354  * their original vm_ops are overwritten with shm_vm_ops.
3355  */
3356 const struct vm_operations_struct hugetlb_vm_ops = {
3357 	.fault = hugetlb_vm_op_fault,
3358 	.open = hugetlb_vm_op_open,
3359 	.close = hugetlb_vm_op_close,
3360 	.split = hugetlb_vm_op_split,
3361 	.pagesize = hugetlb_vm_op_pagesize,
3362 };
3363 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)3364 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3365 				int writable)
3366 {
3367 	pte_t entry;
3368 
3369 	if (writable) {
3370 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3371 					 vma->vm_page_prot)));
3372 	} else {
3373 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3374 					   vma->vm_page_prot));
3375 	}
3376 	entry = pte_mkyoung(entry);
3377 	entry = pte_mkhuge(entry);
3378 	entry = arch_make_huge_pte(entry, vma, page, writable);
3379 
3380 	return entry;
3381 }
3382 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)3383 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3384 				   unsigned long address, pte_t *ptep)
3385 {
3386 	pte_t entry;
3387 
3388 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3389 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3390 		update_mmu_cache(vma, address, ptep);
3391 }
3392 
is_hugetlb_entry_migration(pte_t pte)3393 bool is_hugetlb_entry_migration(pte_t pte)
3394 {
3395 	swp_entry_t swp;
3396 
3397 	if (huge_pte_none(pte) || pte_present(pte))
3398 		return false;
3399 	swp = pte_to_swp_entry(pte);
3400 	if (non_swap_entry(swp) && is_migration_entry(swp))
3401 		return true;
3402 	else
3403 		return false;
3404 }
3405 
is_hugetlb_entry_hwpoisoned(pte_t pte)3406 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3407 {
3408 	swp_entry_t swp;
3409 
3410 	if (huge_pte_none(pte) || pte_present(pte))
3411 		return 0;
3412 	swp = pte_to_swp_entry(pte);
3413 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3414 		return 1;
3415 	else
3416 		return 0;
3417 }
3418 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)3419 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3420 			    struct vm_area_struct *vma)
3421 {
3422 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3423 	struct page *ptepage;
3424 	unsigned long addr;
3425 	int cow;
3426 	struct hstate *h = hstate_vma(vma);
3427 	unsigned long sz = huge_page_size(h);
3428 	struct mmu_notifier_range range;
3429 	int ret = 0;
3430 
3431 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3432 
3433 	if (cow) {
3434 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3435 					vma->vm_start,
3436 					vma->vm_end);
3437 		mmu_notifier_invalidate_range_start(&range);
3438 	}
3439 
3440 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3441 		spinlock_t *src_ptl, *dst_ptl;
3442 		src_pte = huge_pte_offset(src, addr, sz);
3443 		if (!src_pte)
3444 			continue;
3445 		dst_pte = huge_pte_alloc(dst, addr, sz);
3446 		if (!dst_pte) {
3447 			ret = -ENOMEM;
3448 			break;
3449 		}
3450 
3451 		/*
3452 		 * If the pagetables are shared don't copy or take references.
3453 		 * dst_pte == src_pte is the common case of src/dest sharing.
3454 		 *
3455 		 * However, src could have 'unshared' and dst shares with
3456 		 * another vma.  If dst_pte !none, this implies sharing.
3457 		 * Check here before taking page table lock, and once again
3458 		 * after taking the lock below.
3459 		 */
3460 		dst_entry = huge_ptep_get(dst_pte);
3461 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3462 			continue;
3463 
3464 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3465 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3466 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3467 		entry = huge_ptep_get(src_pte);
3468 		dst_entry = huge_ptep_get(dst_pte);
3469 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3470 			/*
3471 			 * Skip if src entry none.  Also, skip in the
3472 			 * unlikely case dst entry !none as this implies
3473 			 * sharing with another vma.
3474 			 */
3475 			;
3476 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3477 				    is_hugetlb_entry_hwpoisoned(entry))) {
3478 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3479 
3480 			if (is_write_migration_entry(swp_entry) && cow) {
3481 				/*
3482 				 * COW mappings require pages in both
3483 				 * parent and child to be set to read.
3484 				 */
3485 				make_migration_entry_read(&swp_entry);
3486 				entry = swp_entry_to_pte(swp_entry);
3487 				set_huge_swap_pte_at(src, addr, src_pte,
3488 						     entry, sz);
3489 			}
3490 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3491 		} else {
3492 			if (cow) {
3493 				/*
3494 				 * No need to notify as we are downgrading page
3495 				 * table protection not changing it to point
3496 				 * to a new page.
3497 				 *
3498 				 * See Documentation/vm/mmu_notifier.rst
3499 				 */
3500 				huge_ptep_set_wrprotect(src, addr, src_pte);
3501 			}
3502 			entry = huge_ptep_get(src_pte);
3503 			ptepage = pte_page(entry);
3504 			get_page(ptepage);
3505 			page_dup_rmap(ptepage, true);
3506 			set_huge_pte_at(dst, addr, dst_pte, entry);
3507 			hugetlb_count_add(pages_per_huge_page(h), dst);
3508 		}
3509 		spin_unlock(src_ptl);
3510 		spin_unlock(dst_ptl);
3511 	}
3512 
3513 	if (cow)
3514 		mmu_notifier_invalidate_range_end(&range);
3515 
3516 	return ret;
3517 }
3518 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3519 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3520 			    unsigned long start, unsigned long end,
3521 			    struct page *ref_page)
3522 {
3523 	struct mm_struct *mm = vma->vm_mm;
3524 	unsigned long address;
3525 	pte_t *ptep;
3526 	pte_t pte;
3527 	spinlock_t *ptl;
3528 	struct page *page;
3529 	struct hstate *h = hstate_vma(vma);
3530 	unsigned long sz = huge_page_size(h);
3531 	struct mmu_notifier_range range;
3532 
3533 	WARN_ON(!is_vm_hugetlb_page(vma));
3534 	BUG_ON(start & ~huge_page_mask(h));
3535 	BUG_ON(end & ~huge_page_mask(h));
3536 
3537 	/*
3538 	 * This is a hugetlb vma, all the pte entries should point
3539 	 * to huge page.
3540 	 */
3541 	tlb_change_page_size(tlb, sz);
3542 	tlb_start_vma(tlb, vma);
3543 
3544 	/*
3545 	 * If sharing possible, alert mmu notifiers of worst case.
3546 	 */
3547 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3548 				end);
3549 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3550 	mmu_notifier_invalidate_range_start(&range);
3551 	address = start;
3552 	for (; address < end; address += sz) {
3553 		ptep = huge_pte_offset(mm, address, sz);
3554 		if (!ptep)
3555 			continue;
3556 
3557 		ptl = huge_pte_lock(h, mm, ptep);
3558 		if (huge_pmd_unshare(mm, &address, ptep)) {
3559 			spin_unlock(ptl);
3560 			/*
3561 			 * We just unmapped a page of PMDs by clearing a PUD.
3562 			 * The caller's TLB flush range should cover this area.
3563 			 */
3564 			continue;
3565 		}
3566 
3567 		pte = huge_ptep_get(ptep);
3568 		if (huge_pte_none(pte)) {
3569 			spin_unlock(ptl);
3570 			continue;
3571 		}
3572 
3573 		/*
3574 		 * Migrating hugepage or HWPoisoned hugepage is already
3575 		 * unmapped and its refcount is dropped, so just clear pte here.
3576 		 */
3577 		if (unlikely(!pte_present(pte))) {
3578 			huge_pte_clear(mm, address, ptep, sz);
3579 			spin_unlock(ptl);
3580 			continue;
3581 		}
3582 
3583 		page = pte_page(pte);
3584 		/*
3585 		 * If a reference page is supplied, it is because a specific
3586 		 * page is being unmapped, not a range. Ensure the page we
3587 		 * are about to unmap is the actual page of interest.
3588 		 */
3589 		if (ref_page) {
3590 			if (page != ref_page) {
3591 				spin_unlock(ptl);
3592 				continue;
3593 			}
3594 			/*
3595 			 * Mark the VMA as having unmapped its page so that
3596 			 * future faults in this VMA will fail rather than
3597 			 * looking like data was lost
3598 			 */
3599 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3600 		}
3601 
3602 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3603 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3604 		if (huge_pte_dirty(pte))
3605 			set_page_dirty(page);
3606 
3607 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3608 		page_remove_rmap(page, true);
3609 
3610 		spin_unlock(ptl);
3611 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3612 		/*
3613 		 * Bail out after unmapping reference page if supplied
3614 		 */
3615 		if (ref_page)
3616 			break;
3617 	}
3618 	mmu_notifier_invalidate_range_end(&range);
3619 	tlb_end_vma(tlb, vma);
3620 }
3621 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3622 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3623 			  struct vm_area_struct *vma, unsigned long start,
3624 			  unsigned long end, struct page *ref_page)
3625 {
3626 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3627 
3628 	/*
3629 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3630 	 * test will fail on a vma being torn down, and not grab a page table
3631 	 * on its way out.  We're lucky that the flag has such an appropriate
3632 	 * name, and can in fact be safely cleared here. We could clear it
3633 	 * before the __unmap_hugepage_range above, but all that's necessary
3634 	 * is to clear it before releasing the i_mmap_rwsem. This works
3635 	 * because in the context this is called, the VMA is about to be
3636 	 * destroyed and the i_mmap_rwsem is held.
3637 	 */
3638 	vma->vm_flags &= ~VM_MAYSHARE;
3639 }
3640 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3641 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3642 			  unsigned long end, struct page *ref_page)
3643 {
3644 	struct mm_struct *mm;
3645 	struct mmu_gather tlb;
3646 	unsigned long tlb_start = start;
3647 	unsigned long tlb_end = end;
3648 
3649 	/*
3650 	 * If shared PMDs were possibly used within this vma range, adjust
3651 	 * start/end for worst case tlb flushing.
3652 	 * Note that we can not be sure if PMDs are shared until we try to
3653 	 * unmap pages.  However, we want to make sure TLB flushing covers
3654 	 * the largest possible range.
3655 	 */
3656 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3657 
3658 	mm = vma->vm_mm;
3659 
3660 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3661 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3662 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3663 }
3664 
3665 /*
3666  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3667  * mappping it owns the reserve page for. The intention is to unmap the page
3668  * from other VMAs and let the children be SIGKILLed if they are faulting the
3669  * same region.
3670  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)3671 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3672 			      struct page *page, unsigned long address)
3673 {
3674 	struct hstate *h = hstate_vma(vma);
3675 	struct vm_area_struct *iter_vma;
3676 	struct address_space *mapping;
3677 	pgoff_t pgoff;
3678 
3679 	/*
3680 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3681 	 * from page cache lookup which is in HPAGE_SIZE units.
3682 	 */
3683 	address = address & huge_page_mask(h);
3684 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3685 			vma->vm_pgoff;
3686 	mapping = vma->vm_file->f_mapping;
3687 
3688 	/*
3689 	 * Take the mapping lock for the duration of the table walk. As
3690 	 * this mapping should be shared between all the VMAs,
3691 	 * __unmap_hugepage_range() is called as the lock is already held
3692 	 */
3693 	i_mmap_lock_write(mapping);
3694 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3695 		/* Do not unmap the current VMA */
3696 		if (iter_vma == vma)
3697 			continue;
3698 
3699 		/*
3700 		 * Shared VMAs have their own reserves and do not affect
3701 		 * MAP_PRIVATE accounting but it is possible that a shared
3702 		 * VMA is using the same page so check and skip such VMAs.
3703 		 */
3704 		if (iter_vma->vm_flags & VM_MAYSHARE)
3705 			continue;
3706 
3707 		/*
3708 		 * Unmap the page from other VMAs without their own reserves.
3709 		 * They get marked to be SIGKILLed if they fault in these
3710 		 * areas. This is because a future no-page fault on this VMA
3711 		 * could insert a zeroed page instead of the data existing
3712 		 * from the time of fork. This would look like data corruption
3713 		 */
3714 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3715 			unmap_hugepage_range(iter_vma, address,
3716 					     address + huge_page_size(h), page);
3717 	}
3718 	i_mmap_unlock_write(mapping);
3719 }
3720 
3721 /*
3722  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3723  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3724  * cannot race with other handlers or page migration.
3725  * Keep the pte_same checks anyway to make transition from the mutex easier.
3726  */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,struct page * pagecache_page,spinlock_t * ptl)3727 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3728 		       unsigned long address, pte_t *ptep,
3729 		       struct page *pagecache_page, spinlock_t *ptl)
3730 {
3731 	pte_t pte;
3732 	struct hstate *h = hstate_vma(vma);
3733 	struct page *old_page, *new_page;
3734 	int outside_reserve = 0;
3735 	vm_fault_t ret = 0;
3736 	unsigned long haddr = address & huge_page_mask(h);
3737 	struct mmu_notifier_range range;
3738 
3739 	pte = huge_ptep_get(ptep);
3740 	old_page = pte_page(pte);
3741 
3742 retry_avoidcopy:
3743 	/* If no-one else is actually using this page, avoid the copy
3744 	 * and just make the page writable */
3745 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3746 		page_move_anon_rmap(old_page, vma);
3747 		set_huge_ptep_writable(vma, haddr, ptep);
3748 		return 0;
3749 	}
3750 
3751 	/*
3752 	 * If the process that created a MAP_PRIVATE mapping is about to
3753 	 * perform a COW due to a shared page count, attempt to satisfy
3754 	 * the allocation without using the existing reserves. The pagecache
3755 	 * page is used to determine if the reserve at this address was
3756 	 * consumed or not. If reserves were used, a partial faulted mapping
3757 	 * at the time of fork() could consume its reserves on COW instead
3758 	 * of the full address range.
3759 	 */
3760 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3761 			old_page != pagecache_page)
3762 		outside_reserve = 1;
3763 
3764 	get_page(old_page);
3765 
3766 	/*
3767 	 * Drop page table lock as buddy allocator may be called. It will
3768 	 * be acquired again before returning to the caller, as expected.
3769 	 */
3770 	spin_unlock(ptl);
3771 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3772 
3773 	if (IS_ERR(new_page)) {
3774 		/*
3775 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3776 		 * it is due to references held by a child and an insufficient
3777 		 * huge page pool. To guarantee the original mappers
3778 		 * reliability, unmap the page from child processes. The child
3779 		 * may get SIGKILLed if it later faults.
3780 		 */
3781 		if (outside_reserve) {
3782 			put_page(old_page);
3783 			BUG_ON(huge_pte_none(pte));
3784 			unmap_ref_private(mm, vma, old_page, haddr);
3785 			BUG_ON(huge_pte_none(pte));
3786 			spin_lock(ptl);
3787 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3788 			if (likely(ptep &&
3789 				   pte_same(huge_ptep_get(ptep), pte)))
3790 				goto retry_avoidcopy;
3791 			/*
3792 			 * race occurs while re-acquiring page table
3793 			 * lock, and our job is done.
3794 			 */
3795 			return 0;
3796 		}
3797 
3798 		ret = vmf_error(PTR_ERR(new_page));
3799 		goto out_release_old;
3800 	}
3801 
3802 	/*
3803 	 * When the original hugepage is shared one, it does not have
3804 	 * anon_vma prepared.
3805 	 */
3806 	if (unlikely(anon_vma_prepare(vma))) {
3807 		ret = VM_FAULT_OOM;
3808 		goto out_release_all;
3809 	}
3810 
3811 	copy_user_huge_page(new_page, old_page, address, vma,
3812 			    pages_per_huge_page(h));
3813 	__SetPageUptodate(new_page);
3814 
3815 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3816 				haddr + huge_page_size(h));
3817 	mmu_notifier_invalidate_range_start(&range);
3818 
3819 	/*
3820 	 * Retake the page table lock to check for racing updates
3821 	 * before the page tables are altered
3822 	 */
3823 	spin_lock(ptl);
3824 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3825 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3826 		ClearPagePrivate(new_page);
3827 
3828 		/* Break COW */
3829 		huge_ptep_clear_flush(vma, haddr, ptep);
3830 		mmu_notifier_invalidate_range(mm, range.start, range.end);
3831 		set_huge_pte_at(mm, haddr, ptep,
3832 				make_huge_pte(vma, new_page, 1));
3833 		page_remove_rmap(old_page, true);
3834 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3835 		set_page_huge_active(new_page);
3836 		/* Make the old page be freed below */
3837 		new_page = old_page;
3838 	}
3839 	spin_unlock(ptl);
3840 	mmu_notifier_invalidate_range_end(&range);
3841 out_release_all:
3842 	restore_reserve_on_error(h, vma, haddr, new_page);
3843 	put_page(new_page);
3844 out_release_old:
3845 	put_page(old_page);
3846 
3847 	spin_lock(ptl); /* Caller expects lock to be held */
3848 	return ret;
3849 }
3850 
3851 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)3852 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3853 			struct vm_area_struct *vma, unsigned long address)
3854 {
3855 	struct address_space *mapping;
3856 	pgoff_t idx;
3857 
3858 	mapping = vma->vm_file->f_mapping;
3859 	idx = vma_hugecache_offset(h, vma, address);
3860 
3861 	return find_lock_page(mapping, idx);
3862 }
3863 
3864 /*
3865  * Return whether there is a pagecache page to back given address within VMA.
3866  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3867  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)3868 static bool hugetlbfs_pagecache_present(struct hstate *h,
3869 			struct vm_area_struct *vma, unsigned long address)
3870 {
3871 	struct address_space *mapping;
3872 	pgoff_t idx;
3873 	struct page *page;
3874 
3875 	mapping = vma->vm_file->f_mapping;
3876 	idx = vma_hugecache_offset(h, vma, address);
3877 
3878 	page = find_get_page(mapping, idx);
3879 	if (page)
3880 		put_page(page);
3881 	return page != NULL;
3882 }
3883 
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)3884 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3885 			   pgoff_t idx)
3886 {
3887 	struct inode *inode = mapping->host;
3888 	struct hstate *h = hstate_inode(inode);
3889 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3890 
3891 	if (err)
3892 		return err;
3893 	ClearPagePrivate(page);
3894 
3895 	/*
3896 	 * set page dirty so that it will not be removed from cache/file
3897 	 * by non-hugetlbfs specific code paths.
3898 	 */
3899 	set_page_dirty(page);
3900 
3901 	spin_lock(&inode->i_lock);
3902 	inode->i_blocks += blocks_per_huge_page(h);
3903 	spin_unlock(&inode->i_lock);
3904 	return 0;
3905 }
3906 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)3907 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3908 			struct vm_area_struct *vma,
3909 			struct address_space *mapping, pgoff_t idx,
3910 			unsigned long address, pte_t *ptep, unsigned int flags)
3911 {
3912 	struct hstate *h = hstate_vma(vma);
3913 	vm_fault_t ret = VM_FAULT_SIGBUS;
3914 	int anon_rmap = 0;
3915 	unsigned long size;
3916 	struct page *page;
3917 	pte_t new_pte;
3918 	spinlock_t *ptl;
3919 	unsigned long haddr = address & huge_page_mask(h);
3920 	bool new_page = false;
3921 
3922 	/*
3923 	 * Currently, we are forced to kill the process in the event the
3924 	 * original mapper has unmapped pages from the child due to a failed
3925 	 * COW. Warn that such a situation has occurred as it may not be obvious
3926 	 */
3927 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3928 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3929 			   current->pid);
3930 		return ret;
3931 	}
3932 
3933 	/*
3934 	 * Use page lock to guard against racing truncation
3935 	 * before we get page_table_lock.
3936 	 */
3937 retry:
3938 	page = find_lock_page(mapping, idx);
3939 	if (!page) {
3940 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3941 		if (idx >= size)
3942 			goto out;
3943 
3944 		/*
3945 		 * Check for page in userfault range
3946 		 */
3947 		if (userfaultfd_missing(vma)) {
3948 			u32 hash;
3949 			struct vm_fault vmf = {
3950 				.vma = vma,
3951 				.address = haddr,
3952 				.flags = flags,
3953 				/*
3954 				 * Hard to debug if it ends up being
3955 				 * used by a callee that assumes
3956 				 * something about the other
3957 				 * uninitialized fields... same as in
3958 				 * memory.c
3959 				 */
3960 			};
3961 
3962 			/*
3963 			 * hugetlb_fault_mutex must be dropped before
3964 			 * handling userfault.  Reacquire after handling
3965 			 * fault to make calling code simpler.
3966 			 */
3967 			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3968 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3969 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3970 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3971 			goto out;
3972 		}
3973 
3974 		page = alloc_huge_page(vma, haddr, 0);
3975 		if (IS_ERR(page)) {
3976 			/*
3977 			 * Returning error will result in faulting task being
3978 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
3979 			 * tasks from racing to fault in the same page which
3980 			 * could result in false unable to allocate errors.
3981 			 * Page migration does not take the fault mutex, but
3982 			 * does a clear then write of pte's under page table
3983 			 * lock.  Page fault code could race with migration,
3984 			 * notice the clear pte and try to allocate a page
3985 			 * here.  Before returning error, get ptl and make
3986 			 * sure there really is no pte entry.
3987 			 */
3988 			ptl = huge_pte_lock(h, mm, ptep);
3989 			if (!huge_pte_none(huge_ptep_get(ptep))) {
3990 				ret = 0;
3991 				spin_unlock(ptl);
3992 				goto out;
3993 			}
3994 			spin_unlock(ptl);
3995 			ret = vmf_error(PTR_ERR(page));
3996 			goto out;
3997 		}
3998 		clear_huge_page(page, address, pages_per_huge_page(h));
3999 		__SetPageUptodate(page);
4000 		new_page = true;
4001 
4002 		if (vma->vm_flags & VM_MAYSHARE) {
4003 			int err = huge_add_to_page_cache(page, mapping, idx);
4004 			if (err) {
4005 				put_page(page);
4006 				if (err == -EEXIST)
4007 					goto retry;
4008 				goto out;
4009 			}
4010 		} else {
4011 			lock_page(page);
4012 			if (unlikely(anon_vma_prepare(vma))) {
4013 				ret = VM_FAULT_OOM;
4014 				goto backout_unlocked;
4015 			}
4016 			anon_rmap = 1;
4017 		}
4018 	} else {
4019 		/*
4020 		 * If memory error occurs between mmap() and fault, some process
4021 		 * don't have hwpoisoned swap entry for errored virtual address.
4022 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4023 		 */
4024 		if (unlikely(PageHWPoison(page))) {
4025 			ret = VM_FAULT_HWPOISON |
4026 				VM_FAULT_SET_HINDEX(hstate_index(h));
4027 			goto backout_unlocked;
4028 		}
4029 	}
4030 
4031 	/*
4032 	 * If we are going to COW a private mapping later, we examine the
4033 	 * pending reservations for this page now. This will ensure that
4034 	 * any allocations necessary to record that reservation occur outside
4035 	 * the spinlock.
4036 	 */
4037 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4038 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4039 			ret = VM_FAULT_OOM;
4040 			goto backout_unlocked;
4041 		}
4042 		/* Just decrements count, does not deallocate */
4043 		vma_end_reservation(h, vma, haddr);
4044 	}
4045 
4046 	ptl = huge_pte_lock(h, mm, ptep);
4047 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4048 	if (idx >= size)
4049 		goto backout;
4050 
4051 	ret = 0;
4052 	if (!huge_pte_none(huge_ptep_get(ptep)))
4053 		goto backout;
4054 
4055 	if (anon_rmap) {
4056 		ClearPagePrivate(page);
4057 		hugepage_add_new_anon_rmap(page, vma, haddr);
4058 	} else
4059 		page_dup_rmap(page, true);
4060 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4061 				&& (vma->vm_flags & VM_SHARED)));
4062 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4063 
4064 	hugetlb_count_add(pages_per_huge_page(h), mm);
4065 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4066 		/* Optimization, do the COW without a second fault */
4067 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4068 	}
4069 
4070 	spin_unlock(ptl);
4071 
4072 	/*
4073 	 * Only make newly allocated pages active.  Existing pages found
4074 	 * in the pagecache could be !page_huge_active() if they have been
4075 	 * isolated for migration.
4076 	 */
4077 	if (new_page)
4078 		set_page_huge_active(page);
4079 
4080 	unlock_page(page);
4081 out:
4082 	return ret;
4083 
4084 backout:
4085 	spin_unlock(ptl);
4086 backout_unlocked:
4087 	unlock_page(page);
4088 	restore_reserve_on_error(h, vma, haddr, page);
4089 	put_page(page);
4090 	goto out;
4091 }
4092 
4093 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct hstate * h,struct address_space * mapping,pgoff_t idx,unsigned long address)4094 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4095 			    pgoff_t idx, unsigned long address)
4096 {
4097 	unsigned long key[2];
4098 	u32 hash;
4099 
4100 	key[0] = (unsigned long) mapping;
4101 	key[1] = idx;
4102 
4103 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4104 
4105 	return hash & (num_fault_mutexes - 1);
4106 }
4107 #else
4108 /*
4109  * For uniprocesor systems we always use a single mutex, so just
4110  * return 0 and avoid the hashing overhead.
4111  */
hugetlb_fault_mutex_hash(struct hstate * h,struct address_space * mapping,pgoff_t idx,unsigned long address)4112 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4113 			    pgoff_t idx, unsigned long address)
4114 {
4115 	return 0;
4116 }
4117 #endif
4118 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)4119 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4120 			unsigned long address, unsigned int flags)
4121 {
4122 	pte_t *ptep, entry;
4123 	spinlock_t *ptl;
4124 	vm_fault_t ret;
4125 	u32 hash;
4126 	pgoff_t idx;
4127 	struct page *page = NULL;
4128 	struct page *pagecache_page = NULL;
4129 	struct hstate *h = hstate_vma(vma);
4130 	struct address_space *mapping;
4131 	int need_wait_lock = 0;
4132 	unsigned long haddr = address & huge_page_mask(h);
4133 
4134 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4135 	if (ptep) {
4136 		entry = huge_ptep_get(ptep);
4137 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4138 			migration_entry_wait_huge(vma, mm, ptep);
4139 			return 0;
4140 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4141 			return VM_FAULT_HWPOISON_LARGE |
4142 				VM_FAULT_SET_HINDEX(hstate_index(h));
4143 	} else {
4144 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4145 		if (!ptep)
4146 			return VM_FAULT_OOM;
4147 	}
4148 
4149 	mapping = vma->vm_file->f_mapping;
4150 	idx = vma_hugecache_offset(h, vma, haddr);
4151 
4152 	/*
4153 	 * Serialize hugepage allocation and instantiation, so that we don't
4154 	 * get spurious allocation failures if two CPUs race to instantiate
4155 	 * the same page in the page cache.
4156 	 */
4157 	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4158 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4159 
4160 	entry = huge_ptep_get(ptep);
4161 	if (huge_pte_none(entry)) {
4162 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4163 		goto out_mutex;
4164 	}
4165 
4166 	ret = 0;
4167 
4168 	/*
4169 	 * entry could be a migration/hwpoison entry at this point, so this
4170 	 * check prevents the kernel from going below assuming that we have
4171 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4172 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4173 	 * handle it.
4174 	 */
4175 	if (!pte_present(entry))
4176 		goto out_mutex;
4177 
4178 	/*
4179 	 * If we are going to COW the mapping later, we examine the pending
4180 	 * reservations for this page now. This will ensure that any
4181 	 * allocations necessary to record that reservation occur outside the
4182 	 * spinlock. For private mappings, we also lookup the pagecache
4183 	 * page now as it is used to determine if a reservation has been
4184 	 * consumed.
4185 	 */
4186 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4187 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4188 			ret = VM_FAULT_OOM;
4189 			goto out_mutex;
4190 		}
4191 		/* Just decrements count, does not deallocate */
4192 		vma_end_reservation(h, vma, haddr);
4193 
4194 		if (!(vma->vm_flags & VM_MAYSHARE))
4195 			pagecache_page = hugetlbfs_pagecache_page(h,
4196 								vma, haddr);
4197 	}
4198 
4199 	ptl = huge_pte_lock(h, mm, ptep);
4200 
4201 	/* Check for a racing update before calling hugetlb_cow */
4202 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4203 		goto out_ptl;
4204 
4205 	/*
4206 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4207 	 * pagecache_page, so here we need take the former one
4208 	 * when page != pagecache_page or !pagecache_page.
4209 	 */
4210 	page = pte_page(entry);
4211 	if (page != pagecache_page)
4212 		if (!trylock_page(page)) {
4213 			need_wait_lock = 1;
4214 			goto out_ptl;
4215 		}
4216 
4217 	get_page(page);
4218 
4219 	if (flags & FAULT_FLAG_WRITE) {
4220 		if (!huge_pte_write(entry)) {
4221 			ret = hugetlb_cow(mm, vma, address, ptep,
4222 					  pagecache_page, ptl);
4223 			goto out_put_page;
4224 		}
4225 		entry = huge_pte_mkdirty(entry);
4226 	}
4227 	entry = pte_mkyoung(entry);
4228 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4229 						flags & FAULT_FLAG_WRITE))
4230 		update_mmu_cache(vma, haddr, ptep);
4231 out_put_page:
4232 	if (page != pagecache_page)
4233 		unlock_page(page);
4234 	put_page(page);
4235 out_ptl:
4236 	spin_unlock(ptl);
4237 
4238 	if (pagecache_page) {
4239 		unlock_page(pagecache_page);
4240 		put_page(pagecache_page);
4241 	}
4242 out_mutex:
4243 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4244 	/*
4245 	 * Generally it's safe to hold refcount during waiting page lock. But
4246 	 * here we just wait to defer the next page fault to avoid busy loop and
4247 	 * the page is not used after unlocked before returning from the current
4248 	 * page fault. So we are safe from accessing freed page, even if we wait
4249 	 * here without taking refcount.
4250 	 */
4251 	if (need_wait_lock)
4252 		wait_on_page_locked(page);
4253 	return ret;
4254 }
4255 
4256 /*
4257  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4258  * modifications for huge pages.
4259  */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)4260 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4261 			    pte_t *dst_pte,
4262 			    struct vm_area_struct *dst_vma,
4263 			    unsigned long dst_addr,
4264 			    unsigned long src_addr,
4265 			    struct page **pagep)
4266 {
4267 	struct address_space *mapping;
4268 	pgoff_t idx;
4269 	unsigned long size;
4270 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4271 	struct hstate *h = hstate_vma(dst_vma);
4272 	pte_t _dst_pte;
4273 	spinlock_t *ptl;
4274 	int ret;
4275 	struct page *page;
4276 
4277 	if (!*pagep) {
4278 		ret = -ENOMEM;
4279 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4280 		if (IS_ERR(page))
4281 			goto out;
4282 
4283 		ret = copy_huge_page_from_user(page,
4284 						(const void __user *) src_addr,
4285 						pages_per_huge_page(h), false);
4286 
4287 		/* fallback to copy_from_user outside mmap_sem */
4288 		if (unlikely(ret)) {
4289 			ret = -ENOENT;
4290 			*pagep = page;
4291 			/* don't free the page */
4292 			goto out;
4293 		}
4294 	} else {
4295 		page = *pagep;
4296 		*pagep = NULL;
4297 	}
4298 
4299 	/*
4300 	 * The memory barrier inside __SetPageUptodate makes sure that
4301 	 * preceding stores to the page contents become visible before
4302 	 * the set_pte_at() write.
4303 	 */
4304 	__SetPageUptodate(page);
4305 
4306 	mapping = dst_vma->vm_file->f_mapping;
4307 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4308 
4309 	/*
4310 	 * If shared, add to page cache
4311 	 */
4312 	if (vm_shared) {
4313 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4314 		ret = -EFAULT;
4315 		if (idx >= size)
4316 			goto out_release_nounlock;
4317 
4318 		/*
4319 		 * Serialization between remove_inode_hugepages() and
4320 		 * huge_add_to_page_cache() below happens through the
4321 		 * hugetlb_fault_mutex_table that here must be hold by
4322 		 * the caller.
4323 		 */
4324 		ret = huge_add_to_page_cache(page, mapping, idx);
4325 		if (ret)
4326 			goto out_release_nounlock;
4327 	}
4328 
4329 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4330 	spin_lock(ptl);
4331 
4332 	/*
4333 	 * Recheck the i_size after holding PT lock to make sure not
4334 	 * to leave any page mapped (as page_mapped()) beyond the end
4335 	 * of the i_size (remove_inode_hugepages() is strict about
4336 	 * enforcing that). If we bail out here, we'll also leave a
4337 	 * page in the radix tree in the vm_shared case beyond the end
4338 	 * of the i_size, but remove_inode_hugepages() will take care
4339 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4340 	 */
4341 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4342 	ret = -EFAULT;
4343 	if (idx >= size)
4344 		goto out_release_unlock;
4345 
4346 	ret = -EEXIST;
4347 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4348 		goto out_release_unlock;
4349 
4350 	if (vm_shared) {
4351 		page_dup_rmap(page, true);
4352 	} else {
4353 		ClearPagePrivate(page);
4354 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4355 	}
4356 
4357 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4358 	if (dst_vma->vm_flags & VM_WRITE)
4359 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4360 	_dst_pte = pte_mkyoung(_dst_pte);
4361 
4362 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4363 
4364 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4365 					dst_vma->vm_flags & VM_WRITE);
4366 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4367 
4368 	/* No need to invalidate - it was non-present before */
4369 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4370 
4371 	spin_unlock(ptl);
4372 	set_page_huge_active(page);
4373 	if (vm_shared)
4374 		unlock_page(page);
4375 	ret = 0;
4376 out:
4377 	return ret;
4378 out_release_unlock:
4379 	spin_unlock(ptl);
4380 	if (vm_shared)
4381 		unlock_page(page);
4382 out_release_nounlock:
4383 	put_page(page);
4384 	goto out;
4385 }
4386 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * nonblocking)4387 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4388 			 struct page **pages, struct vm_area_struct **vmas,
4389 			 unsigned long *position, unsigned long *nr_pages,
4390 			 long i, unsigned int flags, int *nonblocking)
4391 {
4392 	unsigned long pfn_offset;
4393 	unsigned long vaddr = *position;
4394 	unsigned long remainder = *nr_pages;
4395 	struct hstate *h = hstate_vma(vma);
4396 	int err = -EFAULT;
4397 
4398 	while (vaddr < vma->vm_end && remainder) {
4399 		pte_t *pte;
4400 		spinlock_t *ptl = NULL;
4401 		int absent;
4402 		struct page *page;
4403 
4404 		/*
4405 		 * If we have a pending SIGKILL, don't keep faulting pages and
4406 		 * potentially allocating memory.
4407 		 */
4408 		if (fatal_signal_pending(current)) {
4409 			remainder = 0;
4410 			break;
4411 		}
4412 
4413 		/*
4414 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4415 		 * each hugepage.  We have to make sure we get the
4416 		 * first, for the page indexing below to work.
4417 		 *
4418 		 * Note that page table lock is not held when pte is null.
4419 		 */
4420 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4421 				      huge_page_size(h));
4422 		if (pte)
4423 			ptl = huge_pte_lock(h, mm, pte);
4424 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4425 
4426 		/*
4427 		 * When coredumping, it suits get_dump_page if we just return
4428 		 * an error where there's an empty slot with no huge pagecache
4429 		 * to back it.  This way, we avoid allocating a hugepage, and
4430 		 * the sparse dumpfile avoids allocating disk blocks, but its
4431 		 * huge holes still show up with zeroes where they need to be.
4432 		 */
4433 		if (absent && (flags & FOLL_DUMP) &&
4434 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4435 			if (pte)
4436 				spin_unlock(ptl);
4437 			remainder = 0;
4438 			break;
4439 		}
4440 
4441 		/*
4442 		 * We need call hugetlb_fault for both hugepages under migration
4443 		 * (in which case hugetlb_fault waits for the migration,) and
4444 		 * hwpoisoned hugepages (in which case we need to prevent the
4445 		 * caller from accessing to them.) In order to do this, we use
4446 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4447 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4448 		 * both cases, and because we can't follow correct pages
4449 		 * directly from any kind of swap entries.
4450 		 */
4451 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4452 		    ((flags & FOLL_WRITE) &&
4453 		      !huge_pte_write(huge_ptep_get(pte)))) {
4454 			vm_fault_t ret;
4455 			unsigned int fault_flags = 0;
4456 
4457 			if (pte)
4458 				spin_unlock(ptl);
4459 			if (flags & FOLL_WRITE)
4460 				fault_flags |= FAULT_FLAG_WRITE;
4461 			if (nonblocking)
4462 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4463 			if (flags & FOLL_NOWAIT)
4464 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4465 					FAULT_FLAG_RETRY_NOWAIT;
4466 			if (flags & FOLL_TRIED) {
4467 				VM_WARN_ON_ONCE(fault_flags &
4468 						FAULT_FLAG_ALLOW_RETRY);
4469 				fault_flags |= FAULT_FLAG_TRIED;
4470 			}
4471 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4472 			if (ret & VM_FAULT_ERROR) {
4473 				err = vm_fault_to_errno(ret, flags);
4474 				remainder = 0;
4475 				break;
4476 			}
4477 			if (ret & VM_FAULT_RETRY) {
4478 				if (nonblocking &&
4479 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4480 					*nonblocking = 0;
4481 				*nr_pages = 0;
4482 				/*
4483 				 * VM_FAULT_RETRY must not return an
4484 				 * error, it will return zero
4485 				 * instead.
4486 				 *
4487 				 * No need to update "position" as the
4488 				 * caller will not check it after
4489 				 * *nr_pages is set to 0.
4490 				 */
4491 				return i;
4492 			}
4493 			continue;
4494 		}
4495 
4496 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4497 		page = pte_page(huge_ptep_get(pte));
4498 
4499 		/*
4500 		 * Instead of doing 'try_get_page()' below in the same_page
4501 		 * loop, just check the count once here.
4502 		 */
4503 		if (unlikely(page_count(page) <= 0)) {
4504 			if (pages) {
4505 				spin_unlock(ptl);
4506 				remainder = 0;
4507 				err = -ENOMEM;
4508 				break;
4509 			}
4510 		}
4511 same_page:
4512 		if (pages) {
4513 			pages[i] = mem_map_offset(page, pfn_offset);
4514 			get_page(pages[i]);
4515 		}
4516 
4517 		if (vmas)
4518 			vmas[i] = vma;
4519 
4520 		vaddr += PAGE_SIZE;
4521 		++pfn_offset;
4522 		--remainder;
4523 		++i;
4524 		if (vaddr < vma->vm_end && remainder &&
4525 				pfn_offset < pages_per_huge_page(h)) {
4526 			/*
4527 			 * We use pfn_offset to avoid touching the pageframes
4528 			 * of this compound page.
4529 			 */
4530 			goto same_page;
4531 		}
4532 		spin_unlock(ptl);
4533 	}
4534 	*nr_pages = remainder;
4535 	/*
4536 	 * setting position is actually required only if remainder is
4537 	 * not zero but it's faster not to add a "if (remainder)"
4538 	 * branch.
4539 	 */
4540 	*position = vaddr;
4541 
4542 	return i ? i : err;
4543 }
4544 
4545 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4546 /*
4547  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4548  * implement this.
4549  */
4550 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4551 #endif
4552 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)4553 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4554 		unsigned long address, unsigned long end, pgprot_t newprot)
4555 {
4556 	struct mm_struct *mm = vma->vm_mm;
4557 	unsigned long start = address;
4558 	pte_t *ptep;
4559 	pte_t pte;
4560 	struct hstate *h = hstate_vma(vma);
4561 	unsigned long pages = 0;
4562 	bool shared_pmd = false;
4563 	struct mmu_notifier_range range;
4564 
4565 	/*
4566 	 * In the case of shared PMDs, the area to flush could be beyond
4567 	 * start/end.  Set range.start/range.end to cover the maximum possible
4568 	 * range if PMD sharing is possible.
4569 	 */
4570 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4571 				0, vma, mm, start, end);
4572 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4573 
4574 	BUG_ON(address >= end);
4575 	flush_cache_range(vma, range.start, range.end);
4576 
4577 	mmu_notifier_invalidate_range_start(&range);
4578 	i_mmap_lock_write(vma->vm_file->f_mapping);
4579 	for (; address < end; address += huge_page_size(h)) {
4580 		spinlock_t *ptl;
4581 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4582 		if (!ptep)
4583 			continue;
4584 		ptl = huge_pte_lock(h, mm, ptep);
4585 		if (huge_pmd_unshare(mm, &address, ptep)) {
4586 			pages++;
4587 			spin_unlock(ptl);
4588 			shared_pmd = true;
4589 			continue;
4590 		}
4591 		pte = huge_ptep_get(ptep);
4592 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4593 			spin_unlock(ptl);
4594 			continue;
4595 		}
4596 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4597 			swp_entry_t entry = pte_to_swp_entry(pte);
4598 
4599 			if (is_write_migration_entry(entry)) {
4600 				pte_t newpte;
4601 
4602 				make_migration_entry_read(&entry);
4603 				newpte = swp_entry_to_pte(entry);
4604 				set_huge_swap_pte_at(mm, address, ptep,
4605 						     newpte, huge_page_size(h));
4606 				pages++;
4607 			}
4608 			spin_unlock(ptl);
4609 			continue;
4610 		}
4611 		if (!huge_pte_none(pte)) {
4612 			pte_t old_pte;
4613 
4614 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4615 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4616 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4617 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4618 			pages++;
4619 		}
4620 		spin_unlock(ptl);
4621 	}
4622 	/*
4623 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4624 	 * may have cleared our pud entry and done put_page on the page table:
4625 	 * once we release i_mmap_rwsem, another task can do the final put_page
4626 	 * and that page table be reused and filled with junk.  If we actually
4627 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4628 	 */
4629 	if (shared_pmd)
4630 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4631 	else
4632 		flush_hugetlb_tlb_range(vma, start, end);
4633 	/*
4634 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4635 	 * page table protection not changing it to point to a new page.
4636 	 *
4637 	 * See Documentation/vm/mmu_notifier.rst
4638 	 */
4639 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4640 	mmu_notifier_invalidate_range_end(&range);
4641 
4642 	return pages << h->order;
4643 }
4644 
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)4645 int hugetlb_reserve_pages(struct inode *inode,
4646 					long from, long to,
4647 					struct vm_area_struct *vma,
4648 					vm_flags_t vm_flags)
4649 {
4650 	long ret, chg;
4651 	struct hstate *h = hstate_inode(inode);
4652 	struct hugepage_subpool *spool = subpool_inode(inode);
4653 	struct resv_map *resv_map;
4654 	long gbl_reserve;
4655 
4656 	/* This should never happen */
4657 	if (from > to) {
4658 		VM_WARN(1, "%s called with a negative range\n", __func__);
4659 		return -EINVAL;
4660 	}
4661 
4662 	/*
4663 	 * Only apply hugepage reservation if asked. At fault time, an
4664 	 * attempt will be made for VM_NORESERVE to allocate a page
4665 	 * without using reserves
4666 	 */
4667 	if (vm_flags & VM_NORESERVE)
4668 		return 0;
4669 
4670 	/*
4671 	 * Shared mappings base their reservation on the number of pages that
4672 	 * are already allocated on behalf of the file. Private mappings need
4673 	 * to reserve the full area even if read-only as mprotect() may be
4674 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4675 	 */
4676 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4677 		/*
4678 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4679 		 * called for inodes for which resv_maps were created (see
4680 		 * hugetlbfs_get_inode).
4681 		 */
4682 		resv_map = inode_resv_map(inode);
4683 
4684 		chg = region_chg(resv_map, from, to);
4685 
4686 	} else {
4687 		resv_map = resv_map_alloc();
4688 		if (!resv_map)
4689 			return -ENOMEM;
4690 
4691 		chg = to - from;
4692 
4693 		set_vma_resv_map(vma, resv_map);
4694 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4695 	}
4696 
4697 	if (chg < 0) {
4698 		ret = chg;
4699 		goto out_err;
4700 	}
4701 
4702 	/*
4703 	 * There must be enough pages in the subpool for the mapping. If
4704 	 * the subpool has a minimum size, there may be some global
4705 	 * reservations already in place (gbl_reserve).
4706 	 */
4707 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4708 	if (gbl_reserve < 0) {
4709 		ret = -ENOSPC;
4710 		goto out_err;
4711 	}
4712 
4713 	/*
4714 	 * Check enough hugepages are available for the reservation.
4715 	 * Hand the pages back to the subpool if there are not
4716 	 */
4717 	ret = hugetlb_acct_memory(h, gbl_reserve);
4718 	if (ret < 0) {
4719 		/* put back original number of pages, chg */
4720 		(void)hugepage_subpool_put_pages(spool, chg);
4721 		goto out_err;
4722 	}
4723 
4724 	/*
4725 	 * Account for the reservations made. Shared mappings record regions
4726 	 * that have reservations as they are shared by multiple VMAs.
4727 	 * When the last VMA disappears, the region map says how much
4728 	 * the reservation was and the page cache tells how much of
4729 	 * the reservation was consumed. Private mappings are per-VMA and
4730 	 * only the consumed reservations are tracked. When the VMA
4731 	 * disappears, the original reservation is the VMA size and the
4732 	 * consumed reservations are stored in the map. Hence, nothing
4733 	 * else has to be done for private mappings here
4734 	 */
4735 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4736 		long add = region_add(resv_map, from, to);
4737 
4738 		if (unlikely(chg > add)) {
4739 			/*
4740 			 * pages in this range were added to the reserve
4741 			 * map between region_chg and region_add.  This
4742 			 * indicates a race with alloc_huge_page.  Adjust
4743 			 * the subpool and reserve counts modified above
4744 			 * based on the difference.
4745 			 */
4746 			long rsv_adjust;
4747 
4748 			rsv_adjust = hugepage_subpool_put_pages(spool,
4749 								chg - add);
4750 			hugetlb_acct_memory(h, -rsv_adjust);
4751 		}
4752 	}
4753 	return 0;
4754 out_err:
4755 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4756 		/* Don't call region_abort if region_chg failed */
4757 		if (chg >= 0)
4758 			region_abort(resv_map, from, to);
4759 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4760 		kref_put(&resv_map->refs, resv_map_release);
4761 	return ret;
4762 }
4763 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)4764 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4765 								long freed)
4766 {
4767 	struct hstate *h = hstate_inode(inode);
4768 	struct resv_map *resv_map = inode_resv_map(inode);
4769 	long chg = 0;
4770 	struct hugepage_subpool *spool = subpool_inode(inode);
4771 	long gbl_reserve;
4772 
4773 	/*
4774 	 * Since this routine can be called in the evict inode path for all
4775 	 * hugetlbfs inodes, resv_map could be NULL.
4776 	 */
4777 	if (resv_map) {
4778 		chg = region_del(resv_map, start, end);
4779 		/*
4780 		 * region_del() can fail in the rare case where a region
4781 		 * must be split and another region descriptor can not be
4782 		 * allocated.  If end == LONG_MAX, it will not fail.
4783 		 */
4784 		if (chg < 0)
4785 			return chg;
4786 	}
4787 
4788 	spin_lock(&inode->i_lock);
4789 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4790 	spin_unlock(&inode->i_lock);
4791 
4792 	/*
4793 	 * If the subpool has a minimum size, the number of global
4794 	 * reservations to be released may be adjusted.
4795 	 */
4796 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4797 	hugetlb_acct_memory(h, -gbl_reserve);
4798 
4799 	return 0;
4800 }
4801 
4802 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)4803 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4804 				struct vm_area_struct *vma,
4805 				unsigned long addr, pgoff_t idx)
4806 {
4807 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4808 				svma->vm_start;
4809 	unsigned long sbase = saddr & PUD_MASK;
4810 	unsigned long s_end = sbase + PUD_SIZE;
4811 
4812 	/* Allow segments to share if only one is marked locked */
4813 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4814 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4815 
4816 	/*
4817 	 * match the virtual addresses, permission and the alignment of the
4818 	 * page table page.
4819 	 */
4820 	if (pmd_index(addr) != pmd_index(saddr) ||
4821 	    vm_flags != svm_flags ||
4822 	    sbase < svma->vm_start || svma->vm_end < s_end)
4823 		return 0;
4824 
4825 	return saddr;
4826 }
4827 
vma_shareable(struct vm_area_struct * vma,unsigned long addr)4828 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4829 {
4830 	unsigned long base = addr & PUD_MASK;
4831 	unsigned long end = base + PUD_SIZE;
4832 
4833 	/*
4834 	 * check on proper vm_flags and page table alignment
4835 	 */
4836 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4837 		return true;
4838 	return false;
4839 }
4840 
4841 /*
4842  * Determine if start,end range within vma could be mapped by shared pmd.
4843  * If yes, adjust start and end to cover range associated with possible
4844  * shared pmd mappings.
4845  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)4846 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4847 				unsigned long *start, unsigned long *end)
4848 {
4849 	unsigned long check_addr = *start;
4850 
4851 	if (!(vma->vm_flags & VM_MAYSHARE))
4852 		return;
4853 
4854 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4855 		unsigned long a_start = check_addr & PUD_MASK;
4856 		unsigned long a_end = a_start + PUD_SIZE;
4857 
4858 		/*
4859 		 * If sharing is possible, adjust start/end if necessary.
4860 		 */
4861 		if (range_in_vma(vma, a_start, a_end)) {
4862 			if (a_start < *start)
4863 				*start = a_start;
4864 			if (a_end > *end)
4865 				*end = a_end;
4866 		}
4867 	}
4868 }
4869 
4870 /*
4871  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4872  * and returns the corresponding pte. While this is not necessary for the
4873  * !shared pmd case because we can allocate the pmd later as well, it makes the
4874  * code much cleaner. pmd allocation is essential for the shared case because
4875  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4876  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4877  * bad pmd for sharing.
4878  */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)4879 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4880 {
4881 	struct vm_area_struct *vma = find_vma(mm, addr);
4882 	struct address_space *mapping = vma->vm_file->f_mapping;
4883 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4884 			vma->vm_pgoff;
4885 	struct vm_area_struct *svma;
4886 	unsigned long saddr;
4887 	pte_t *spte = NULL;
4888 	pte_t *pte;
4889 	spinlock_t *ptl;
4890 
4891 	if (!vma_shareable(vma, addr))
4892 		return (pte_t *)pmd_alloc(mm, pud, addr);
4893 
4894 	i_mmap_lock_write(mapping);
4895 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4896 		if (svma == vma)
4897 			continue;
4898 
4899 		saddr = page_table_shareable(svma, vma, addr, idx);
4900 		if (saddr) {
4901 			spte = huge_pte_offset(svma->vm_mm, saddr,
4902 					       vma_mmu_pagesize(svma));
4903 			if (spte) {
4904 				get_page(virt_to_page(spte));
4905 				break;
4906 			}
4907 		}
4908 	}
4909 
4910 	if (!spte)
4911 		goto out;
4912 
4913 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4914 	if (pud_none(*pud)) {
4915 		pud_populate(mm, pud,
4916 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4917 		mm_inc_nr_pmds(mm);
4918 	} else {
4919 		put_page(virt_to_page(spte));
4920 	}
4921 	spin_unlock(ptl);
4922 out:
4923 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4924 	i_mmap_unlock_write(mapping);
4925 	return pte;
4926 }
4927 
4928 /*
4929  * unmap huge page backed by shared pte.
4930  *
4931  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4932  * indicated by page_count > 1, unmap is achieved by clearing pud and
4933  * decrementing the ref count. If count == 1, the pte page is not shared.
4934  *
4935  * called with page table lock held.
4936  *
4937  * returns: 1 successfully unmapped a shared pte page
4938  *	    0 the underlying pte page is not shared, or it is the last user
4939  */
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)4940 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4941 {
4942 	pgd_t *pgd = pgd_offset(mm, *addr);
4943 	p4d_t *p4d = p4d_offset(pgd, *addr);
4944 	pud_t *pud = pud_offset(p4d, *addr);
4945 
4946 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4947 	if (page_count(virt_to_page(ptep)) == 1)
4948 		return 0;
4949 
4950 	pud_clear(pud);
4951 	put_page(virt_to_page(ptep));
4952 	mm_dec_nr_pmds(mm);
4953 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4954 	return 1;
4955 }
4956 #define want_pmd_share()	(1)
4957 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)4958 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4959 {
4960 	return NULL;
4961 }
4962 
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)4963 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4964 {
4965 	return 0;
4966 }
4967 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)4968 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4969 				unsigned long *start, unsigned long *end)
4970 {
4971 }
4972 #define want_pmd_share()	(0)
4973 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4974 
4975 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)4976 pte_t *huge_pte_alloc(struct mm_struct *mm,
4977 			unsigned long addr, unsigned long sz)
4978 {
4979 	pgd_t *pgd;
4980 	p4d_t *p4d;
4981 	pud_t *pud;
4982 	pte_t *pte = NULL;
4983 
4984 	pgd = pgd_offset(mm, addr);
4985 	p4d = p4d_alloc(mm, pgd, addr);
4986 	if (!p4d)
4987 		return NULL;
4988 	pud = pud_alloc(mm, p4d, addr);
4989 	if (pud) {
4990 		if (sz == PUD_SIZE) {
4991 			pte = (pte_t *)pud;
4992 		} else {
4993 			BUG_ON(sz != PMD_SIZE);
4994 			if (want_pmd_share() && pud_none(*pud))
4995 				pte = huge_pmd_share(mm, addr, pud);
4996 			else
4997 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4998 		}
4999 	}
5000 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5001 
5002 	return pte;
5003 }
5004 
5005 /*
5006  * huge_pte_offset() - Walk the page table to resolve the hugepage
5007  * entry at address @addr
5008  *
5009  * Return: Pointer to page table or swap entry (PUD or PMD) for
5010  * address @addr, or NULL if a p*d_none() entry is encountered and the
5011  * size @sz doesn't match the hugepage size at this level of the page
5012  * table.
5013  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)5014 pte_t *huge_pte_offset(struct mm_struct *mm,
5015 		       unsigned long addr, unsigned long sz)
5016 {
5017 	pgd_t *pgd;
5018 	p4d_t *p4d;
5019 	pud_t *pud;
5020 	pmd_t *pmd;
5021 
5022 	pgd = pgd_offset(mm, addr);
5023 	if (!pgd_present(*pgd))
5024 		return NULL;
5025 	p4d = p4d_offset(pgd, addr);
5026 	if (!p4d_present(*p4d))
5027 		return NULL;
5028 
5029 	pud = pud_offset(p4d, addr);
5030 	if (sz != PUD_SIZE && pud_none(*pud))
5031 		return NULL;
5032 	/* hugepage or swap? */
5033 	if (pud_huge(*pud) || !pud_present(*pud))
5034 		return (pte_t *)pud;
5035 
5036 	pmd = pmd_offset(pud, addr);
5037 	if (sz != PMD_SIZE && pmd_none(*pmd))
5038 		return NULL;
5039 	/* hugepage or swap? */
5040 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
5041 		return (pte_t *)pmd;
5042 
5043 	return NULL;
5044 }
5045 
5046 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5047 
5048 /*
5049  * These functions are overwritable if your architecture needs its own
5050  * behavior.
5051  */
5052 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)5053 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5054 			      int write)
5055 {
5056 	return ERR_PTR(-EINVAL);
5057 }
5058 
5059 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)5060 follow_huge_pd(struct vm_area_struct *vma,
5061 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5062 {
5063 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5064 	return NULL;
5065 }
5066 
5067 struct page * __weak
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int flags)5068 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5069 		pmd_t *pmd, int flags)
5070 {
5071 	struct page *page = NULL;
5072 	spinlock_t *ptl;
5073 	pte_t pte;
5074 retry:
5075 	ptl = pmd_lockptr(mm, pmd);
5076 	spin_lock(ptl);
5077 	/*
5078 	 * make sure that the address range covered by this pmd is not
5079 	 * unmapped from other threads.
5080 	 */
5081 	if (!pmd_huge(*pmd))
5082 		goto out;
5083 	pte = huge_ptep_get((pte_t *)pmd);
5084 	if (pte_present(pte)) {
5085 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5086 		if (flags & FOLL_GET)
5087 			get_page(page);
5088 	} else {
5089 		if (is_hugetlb_entry_migration(pte)) {
5090 			spin_unlock(ptl);
5091 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5092 			goto retry;
5093 		}
5094 		/*
5095 		 * hwpoisoned entry is treated as no_page_table in
5096 		 * follow_page_mask().
5097 		 */
5098 	}
5099 out:
5100 	spin_unlock(ptl);
5101 	return page;
5102 }
5103 
5104 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)5105 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5106 		pud_t *pud, int flags)
5107 {
5108 	if (flags & FOLL_GET)
5109 		return NULL;
5110 
5111 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5112 }
5113 
5114 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)5115 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5116 {
5117 	if (flags & FOLL_GET)
5118 		return NULL;
5119 
5120 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5121 }
5122 
isolate_huge_page(struct page * page,struct list_head * list)5123 bool isolate_huge_page(struct page *page, struct list_head *list)
5124 {
5125 	bool ret = true;
5126 
5127 	VM_BUG_ON_PAGE(!PageHead(page), page);
5128 	spin_lock(&hugetlb_lock);
5129 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5130 		ret = false;
5131 		goto unlock;
5132 	}
5133 	clear_page_huge_active(page);
5134 	list_move_tail(&page->lru, list);
5135 unlock:
5136 	spin_unlock(&hugetlb_lock);
5137 	return ret;
5138 }
5139 
putback_active_hugepage(struct page * page)5140 void putback_active_hugepage(struct page *page)
5141 {
5142 	VM_BUG_ON_PAGE(!PageHead(page), page);
5143 	spin_lock(&hugetlb_lock);
5144 	set_page_huge_active(page);
5145 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5146 	spin_unlock(&hugetlb_lock);
5147 	put_page(page);
5148 }
5149 
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)5150 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5151 {
5152 	struct hstate *h = page_hstate(oldpage);
5153 
5154 	hugetlb_cgroup_migrate(oldpage, newpage);
5155 	set_page_owner_migrate_reason(newpage, reason);
5156 
5157 	/*
5158 	 * transfer temporary state of the new huge page. This is
5159 	 * reverse to other transitions because the newpage is going to
5160 	 * be final while the old one will be freed so it takes over
5161 	 * the temporary status.
5162 	 *
5163 	 * Also note that we have to transfer the per-node surplus state
5164 	 * here as well otherwise the global surplus count will not match
5165 	 * the per-node's.
5166 	 */
5167 	if (PageHugeTemporary(newpage)) {
5168 		int old_nid = page_to_nid(oldpage);
5169 		int new_nid = page_to_nid(newpage);
5170 
5171 		SetPageHugeTemporary(oldpage);
5172 		ClearPageHugeTemporary(newpage);
5173 
5174 		spin_lock(&hugetlb_lock);
5175 		if (h->surplus_huge_pages_node[old_nid]) {
5176 			h->surplus_huge_pages_node[old_nid]--;
5177 			h->surplus_huge_pages_node[new_nid]++;
5178 		}
5179 		spin_unlock(&hugetlb_lock);
5180 	}
5181 }
5182