1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static void __journal_abort_soft (journal_t *journal, int errno);
100 static int jbd2_journal_create_slab(size_t slab_size);
101
102 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)103 void __jbd2_debug(int level, const char *file, const char *func,
104 unsigned int line, const char *fmt, ...)
105 {
106 struct va_format vaf;
107 va_list args;
108
109 if (level > jbd2_journal_enable_debug)
110 return;
111 va_start(args, fmt);
112 vaf.fmt = fmt;
113 vaf.va = &args;
114 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
115 va_end(args);
116 }
117 EXPORT_SYMBOL(__jbd2_debug);
118 #endif
119
120 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
122 {
123 if (!jbd2_journal_has_csum_v2or3_feature(j))
124 return 1;
125
126 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
127 }
128
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
130 {
131 __u32 csum;
132 __be32 old_csum;
133
134 old_csum = sb->s_checksum;
135 sb->s_checksum = 0;
136 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
137 sb->s_checksum = old_csum;
138
139 return cpu_to_be32(csum);
140 }
141
142 /*
143 * Helper function used to manage commit timeouts
144 */
145
commit_timeout(struct timer_list * t)146 static void commit_timeout(struct timer_list *t)
147 {
148 journal_t *journal = from_timer(journal, t, j_commit_timer);
149
150 wake_up_process(journal->j_task);
151 }
152
153 /*
154 * kjournald2: The main thread function used to manage a logging device
155 * journal.
156 *
157 * This kernel thread is responsible for two things:
158 *
159 * 1) COMMIT: Every so often we need to commit the current state of the
160 * filesystem to disk. The journal thread is responsible for writing
161 * all of the metadata buffers to disk.
162 *
163 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
164 * of the data in that part of the log has been rewritten elsewhere on
165 * the disk. Flushing these old buffers to reclaim space in the log is
166 * known as checkpointing, and this thread is responsible for that job.
167 */
168
kjournald2(void * arg)169 static int kjournald2(void *arg)
170 {
171 journal_t *journal = arg;
172 transaction_t *transaction;
173
174 /*
175 * Set up an interval timer which can be used to trigger a commit wakeup
176 * after the commit interval expires
177 */
178 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
179
180 set_freezable();
181
182 /* Record that the journal thread is running */
183 journal->j_task = current;
184 wake_up(&journal->j_wait_done_commit);
185
186 /*
187 * Make sure that no allocations from this kernel thread will ever
188 * recurse to the fs layer because we are responsible for the
189 * transaction commit and any fs involvement might get stuck waiting for
190 * the trasn. commit.
191 */
192 memalloc_nofs_save();
193
194 /*
195 * And now, wait forever for commit wakeup events.
196 */
197 write_lock(&journal->j_state_lock);
198
199 loop:
200 if (journal->j_flags & JBD2_UNMOUNT)
201 goto end_loop;
202
203 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
204 journal->j_commit_sequence, journal->j_commit_request);
205
206 if (journal->j_commit_sequence != journal->j_commit_request) {
207 jbd_debug(1, "OK, requests differ\n");
208 write_unlock(&journal->j_state_lock);
209 del_timer_sync(&journal->j_commit_timer);
210 jbd2_journal_commit_transaction(journal);
211 write_lock(&journal->j_state_lock);
212 goto loop;
213 }
214
215 wake_up(&journal->j_wait_done_commit);
216 if (freezing(current)) {
217 /*
218 * The simpler the better. Flushing journal isn't a
219 * good idea, because that depends on threads that may
220 * be already stopped.
221 */
222 jbd_debug(1, "Now suspending kjournald2\n");
223 write_unlock(&journal->j_state_lock);
224 try_to_freeze();
225 write_lock(&journal->j_state_lock);
226 } else {
227 /*
228 * We assume on resume that commits are already there,
229 * so we don't sleep
230 */
231 DEFINE_WAIT(wait);
232 int should_sleep = 1;
233
234 prepare_to_wait(&journal->j_wait_commit, &wait,
235 TASK_INTERRUPTIBLE);
236 if (journal->j_commit_sequence != journal->j_commit_request)
237 should_sleep = 0;
238 transaction = journal->j_running_transaction;
239 if (transaction && time_after_eq(jiffies,
240 transaction->t_expires))
241 should_sleep = 0;
242 if (journal->j_flags & JBD2_UNMOUNT)
243 should_sleep = 0;
244 if (should_sleep) {
245 write_unlock(&journal->j_state_lock);
246 schedule();
247 write_lock(&journal->j_state_lock);
248 }
249 finish_wait(&journal->j_wait_commit, &wait);
250 }
251
252 jbd_debug(1, "kjournald2 wakes\n");
253
254 /*
255 * Were we woken up by a commit wakeup event?
256 */
257 transaction = journal->j_running_transaction;
258 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
259 journal->j_commit_request = transaction->t_tid;
260 jbd_debug(1, "woke because of timeout\n");
261 }
262 goto loop;
263
264 end_loop:
265 del_timer_sync(&journal->j_commit_timer);
266 journal->j_task = NULL;
267 wake_up(&journal->j_wait_done_commit);
268 jbd_debug(1, "Journal thread exiting.\n");
269 write_unlock(&journal->j_state_lock);
270 return 0;
271 }
272
jbd2_journal_start_thread(journal_t * journal)273 static int jbd2_journal_start_thread(journal_t *journal)
274 {
275 struct task_struct *t;
276
277 t = kthread_run(kjournald2, journal, "jbd2/%s",
278 journal->j_devname);
279 if (IS_ERR(t))
280 return PTR_ERR(t);
281
282 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
283 return 0;
284 }
285
journal_kill_thread(journal_t * journal)286 static void journal_kill_thread(journal_t *journal)
287 {
288 write_lock(&journal->j_state_lock);
289 journal->j_flags |= JBD2_UNMOUNT;
290
291 while (journal->j_task) {
292 write_unlock(&journal->j_state_lock);
293 wake_up(&journal->j_wait_commit);
294 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
295 write_lock(&journal->j_state_lock);
296 }
297 write_unlock(&journal->j_state_lock);
298 }
299
300 /*
301 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302 *
303 * Writes a metadata buffer to a given disk block. The actual IO is not
304 * performed but a new buffer_head is constructed which labels the data
305 * to be written with the correct destination disk block.
306 *
307 * Any magic-number escaping which needs to be done will cause a
308 * copy-out here. If the buffer happens to start with the
309 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
310 * magic number is only written to the log for descripter blocks. In
311 * this case, we copy the data and replace the first word with 0, and we
312 * return a result code which indicates that this buffer needs to be
313 * marked as an escaped buffer in the corresponding log descriptor
314 * block. The missing word can then be restored when the block is read
315 * during recovery.
316 *
317 * If the source buffer has already been modified by a new transaction
318 * since we took the last commit snapshot, we use the frozen copy of
319 * that data for IO. If we end up using the existing buffer_head's data
320 * for the write, then we have to make sure nobody modifies it while the
321 * IO is in progress. do_get_write_access() handles this.
322 *
323 * The function returns a pointer to the buffer_head to be used for IO.
324 *
325 *
326 * Return value:
327 * <0: Error
328 * >=0: Finished OK
329 *
330 * On success:
331 * Bit 0 set == escape performed on the data
332 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
333 */
334
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
336 struct journal_head *jh_in,
337 struct buffer_head **bh_out,
338 sector_t blocknr)
339 {
340 int need_copy_out = 0;
341 int done_copy_out = 0;
342 int do_escape = 0;
343 char *mapped_data;
344 struct buffer_head *new_bh;
345 struct page *new_page;
346 unsigned int new_offset;
347 struct buffer_head *bh_in = jh2bh(jh_in);
348 journal_t *journal = transaction->t_journal;
349
350 /*
351 * The buffer really shouldn't be locked: only the current committing
352 * transaction is allowed to write it, so nobody else is allowed
353 * to do any IO.
354 *
355 * akpm: except if we're journalling data, and write() output is
356 * also part of a shared mapping, and another thread has
357 * decided to launch a writepage() against this buffer.
358 */
359 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
360
361 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
362
363 /* keep subsequent assertions sane */
364 atomic_set(&new_bh->b_count, 1);
365
366 jbd_lock_bh_state(bh_in);
367 repeat:
368 /*
369 * If a new transaction has already done a buffer copy-out, then
370 * we use that version of the data for the commit.
371 */
372 if (jh_in->b_frozen_data) {
373 done_copy_out = 1;
374 new_page = virt_to_page(jh_in->b_frozen_data);
375 new_offset = offset_in_page(jh_in->b_frozen_data);
376 } else {
377 new_page = jh2bh(jh_in)->b_page;
378 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
379 }
380
381 mapped_data = kmap_atomic(new_page);
382 /*
383 * Fire data frozen trigger if data already wasn't frozen. Do this
384 * before checking for escaping, as the trigger may modify the magic
385 * offset. If a copy-out happens afterwards, it will have the correct
386 * data in the buffer.
387 */
388 if (!done_copy_out)
389 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
390 jh_in->b_triggers);
391
392 /*
393 * Check for escaping
394 */
395 if (*((__be32 *)(mapped_data + new_offset)) ==
396 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
397 need_copy_out = 1;
398 do_escape = 1;
399 }
400 kunmap_atomic(mapped_data);
401
402 /*
403 * Do we need to do a data copy?
404 */
405 if (need_copy_out && !done_copy_out) {
406 char *tmp;
407
408 jbd_unlock_bh_state(bh_in);
409 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
410 if (!tmp) {
411 brelse(new_bh);
412 return -ENOMEM;
413 }
414 jbd_lock_bh_state(bh_in);
415 if (jh_in->b_frozen_data) {
416 jbd2_free(tmp, bh_in->b_size);
417 goto repeat;
418 }
419
420 jh_in->b_frozen_data = tmp;
421 mapped_data = kmap_atomic(new_page);
422 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
423 kunmap_atomic(mapped_data);
424
425 new_page = virt_to_page(tmp);
426 new_offset = offset_in_page(tmp);
427 done_copy_out = 1;
428
429 /*
430 * This isn't strictly necessary, as we're using frozen
431 * data for the escaping, but it keeps consistency with
432 * b_frozen_data usage.
433 */
434 jh_in->b_frozen_triggers = jh_in->b_triggers;
435 }
436
437 /*
438 * Did we need to do an escaping? Now we've done all the
439 * copying, we can finally do so.
440 */
441 if (do_escape) {
442 mapped_data = kmap_atomic(new_page);
443 *((unsigned int *)(mapped_data + new_offset)) = 0;
444 kunmap_atomic(mapped_data);
445 }
446
447 set_bh_page(new_bh, new_page, new_offset);
448 new_bh->b_size = bh_in->b_size;
449 new_bh->b_bdev = journal->j_dev;
450 new_bh->b_blocknr = blocknr;
451 new_bh->b_private = bh_in;
452 set_buffer_mapped(new_bh);
453 set_buffer_dirty(new_bh);
454
455 *bh_out = new_bh;
456
457 /*
458 * The to-be-written buffer needs to get moved to the io queue,
459 * and the original buffer whose contents we are shadowing or
460 * copying is moved to the transaction's shadow queue.
461 */
462 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
463 spin_lock(&journal->j_list_lock);
464 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
465 spin_unlock(&journal->j_list_lock);
466 set_buffer_shadow(bh_in);
467 jbd_unlock_bh_state(bh_in);
468
469 return do_escape | (done_copy_out << 1);
470 }
471
472 /*
473 * Allocation code for the journal file. Manage the space left in the
474 * journal, so that we can begin checkpointing when appropriate.
475 */
476
477 /*
478 * Called with j_state_lock locked for writing.
479 * Returns true if a transaction commit was started.
480 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)481 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 {
483 /* Return if the txn has already requested to be committed */
484 if (journal->j_commit_request == target)
485 return 0;
486
487 /*
488 * The only transaction we can possibly wait upon is the
489 * currently running transaction (if it exists). Otherwise,
490 * the target tid must be an old one.
491 */
492 if (journal->j_running_transaction &&
493 journal->j_running_transaction->t_tid == target) {
494 /*
495 * We want a new commit: OK, mark the request and wakeup the
496 * commit thread. We do _not_ do the commit ourselves.
497 */
498
499 journal->j_commit_request = target;
500 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
501 journal->j_commit_request,
502 journal->j_commit_sequence);
503 journal->j_running_transaction->t_requested = jiffies;
504 wake_up(&journal->j_wait_commit);
505 return 1;
506 } else if (!tid_geq(journal->j_commit_request, target))
507 /* This should never happen, but if it does, preserve
508 the evidence before kjournald goes into a loop and
509 increments j_commit_sequence beyond all recognition. */
510 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
511 journal->j_commit_request,
512 journal->j_commit_sequence,
513 target, journal->j_running_transaction ?
514 journal->j_running_transaction->t_tid : 0);
515 return 0;
516 }
517
jbd2_log_start_commit(journal_t * journal,tid_t tid)518 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
519 {
520 int ret;
521
522 write_lock(&journal->j_state_lock);
523 ret = __jbd2_log_start_commit(journal, tid);
524 write_unlock(&journal->j_state_lock);
525 return ret;
526 }
527
528 /*
529 * Force and wait any uncommitted transactions. We can only force the running
530 * transaction if we don't have an active handle, otherwise, we will deadlock.
531 * Returns: <0 in case of error,
532 * 0 if nothing to commit,
533 * 1 if transaction was successfully committed.
534 */
__jbd2_journal_force_commit(journal_t * journal)535 static int __jbd2_journal_force_commit(journal_t *journal)
536 {
537 transaction_t *transaction = NULL;
538 tid_t tid;
539 int need_to_start = 0, ret = 0;
540
541 read_lock(&journal->j_state_lock);
542 if (journal->j_running_transaction && !current->journal_info) {
543 transaction = journal->j_running_transaction;
544 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
545 need_to_start = 1;
546 } else if (journal->j_committing_transaction)
547 transaction = journal->j_committing_transaction;
548
549 if (!transaction) {
550 /* Nothing to commit */
551 read_unlock(&journal->j_state_lock);
552 return 0;
553 }
554 tid = transaction->t_tid;
555 read_unlock(&journal->j_state_lock);
556 if (need_to_start)
557 jbd2_log_start_commit(journal, tid);
558 ret = jbd2_log_wait_commit(journal, tid);
559 if (!ret)
560 ret = 1;
561
562 return ret;
563 }
564
565 /**
566 * Force and wait upon a commit if the calling process is not within
567 * transaction. This is used for forcing out undo-protected data which contains
568 * bitmaps, when the fs is running out of space.
569 *
570 * @journal: journal to force
571 * Returns true if progress was made.
572 */
jbd2_journal_force_commit_nested(journal_t * journal)573 int jbd2_journal_force_commit_nested(journal_t *journal)
574 {
575 int ret;
576
577 ret = __jbd2_journal_force_commit(journal);
578 return ret > 0;
579 }
580
581 /**
582 * int journal_force_commit() - force any uncommitted transactions
583 * @journal: journal to force
584 *
585 * Caller want unconditional commit. We can only force the running transaction
586 * if we don't have an active handle, otherwise, we will deadlock.
587 */
jbd2_journal_force_commit(journal_t * journal)588 int jbd2_journal_force_commit(journal_t *journal)
589 {
590 int ret;
591
592 J_ASSERT(!current->journal_info);
593 ret = __jbd2_journal_force_commit(journal);
594 if (ret > 0)
595 ret = 0;
596 return ret;
597 }
598
599 /*
600 * Start a commit of the current running transaction (if any). Returns true
601 * if a transaction is going to be committed (or is currently already
602 * committing), and fills its tid in at *ptid
603 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
605 {
606 int ret = 0;
607
608 write_lock(&journal->j_state_lock);
609 if (journal->j_running_transaction) {
610 tid_t tid = journal->j_running_transaction->t_tid;
611
612 __jbd2_log_start_commit(journal, tid);
613 /* There's a running transaction and we've just made sure
614 * it's commit has been scheduled. */
615 if (ptid)
616 *ptid = tid;
617 ret = 1;
618 } else if (journal->j_committing_transaction) {
619 /*
620 * If commit has been started, then we have to wait for
621 * completion of that transaction.
622 */
623 if (ptid)
624 *ptid = journal->j_committing_transaction->t_tid;
625 ret = 1;
626 }
627 write_unlock(&journal->j_state_lock);
628 return ret;
629 }
630
631 /*
632 * Return 1 if a given transaction has not yet sent barrier request
633 * connected with a transaction commit. If 0 is returned, transaction
634 * may or may not have sent the barrier. Used to avoid sending barrier
635 * twice in common cases.
636 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
638 {
639 int ret = 0;
640 transaction_t *commit_trans;
641
642 if (!(journal->j_flags & JBD2_BARRIER))
643 return 0;
644 read_lock(&journal->j_state_lock);
645 /* Transaction already committed? */
646 if (tid_geq(journal->j_commit_sequence, tid))
647 goto out;
648 commit_trans = journal->j_committing_transaction;
649 if (!commit_trans || commit_trans->t_tid != tid) {
650 ret = 1;
651 goto out;
652 }
653 /*
654 * Transaction is being committed and we already proceeded to
655 * submitting a flush to fs partition?
656 */
657 if (journal->j_fs_dev != journal->j_dev) {
658 if (!commit_trans->t_need_data_flush ||
659 commit_trans->t_state >= T_COMMIT_DFLUSH)
660 goto out;
661 } else {
662 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
663 goto out;
664 }
665 ret = 1;
666 out:
667 read_unlock(&journal->j_state_lock);
668 return ret;
669 }
670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
671
672 /*
673 * Wait for a specified commit to complete.
674 * The caller may not hold the journal lock.
675 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
677 {
678 int err = 0;
679
680 read_lock(&journal->j_state_lock);
681 #ifdef CONFIG_PROVE_LOCKING
682 /*
683 * Some callers make sure transaction is already committing and in that
684 * case we cannot block on open handles anymore. So don't warn in that
685 * case.
686 */
687 if (tid_gt(tid, journal->j_commit_sequence) &&
688 (!journal->j_committing_transaction ||
689 journal->j_committing_transaction->t_tid != tid)) {
690 read_unlock(&journal->j_state_lock);
691 jbd2_might_wait_for_commit(journal);
692 read_lock(&journal->j_state_lock);
693 }
694 #endif
695 #ifdef CONFIG_JBD2_DEBUG
696 if (!tid_geq(journal->j_commit_request, tid)) {
697 printk(KERN_ERR
698 "%s: error: j_commit_request=%u, tid=%u\n",
699 __func__, journal->j_commit_request, tid);
700 }
701 #endif
702 while (tid_gt(tid, journal->j_commit_sequence)) {
703 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
704 tid, journal->j_commit_sequence);
705 read_unlock(&journal->j_state_lock);
706 wake_up(&journal->j_wait_commit);
707 wait_event(journal->j_wait_done_commit,
708 !tid_gt(tid, journal->j_commit_sequence));
709 read_lock(&journal->j_state_lock);
710 }
711 read_unlock(&journal->j_state_lock);
712
713 if (unlikely(is_journal_aborted(journal)))
714 err = -EIO;
715 return err;
716 }
717
718 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)719 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
720 {
721 int ret = 1;
722
723 read_lock(&journal->j_state_lock);
724 if (journal->j_running_transaction &&
725 journal->j_running_transaction->t_tid == tid)
726 ret = 0;
727 if (journal->j_committing_transaction &&
728 journal->j_committing_transaction->t_tid == tid)
729 ret = 0;
730 read_unlock(&journal->j_state_lock);
731 return ret;
732 }
733 EXPORT_SYMBOL(jbd2_transaction_committed);
734
735 /*
736 * When this function returns the transaction corresponding to tid
737 * will be completed. If the transaction has currently running, start
738 * committing that transaction before waiting for it to complete. If
739 * the transaction id is stale, it is by definition already completed,
740 * so just return SUCCESS.
741 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)742 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
743 {
744 int need_to_wait = 1;
745
746 read_lock(&journal->j_state_lock);
747 if (journal->j_running_transaction &&
748 journal->j_running_transaction->t_tid == tid) {
749 if (journal->j_commit_request != tid) {
750 /* transaction not yet started, so request it */
751 read_unlock(&journal->j_state_lock);
752 jbd2_log_start_commit(journal, tid);
753 goto wait_commit;
754 }
755 } else if (!(journal->j_committing_transaction &&
756 journal->j_committing_transaction->t_tid == tid))
757 need_to_wait = 0;
758 read_unlock(&journal->j_state_lock);
759 if (!need_to_wait)
760 return 0;
761 wait_commit:
762 return jbd2_log_wait_commit(journal, tid);
763 }
764 EXPORT_SYMBOL(jbd2_complete_transaction);
765
766 /*
767 * Log buffer allocation routines:
768 */
769
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
771 {
772 unsigned long blocknr;
773
774 write_lock(&journal->j_state_lock);
775 J_ASSERT(journal->j_free > 1);
776
777 blocknr = journal->j_head;
778 journal->j_head++;
779 journal->j_free--;
780 if (journal->j_head == journal->j_last)
781 journal->j_head = journal->j_first;
782 write_unlock(&journal->j_state_lock);
783 return jbd2_journal_bmap(journal, blocknr, retp);
784 }
785
786 /*
787 * Conversion of logical to physical block numbers for the journal
788 *
789 * On external journals the journal blocks are identity-mapped, so
790 * this is a no-op. If needed, we can use j_blk_offset - everything is
791 * ready.
792 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
794 unsigned long long *retp)
795 {
796 int err = 0;
797 unsigned long long ret;
798
799 if (journal->j_inode) {
800 ret = bmap(journal->j_inode, blocknr);
801 if (ret)
802 *retp = ret;
803 else {
804 printk(KERN_ALERT "%s: journal block not found "
805 "at offset %lu on %s\n",
806 __func__, blocknr, journal->j_devname);
807 err = -EIO;
808 __journal_abort_soft(journal, err);
809 }
810 } else {
811 *retp = blocknr; /* +journal->j_blk_offset */
812 }
813 return err;
814 }
815
816 /*
817 * We play buffer_head aliasing tricks to write data/metadata blocks to
818 * the journal without copying their contents, but for journal
819 * descriptor blocks we do need to generate bona fide buffers.
820 *
821 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
822 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
823 * But we don't bother doing that, so there will be coherency problems with
824 * mmaps of blockdevs which hold live JBD-controlled filesystems.
825 */
826 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)827 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
828 {
829 journal_t *journal = transaction->t_journal;
830 struct buffer_head *bh;
831 unsigned long long blocknr;
832 journal_header_t *header;
833 int err;
834
835 err = jbd2_journal_next_log_block(journal, &blocknr);
836
837 if (err)
838 return NULL;
839
840 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
841 if (!bh)
842 return NULL;
843 lock_buffer(bh);
844 memset(bh->b_data, 0, journal->j_blocksize);
845 header = (journal_header_t *)bh->b_data;
846 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
847 header->h_blocktype = cpu_to_be32(type);
848 header->h_sequence = cpu_to_be32(transaction->t_tid);
849 set_buffer_uptodate(bh);
850 unlock_buffer(bh);
851 BUFFER_TRACE(bh, "return this buffer");
852 return bh;
853 }
854
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)855 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
856 {
857 struct jbd2_journal_block_tail *tail;
858 __u32 csum;
859
860 if (!jbd2_journal_has_csum_v2or3(j))
861 return;
862
863 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
864 sizeof(struct jbd2_journal_block_tail));
865 tail->t_checksum = 0;
866 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
867 tail->t_checksum = cpu_to_be32(csum);
868 }
869
870 /*
871 * Return tid of the oldest transaction in the journal and block in the journal
872 * where the transaction starts.
873 *
874 * If the journal is now empty, return which will be the next transaction ID
875 * we will write and where will that transaction start.
876 *
877 * The return value is 0 if journal tail cannot be pushed any further, 1 if
878 * it can.
879 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)880 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
881 unsigned long *block)
882 {
883 transaction_t *transaction;
884 int ret;
885
886 read_lock(&journal->j_state_lock);
887 spin_lock(&journal->j_list_lock);
888 transaction = journal->j_checkpoint_transactions;
889 if (transaction) {
890 *tid = transaction->t_tid;
891 *block = transaction->t_log_start;
892 } else if ((transaction = journal->j_committing_transaction) != NULL) {
893 *tid = transaction->t_tid;
894 *block = transaction->t_log_start;
895 } else if ((transaction = journal->j_running_transaction) != NULL) {
896 *tid = transaction->t_tid;
897 *block = journal->j_head;
898 } else {
899 *tid = journal->j_transaction_sequence;
900 *block = journal->j_head;
901 }
902 ret = tid_gt(*tid, journal->j_tail_sequence);
903 spin_unlock(&journal->j_list_lock);
904 read_unlock(&journal->j_state_lock);
905
906 return ret;
907 }
908
909 /*
910 * Update information in journal structure and in on disk journal superblock
911 * about log tail. This function does not check whether information passed in
912 * really pushes log tail further. It's responsibility of the caller to make
913 * sure provided log tail information is valid (e.g. by holding
914 * j_checkpoint_mutex all the time between computing log tail and calling this
915 * function as is the case with jbd2_cleanup_journal_tail()).
916 *
917 * Requires j_checkpoint_mutex
918 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)919 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
920 {
921 unsigned long freed;
922 int ret;
923
924 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
925
926 /*
927 * We cannot afford for write to remain in drive's caches since as
928 * soon as we update j_tail, next transaction can start reusing journal
929 * space and if we lose sb update during power failure we'd replay
930 * old transaction with possibly newly overwritten data.
931 */
932 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
933 REQ_SYNC | REQ_FUA);
934 if (ret)
935 goto out;
936
937 write_lock(&journal->j_state_lock);
938 freed = block - journal->j_tail;
939 if (block < journal->j_tail)
940 freed += journal->j_last - journal->j_first;
941
942 trace_jbd2_update_log_tail(journal, tid, block, freed);
943 jbd_debug(1,
944 "Cleaning journal tail from %u to %u (offset %lu), "
945 "freeing %lu\n",
946 journal->j_tail_sequence, tid, block, freed);
947
948 journal->j_free += freed;
949 journal->j_tail_sequence = tid;
950 journal->j_tail = block;
951 write_unlock(&journal->j_state_lock);
952
953 out:
954 return ret;
955 }
956
957 /*
958 * This is a variation of __jbd2_update_log_tail which checks for validity of
959 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
960 * with other threads updating log tail.
961 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)962 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
963 {
964 mutex_lock_io(&journal->j_checkpoint_mutex);
965 if (tid_gt(tid, journal->j_tail_sequence))
966 __jbd2_update_log_tail(journal, tid, block);
967 mutex_unlock(&journal->j_checkpoint_mutex);
968 }
969
970 struct jbd2_stats_proc_session {
971 journal_t *journal;
972 struct transaction_stats_s *stats;
973 int start;
974 int max;
975 };
976
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)977 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
978 {
979 return *pos ? NULL : SEQ_START_TOKEN;
980 }
981
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)982 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
983 {
984 return NULL;
985 }
986
jbd2_seq_info_show(struct seq_file * seq,void * v)987 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
988 {
989 struct jbd2_stats_proc_session *s = seq->private;
990
991 if (v != SEQ_START_TOKEN)
992 return 0;
993 seq_printf(seq, "%lu transactions (%lu requested), "
994 "each up to %u blocks\n",
995 s->stats->ts_tid, s->stats->ts_requested,
996 s->journal->j_max_transaction_buffers);
997 if (s->stats->ts_tid == 0)
998 return 0;
999 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1000 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1001 seq_printf(seq, " %ums request delay\n",
1002 (s->stats->ts_requested == 0) ? 0 :
1003 jiffies_to_msecs(s->stats->run.rs_request_delay /
1004 s->stats->ts_requested));
1005 seq_printf(seq, " %ums running transaction\n",
1006 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1007 seq_printf(seq, " %ums transaction was being locked\n",
1008 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1009 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1010 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1011 seq_printf(seq, " %ums logging transaction\n",
1012 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1013 seq_printf(seq, " %lluus average transaction commit time\n",
1014 div_u64(s->journal->j_average_commit_time, 1000));
1015 seq_printf(seq, " %lu handles per transaction\n",
1016 s->stats->run.rs_handle_count / s->stats->ts_tid);
1017 seq_printf(seq, " %lu blocks per transaction\n",
1018 s->stats->run.rs_blocks / s->stats->ts_tid);
1019 seq_printf(seq, " %lu logged blocks per transaction\n",
1020 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1021 return 0;
1022 }
1023
jbd2_seq_info_stop(struct seq_file * seq,void * v)1024 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1025 {
1026 }
1027
1028 static const struct seq_operations jbd2_seq_info_ops = {
1029 .start = jbd2_seq_info_start,
1030 .next = jbd2_seq_info_next,
1031 .stop = jbd2_seq_info_stop,
1032 .show = jbd2_seq_info_show,
1033 };
1034
jbd2_seq_info_open(struct inode * inode,struct file * file)1035 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1036 {
1037 journal_t *journal = PDE_DATA(inode);
1038 struct jbd2_stats_proc_session *s;
1039 int rc, size;
1040
1041 s = kmalloc(sizeof(*s), GFP_KERNEL);
1042 if (s == NULL)
1043 return -ENOMEM;
1044 size = sizeof(struct transaction_stats_s);
1045 s->stats = kmalloc(size, GFP_KERNEL);
1046 if (s->stats == NULL) {
1047 kfree(s);
1048 return -ENOMEM;
1049 }
1050 spin_lock(&journal->j_history_lock);
1051 memcpy(s->stats, &journal->j_stats, size);
1052 s->journal = journal;
1053 spin_unlock(&journal->j_history_lock);
1054
1055 rc = seq_open(file, &jbd2_seq_info_ops);
1056 if (rc == 0) {
1057 struct seq_file *m = file->private_data;
1058 m->private = s;
1059 } else {
1060 kfree(s->stats);
1061 kfree(s);
1062 }
1063 return rc;
1064
1065 }
1066
jbd2_seq_info_release(struct inode * inode,struct file * file)1067 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1068 {
1069 struct seq_file *seq = file->private_data;
1070 struct jbd2_stats_proc_session *s = seq->private;
1071 kfree(s->stats);
1072 kfree(s);
1073 return seq_release(inode, file);
1074 }
1075
1076 static const struct file_operations jbd2_seq_info_fops = {
1077 .owner = THIS_MODULE,
1078 .open = jbd2_seq_info_open,
1079 .read = seq_read,
1080 .llseek = seq_lseek,
1081 .release = jbd2_seq_info_release,
1082 };
1083
1084 static struct proc_dir_entry *proc_jbd2_stats;
1085
jbd2_stats_proc_init(journal_t * journal)1086 static void jbd2_stats_proc_init(journal_t *journal)
1087 {
1088 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1089 if (journal->j_proc_entry) {
1090 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1091 &jbd2_seq_info_fops, journal);
1092 }
1093 }
1094
jbd2_stats_proc_exit(journal_t * journal)1095 static void jbd2_stats_proc_exit(journal_t *journal)
1096 {
1097 remove_proc_entry("info", journal->j_proc_entry);
1098 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1099 }
1100
1101 /*
1102 * Management for journal control blocks: functions to create and
1103 * destroy journal_t structures, and to initialise and read existing
1104 * journal blocks from disk. */
1105
1106 /* First: create and setup a journal_t object in memory. We initialise
1107 * very few fields yet: that has to wait until we have created the
1108 * journal structures from from scratch, or loaded them from disk. */
1109
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1110 static journal_t *journal_init_common(struct block_device *bdev,
1111 struct block_device *fs_dev,
1112 unsigned long long start, int len, int blocksize)
1113 {
1114 static struct lock_class_key jbd2_trans_commit_key;
1115 journal_t *journal;
1116 int err;
1117 struct buffer_head *bh;
1118 int n;
1119
1120 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1121 if (!journal)
1122 return NULL;
1123
1124 init_waitqueue_head(&journal->j_wait_transaction_locked);
1125 init_waitqueue_head(&journal->j_wait_done_commit);
1126 init_waitqueue_head(&journal->j_wait_commit);
1127 init_waitqueue_head(&journal->j_wait_updates);
1128 init_waitqueue_head(&journal->j_wait_reserved);
1129 mutex_init(&journal->j_barrier);
1130 mutex_init(&journal->j_checkpoint_mutex);
1131 spin_lock_init(&journal->j_revoke_lock);
1132 spin_lock_init(&journal->j_list_lock);
1133 rwlock_init(&journal->j_state_lock);
1134
1135 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1136 journal->j_min_batch_time = 0;
1137 journal->j_max_batch_time = 15000; /* 15ms */
1138 atomic_set(&journal->j_reserved_credits, 0);
1139
1140 /* The journal is marked for error until we succeed with recovery! */
1141 journal->j_flags = JBD2_ABORT;
1142
1143 /* Set up a default-sized revoke table for the new mount. */
1144 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1145 if (err)
1146 goto err_cleanup;
1147
1148 spin_lock_init(&journal->j_history_lock);
1149
1150 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1151 &jbd2_trans_commit_key, 0);
1152
1153 /* journal descriptor can store up to n blocks -bzzz */
1154 journal->j_blocksize = blocksize;
1155 journal->j_dev = bdev;
1156 journal->j_fs_dev = fs_dev;
1157 journal->j_blk_offset = start;
1158 journal->j_maxlen = len;
1159 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1160 journal->j_wbufsize = n;
1161 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1162 GFP_KERNEL);
1163 if (!journal->j_wbuf)
1164 goto err_cleanup;
1165
1166 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1167 if (!bh) {
1168 pr_err("%s: Cannot get buffer for journal superblock\n",
1169 __func__);
1170 goto err_cleanup;
1171 }
1172 journal->j_sb_buffer = bh;
1173 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1174
1175 return journal;
1176
1177 err_cleanup:
1178 kfree(journal->j_wbuf);
1179 jbd2_journal_destroy_revoke(journal);
1180 kfree(journal);
1181 return NULL;
1182 }
1183
1184 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1185 *
1186 * Create a journal structure assigned some fixed set of disk blocks to
1187 * the journal. We don't actually touch those disk blocks yet, but we
1188 * need to set up all of the mapping information to tell the journaling
1189 * system where the journal blocks are.
1190 *
1191 */
1192
1193 /**
1194 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1195 * @bdev: Block device on which to create the journal
1196 * @fs_dev: Device which hold journalled filesystem for this journal.
1197 * @start: Block nr Start of journal.
1198 * @len: Length of the journal in blocks.
1199 * @blocksize: blocksize of journalling device
1200 *
1201 * Returns: a newly created journal_t *
1202 *
1203 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1204 * range of blocks on an arbitrary block device.
1205 *
1206 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1207 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1208 struct block_device *fs_dev,
1209 unsigned long long start, int len, int blocksize)
1210 {
1211 journal_t *journal;
1212
1213 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1214 if (!journal)
1215 return NULL;
1216
1217 bdevname(journal->j_dev, journal->j_devname);
1218 strreplace(journal->j_devname, '/', '!');
1219 jbd2_stats_proc_init(journal);
1220
1221 return journal;
1222 }
1223
1224 /**
1225 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1226 * @inode: An inode to create the journal in
1227 *
1228 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1229 * the journal. The inode must exist already, must support bmap() and
1230 * must have all data blocks preallocated.
1231 */
jbd2_journal_init_inode(struct inode * inode)1232 journal_t *jbd2_journal_init_inode(struct inode *inode)
1233 {
1234 journal_t *journal;
1235 char *p;
1236 unsigned long long blocknr;
1237
1238 blocknr = bmap(inode, 0);
1239 if (!blocknr) {
1240 pr_err("%s: Cannot locate journal superblock\n",
1241 __func__);
1242 return NULL;
1243 }
1244
1245 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1246 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1247 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1248
1249 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1250 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1251 inode->i_sb->s_blocksize);
1252 if (!journal)
1253 return NULL;
1254
1255 journal->j_inode = inode;
1256 bdevname(journal->j_dev, journal->j_devname);
1257 p = strreplace(journal->j_devname, '/', '!');
1258 sprintf(p, "-%lu", journal->j_inode->i_ino);
1259 jbd2_stats_proc_init(journal);
1260
1261 return journal;
1262 }
1263
1264 /*
1265 * If the journal init or create aborts, we need to mark the journal
1266 * superblock as being NULL to prevent the journal destroy from writing
1267 * back a bogus superblock.
1268 */
journal_fail_superblock(journal_t * journal)1269 static void journal_fail_superblock (journal_t *journal)
1270 {
1271 struct buffer_head *bh = journal->j_sb_buffer;
1272 brelse(bh);
1273 journal->j_sb_buffer = NULL;
1274 }
1275
1276 /*
1277 * Given a journal_t structure, initialise the various fields for
1278 * startup of a new journaling session. We use this both when creating
1279 * a journal, and after recovering an old journal to reset it for
1280 * subsequent use.
1281 */
1282
journal_reset(journal_t * journal)1283 static int journal_reset(journal_t *journal)
1284 {
1285 journal_superblock_t *sb = journal->j_superblock;
1286 unsigned long long first, last;
1287
1288 first = be32_to_cpu(sb->s_first);
1289 last = be32_to_cpu(sb->s_maxlen);
1290 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1291 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1292 first, last);
1293 journal_fail_superblock(journal);
1294 return -EINVAL;
1295 }
1296
1297 journal->j_first = first;
1298 journal->j_last = last;
1299
1300 journal->j_head = first;
1301 journal->j_tail = first;
1302 journal->j_free = last - first;
1303
1304 journal->j_tail_sequence = journal->j_transaction_sequence;
1305 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1306 journal->j_commit_request = journal->j_commit_sequence;
1307
1308 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1309
1310 /*
1311 * As a special case, if the on-disk copy is already marked as needing
1312 * no recovery (s_start == 0), then we can safely defer the superblock
1313 * update until the next commit by setting JBD2_FLUSHED. This avoids
1314 * attempting a write to a potential-readonly device.
1315 */
1316 if (sb->s_start == 0) {
1317 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1318 "(start %ld, seq %u, errno %d)\n",
1319 journal->j_tail, journal->j_tail_sequence,
1320 journal->j_errno);
1321 journal->j_flags |= JBD2_FLUSHED;
1322 } else {
1323 /* Lock here to make assertions happy... */
1324 mutex_lock_io(&journal->j_checkpoint_mutex);
1325 /*
1326 * Update log tail information. We use REQ_FUA since new
1327 * transaction will start reusing journal space and so we
1328 * must make sure information about current log tail is on
1329 * disk before that.
1330 */
1331 jbd2_journal_update_sb_log_tail(journal,
1332 journal->j_tail_sequence,
1333 journal->j_tail,
1334 REQ_SYNC | REQ_FUA);
1335 mutex_unlock(&journal->j_checkpoint_mutex);
1336 }
1337 return jbd2_journal_start_thread(journal);
1338 }
1339
1340 /*
1341 * This function expects that the caller will have locked the journal
1342 * buffer head, and will return with it unlocked
1343 */
jbd2_write_superblock(journal_t * journal,int write_flags)1344 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1345 {
1346 struct buffer_head *bh = journal->j_sb_buffer;
1347 journal_superblock_t *sb = journal->j_superblock;
1348 int ret;
1349
1350 /* Buffer got discarded which means block device got invalidated */
1351 if (!buffer_mapped(bh))
1352 return -EIO;
1353
1354 trace_jbd2_write_superblock(journal, write_flags);
1355 if (!(journal->j_flags & JBD2_BARRIER))
1356 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1357 if (buffer_write_io_error(bh)) {
1358 /*
1359 * Oh, dear. A previous attempt to write the journal
1360 * superblock failed. This could happen because the
1361 * USB device was yanked out. Or it could happen to
1362 * be a transient write error and maybe the block will
1363 * be remapped. Nothing we can do but to retry the
1364 * write and hope for the best.
1365 */
1366 printk(KERN_ERR "JBD2: previous I/O error detected "
1367 "for journal superblock update for %s.\n",
1368 journal->j_devname);
1369 clear_buffer_write_io_error(bh);
1370 set_buffer_uptodate(bh);
1371 }
1372 if (jbd2_journal_has_csum_v2or3(journal))
1373 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1374 get_bh(bh);
1375 bh->b_end_io = end_buffer_write_sync;
1376 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1377 wait_on_buffer(bh);
1378 if (buffer_write_io_error(bh)) {
1379 clear_buffer_write_io_error(bh);
1380 set_buffer_uptodate(bh);
1381 ret = -EIO;
1382 }
1383 if (ret) {
1384 printk(KERN_ERR "JBD2: Error %d detected when updating "
1385 "journal superblock for %s.\n", ret,
1386 journal->j_devname);
1387 jbd2_journal_abort(journal, ret);
1388 }
1389
1390 return ret;
1391 }
1392
1393 /**
1394 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1395 * @journal: The journal to update.
1396 * @tail_tid: TID of the new transaction at the tail of the log
1397 * @tail_block: The first block of the transaction at the tail of the log
1398 * @write_op: With which operation should we write the journal sb
1399 *
1400 * Update a journal's superblock information about log tail and write it to
1401 * disk, waiting for the IO to complete.
1402 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1403 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1404 unsigned long tail_block, int write_op)
1405 {
1406 journal_superblock_t *sb = journal->j_superblock;
1407 int ret;
1408
1409 if (is_journal_aborted(journal))
1410 return -EIO;
1411
1412 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1413 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1414 tail_block, tail_tid);
1415
1416 lock_buffer(journal->j_sb_buffer);
1417 sb->s_sequence = cpu_to_be32(tail_tid);
1418 sb->s_start = cpu_to_be32(tail_block);
1419
1420 ret = jbd2_write_superblock(journal, write_op);
1421 if (ret)
1422 goto out;
1423
1424 /* Log is no longer empty */
1425 write_lock(&journal->j_state_lock);
1426 WARN_ON(!sb->s_sequence);
1427 journal->j_flags &= ~JBD2_FLUSHED;
1428 write_unlock(&journal->j_state_lock);
1429
1430 out:
1431 return ret;
1432 }
1433
1434 /**
1435 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1436 * @journal: The journal to update.
1437 * @write_op: With which operation should we write the journal sb
1438 *
1439 * Update a journal's dynamic superblock fields to show that journal is empty.
1440 * Write updated superblock to disk waiting for IO to complete.
1441 */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1442 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1443 {
1444 journal_superblock_t *sb = journal->j_superblock;
1445
1446 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1447 lock_buffer(journal->j_sb_buffer);
1448 if (sb->s_start == 0) { /* Is it already empty? */
1449 unlock_buffer(journal->j_sb_buffer);
1450 return;
1451 }
1452
1453 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1454 journal->j_tail_sequence);
1455
1456 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1457 sb->s_start = cpu_to_be32(0);
1458
1459 jbd2_write_superblock(journal, write_op);
1460
1461 /* Log is no longer empty */
1462 write_lock(&journal->j_state_lock);
1463 journal->j_flags |= JBD2_FLUSHED;
1464 write_unlock(&journal->j_state_lock);
1465 }
1466
1467
1468 /**
1469 * jbd2_journal_update_sb_errno() - Update error in the journal.
1470 * @journal: The journal to update.
1471 *
1472 * Update a journal's errno. Write updated superblock to disk waiting for IO
1473 * to complete.
1474 */
jbd2_journal_update_sb_errno(journal_t * journal)1475 void jbd2_journal_update_sb_errno(journal_t *journal)
1476 {
1477 journal_superblock_t *sb = journal->j_superblock;
1478 int errcode;
1479
1480 lock_buffer(journal->j_sb_buffer);
1481 errcode = journal->j_errno;
1482 if (errcode == -ESHUTDOWN)
1483 errcode = 0;
1484 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1485 sb->s_errno = cpu_to_be32(errcode);
1486
1487 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1488 }
1489 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1490
1491 /*
1492 * Read the superblock for a given journal, performing initial
1493 * validation of the format.
1494 */
journal_get_superblock(journal_t * journal)1495 static int journal_get_superblock(journal_t *journal)
1496 {
1497 struct buffer_head *bh;
1498 journal_superblock_t *sb;
1499 int err = -EIO;
1500
1501 bh = journal->j_sb_buffer;
1502
1503 J_ASSERT(bh != NULL);
1504 if (!buffer_uptodate(bh)) {
1505 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1506 wait_on_buffer(bh);
1507 if (!buffer_uptodate(bh)) {
1508 printk(KERN_ERR
1509 "JBD2: IO error reading journal superblock\n");
1510 goto out;
1511 }
1512 }
1513
1514 if (buffer_verified(bh))
1515 return 0;
1516
1517 sb = journal->j_superblock;
1518
1519 err = -EINVAL;
1520
1521 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1522 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1523 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1524 goto out;
1525 }
1526
1527 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1528 case JBD2_SUPERBLOCK_V1:
1529 journal->j_format_version = 1;
1530 break;
1531 case JBD2_SUPERBLOCK_V2:
1532 journal->j_format_version = 2;
1533 break;
1534 default:
1535 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1536 goto out;
1537 }
1538
1539 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1540 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1541 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1542 printk(KERN_WARNING "JBD2: journal file too short\n");
1543 goto out;
1544 }
1545
1546 if (be32_to_cpu(sb->s_first) == 0 ||
1547 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1548 printk(KERN_WARNING
1549 "JBD2: Invalid start block of journal: %u\n",
1550 be32_to_cpu(sb->s_first));
1551 goto out;
1552 }
1553
1554 if (jbd2_has_feature_csum2(journal) &&
1555 jbd2_has_feature_csum3(journal)) {
1556 /* Can't have checksum v2 and v3 at the same time! */
1557 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1558 "at the same time!\n");
1559 goto out;
1560 }
1561
1562 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1563 jbd2_has_feature_checksum(journal)) {
1564 /* Can't have checksum v1 and v2 on at the same time! */
1565 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1566 "at the same time!\n");
1567 goto out;
1568 }
1569
1570 if (!jbd2_verify_csum_type(journal, sb)) {
1571 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1572 goto out;
1573 }
1574
1575 /* Load the checksum driver */
1576 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1577 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1578 if (IS_ERR(journal->j_chksum_driver)) {
1579 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1580 err = PTR_ERR(journal->j_chksum_driver);
1581 journal->j_chksum_driver = NULL;
1582 goto out;
1583 }
1584 }
1585
1586 if (jbd2_journal_has_csum_v2or3(journal)) {
1587 /* Check superblock checksum */
1588 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1589 printk(KERN_ERR "JBD2: journal checksum error\n");
1590 err = -EFSBADCRC;
1591 goto out;
1592 }
1593
1594 /* Precompute checksum seed for all metadata */
1595 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1596 sizeof(sb->s_uuid));
1597 }
1598
1599 set_buffer_verified(bh);
1600
1601 return 0;
1602
1603 out:
1604 journal_fail_superblock(journal);
1605 return err;
1606 }
1607
1608 /*
1609 * Load the on-disk journal superblock and read the key fields into the
1610 * journal_t.
1611 */
1612
load_superblock(journal_t * journal)1613 static int load_superblock(journal_t *journal)
1614 {
1615 int err;
1616 journal_superblock_t *sb;
1617
1618 err = journal_get_superblock(journal);
1619 if (err)
1620 return err;
1621
1622 sb = journal->j_superblock;
1623
1624 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1625 journal->j_tail = be32_to_cpu(sb->s_start);
1626 journal->j_first = be32_to_cpu(sb->s_first);
1627 journal->j_last = be32_to_cpu(sb->s_maxlen);
1628 journal->j_errno = be32_to_cpu(sb->s_errno);
1629
1630 return 0;
1631 }
1632
1633
1634 /**
1635 * int jbd2_journal_load() - Read journal from disk.
1636 * @journal: Journal to act on.
1637 *
1638 * Given a journal_t structure which tells us which disk blocks contain
1639 * a journal, read the journal from disk to initialise the in-memory
1640 * structures.
1641 */
jbd2_journal_load(journal_t * journal)1642 int jbd2_journal_load(journal_t *journal)
1643 {
1644 int err;
1645 journal_superblock_t *sb;
1646
1647 err = load_superblock(journal);
1648 if (err)
1649 return err;
1650
1651 sb = journal->j_superblock;
1652 /* If this is a V2 superblock, then we have to check the
1653 * features flags on it. */
1654
1655 if (journal->j_format_version >= 2) {
1656 if ((sb->s_feature_ro_compat &
1657 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1658 (sb->s_feature_incompat &
1659 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1660 printk(KERN_WARNING
1661 "JBD2: Unrecognised features on journal\n");
1662 return -EINVAL;
1663 }
1664 }
1665
1666 /*
1667 * Create a slab for this blocksize
1668 */
1669 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1670 if (err)
1671 return err;
1672
1673 /* Let the recovery code check whether it needs to recover any
1674 * data from the journal. */
1675 if (jbd2_journal_recover(journal))
1676 goto recovery_error;
1677
1678 if (journal->j_failed_commit) {
1679 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1680 "is corrupt.\n", journal->j_failed_commit,
1681 journal->j_devname);
1682 return -EFSCORRUPTED;
1683 }
1684
1685 /* OK, we've finished with the dynamic journal bits:
1686 * reinitialise the dynamic contents of the superblock in memory
1687 * and reset them on disk. */
1688 if (journal_reset(journal))
1689 goto recovery_error;
1690
1691 journal->j_flags &= ~JBD2_ABORT;
1692 journal->j_flags |= JBD2_LOADED;
1693 return 0;
1694
1695 recovery_error:
1696 printk(KERN_WARNING "JBD2: recovery failed\n");
1697 return -EIO;
1698 }
1699
1700 /**
1701 * void jbd2_journal_destroy() - Release a journal_t structure.
1702 * @journal: Journal to act on.
1703 *
1704 * Release a journal_t structure once it is no longer in use by the
1705 * journaled object.
1706 * Return <0 if we couldn't clean up the journal.
1707 */
jbd2_journal_destroy(journal_t * journal)1708 int jbd2_journal_destroy(journal_t *journal)
1709 {
1710 int err = 0;
1711
1712 /* Wait for the commit thread to wake up and die. */
1713 journal_kill_thread(journal);
1714
1715 /* Force a final log commit */
1716 if (journal->j_running_transaction)
1717 jbd2_journal_commit_transaction(journal);
1718
1719 /* Force any old transactions to disk */
1720
1721 /* Totally anal locking here... */
1722 spin_lock(&journal->j_list_lock);
1723 while (journal->j_checkpoint_transactions != NULL) {
1724 spin_unlock(&journal->j_list_lock);
1725 mutex_lock_io(&journal->j_checkpoint_mutex);
1726 err = jbd2_log_do_checkpoint(journal);
1727 mutex_unlock(&journal->j_checkpoint_mutex);
1728 /*
1729 * If checkpointing failed, just free the buffers to avoid
1730 * looping forever
1731 */
1732 if (err) {
1733 jbd2_journal_destroy_checkpoint(journal);
1734 spin_lock(&journal->j_list_lock);
1735 break;
1736 }
1737 spin_lock(&journal->j_list_lock);
1738 }
1739
1740 J_ASSERT(journal->j_running_transaction == NULL);
1741 J_ASSERT(journal->j_committing_transaction == NULL);
1742 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1743 spin_unlock(&journal->j_list_lock);
1744
1745 if (journal->j_sb_buffer) {
1746 if (!is_journal_aborted(journal)) {
1747 mutex_lock_io(&journal->j_checkpoint_mutex);
1748
1749 write_lock(&journal->j_state_lock);
1750 journal->j_tail_sequence =
1751 ++journal->j_transaction_sequence;
1752 write_unlock(&journal->j_state_lock);
1753
1754 jbd2_mark_journal_empty(journal,
1755 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1756 mutex_unlock(&journal->j_checkpoint_mutex);
1757 } else
1758 err = -EIO;
1759 brelse(journal->j_sb_buffer);
1760 }
1761
1762 if (journal->j_proc_entry)
1763 jbd2_stats_proc_exit(journal);
1764 iput(journal->j_inode);
1765 if (journal->j_revoke)
1766 jbd2_journal_destroy_revoke(journal);
1767 if (journal->j_chksum_driver)
1768 crypto_free_shash(journal->j_chksum_driver);
1769 kfree(journal->j_wbuf);
1770 kfree(journal);
1771
1772 return err;
1773 }
1774
1775
1776 /**
1777 *int jbd2_journal_check_used_features () - Check if features specified are used.
1778 * @journal: Journal to check.
1779 * @compat: bitmask of compatible features
1780 * @ro: bitmask of features that force read-only mount
1781 * @incompat: bitmask of incompatible features
1782 *
1783 * Check whether the journal uses all of a given set of
1784 * features. Return true (non-zero) if it does.
1785 **/
1786
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1787 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1788 unsigned long ro, unsigned long incompat)
1789 {
1790 journal_superblock_t *sb;
1791
1792 if (!compat && !ro && !incompat)
1793 return 1;
1794 /* Load journal superblock if it is not loaded yet. */
1795 if (journal->j_format_version == 0 &&
1796 journal_get_superblock(journal) != 0)
1797 return 0;
1798 if (journal->j_format_version == 1)
1799 return 0;
1800
1801 sb = journal->j_superblock;
1802
1803 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1804 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1805 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1806 return 1;
1807
1808 return 0;
1809 }
1810
1811 /**
1812 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1813 * @journal: Journal to check.
1814 * @compat: bitmask of compatible features
1815 * @ro: bitmask of features that force read-only mount
1816 * @incompat: bitmask of incompatible features
1817 *
1818 * Check whether the journaling code supports the use of
1819 * all of a given set of features on this journal. Return true
1820 * (non-zero) if it can. */
1821
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1822 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1823 unsigned long ro, unsigned long incompat)
1824 {
1825 if (!compat && !ro && !incompat)
1826 return 1;
1827
1828 /* We can support any known requested features iff the
1829 * superblock is in version 2. Otherwise we fail to support any
1830 * extended sb features. */
1831
1832 if (journal->j_format_version != 2)
1833 return 0;
1834
1835 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1836 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1837 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1838 return 1;
1839
1840 return 0;
1841 }
1842
1843 /**
1844 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1845 * @journal: Journal to act on.
1846 * @compat: bitmask of compatible features
1847 * @ro: bitmask of features that force read-only mount
1848 * @incompat: bitmask of incompatible features
1849 *
1850 * Mark a given journal feature as present on the
1851 * superblock. Returns true if the requested features could be set.
1852 *
1853 */
1854
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1855 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1856 unsigned long ro, unsigned long incompat)
1857 {
1858 #define INCOMPAT_FEATURE_ON(f) \
1859 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1860 #define COMPAT_FEATURE_ON(f) \
1861 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1862 journal_superblock_t *sb;
1863
1864 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1865 return 1;
1866
1867 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1868 return 0;
1869
1870 /* If enabling v2 checksums, turn on v3 instead */
1871 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1872 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1873 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1874 }
1875
1876 /* Asking for checksumming v3 and v1? Only give them v3. */
1877 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1878 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1879 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1880
1881 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1882 compat, ro, incompat);
1883
1884 sb = journal->j_superblock;
1885
1886 /* Load the checksum driver if necessary */
1887 if ((journal->j_chksum_driver == NULL) &&
1888 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1889 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1890 if (IS_ERR(journal->j_chksum_driver)) {
1891 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1892 journal->j_chksum_driver = NULL;
1893 return 0;
1894 }
1895 /* Precompute checksum seed for all metadata */
1896 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1897 sizeof(sb->s_uuid));
1898 }
1899
1900 lock_buffer(journal->j_sb_buffer);
1901
1902 /* If enabling v3 checksums, update superblock */
1903 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1904 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1905 sb->s_feature_compat &=
1906 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1907 }
1908
1909 /* If enabling v1 checksums, downgrade superblock */
1910 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1911 sb->s_feature_incompat &=
1912 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1913 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1914
1915 sb->s_feature_compat |= cpu_to_be32(compat);
1916 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1917 sb->s_feature_incompat |= cpu_to_be32(incompat);
1918 unlock_buffer(journal->j_sb_buffer);
1919
1920 return 1;
1921 #undef COMPAT_FEATURE_ON
1922 #undef INCOMPAT_FEATURE_ON
1923 }
1924
1925 /*
1926 * jbd2_journal_clear_features () - Clear a given journal feature in the
1927 * superblock
1928 * @journal: Journal to act on.
1929 * @compat: bitmask of compatible features
1930 * @ro: bitmask of features that force read-only mount
1931 * @incompat: bitmask of incompatible features
1932 *
1933 * Clear a given journal feature as present on the
1934 * superblock.
1935 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1936 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1937 unsigned long ro, unsigned long incompat)
1938 {
1939 journal_superblock_t *sb;
1940
1941 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1942 compat, ro, incompat);
1943
1944 sb = journal->j_superblock;
1945
1946 sb->s_feature_compat &= ~cpu_to_be32(compat);
1947 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1948 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1949 }
1950 EXPORT_SYMBOL(jbd2_journal_clear_features);
1951
1952 /**
1953 * int jbd2_journal_flush () - Flush journal
1954 * @journal: Journal to act on.
1955 *
1956 * Flush all data for a given journal to disk and empty the journal.
1957 * Filesystems can use this when remounting readonly to ensure that
1958 * recovery does not need to happen on remount.
1959 */
1960
jbd2_journal_flush(journal_t * journal)1961 int jbd2_journal_flush(journal_t *journal)
1962 {
1963 int err = 0;
1964 transaction_t *transaction = NULL;
1965
1966 write_lock(&journal->j_state_lock);
1967
1968 /* Force everything buffered to the log... */
1969 if (journal->j_running_transaction) {
1970 transaction = journal->j_running_transaction;
1971 __jbd2_log_start_commit(journal, transaction->t_tid);
1972 } else if (journal->j_committing_transaction)
1973 transaction = journal->j_committing_transaction;
1974
1975 /* Wait for the log commit to complete... */
1976 if (transaction) {
1977 tid_t tid = transaction->t_tid;
1978
1979 write_unlock(&journal->j_state_lock);
1980 jbd2_log_wait_commit(journal, tid);
1981 } else {
1982 write_unlock(&journal->j_state_lock);
1983 }
1984
1985 /* ...and flush everything in the log out to disk. */
1986 spin_lock(&journal->j_list_lock);
1987 while (!err && journal->j_checkpoint_transactions != NULL) {
1988 spin_unlock(&journal->j_list_lock);
1989 mutex_lock_io(&journal->j_checkpoint_mutex);
1990 err = jbd2_log_do_checkpoint(journal);
1991 mutex_unlock(&journal->j_checkpoint_mutex);
1992 spin_lock(&journal->j_list_lock);
1993 }
1994 spin_unlock(&journal->j_list_lock);
1995
1996 if (is_journal_aborted(journal))
1997 return -EIO;
1998
1999 mutex_lock_io(&journal->j_checkpoint_mutex);
2000 if (!err) {
2001 err = jbd2_cleanup_journal_tail(journal);
2002 if (err < 0) {
2003 mutex_unlock(&journal->j_checkpoint_mutex);
2004 goto out;
2005 }
2006 err = 0;
2007 }
2008
2009 /* Finally, mark the journal as really needing no recovery.
2010 * This sets s_start==0 in the underlying superblock, which is
2011 * the magic code for a fully-recovered superblock. Any future
2012 * commits of data to the journal will restore the current
2013 * s_start value. */
2014 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2015 mutex_unlock(&journal->j_checkpoint_mutex);
2016 write_lock(&journal->j_state_lock);
2017 J_ASSERT(!journal->j_running_transaction);
2018 J_ASSERT(!journal->j_committing_transaction);
2019 J_ASSERT(!journal->j_checkpoint_transactions);
2020 J_ASSERT(journal->j_head == journal->j_tail);
2021 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2022 write_unlock(&journal->j_state_lock);
2023 out:
2024 return err;
2025 }
2026
2027 /**
2028 * int jbd2_journal_wipe() - Wipe journal contents
2029 * @journal: Journal to act on.
2030 * @write: flag (see below)
2031 *
2032 * Wipe out all of the contents of a journal, safely. This will produce
2033 * a warning if the journal contains any valid recovery information.
2034 * Must be called between journal_init_*() and jbd2_journal_load().
2035 *
2036 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2037 * we merely suppress recovery.
2038 */
2039
jbd2_journal_wipe(journal_t * journal,int write)2040 int jbd2_journal_wipe(journal_t *journal, int write)
2041 {
2042 int err = 0;
2043
2044 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2045
2046 err = load_superblock(journal);
2047 if (err)
2048 return err;
2049
2050 if (!journal->j_tail)
2051 goto no_recovery;
2052
2053 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2054 write ? "Clearing" : "Ignoring");
2055
2056 err = jbd2_journal_skip_recovery(journal);
2057 if (write) {
2058 /* Lock to make assertions happy... */
2059 mutex_lock_io(&journal->j_checkpoint_mutex);
2060 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2061 mutex_unlock(&journal->j_checkpoint_mutex);
2062 }
2063
2064 no_recovery:
2065 return err;
2066 }
2067
2068 /*
2069 * Journal abort has very specific semantics, which we describe
2070 * for journal abort.
2071 *
2072 * Two internal functions, which provide abort to the jbd layer
2073 * itself are here.
2074 */
2075
2076 /*
2077 * Quick version for internal journal use (doesn't lock the journal).
2078 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2079 * and don't attempt to make any other journal updates.
2080 */
__jbd2_journal_abort_hard(journal_t * journal)2081 void __jbd2_journal_abort_hard(journal_t *journal)
2082 {
2083 transaction_t *transaction;
2084
2085 if (journal->j_flags & JBD2_ABORT)
2086 return;
2087
2088 printk(KERN_ERR "Aborting journal on device %s.\n",
2089 journal->j_devname);
2090
2091 write_lock(&journal->j_state_lock);
2092 journal->j_flags |= JBD2_ABORT;
2093 transaction = journal->j_running_transaction;
2094 if (transaction)
2095 __jbd2_log_start_commit(journal, transaction->t_tid);
2096 write_unlock(&journal->j_state_lock);
2097 }
2098
2099 /* Soft abort: record the abort error status in the journal superblock,
2100 * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)2101 static void __journal_abort_soft (journal_t *journal, int errno)
2102 {
2103 int old_errno;
2104
2105 write_lock(&journal->j_state_lock);
2106 old_errno = journal->j_errno;
2107 if (!journal->j_errno || errno == -ESHUTDOWN)
2108 journal->j_errno = errno;
2109
2110 if (journal->j_flags & JBD2_ABORT) {
2111 write_unlock(&journal->j_state_lock);
2112 if (!old_errno && old_errno != -ESHUTDOWN &&
2113 errno == -ESHUTDOWN)
2114 jbd2_journal_update_sb_errno(journal);
2115 return;
2116 }
2117 write_unlock(&journal->j_state_lock);
2118
2119 __jbd2_journal_abort_hard(journal);
2120
2121 if (errno) {
2122 jbd2_journal_update_sb_errno(journal);
2123 write_lock(&journal->j_state_lock);
2124 journal->j_flags |= JBD2_REC_ERR;
2125 write_unlock(&journal->j_state_lock);
2126 }
2127 }
2128
2129 /**
2130 * void jbd2_journal_abort () - Shutdown the journal immediately.
2131 * @journal: the journal to shutdown.
2132 * @errno: an error number to record in the journal indicating
2133 * the reason for the shutdown.
2134 *
2135 * Perform a complete, immediate shutdown of the ENTIRE
2136 * journal (not of a single transaction). This operation cannot be
2137 * undone without closing and reopening the journal.
2138 *
2139 * The jbd2_journal_abort function is intended to support higher level error
2140 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2141 * mode.
2142 *
2143 * Journal abort has very specific semantics. Any existing dirty,
2144 * unjournaled buffers in the main filesystem will still be written to
2145 * disk by bdflush, but the journaling mechanism will be suspended
2146 * immediately and no further transaction commits will be honoured.
2147 *
2148 * Any dirty, journaled buffers will be written back to disk without
2149 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2150 * filesystem, but we _do_ attempt to leave as much data as possible
2151 * behind for fsck to use for cleanup.
2152 *
2153 * Any attempt to get a new transaction handle on a journal which is in
2154 * ABORT state will just result in an -EROFS error return. A
2155 * jbd2_journal_stop on an existing handle will return -EIO if we have
2156 * entered abort state during the update.
2157 *
2158 * Recursive transactions are not disturbed by journal abort until the
2159 * final jbd2_journal_stop, which will receive the -EIO error.
2160 *
2161 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2162 * which will be recorded (if possible) in the journal superblock. This
2163 * allows a client to record failure conditions in the middle of a
2164 * transaction without having to complete the transaction to record the
2165 * failure to disk. ext3_error, for example, now uses this
2166 * functionality.
2167 *
2168 * Errors which originate from within the journaling layer will NOT
2169 * supply an errno; a null errno implies that absolutely no further
2170 * writes are done to the journal (unless there are any already in
2171 * progress).
2172 *
2173 */
2174
jbd2_journal_abort(journal_t * journal,int errno)2175 void jbd2_journal_abort(journal_t *journal, int errno)
2176 {
2177 __journal_abort_soft(journal, errno);
2178 }
2179
2180 /**
2181 * int jbd2_journal_errno () - returns the journal's error state.
2182 * @journal: journal to examine.
2183 *
2184 * This is the errno number set with jbd2_journal_abort(), the last
2185 * time the journal was mounted - if the journal was stopped
2186 * without calling abort this will be 0.
2187 *
2188 * If the journal has been aborted on this mount time -EROFS will
2189 * be returned.
2190 */
jbd2_journal_errno(journal_t * journal)2191 int jbd2_journal_errno(journal_t *journal)
2192 {
2193 int err;
2194
2195 read_lock(&journal->j_state_lock);
2196 if (journal->j_flags & JBD2_ABORT)
2197 err = -EROFS;
2198 else
2199 err = journal->j_errno;
2200 read_unlock(&journal->j_state_lock);
2201 return err;
2202 }
2203
2204 /**
2205 * int jbd2_journal_clear_err () - clears the journal's error state
2206 * @journal: journal to act on.
2207 *
2208 * An error must be cleared or acked to take a FS out of readonly
2209 * mode.
2210 */
jbd2_journal_clear_err(journal_t * journal)2211 int jbd2_journal_clear_err(journal_t *journal)
2212 {
2213 int err = 0;
2214
2215 write_lock(&journal->j_state_lock);
2216 if (journal->j_flags & JBD2_ABORT)
2217 err = -EROFS;
2218 else
2219 journal->j_errno = 0;
2220 write_unlock(&journal->j_state_lock);
2221 return err;
2222 }
2223
2224 /**
2225 * void jbd2_journal_ack_err() - Ack journal err.
2226 * @journal: journal to act on.
2227 *
2228 * An error must be cleared or acked to take a FS out of readonly
2229 * mode.
2230 */
jbd2_journal_ack_err(journal_t * journal)2231 void jbd2_journal_ack_err(journal_t *journal)
2232 {
2233 write_lock(&journal->j_state_lock);
2234 if (journal->j_errno)
2235 journal->j_flags |= JBD2_ACK_ERR;
2236 write_unlock(&journal->j_state_lock);
2237 }
2238
jbd2_journal_blocks_per_page(struct inode * inode)2239 int jbd2_journal_blocks_per_page(struct inode *inode)
2240 {
2241 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2242 }
2243
2244 /*
2245 * helper functions to deal with 32 or 64bit block numbers.
2246 */
journal_tag_bytes(journal_t * journal)2247 size_t journal_tag_bytes(journal_t *journal)
2248 {
2249 size_t sz;
2250
2251 if (jbd2_has_feature_csum3(journal))
2252 return sizeof(journal_block_tag3_t);
2253
2254 sz = sizeof(journal_block_tag_t);
2255
2256 if (jbd2_has_feature_csum2(journal))
2257 sz += sizeof(__u16);
2258
2259 if (jbd2_has_feature_64bit(journal))
2260 return sz;
2261 else
2262 return sz - sizeof(__u32);
2263 }
2264
2265 /*
2266 * JBD memory management
2267 *
2268 * These functions are used to allocate block-sized chunks of memory
2269 * used for making copies of buffer_head data. Very often it will be
2270 * page-sized chunks of data, but sometimes it will be in
2271 * sub-page-size chunks. (For example, 16k pages on Power systems
2272 * with a 4k block file system.) For blocks smaller than a page, we
2273 * use a SLAB allocator. There are slab caches for each block size,
2274 * which are allocated at mount time, if necessary, and we only free
2275 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2276 * this reason we don't need to a mutex to protect access to
2277 * jbd2_slab[] allocating or releasing memory; only in
2278 * jbd2_journal_create_slab().
2279 */
2280 #define JBD2_MAX_SLABS 8
2281 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2282
2283 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2284 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2285 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2286 };
2287
2288
jbd2_journal_destroy_slabs(void)2289 static void jbd2_journal_destroy_slabs(void)
2290 {
2291 int i;
2292
2293 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2294 kmem_cache_destroy(jbd2_slab[i]);
2295 jbd2_slab[i] = NULL;
2296 }
2297 }
2298
jbd2_journal_create_slab(size_t size)2299 static int jbd2_journal_create_slab(size_t size)
2300 {
2301 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2302 int i = order_base_2(size) - 10;
2303 size_t slab_size;
2304
2305 if (size == PAGE_SIZE)
2306 return 0;
2307
2308 if (i >= JBD2_MAX_SLABS)
2309 return -EINVAL;
2310
2311 if (unlikely(i < 0))
2312 i = 0;
2313 mutex_lock(&jbd2_slab_create_mutex);
2314 if (jbd2_slab[i]) {
2315 mutex_unlock(&jbd2_slab_create_mutex);
2316 return 0; /* Already created */
2317 }
2318
2319 slab_size = 1 << (i+10);
2320 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2321 slab_size, 0, NULL);
2322 mutex_unlock(&jbd2_slab_create_mutex);
2323 if (!jbd2_slab[i]) {
2324 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2325 return -ENOMEM;
2326 }
2327 return 0;
2328 }
2329
get_slab(size_t size)2330 static struct kmem_cache *get_slab(size_t size)
2331 {
2332 int i = order_base_2(size) - 10;
2333
2334 BUG_ON(i >= JBD2_MAX_SLABS);
2335 if (unlikely(i < 0))
2336 i = 0;
2337 BUG_ON(jbd2_slab[i] == NULL);
2338 return jbd2_slab[i];
2339 }
2340
jbd2_alloc(size_t size,gfp_t flags)2341 void *jbd2_alloc(size_t size, gfp_t flags)
2342 {
2343 void *ptr;
2344
2345 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2346
2347 if (size < PAGE_SIZE)
2348 ptr = kmem_cache_alloc(get_slab(size), flags);
2349 else
2350 ptr = (void *)__get_free_pages(flags, get_order(size));
2351
2352 /* Check alignment; SLUB has gotten this wrong in the past,
2353 * and this can lead to user data corruption! */
2354 BUG_ON(((unsigned long) ptr) & (size-1));
2355
2356 return ptr;
2357 }
2358
jbd2_free(void * ptr,size_t size)2359 void jbd2_free(void *ptr, size_t size)
2360 {
2361 if (size < PAGE_SIZE)
2362 kmem_cache_free(get_slab(size), ptr);
2363 else
2364 free_pages((unsigned long)ptr, get_order(size));
2365 };
2366
2367 /*
2368 * Journal_head storage management
2369 */
2370 static struct kmem_cache *jbd2_journal_head_cache;
2371 #ifdef CONFIG_JBD2_DEBUG
2372 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2373 #endif
2374
jbd2_journal_init_journal_head_cache(void)2375 static int __init jbd2_journal_init_journal_head_cache(void)
2376 {
2377 J_ASSERT(!jbd2_journal_head_cache);
2378 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2379 sizeof(struct journal_head),
2380 0, /* offset */
2381 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2382 NULL); /* ctor */
2383 if (!jbd2_journal_head_cache) {
2384 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2385 return -ENOMEM;
2386 }
2387 return 0;
2388 }
2389
jbd2_journal_destroy_journal_head_cache(void)2390 static void jbd2_journal_destroy_journal_head_cache(void)
2391 {
2392 kmem_cache_destroy(jbd2_journal_head_cache);
2393 jbd2_journal_head_cache = NULL;
2394 }
2395
2396 /*
2397 * journal_head splicing and dicing
2398 */
journal_alloc_journal_head(void)2399 static struct journal_head *journal_alloc_journal_head(void)
2400 {
2401 struct journal_head *ret;
2402
2403 #ifdef CONFIG_JBD2_DEBUG
2404 atomic_inc(&nr_journal_heads);
2405 #endif
2406 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2407 if (!ret) {
2408 jbd_debug(1, "out of memory for journal_head\n");
2409 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2410 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2411 GFP_NOFS | __GFP_NOFAIL);
2412 }
2413 return ret;
2414 }
2415
journal_free_journal_head(struct journal_head * jh)2416 static void journal_free_journal_head(struct journal_head *jh)
2417 {
2418 #ifdef CONFIG_JBD2_DEBUG
2419 atomic_dec(&nr_journal_heads);
2420 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2421 #endif
2422 kmem_cache_free(jbd2_journal_head_cache, jh);
2423 }
2424
2425 /*
2426 * A journal_head is attached to a buffer_head whenever JBD has an
2427 * interest in the buffer.
2428 *
2429 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2430 * is set. This bit is tested in core kernel code where we need to take
2431 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2432 * there.
2433 *
2434 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2435 *
2436 * When a buffer has its BH_JBD bit set it is immune from being released by
2437 * core kernel code, mainly via ->b_count.
2438 *
2439 * A journal_head is detached from its buffer_head when the journal_head's
2440 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2441 * transaction (b_cp_transaction) hold their references to b_jcount.
2442 *
2443 * Various places in the kernel want to attach a journal_head to a buffer_head
2444 * _before_ attaching the journal_head to a transaction. To protect the
2445 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2446 * journal_head's b_jcount refcount by one. The caller must call
2447 * jbd2_journal_put_journal_head() to undo this.
2448 *
2449 * So the typical usage would be:
2450 *
2451 * (Attach a journal_head if needed. Increments b_jcount)
2452 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2453 * ...
2454 * (Get another reference for transaction)
2455 * jbd2_journal_grab_journal_head(bh);
2456 * jh->b_transaction = xxx;
2457 * (Put original reference)
2458 * jbd2_journal_put_journal_head(jh);
2459 */
2460
2461 /*
2462 * Give a buffer_head a journal_head.
2463 *
2464 * May sleep.
2465 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2466 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2467 {
2468 struct journal_head *jh;
2469 struct journal_head *new_jh = NULL;
2470
2471 repeat:
2472 if (!buffer_jbd(bh))
2473 new_jh = journal_alloc_journal_head();
2474
2475 jbd_lock_bh_journal_head(bh);
2476 if (buffer_jbd(bh)) {
2477 jh = bh2jh(bh);
2478 } else {
2479 J_ASSERT_BH(bh,
2480 (atomic_read(&bh->b_count) > 0) ||
2481 (bh->b_page && bh->b_page->mapping));
2482
2483 if (!new_jh) {
2484 jbd_unlock_bh_journal_head(bh);
2485 goto repeat;
2486 }
2487
2488 jh = new_jh;
2489 new_jh = NULL; /* We consumed it */
2490 set_buffer_jbd(bh);
2491 bh->b_private = jh;
2492 jh->b_bh = bh;
2493 get_bh(bh);
2494 BUFFER_TRACE(bh, "added journal_head");
2495 }
2496 jh->b_jcount++;
2497 jbd_unlock_bh_journal_head(bh);
2498 if (new_jh)
2499 journal_free_journal_head(new_jh);
2500 return bh->b_private;
2501 }
2502
2503 /*
2504 * Grab a ref against this buffer_head's journal_head. If it ended up not
2505 * having a journal_head, return NULL
2506 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2507 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2508 {
2509 struct journal_head *jh = NULL;
2510
2511 jbd_lock_bh_journal_head(bh);
2512 if (buffer_jbd(bh)) {
2513 jh = bh2jh(bh);
2514 jh->b_jcount++;
2515 }
2516 jbd_unlock_bh_journal_head(bh);
2517 return jh;
2518 }
2519
__journal_remove_journal_head(struct buffer_head * bh)2520 static void __journal_remove_journal_head(struct buffer_head *bh)
2521 {
2522 struct journal_head *jh = bh2jh(bh);
2523
2524 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2525 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2526 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2527 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2528 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2529 J_ASSERT_BH(bh, buffer_jbd(bh));
2530 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2531 BUFFER_TRACE(bh, "remove journal_head");
2532 if (jh->b_frozen_data) {
2533 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2534 jbd2_free(jh->b_frozen_data, bh->b_size);
2535 }
2536 if (jh->b_committed_data) {
2537 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2538 jbd2_free(jh->b_committed_data, bh->b_size);
2539 }
2540 bh->b_private = NULL;
2541 jh->b_bh = NULL; /* debug, really */
2542 clear_buffer_jbd(bh);
2543 journal_free_journal_head(jh);
2544 }
2545
2546 /*
2547 * Drop a reference on the passed journal_head. If it fell to zero then
2548 * release the journal_head from the buffer_head.
2549 */
jbd2_journal_put_journal_head(struct journal_head * jh)2550 void jbd2_journal_put_journal_head(struct journal_head *jh)
2551 {
2552 struct buffer_head *bh = jh2bh(jh);
2553
2554 jbd_lock_bh_journal_head(bh);
2555 J_ASSERT_JH(jh, jh->b_jcount > 0);
2556 --jh->b_jcount;
2557 if (!jh->b_jcount) {
2558 __journal_remove_journal_head(bh);
2559 jbd_unlock_bh_journal_head(bh);
2560 __brelse(bh);
2561 } else
2562 jbd_unlock_bh_journal_head(bh);
2563 }
2564
2565 /*
2566 * Initialize jbd inode head
2567 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2568 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2569 {
2570 jinode->i_transaction = NULL;
2571 jinode->i_next_transaction = NULL;
2572 jinode->i_vfs_inode = inode;
2573 jinode->i_flags = 0;
2574 jinode->i_dirty_start = 0;
2575 jinode->i_dirty_end = 0;
2576 INIT_LIST_HEAD(&jinode->i_list);
2577 }
2578
2579 /*
2580 * Function to be called before we start removing inode from memory (i.e.,
2581 * clear_inode() is a fine place to be called from). It removes inode from
2582 * transaction's lists.
2583 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2584 void jbd2_journal_release_jbd_inode(journal_t *journal,
2585 struct jbd2_inode *jinode)
2586 {
2587 if (!journal)
2588 return;
2589 restart:
2590 spin_lock(&journal->j_list_lock);
2591 /* Is commit writing out inode - we have to wait */
2592 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2593 wait_queue_head_t *wq;
2594 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2595 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2596 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2597 spin_unlock(&journal->j_list_lock);
2598 schedule();
2599 finish_wait(wq, &wait.wq_entry);
2600 goto restart;
2601 }
2602
2603 if (jinode->i_transaction) {
2604 list_del(&jinode->i_list);
2605 jinode->i_transaction = NULL;
2606 }
2607 spin_unlock(&journal->j_list_lock);
2608 }
2609
2610
2611 #ifdef CONFIG_PROC_FS
2612
2613 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2614
jbd2_create_jbd_stats_proc_entry(void)2615 static void __init jbd2_create_jbd_stats_proc_entry(void)
2616 {
2617 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2618 }
2619
jbd2_remove_jbd_stats_proc_entry(void)2620 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2621 {
2622 if (proc_jbd2_stats)
2623 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2624 }
2625
2626 #else
2627
2628 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2629 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2630
2631 #endif
2632
2633 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2634
jbd2_journal_init_inode_cache(void)2635 static int __init jbd2_journal_init_inode_cache(void)
2636 {
2637 J_ASSERT(!jbd2_inode_cache);
2638 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2639 if (!jbd2_inode_cache) {
2640 pr_emerg("JBD2: failed to create inode cache\n");
2641 return -ENOMEM;
2642 }
2643 return 0;
2644 }
2645
jbd2_journal_init_handle_cache(void)2646 static int __init jbd2_journal_init_handle_cache(void)
2647 {
2648 J_ASSERT(!jbd2_handle_cache);
2649 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2650 if (!jbd2_handle_cache) {
2651 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2652 return -ENOMEM;
2653 }
2654 return 0;
2655 }
2656
jbd2_journal_destroy_inode_cache(void)2657 static void jbd2_journal_destroy_inode_cache(void)
2658 {
2659 kmem_cache_destroy(jbd2_inode_cache);
2660 jbd2_inode_cache = NULL;
2661 }
2662
jbd2_journal_destroy_handle_cache(void)2663 static void jbd2_journal_destroy_handle_cache(void)
2664 {
2665 kmem_cache_destroy(jbd2_handle_cache);
2666 jbd2_handle_cache = NULL;
2667 }
2668
2669 /*
2670 * Module startup and shutdown
2671 */
2672
journal_init_caches(void)2673 static int __init journal_init_caches(void)
2674 {
2675 int ret;
2676
2677 ret = jbd2_journal_init_revoke_record_cache();
2678 if (ret == 0)
2679 ret = jbd2_journal_init_revoke_table_cache();
2680 if (ret == 0)
2681 ret = jbd2_journal_init_journal_head_cache();
2682 if (ret == 0)
2683 ret = jbd2_journal_init_handle_cache();
2684 if (ret == 0)
2685 ret = jbd2_journal_init_inode_cache();
2686 if (ret == 0)
2687 ret = jbd2_journal_init_transaction_cache();
2688 return ret;
2689 }
2690
jbd2_journal_destroy_caches(void)2691 static void jbd2_journal_destroy_caches(void)
2692 {
2693 jbd2_journal_destroy_revoke_record_cache();
2694 jbd2_journal_destroy_revoke_table_cache();
2695 jbd2_journal_destroy_journal_head_cache();
2696 jbd2_journal_destroy_handle_cache();
2697 jbd2_journal_destroy_inode_cache();
2698 jbd2_journal_destroy_transaction_cache();
2699 jbd2_journal_destroy_slabs();
2700 }
2701
journal_init(void)2702 static int __init journal_init(void)
2703 {
2704 int ret;
2705
2706 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2707
2708 ret = journal_init_caches();
2709 if (ret == 0) {
2710 jbd2_create_jbd_stats_proc_entry();
2711 } else {
2712 jbd2_journal_destroy_caches();
2713 }
2714 return ret;
2715 }
2716
journal_exit(void)2717 static void __exit journal_exit(void)
2718 {
2719 #ifdef CONFIG_JBD2_DEBUG
2720 int n = atomic_read(&nr_journal_heads);
2721 if (n)
2722 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2723 #endif
2724 jbd2_remove_jbd_stats_proc_entry();
2725 jbd2_journal_destroy_caches();
2726 }
2727
2728 MODULE_LICENSE("GPL");
2729 module_init(journal_init);
2730 module_exit(journal_exit);
2731
2732