• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *
5  *  This file contains the interface functions for the various time related
6  *  system calls: time, stime, gettimeofday, settimeofday, adjtime
7  *
8  * Modification history:
9  *
10  * 1993-09-02    Philip Gladstone
11  *      Created file with time related functions from sched/core.c and adjtimex()
12  * 1993-10-08    Torsten Duwe
13  *      adjtime interface update and CMOS clock write code
14  * 1995-08-13    Torsten Duwe
15  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
16  * 1999-01-16    Ulrich Windl
17  *	Introduced error checking for many cases in adjtimex().
18  *	Updated NTP code according to technical memorandum Jan '96
19  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
20  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21  *	(Even though the technical memorandum forbids it)
22  * 2004-07-14	 Christoph Lameter
23  *	Added getnstimeofday to allow the posix timer functions to return
24  *	with nanosecond accuracy
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/timex.h>
30 #include <linux/capability.h>
31 #include <linux/timekeeper_internal.h>
32 #include <linux/errno.h>
33 #include <linux/syscalls.h>
34 #include <linux/security.h>
35 #include <linux/fs.h>
36 #include <linux/math64.h>
37 #include <linux/ptrace.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/compat.h>
41 #include <asm/unistd.h>
42 
43 #include <generated/timeconst.h>
44 #include "timekeeping.h"
45 
46 /*
47  * The timezone where the local system is located.  Used as a default by some
48  * programs who obtain this value by using gettimeofday.
49  */
50 struct timezone sys_tz;
51 
52 EXPORT_SYMBOL(sys_tz);
53 
54 #ifdef __ARCH_WANT_SYS_TIME
55 
56 /*
57  * sys_time() can be implemented in user-level using
58  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
59  * why not move it into the appropriate arch directory (for those
60  * architectures that need it).
61  */
SYSCALL_DEFINE1(time,time_t __user *,tloc)62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
63 {
64 	time_t i = (time_t)ktime_get_real_seconds();
65 
66 	if (tloc) {
67 		if (put_user(i,tloc))
68 			return -EFAULT;
69 	}
70 	force_successful_syscall_return();
71 	return i;
72 }
73 
74 /*
75  * sys_stime() can be implemented in user-level using
76  * sys_settimeofday().  Is this for backwards compatibility?  If so,
77  * why not move it into the appropriate arch directory (for those
78  * architectures that need it).
79  */
80 
SYSCALL_DEFINE1(stime,time_t __user *,tptr)81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
82 {
83 	struct timespec64 tv;
84 	int err;
85 
86 	if (get_user(tv.tv_sec, tptr))
87 		return -EFAULT;
88 
89 	tv.tv_nsec = 0;
90 
91 	err = security_settime64(&tv, NULL);
92 	if (err)
93 		return err;
94 
95 	do_settimeofday64(&tv);
96 	return 0;
97 }
98 
99 #endif /* __ARCH_WANT_SYS_TIME */
100 
101 #ifdef CONFIG_COMPAT_32BIT_TIME
102 #ifdef __ARCH_WANT_SYS_TIME32
103 
104 /* old_time32_t is a 32 bit "long" and needs to get converted. */
SYSCALL_DEFINE1(time32,old_time32_t __user *,tloc)105 SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106 {
107 	old_time32_t i;
108 
109 	i = (old_time32_t)ktime_get_real_seconds();
110 
111 	if (tloc) {
112 		if (put_user(i,tloc))
113 			return -EFAULT;
114 	}
115 	force_successful_syscall_return();
116 	return i;
117 }
118 
SYSCALL_DEFINE1(stime32,old_time32_t __user *,tptr)119 SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120 {
121 	struct timespec64 tv;
122 	int err;
123 
124 	if (get_user(tv.tv_sec, tptr))
125 		return -EFAULT;
126 
127 	tv.tv_nsec = 0;
128 
129 	err = security_settime64(&tv, NULL);
130 	if (err)
131 		return err;
132 
133 	do_settimeofday64(&tv);
134 	return 0;
135 }
136 
137 #endif /* __ARCH_WANT_SYS_TIME32 */
138 #endif
139 
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)140 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
141 		struct timezone __user *, tz)
142 {
143 	if (likely(tv != NULL)) {
144 		struct timespec64 ts;
145 
146 		ktime_get_real_ts64(&ts);
147 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149 			return -EFAULT;
150 	}
151 	if (unlikely(tz != NULL)) {
152 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 			return -EFAULT;
154 	}
155 	return 0;
156 }
157 
158 /*
159  * In case for some reason the CMOS clock has not already been running
160  * in UTC, but in some local time: The first time we set the timezone,
161  * we will warp the clock so that it is ticking UTC time instead of
162  * local time. Presumably, if someone is setting the timezone then we
163  * are running in an environment where the programs understand about
164  * timezones. This should be done at boot time in the /etc/rc script,
165  * as soon as possible, so that the clock can be set right. Otherwise,
166  * various programs will get confused when the clock gets warped.
167  */
168 
do_sys_settimeofday64(const struct timespec64 * tv,const struct timezone * tz)169 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170 {
171 	static int firsttime = 1;
172 	int error = 0;
173 
174 	if (tv && !timespec64_valid_settod(tv))
175 		return -EINVAL;
176 
177 	error = security_settime64(tv, tz);
178 	if (error)
179 		return error;
180 
181 	if (tz) {
182 		/* Verify we're witin the +-15 hrs range */
183 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 			return -EINVAL;
185 
186 		sys_tz = *tz;
187 		update_vsyscall_tz();
188 		if (firsttime) {
189 			firsttime = 0;
190 			if (!tv)
191 				timekeeping_warp_clock();
192 		}
193 	}
194 	if (tv)
195 		return do_settimeofday64(tv);
196 	return 0;
197 }
198 
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)199 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
200 		struct timezone __user *, tz)
201 {
202 	struct timespec64 new_ts;
203 	struct timeval user_tv;
204 	struct timezone new_tz;
205 
206 	if (tv) {
207 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
208 			return -EFAULT;
209 
210 		if (!timeval_valid(&user_tv))
211 			return -EINVAL;
212 
213 		new_ts.tv_sec = user_tv.tv_sec;
214 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
215 	}
216 	if (tz) {
217 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
218 			return -EFAULT;
219 	}
220 
221 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
222 }
223 
224 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday,struct old_timeval32 __user *,tv,struct timezone __user *,tz)225 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
226 		       struct timezone __user *, tz)
227 {
228 	if (tv) {
229 		struct timespec64 ts;
230 
231 		ktime_get_real_ts64(&ts);
232 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
233 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
234 			return -EFAULT;
235 	}
236 	if (tz) {
237 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238 			return -EFAULT;
239 	}
240 
241 	return 0;
242 }
243 
COMPAT_SYSCALL_DEFINE2(settimeofday,struct old_timeval32 __user *,tv,struct timezone __user *,tz)244 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
245 		       struct timezone __user *, tz)
246 {
247 	struct timespec64 new_ts;
248 	struct timeval user_tv;
249 	struct timezone new_tz;
250 
251 	if (tv) {
252 		if (compat_get_timeval(&user_tv, tv))
253 			return -EFAULT;
254 
255 		if (!timeval_valid(&user_tv))
256 			return -EINVAL;
257 
258 		new_ts.tv_sec = user_tv.tv_sec;
259 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
260 	}
261 	if (tz) {
262 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
263 			return -EFAULT;
264 	}
265 
266 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
267 }
268 #endif
269 
270 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
SYSCALL_DEFINE1(adjtimex,struct __kernel_timex __user *,txc_p)271 SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
272 {
273 	struct __kernel_timex txc;		/* Local copy of parameter */
274 	int ret;
275 
276 	/* Copy the user data space into the kernel copy
277 	 * structure. But bear in mind that the structures
278 	 * may change
279 	 */
280 	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
281 		return -EFAULT;
282 	ret = do_adjtimex(&txc);
283 	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
284 }
285 #endif
286 
287 #ifdef CONFIG_COMPAT_32BIT_TIME
get_old_timex32(struct __kernel_timex * txc,const struct old_timex32 __user * utp)288 int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
289 {
290 	struct old_timex32 tx32;
291 
292 	memset(txc, 0, sizeof(struct __kernel_timex));
293 	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
294 		return -EFAULT;
295 
296 	txc->modes = tx32.modes;
297 	txc->offset = tx32.offset;
298 	txc->freq = tx32.freq;
299 	txc->maxerror = tx32.maxerror;
300 	txc->esterror = tx32.esterror;
301 	txc->status = tx32.status;
302 	txc->constant = tx32.constant;
303 	txc->precision = tx32.precision;
304 	txc->tolerance = tx32.tolerance;
305 	txc->time.tv_sec = tx32.time.tv_sec;
306 	txc->time.tv_usec = tx32.time.tv_usec;
307 	txc->tick = tx32.tick;
308 	txc->ppsfreq = tx32.ppsfreq;
309 	txc->jitter = tx32.jitter;
310 	txc->shift = tx32.shift;
311 	txc->stabil = tx32.stabil;
312 	txc->jitcnt = tx32.jitcnt;
313 	txc->calcnt = tx32.calcnt;
314 	txc->errcnt = tx32.errcnt;
315 	txc->stbcnt = tx32.stbcnt;
316 
317 	return 0;
318 }
319 
put_old_timex32(struct old_timex32 __user * utp,const struct __kernel_timex * txc)320 int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
321 {
322 	struct old_timex32 tx32;
323 
324 	memset(&tx32, 0, sizeof(struct old_timex32));
325 	tx32.modes = txc->modes;
326 	tx32.offset = txc->offset;
327 	tx32.freq = txc->freq;
328 	tx32.maxerror = txc->maxerror;
329 	tx32.esterror = txc->esterror;
330 	tx32.status = txc->status;
331 	tx32.constant = txc->constant;
332 	tx32.precision = txc->precision;
333 	tx32.tolerance = txc->tolerance;
334 	tx32.time.tv_sec = txc->time.tv_sec;
335 	tx32.time.tv_usec = txc->time.tv_usec;
336 	tx32.tick = txc->tick;
337 	tx32.ppsfreq = txc->ppsfreq;
338 	tx32.jitter = txc->jitter;
339 	tx32.shift = txc->shift;
340 	tx32.stabil = txc->stabil;
341 	tx32.jitcnt = txc->jitcnt;
342 	tx32.calcnt = txc->calcnt;
343 	tx32.errcnt = txc->errcnt;
344 	tx32.stbcnt = txc->stbcnt;
345 	tx32.tai = txc->tai;
346 	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
347 		return -EFAULT;
348 	return 0;
349 }
350 
SYSCALL_DEFINE1(adjtimex_time32,struct old_timex32 __user *,utp)351 SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
352 {
353 	struct __kernel_timex txc;
354 	int err, ret;
355 
356 	err = get_old_timex32(&txc, utp);
357 	if (err)
358 		return err;
359 
360 	ret = do_adjtimex(&txc);
361 
362 	err = put_old_timex32(utp, &txc);
363 	if (err)
364 		return err;
365 
366 	return ret;
367 }
368 #endif
369 
370 /*
371  * Convert jiffies to milliseconds and back.
372  *
373  * Avoid unnecessary multiplications/divisions in the
374  * two most common HZ cases:
375  */
jiffies_to_msecs(const unsigned long j)376 unsigned int jiffies_to_msecs(const unsigned long j)
377 {
378 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
379 	return (MSEC_PER_SEC / HZ) * j;
380 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
381 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
382 #else
383 # if BITS_PER_LONG == 32
384 	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
385 	       HZ_TO_MSEC_SHR32;
386 # else
387 	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
388 # endif
389 #endif
390 }
391 EXPORT_SYMBOL(jiffies_to_msecs);
392 
jiffies_to_usecs(const unsigned long j)393 unsigned int jiffies_to_usecs(const unsigned long j)
394 {
395 	/*
396 	 * Hz usually doesn't go much further MSEC_PER_SEC.
397 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
398 	 */
399 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
400 
401 #if !(USEC_PER_SEC % HZ)
402 	return (USEC_PER_SEC / HZ) * j;
403 #else
404 # if BITS_PER_LONG == 32
405 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
406 # else
407 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
408 # endif
409 #endif
410 }
411 EXPORT_SYMBOL(jiffies_to_usecs);
412 
413 /*
414  * mktime64 - Converts date to seconds.
415  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
416  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
417  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
418  *
419  * [For the Julian calendar (which was used in Russia before 1917,
420  * Britain & colonies before 1752, anywhere else before 1582,
421  * and is still in use by some communities) leave out the
422  * -year/100+year/400 terms, and add 10.]
423  *
424  * This algorithm was first published by Gauss (I think).
425  *
426  * A leap second can be indicated by calling this function with sec as
427  * 60 (allowable under ISO 8601).  The leap second is treated the same
428  * as the following second since they don't exist in UNIX time.
429  *
430  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
431  * tomorrow - (allowable under ISO 8601) is supported.
432  */
mktime64(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)433 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
434 		const unsigned int day, const unsigned int hour,
435 		const unsigned int min, const unsigned int sec)
436 {
437 	unsigned int mon = mon0, year = year0;
438 
439 	/* 1..12 -> 11,12,1..10 */
440 	if (0 >= (int) (mon -= 2)) {
441 		mon += 12;	/* Puts Feb last since it has leap day */
442 		year -= 1;
443 	}
444 
445 	return ((((time64_t)
446 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
447 		  year*365 - 719499
448 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
449 	  )*60 + min /* now have minutes */
450 	)*60 + sec; /* finally seconds */
451 }
452 EXPORT_SYMBOL(mktime64);
453 
454 /**
455  * ns_to_timespec - Convert nanoseconds to timespec
456  * @nsec:       the nanoseconds value to be converted
457  *
458  * Returns the timespec representation of the nsec parameter.
459  */
ns_to_timespec(const s64 nsec)460 struct timespec ns_to_timespec(const s64 nsec)
461 {
462 	struct timespec ts;
463 	s32 rem;
464 
465 	if (!nsec)
466 		return (struct timespec) {0, 0};
467 
468 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
469 	if (unlikely(rem < 0)) {
470 		ts.tv_sec--;
471 		rem += NSEC_PER_SEC;
472 	}
473 	ts.tv_nsec = rem;
474 
475 	return ts;
476 }
477 EXPORT_SYMBOL(ns_to_timespec);
478 
479 /**
480  * ns_to_timeval - Convert nanoseconds to timeval
481  * @nsec:       the nanoseconds value to be converted
482  *
483  * Returns the timeval representation of the nsec parameter.
484  */
ns_to_timeval(const s64 nsec)485 struct timeval ns_to_timeval(const s64 nsec)
486 {
487 	struct timespec ts = ns_to_timespec(nsec);
488 	struct timeval tv;
489 
490 	tv.tv_sec = ts.tv_sec;
491 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
492 
493 	return tv;
494 }
495 EXPORT_SYMBOL(ns_to_timeval);
496 
ns_to_kernel_old_timeval(const s64 nsec)497 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
498 {
499 	struct timespec64 ts = ns_to_timespec64(nsec);
500 	struct __kernel_old_timeval tv;
501 
502 	tv.tv_sec = ts.tv_sec;
503 	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
504 
505 	return tv;
506 }
507 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
508 
509 /**
510  * set_normalized_timespec - set timespec sec and nsec parts and normalize
511  *
512  * @ts:		pointer to timespec variable to be set
513  * @sec:	seconds to set
514  * @nsec:	nanoseconds to set
515  *
516  * Set seconds and nanoseconds field of a timespec variable and
517  * normalize to the timespec storage format
518  *
519  * Note: The tv_nsec part is always in the range of
520  *	0 <= tv_nsec < NSEC_PER_SEC
521  * For negative values only the tv_sec field is negative !
522  */
set_normalized_timespec64(struct timespec64 * ts,time64_t sec,s64 nsec)523 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
524 {
525 	while (nsec >= NSEC_PER_SEC) {
526 		/*
527 		 * The following asm() prevents the compiler from
528 		 * optimising this loop into a modulo operation. See
529 		 * also __iter_div_u64_rem() in include/linux/time.h
530 		 */
531 		asm("" : "+rm"(nsec));
532 		nsec -= NSEC_PER_SEC;
533 		++sec;
534 	}
535 	while (nsec < 0) {
536 		asm("" : "+rm"(nsec));
537 		nsec += NSEC_PER_SEC;
538 		--sec;
539 	}
540 	ts->tv_sec = sec;
541 	ts->tv_nsec = nsec;
542 }
543 EXPORT_SYMBOL(set_normalized_timespec64);
544 
545 /**
546  * ns_to_timespec64 - Convert nanoseconds to timespec64
547  * @nsec:       the nanoseconds value to be converted
548  *
549  * Returns the timespec64 representation of the nsec parameter.
550  */
ns_to_timespec64(const s64 nsec)551 struct timespec64 ns_to_timespec64(const s64 nsec)
552 {
553 	struct timespec64 ts;
554 	s32 rem;
555 
556 	if (!nsec)
557 		return (struct timespec64) {0, 0};
558 
559 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
560 	if (unlikely(rem < 0)) {
561 		ts.tv_sec--;
562 		rem += NSEC_PER_SEC;
563 	}
564 	ts.tv_nsec = rem;
565 
566 	return ts;
567 }
568 EXPORT_SYMBOL(ns_to_timespec64);
569 
570 /**
571  * msecs_to_jiffies: - convert milliseconds to jiffies
572  * @m:	time in milliseconds
573  *
574  * conversion is done as follows:
575  *
576  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
577  *
578  * - 'too large' values [that would result in larger than
579  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
580  *
581  * - all other values are converted to jiffies by either multiplying
582  *   the input value by a factor or dividing it with a factor and
583  *   handling any 32-bit overflows.
584  *   for the details see __msecs_to_jiffies()
585  *
586  * msecs_to_jiffies() checks for the passed in value being a constant
587  * via __builtin_constant_p() allowing gcc to eliminate most of the
588  * code, __msecs_to_jiffies() is called if the value passed does not
589  * allow constant folding and the actual conversion must be done at
590  * runtime.
591  * the _msecs_to_jiffies helpers are the HZ dependent conversion
592  * routines found in include/linux/jiffies.h
593  */
__msecs_to_jiffies(const unsigned int m)594 unsigned long __msecs_to_jiffies(const unsigned int m)
595 {
596 	/*
597 	 * Negative value, means infinite timeout:
598 	 */
599 	if ((int)m < 0)
600 		return MAX_JIFFY_OFFSET;
601 	return _msecs_to_jiffies(m);
602 }
603 EXPORT_SYMBOL(__msecs_to_jiffies);
604 
__usecs_to_jiffies(const unsigned int u)605 unsigned long __usecs_to_jiffies(const unsigned int u)
606 {
607 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
608 		return MAX_JIFFY_OFFSET;
609 	return _usecs_to_jiffies(u);
610 }
611 EXPORT_SYMBOL(__usecs_to_jiffies);
612 
613 /*
614  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
615  * that a remainder subtract here would not do the right thing as the
616  * resolution values don't fall on second boundries.  I.e. the line:
617  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
618  * Note that due to the small error in the multiplier here, this
619  * rounding is incorrect for sufficiently large values of tv_nsec, but
620  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
621  * OK.
622  *
623  * Rather, we just shift the bits off the right.
624  *
625  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
626  * value to a scaled second value.
627  */
628 static unsigned long
__timespec64_to_jiffies(u64 sec,long nsec)629 __timespec64_to_jiffies(u64 sec, long nsec)
630 {
631 	nsec = nsec + TICK_NSEC - 1;
632 
633 	if (sec >= MAX_SEC_IN_JIFFIES){
634 		sec = MAX_SEC_IN_JIFFIES;
635 		nsec = 0;
636 	}
637 	return ((sec * SEC_CONVERSION) +
638 		(((u64)nsec * NSEC_CONVERSION) >>
639 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
640 
641 }
642 
643 static unsigned long
__timespec_to_jiffies(unsigned long sec,long nsec)644 __timespec_to_jiffies(unsigned long sec, long nsec)
645 {
646 	return __timespec64_to_jiffies((u64)sec, nsec);
647 }
648 
649 unsigned long
timespec64_to_jiffies(const struct timespec64 * value)650 timespec64_to_jiffies(const struct timespec64 *value)
651 {
652 	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
653 }
654 EXPORT_SYMBOL(timespec64_to_jiffies);
655 
656 void
jiffies_to_timespec64(const unsigned long jiffies,struct timespec64 * value)657 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
658 {
659 	/*
660 	 * Convert jiffies to nanoseconds and separate with
661 	 * one divide.
662 	 */
663 	u32 rem;
664 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
665 				    NSEC_PER_SEC, &rem);
666 	value->tv_nsec = rem;
667 }
668 EXPORT_SYMBOL(jiffies_to_timespec64);
669 
670 /*
671  * We could use a similar algorithm to timespec_to_jiffies (with a
672  * different multiplier for usec instead of nsec). But this has a
673  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
674  * usec value, since it's not necessarily integral.
675  *
676  * We could instead round in the intermediate scaled representation
677  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
678  * perilous: the scaling introduces a small positive error, which
679  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
680  * units to the intermediate before shifting) leads to accidental
681  * overflow and overestimates.
682  *
683  * At the cost of one additional multiplication by a constant, just
684  * use the timespec implementation.
685  */
686 unsigned long
timeval_to_jiffies(const struct timeval * value)687 timeval_to_jiffies(const struct timeval *value)
688 {
689 	return __timespec_to_jiffies(value->tv_sec,
690 				     value->tv_usec * NSEC_PER_USEC);
691 }
692 EXPORT_SYMBOL(timeval_to_jiffies);
693 
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)694 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
695 {
696 	/*
697 	 * Convert jiffies to nanoseconds and separate with
698 	 * one divide.
699 	 */
700 	u32 rem;
701 
702 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
703 				    NSEC_PER_SEC, &rem);
704 	value->tv_usec = rem / NSEC_PER_USEC;
705 }
706 EXPORT_SYMBOL(jiffies_to_timeval);
707 
708 /*
709  * Convert jiffies/jiffies_64 to clock_t and back.
710  */
jiffies_to_clock_t(unsigned long x)711 clock_t jiffies_to_clock_t(unsigned long x)
712 {
713 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
714 # if HZ < USER_HZ
715 	return x * (USER_HZ / HZ);
716 # else
717 	return x / (HZ / USER_HZ);
718 # endif
719 #else
720 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
721 #endif
722 }
723 EXPORT_SYMBOL(jiffies_to_clock_t);
724 
clock_t_to_jiffies(unsigned long x)725 unsigned long clock_t_to_jiffies(unsigned long x)
726 {
727 #if (HZ % USER_HZ)==0
728 	if (x >= ~0UL / (HZ / USER_HZ))
729 		return ~0UL;
730 	return x * (HZ / USER_HZ);
731 #else
732 	/* Don't worry about loss of precision here .. */
733 	if (x >= ~0UL / HZ * USER_HZ)
734 		return ~0UL;
735 
736 	/* .. but do try to contain it here */
737 	return div_u64((u64)x * HZ, USER_HZ);
738 #endif
739 }
740 EXPORT_SYMBOL(clock_t_to_jiffies);
741 
jiffies_64_to_clock_t(u64 x)742 u64 jiffies_64_to_clock_t(u64 x)
743 {
744 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
745 # if HZ < USER_HZ
746 	x = div_u64(x * USER_HZ, HZ);
747 # elif HZ > USER_HZ
748 	x = div_u64(x, HZ / USER_HZ);
749 # else
750 	/* Nothing to do */
751 # endif
752 #else
753 	/*
754 	 * There are better ways that don't overflow early,
755 	 * but even this doesn't overflow in hundreds of years
756 	 * in 64 bits, so..
757 	 */
758 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
759 #endif
760 	return x;
761 }
762 EXPORT_SYMBOL(jiffies_64_to_clock_t);
763 
nsec_to_clock_t(u64 x)764 u64 nsec_to_clock_t(u64 x)
765 {
766 #if (NSEC_PER_SEC % USER_HZ) == 0
767 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
768 #elif (USER_HZ % 512) == 0
769 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
770 #else
771 	/*
772          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
773          * overflow after 64.99 years.
774          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
775          */
776 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
777 #endif
778 }
779 
jiffies64_to_nsecs(u64 j)780 u64 jiffies64_to_nsecs(u64 j)
781 {
782 #if !(NSEC_PER_SEC % HZ)
783 	return (NSEC_PER_SEC / HZ) * j;
784 # else
785 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
786 #endif
787 }
788 EXPORT_SYMBOL(jiffies64_to_nsecs);
789 
jiffies64_to_msecs(const u64 j)790 u64 jiffies64_to_msecs(const u64 j)
791 {
792 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
793 	return (MSEC_PER_SEC / HZ) * j;
794 #else
795 	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
796 #endif
797 }
798 EXPORT_SYMBOL(jiffies64_to_msecs);
799 
800 /**
801  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
802  *
803  * @n:	nsecs in u64
804  *
805  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
806  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
807  * for scheduler, not for use in device drivers to calculate timeout value.
808  *
809  * note:
810  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
811  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
812  */
nsecs_to_jiffies64(u64 n)813 u64 nsecs_to_jiffies64(u64 n)
814 {
815 #if (NSEC_PER_SEC % HZ) == 0
816 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
817 	return div_u64(n, NSEC_PER_SEC / HZ);
818 #elif (HZ % 512) == 0
819 	/* overflow after 292 years if HZ = 1024 */
820 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
821 #else
822 	/*
823 	 * Generic case - optimized for cases where HZ is a multiple of 3.
824 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
825 	 */
826 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
827 #endif
828 }
829 EXPORT_SYMBOL(nsecs_to_jiffies64);
830 
831 /**
832  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
833  *
834  * @n:	nsecs in u64
835  *
836  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
837  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
838  * for scheduler, not for use in device drivers to calculate timeout value.
839  *
840  * note:
841  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
842  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
843  */
nsecs_to_jiffies(u64 n)844 unsigned long nsecs_to_jiffies(u64 n)
845 {
846 	return (unsigned long)nsecs_to_jiffies64(n);
847 }
848 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
849 
850 /*
851  * Add two timespec64 values and do a safety check for overflow.
852  * It's assumed that both values are valid (>= 0).
853  * And, each timespec64 is in normalized form.
854  */
timespec64_add_safe(const struct timespec64 lhs,const struct timespec64 rhs)855 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
856 				const struct timespec64 rhs)
857 {
858 	struct timespec64 res;
859 
860 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
861 			lhs.tv_nsec + rhs.tv_nsec);
862 
863 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
864 		res.tv_sec = TIME64_MAX;
865 		res.tv_nsec = 0;
866 	}
867 
868 	return res;
869 }
870 
get_timespec64(struct timespec64 * ts,const struct __kernel_timespec __user * uts)871 int get_timespec64(struct timespec64 *ts,
872 		   const struct __kernel_timespec __user *uts)
873 {
874 	struct __kernel_timespec kts;
875 	int ret;
876 
877 	ret = copy_from_user(&kts, uts, sizeof(kts));
878 	if (ret)
879 		return -EFAULT;
880 
881 	ts->tv_sec = kts.tv_sec;
882 
883 	/* Zero out the padding for 32 bit systems or in compat mode */
884 	if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) ||
885 					      in_compat_syscall()))
886 		kts.tv_nsec &= 0xFFFFFFFFUL;
887 
888 	ts->tv_nsec = kts.tv_nsec;
889 
890 	return 0;
891 }
892 EXPORT_SYMBOL_GPL(get_timespec64);
893 
put_timespec64(const struct timespec64 * ts,struct __kernel_timespec __user * uts)894 int put_timespec64(const struct timespec64 *ts,
895 		   struct __kernel_timespec __user *uts)
896 {
897 	struct __kernel_timespec kts = {
898 		.tv_sec = ts->tv_sec,
899 		.tv_nsec = ts->tv_nsec
900 	};
901 
902 	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
903 }
904 EXPORT_SYMBOL_GPL(put_timespec64);
905 
__get_old_timespec32(struct timespec64 * ts64,const struct old_timespec32 __user * cts)906 static int __get_old_timespec32(struct timespec64 *ts64,
907 				   const struct old_timespec32 __user *cts)
908 {
909 	struct old_timespec32 ts;
910 	int ret;
911 
912 	ret = copy_from_user(&ts, cts, sizeof(ts));
913 	if (ret)
914 		return -EFAULT;
915 
916 	ts64->tv_sec = ts.tv_sec;
917 	ts64->tv_nsec = ts.tv_nsec;
918 
919 	return 0;
920 }
921 
__put_old_timespec32(const struct timespec64 * ts64,struct old_timespec32 __user * cts)922 static int __put_old_timespec32(const struct timespec64 *ts64,
923 				   struct old_timespec32 __user *cts)
924 {
925 	struct old_timespec32 ts = {
926 		.tv_sec = ts64->tv_sec,
927 		.tv_nsec = ts64->tv_nsec
928 	};
929 	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
930 }
931 
get_old_timespec32(struct timespec64 * ts,const void __user * uts)932 int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
933 {
934 	if (COMPAT_USE_64BIT_TIME)
935 		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
936 	else
937 		return __get_old_timespec32(ts, uts);
938 }
939 EXPORT_SYMBOL_GPL(get_old_timespec32);
940 
put_old_timespec32(const struct timespec64 * ts,void __user * uts)941 int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
942 {
943 	if (COMPAT_USE_64BIT_TIME)
944 		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
945 	else
946 		return __put_old_timespec32(ts, uts);
947 }
948 EXPORT_SYMBOL_GPL(put_old_timespec32);
949 
get_itimerspec64(struct itimerspec64 * it,const struct __kernel_itimerspec __user * uit)950 int get_itimerspec64(struct itimerspec64 *it,
951 			const struct __kernel_itimerspec __user *uit)
952 {
953 	int ret;
954 
955 	ret = get_timespec64(&it->it_interval, &uit->it_interval);
956 	if (ret)
957 		return ret;
958 
959 	ret = get_timespec64(&it->it_value, &uit->it_value);
960 
961 	return ret;
962 }
963 EXPORT_SYMBOL_GPL(get_itimerspec64);
964 
put_itimerspec64(const struct itimerspec64 * it,struct __kernel_itimerspec __user * uit)965 int put_itimerspec64(const struct itimerspec64 *it,
966 			struct __kernel_itimerspec __user *uit)
967 {
968 	int ret;
969 
970 	ret = put_timespec64(&it->it_interval, &uit->it_interval);
971 	if (ret)
972 		return ret;
973 
974 	ret = put_timespec64(&it->it_value, &uit->it_value);
975 
976 	return ret;
977 }
978 EXPORT_SYMBOL_GPL(put_itimerspec64);
979 
get_old_itimerspec32(struct itimerspec64 * its,const struct old_itimerspec32 __user * uits)980 int get_old_itimerspec32(struct itimerspec64 *its,
981 			const struct old_itimerspec32 __user *uits)
982 {
983 
984 	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
985 	    __get_old_timespec32(&its->it_value, &uits->it_value))
986 		return -EFAULT;
987 	return 0;
988 }
989 EXPORT_SYMBOL_GPL(get_old_itimerspec32);
990 
put_old_itimerspec32(const struct itimerspec64 * its,struct old_itimerspec32 __user * uits)991 int put_old_itimerspec32(const struct itimerspec64 *its,
992 			struct old_itimerspec32 __user *uits)
993 {
994 	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
995 	    __put_old_timespec32(&its->it_value, &uits->it_value))
996 		return -EFAULT;
997 	return 0;
998 }
999 EXPORT_SYMBOL_GPL(put_old_itimerspec32);
1000