• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/mount.c - kernfs mount implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 
20 #include "kernfs-internal.h"
21 
22 struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
23 
kernfs_sop_show_options(struct seq_file * sf,struct dentry * dentry)24 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
25 {
26 	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
27 	struct kernfs_syscall_ops *scops = root->syscall_ops;
28 
29 	if (scops && scops->show_options)
30 		return scops->show_options(sf, root);
31 	return 0;
32 }
33 
kernfs_sop_show_path(struct seq_file * sf,struct dentry * dentry)34 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
35 {
36 	struct kernfs_node *node = kernfs_dentry_node(dentry);
37 	struct kernfs_root *root = kernfs_root(node);
38 	struct kernfs_syscall_ops *scops = root->syscall_ops;
39 
40 	if (scops && scops->show_path)
41 		return scops->show_path(sf, node, root);
42 
43 	seq_dentry(sf, dentry, " \t\n\\");
44 	return 0;
45 }
46 
47 const struct super_operations kernfs_sops = {
48 	.statfs		= simple_statfs,
49 	.drop_inode	= generic_delete_inode,
50 	.evict_inode	= kernfs_evict_inode,
51 
52 	.show_options	= kernfs_sop_show_options,
53 	.show_path	= kernfs_sop_show_path,
54 };
55 
56 /*
57  * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
58  * number and generation
59  */
kernfs_get_node_by_id(struct kernfs_root * root,const union kernfs_node_id * id)60 struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
61 	const union kernfs_node_id *id)
62 {
63 	struct kernfs_node *kn;
64 
65 	kn = kernfs_find_and_get_node_by_ino(root, id->ino);
66 	if (!kn)
67 		return NULL;
68 	if (kn->id.generation != id->generation) {
69 		kernfs_put(kn);
70 		return NULL;
71 	}
72 	return kn;
73 }
74 
kernfs_fh_get_inode(struct super_block * sb,u64 ino,u32 generation)75 static struct inode *kernfs_fh_get_inode(struct super_block *sb,
76 		u64 ino, u32 generation)
77 {
78 	struct kernfs_super_info *info = kernfs_info(sb);
79 	struct inode *inode;
80 	struct kernfs_node *kn;
81 
82 	if (ino == 0)
83 		return ERR_PTR(-ESTALE);
84 
85 	kn = kernfs_find_and_get_node_by_ino(info->root, ino);
86 	if (!kn)
87 		return ERR_PTR(-ESTALE);
88 	inode = kernfs_get_inode(sb, kn);
89 	kernfs_put(kn);
90 	if (!inode)
91 		return ERR_PTR(-ESTALE);
92 
93 	if (generation && inode->i_generation != generation) {
94 		/* we didn't find the right inode.. */
95 		iput(inode);
96 		return ERR_PTR(-ESTALE);
97 	}
98 	return inode;
99 }
100 
kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)101 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
102 		int fh_len, int fh_type)
103 {
104 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
105 				    kernfs_fh_get_inode);
106 }
107 
kernfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)108 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
109 		int fh_len, int fh_type)
110 {
111 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
112 				    kernfs_fh_get_inode);
113 }
114 
kernfs_get_parent_dentry(struct dentry * child)115 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
116 {
117 	struct kernfs_node *kn = kernfs_dentry_node(child);
118 
119 	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
120 }
121 
122 static const struct export_operations kernfs_export_ops = {
123 	.fh_to_dentry	= kernfs_fh_to_dentry,
124 	.fh_to_parent	= kernfs_fh_to_parent,
125 	.get_parent	= kernfs_get_parent_dentry,
126 };
127 
128 /**
129  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
130  * @sb: the super_block in question
131  *
132  * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
133  * %NULL is returned.
134  */
kernfs_root_from_sb(struct super_block * sb)135 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
136 {
137 	if (sb->s_op == &kernfs_sops)
138 		return kernfs_info(sb)->root;
139 	return NULL;
140 }
141 
142 /*
143  * find the next ancestor in the path down to @child, where @parent was the
144  * ancestor whose descendant we want to find.
145  *
146  * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
147  * node.  If @parent is b, then we return the node for c.
148  * Passing in d as @parent is not ok.
149  */
find_next_ancestor(struct kernfs_node * child,struct kernfs_node * parent)150 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
151 					      struct kernfs_node *parent)
152 {
153 	if (child == parent) {
154 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
155 		return NULL;
156 	}
157 
158 	while (child->parent != parent) {
159 		if (!child->parent)
160 			return NULL;
161 		child = child->parent;
162 	}
163 
164 	return child;
165 }
166 
167 /**
168  * kernfs_node_dentry - get a dentry for the given kernfs_node
169  * @kn: kernfs_node for which a dentry is needed
170  * @sb: the kernfs super_block
171  */
kernfs_node_dentry(struct kernfs_node * kn,struct super_block * sb)172 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
173 				  struct super_block *sb)
174 {
175 	struct dentry *dentry;
176 	struct kernfs_node *knparent = NULL;
177 
178 	BUG_ON(sb->s_op != &kernfs_sops);
179 
180 	dentry = dget(sb->s_root);
181 
182 	/* Check if this is the root kernfs_node */
183 	if (!kn->parent)
184 		return dentry;
185 
186 	knparent = find_next_ancestor(kn, NULL);
187 	if (WARN_ON(!knparent)) {
188 		dput(dentry);
189 		return ERR_PTR(-EINVAL);
190 	}
191 
192 	do {
193 		struct dentry *dtmp;
194 		struct kernfs_node *kntmp;
195 
196 		if (kn == knparent)
197 			return dentry;
198 		kntmp = find_next_ancestor(kn, knparent);
199 		if (WARN_ON(!kntmp)) {
200 			dput(dentry);
201 			return ERR_PTR(-EINVAL);
202 		}
203 		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
204 					       strlen(kntmp->name));
205 		dput(dentry);
206 		if (IS_ERR(dtmp))
207 			return dtmp;
208 		knparent = kntmp;
209 		dentry = dtmp;
210 	} while (true);
211 }
212 
kernfs_fill_super(struct super_block * sb,struct kernfs_fs_context * kfc)213 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
214 {
215 	struct kernfs_super_info *info = kernfs_info(sb);
216 	struct inode *inode;
217 	struct dentry *root;
218 
219 	info->sb = sb;
220 	/* Userspace would break if executables or devices appear on sysfs */
221 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
222 	sb->s_blocksize = PAGE_SIZE;
223 	sb->s_blocksize_bits = PAGE_SHIFT;
224 	sb->s_magic = kfc->magic;
225 	sb->s_op = &kernfs_sops;
226 	sb->s_xattr = kernfs_xattr_handlers;
227 	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
228 		sb->s_export_op = &kernfs_export_ops;
229 	sb->s_time_gran = 1;
230 
231 	/* sysfs dentries and inodes don't require IO to create */
232 	sb->s_shrink.seeks = 0;
233 
234 	/* get root inode, initialize and unlock it */
235 	mutex_lock(&kernfs_mutex);
236 	inode = kernfs_get_inode(sb, info->root->kn);
237 	mutex_unlock(&kernfs_mutex);
238 	if (!inode) {
239 		pr_debug("kernfs: could not get root inode\n");
240 		return -ENOMEM;
241 	}
242 
243 	/* instantiate and link root dentry */
244 	root = d_make_root(inode);
245 	if (!root) {
246 		pr_debug("%s: could not get root dentry!\n", __func__);
247 		return -ENOMEM;
248 	}
249 	sb->s_root = root;
250 	sb->s_d_op = &kernfs_dops;
251 	return 0;
252 }
253 
kernfs_test_super(struct super_block * sb,struct fs_context * fc)254 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
255 {
256 	struct kernfs_super_info *sb_info = kernfs_info(sb);
257 	struct kernfs_super_info *info = fc->s_fs_info;
258 
259 	return sb_info->root == info->root && sb_info->ns == info->ns;
260 }
261 
kernfs_set_super(struct super_block * sb,struct fs_context * fc)262 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
263 {
264 	struct kernfs_fs_context *kfc = fc->fs_private;
265 
266 	kfc->ns_tag = NULL;
267 	return set_anon_super_fc(sb, fc);
268 }
269 
270 /**
271  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
272  * @sb: super_block of interest
273  *
274  * Return the namespace tag associated with kernfs super_block @sb.
275  */
kernfs_super_ns(struct super_block * sb)276 const void *kernfs_super_ns(struct super_block *sb)
277 {
278 	struct kernfs_super_info *info = kernfs_info(sb);
279 
280 	return info->ns;
281 }
282 
283 /**
284  * kernfs_get_tree - kernfs filesystem access/retrieval helper
285  * @fc: The filesystem context.
286  *
287  * This is to be called from each kernfs user's fs_context->ops->get_tree()
288  * implementation, which should set the specified ->@fs_type and ->@flags, and
289  * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
290  * respectively.
291  */
kernfs_get_tree(struct fs_context * fc)292 int kernfs_get_tree(struct fs_context *fc)
293 {
294 	struct kernfs_fs_context *kfc = fc->fs_private;
295 	struct super_block *sb;
296 	struct kernfs_super_info *info;
297 	int error;
298 
299 	info = kzalloc(sizeof(*info), GFP_KERNEL);
300 	if (!info)
301 		return -ENOMEM;
302 
303 	info->root = kfc->root;
304 	info->ns = kfc->ns_tag;
305 	INIT_LIST_HEAD(&info->node);
306 
307 	fc->s_fs_info = info;
308 	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
309 	if (IS_ERR(sb))
310 		return PTR_ERR(sb);
311 
312 	if (!sb->s_root) {
313 		struct kernfs_super_info *info = kernfs_info(sb);
314 
315 		kfc->new_sb_created = true;
316 
317 		error = kernfs_fill_super(sb, kfc);
318 		if (error) {
319 			deactivate_locked_super(sb);
320 			return error;
321 		}
322 		sb->s_flags |= SB_ACTIVE;
323 
324 		mutex_lock(&kernfs_mutex);
325 		list_add(&info->node, &info->root->supers);
326 		mutex_unlock(&kernfs_mutex);
327 	}
328 
329 	fc->root = dget(sb->s_root);
330 	return 0;
331 }
332 
kernfs_free_fs_context(struct fs_context * fc)333 void kernfs_free_fs_context(struct fs_context *fc)
334 {
335 	/* Note that we don't deal with kfc->ns_tag here. */
336 	kfree(fc->s_fs_info);
337 	fc->s_fs_info = NULL;
338 }
339 
340 /**
341  * kernfs_kill_sb - kill_sb for kernfs
342  * @sb: super_block being killed
343  *
344  * This can be used directly for file_system_type->kill_sb().  If a kernfs
345  * user needs extra cleanup, it can implement its own kill_sb() and call
346  * this function at the end.
347  */
kernfs_kill_sb(struct super_block * sb)348 void kernfs_kill_sb(struct super_block *sb)
349 {
350 	struct kernfs_super_info *info = kernfs_info(sb);
351 
352 	mutex_lock(&kernfs_mutex);
353 	list_del(&info->node);
354 	mutex_unlock(&kernfs_mutex);
355 
356 	/*
357 	 * Remove the superblock from fs_supers/s_instances
358 	 * so we can't find it, before freeing kernfs_super_info.
359 	 */
360 	kill_anon_super(sb);
361 	kfree(info);
362 }
363 
kernfs_init(void)364 void __init kernfs_init(void)
365 {
366 
367 	/*
368 	 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
369 	 * can access the slab lock free. This could introduce stale nodes,
370 	 * please see how kernfs_find_and_get_node_by_ino filters out stale
371 	 * nodes.
372 	 */
373 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
374 					      sizeof(struct kernfs_node),
375 					      0,
376 					      SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
377 					      NULL);
378 
379 	/* Creates slab cache for kernfs inode attributes */
380 	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
381 					      sizeof(struct kernfs_iattrs),
382 					      0, SLAB_PANIC, NULL);
383 }
384