1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/page.h>
24 #include <linux/memcontrol.h>
25
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/kmem.h>
28
29 #include "slab.h"
30
31 enum slab_state slab_state;
32 LIST_HEAD(slab_caches);
33 DEFINE_MUTEX(slab_mutex);
34 struct kmem_cache *kmem_cache;
35
36 #ifdef CONFIG_HARDENED_USERCOPY
37 bool usercopy_fallback __ro_after_init =
38 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
39 module_param(usercopy_fallback, bool, 0400);
40 MODULE_PARM_DESC(usercopy_fallback,
41 "WARN instead of reject usercopy whitelist violations");
42 #endif
43
44 static LIST_HEAD(slab_caches_to_rcu_destroy);
45 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
46 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
47 slab_caches_to_rcu_destroy_workfn);
48
49 /*
50 * Set of flags that will prevent slab merging
51 */
52 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
53 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
54 SLAB_FAILSLAB | SLAB_KASAN)
55
56 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
57 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
58
59 /*
60 * Merge control. If this is set then no merging of slab caches will occur.
61 */
62 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
63
setup_slab_nomerge(char * str)64 static int __init setup_slab_nomerge(char *str)
65 {
66 slab_nomerge = true;
67 return 1;
68 }
69
70 #ifdef CONFIG_SLUB
71 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
72 #endif
73
74 __setup("slab_nomerge", setup_slab_nomerge);
75
76 /*
77 * Determine the size of a slab object
78 */
kmem_cache_size(struct kmem_cache * s)79 unsigned int kmem_cache_size(struct kmem_cache *s)
80 {
81 return s->object_size;
82 }
83 EXPORT_SYMBOL(kmem_cache_size);
84
85 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)86 static int kmem_cache_sanity_check(const char *name, unsigned int size)
87 {
88 if (!name || in_interrupt() || size < sizeof(void *) ||
89 size > KMALLOC_MAX_SIZE) {
90 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
91 return -EINVAL;
92 }
93
94 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
95 return 0;
96 }
97 #else
kmem_cache_sanity_check(const char * name,unsigned int size)98 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
99 {
100 return 0;
101 }
102 #endif
103
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)104 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
105 {
106 size_t i;
107
108 for (i = 0; i < nr; i++) {
109 if (s)
110 kmem_cache_free(s, p[i]);
111 else
112 kfree(p[i]);
113 }
114 }
115
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)116 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 void **p)
118 {
119 size_t i;
120
121 for (i = 0; i < nr; i++) {
122 void *x = p[i] = kmem_cache_alloc(s, flags);
123 if (!x) {
124 __kmem_cache_free_bulk(s, i, p);
125 return 0;
126 }
127 }
128 return i;
129 }
130
131 #ifdef CONFIG_MEMCG_KMEM
132
133 LIST_HEAD(slab_root_caches);
134 static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
135
136 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
137
slab_init_memcg_params(struct kmem_cache * s)138 void slab_init_memcg_params(struct kmem_cache *s)
139 {
140 s->memcg_params.root_cache = NULL;
141 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
142 INIT_LIST_HEAD(&s->memcg_params.children);
143 s->memcg_params.dying = false;
144 }
145
init_memcg_params(struct kmem_cache * s,struct kmem_cache * root_cache)146 static int init_memcg_params(struct kmem_cache *s,
147 struct kmem_cache *root_cache)
148 {
149 struct memcg_cache_array *arr;
150
151 if (root_cache) {
152 int ret = percpu_ref_init(&s->memcg_params.refcnt,
153 kmemcg_cache_shutdown,
154 0, GFP_KERNEL);
155 if (ret)
156 return ret;
157
158 s->memcg_params.root_cache = root_cache;
159 INIT_LIST_HEAD(&s->memcg_params.children_node);
160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161 return 0;
162 }
163
164 slab_init_memcg_params(s);
165
166 if (!memcg_nr_cache_ids)
167 return 0;
168
169 arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
172 if (!arr)
173 return -ENOMEM;
174
175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 return 0;
177 }
178
destroy_memcg_params(struct kmem_cache * s)179 static void destroy_memcg_params(struct kmem_cache *s)
180 {
181 if (is_root_cache(s)) {
182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 } else {
184 mem_cgroup_put(s->memcg_params.memcg);
185 WRITE_ONCE(s->memcg_params.memcg, NULL);
186 percpu_ref_exit(&s->memcg_params.refcnt);
187 }
188 }
189
free_memcg_params(struct rcu_head * rcu)190 static void free_memcg_params(struct rcu_head *rcu)
191 {
192 struct memcg_cache_array *old;
193
194 old = container_of(rcu, struct memcg_cache_array, rcu);
195 kvfree(old);
196 }
197
update_memcg_params(struct kmem_cache * s,int new_array_size)198 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
199 {
200 struct memcg_cache_array *old, *new;
201
202 new = kvzalloc(sizeof(struct memcg_cache_array) +
203 new_array_size * sizeof(void *), GFP_KERNEL);
204 if (!new)
205 return -ENOMEM;
206
207 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
208 lockdep_is_held(&slab_mutex));
209 if (old)
210 memcpy(new->entries, old->entries,
211 memcg_nr_cache_ids * sizeof(void *));
212
213 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
214 if (old)
215 call_rcu(&old->rcu, free_memcg_params);
216 return 0;
217 }
218
memcg_update_all_caches(int num_memcgs)219 int memcg_update_all_caches(int num_memcgs)
220 {
221 struct kmem_cache *s;
222 int ret = 0;
223
224 mutex_lock(&slab_mutex);
225 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
226 ret = update_memcg_params(s, num_memcgs);
227 /*
228 * Instead of freeing the memory, we'll just leave the caches
229 * up to this point in an updated state.
230 */
231 if (ret)
232 break;
233 }
234 mutex_unlock(&slab_mutex);
235 return ret;
236 }
237
memcg_link_cache(struct kmem_cache * s,struct mem_cgroup * memcg)238 void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
239 {
240 if (is_root_cache(s)) {
241 list_add(&s->root_caches_node, &slab_root_caches);
242 } else {
243 css_get(&memcg->css);
244 s->memcg_params.memcg = memcg;
245 list_add(&s->memcg_params.children_node,
246 &s->memcg_params.root_cache->memcg_params.children);
247 list_add(&s->memcg_params.kmem_caches_node,
248 &s->memcg_params.memcg->kmem_caches);
249 }
250 }
251
memcg_unlink_cache(struct kmem_cache * s)252 static void memcg_unlink_cache(struct kmem_cache *s)
253 {
254 if (is_root_cache(s)) {
255 list_del(&s->root_caches_node);
256 } else {
257 list_del(&s->memcg_params.children_node);
258 list_del(&s->memcg_params.kmem_caches_node);
259 }
260 }
261 #else
init_memcg_params(struct kmem_cache * s,struct kmem_cache * root_cache)262 static inline int init_memcg_params(struct kmem_cache *s,
263 struct kmem_cache *root_cache)
264 {
265 return 0;
266 }
267
destroy_memcg_params(struct kmem_cache * s)268 static inline void destroy_memcg_params(struct kmem_cache *s)
269 {
270 }
271
memcg_unlink_cache(struct kmem_cache * s)272 static inline void memcg_unlink_cache(struct kmem_cache *s)
273 {
274 }
275 #endif /* CONFIG_MEMCG_KMEM */
276
277 /*
278 * Figure out what the alignment of the objects will be given a set of
279 * flags, a user specified alignment and the size of the objects.
280 */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)281 static unsigned int calculate_alignment(slab_flags_t flags,
282 unsigned int align, unsigned int size)
283 {
284 /*
285 * If the user wants hardware cache aligned objects then follow that
286 * suggestion if the object is sufficiently large.
287 *
288 * The hardware cache alignment cannot override the specified
289 * alignment though. If that is greater then use it.
290 */
291 if (flags & SLAB_HWCACHE_ALIGN) {
292 unsigned int ralign;
293
294 ralign = cache_line_size();
295 while (size <= ralign / 2)
296 ralign /= 2;
297 align = max(align, ralign);
298 }
299
300 if (align < ARCH_SLAB_MINALIGN)
301 align = ARCH_SLAB_MINALIGN;
302
303 return ALIGN(align, sizeof(void *));
304 }
305
306 /*
307 * Find a mergeable slab cache
308 */
slab_unmergeable(struct kmem_cache * s)309 int slab_unmergeable(struct kmem_cache *s)
310 {
311 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
312 return 1;
313
314 if (!is_root_cache(s))
315 return 1;
316
317 if (s->ctor)
318 return 1;
319
320 if (s->usersize)
321 return 1;
322
323 /*
324 * We may have set a slab to be unmergeable during bootstrap.
325 */
326 if (s->refcount < 0)
327 return 1;
328
329 return 0;
330 }
331
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))332 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
333 slab_flags_t flags, const char *name, void (*ctor)(void *))
334 {
335 struct kmem_cache *s;
336
337 if (slab_nomerge)
338 return NULL;
339
340 if (ctor)
341 return NULL;
342
343 size = ALIGN(size, sizeof(void *));
344 align = calculate_alignment(flags, align, size);
345 size = ALIGN(size, align);
346 flags = kmem_cache_flags(size, flags, name, NULL);
347
348 if (flags & SLAB_NEVER_MERGE)
349 return NULL;
350
351 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
352 if (slab_unmergeable(s))
353 continue;
354
355 if (size > s->size)
356 continue;
357
358 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
359 continue;
360 /*
361 * Check if alignment is compatible.
362 * Courtesy of Adrian Drzewiecki
363 */
364 if ((s->size & ~(align - 1)) != s->size)
365 continue;
366
367 if (s->size - size >= sizeof(void *))
368 continue;
369
370 if (IS_ENABLED(CONFIG_SLAB) && align &&
371 (align > s->align || s->align % align))
372 continue;
373
374 return s;
375 }
376 return NULL;
377 }
378
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct mem_cgroup * memcg,struct kmem_cache * root_cache)379 static struct kmem_cache *create_cache(const char *name,
380 unsigned int object_size, unsigned int align,
381 slab_flags_t flags, unsigned int useroffset,
382 unsigned int usersize, void (*ctor)(void *),
383 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
384 {
385 struct kmem_cache *s;
386 int err;
387
388 if (WARN_ON(useroffset + usersize > object_size))
389 useroffset = usersize = 0;
390
391 err = -ENOMEM;
392 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
393 if (!s)
394 goto out;
395
396 s->name = name;
397 s->size = s->object_size = object_size;
398 s->align = align;
399 s->ctor = ctor;
400 s->useroffset = useroffset;
401 s->usersize = usersize;
402
403 err = init_memcg_params(s, root_cache);
404 if (err)
405 goto out_free_cache;
406
407 err = __kmem_cache_create(s, flags);
408 if (err)
409 goto out_free_cache;
410
411 s->refcount = 1;
412 list_add(&s->list, &slab_caches);
413 memcg_link_cache(s, memcg);
414 out:
415 if (err)
416 return ERR_PTR(err);
417 return s;
418
419 out_free_cache:
420 destroy_memcg_params(s);
421 kmem_cache_free(kmem_cache, s);
422 goto out;
423 }
424
425 /**
426 * kmem_cache_create_usercopy - Create a cache with a region suitable
427 * for copying to userspace
428 * @name: A string which is used in /proc/slabinfo to identify this cache.
429 * @size: The size of objects to be created in this cache.
430 * @align: The required alignment for the objects.
431 * @flags: SLAB flags
432 * @useroffset: Usercopy region offset
433 * @usersize: Usercopy region size
434 * @ctor: A constructor for the objects.
435 *
436 * Cannot be called within a interrupt, but can be interrupted.
437 * The @ctor is run when new pages are allocated by the cache.
438 *
439 * The flags are
440 *
441 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
442 * to catch references to uninitialised memory.
443 *
444 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
445 * for buffer overruns.
446 *
447 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
448 * cacheline. This can be beneficial if you're counting cycles as closely
449 * as davem.
450 *
451 * Return: a pointer to the cache on success, NULL on failure.
452 */
453 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))454 kmem_cache_create_usercopy(const char *name,
455 unsigned int size, unsigned int align,
456 slab_flags_t flags,
457 unsigned int useroffset, unsigned int usersize,
458 void (*ctor)(void *))
459 {
460 struct kmem_cache *s = NULL;
461 const char *cache_name;
462 int err;
463
464 get_online_cpus();
465 get_online_mems();
466 memcg_get_cache_ids();
467
468 mutex_lock(&slab_mutex);
469
470 err = kmem_cache_sanity_check(name, size);
471 if (err) {
472 goto out_unlock;
473 }
474
475 /* Refuse requests with allocator specific flags */
476 if (flags & ~SLAB_FLAGS_PERMITTED) {
477 err = -EINVAL;
478 goto out_unlock;
479 }
480
481 /*
482 * Some allocators will constraint the set of valid flags to a subset
483 * of all flags. We expect them to define CACHE_CREATE_MASK in this
484 * case, and we'll just provide them with a sanitized version of the
485 * passed flags.
486 */
487 flags &= CACHE_CREATE_MASK;
488
489 /* Fail closed on bad usersize of useroffset values. */
490 if (WARN_ON(!usersize && useroffset) ||
491 WARN_ON(size < usersize || size - usersize < useroffset))
492 usersize = useroffset = 0;
493
494 if (!usersize)
495 s = __kmem_cache_alias(name, size, align, flags, ctor);
496 if (s)
497 goto out_unlock;
498
499 cache_name = kstrdup_const(name, GFP_KERNEL);
500 if (!cache_name) {
501 err = -ENOMEM;
502 goto out_unlock;
503 }
504
505 s = create_cache(cache_name, size,
506 calculate_alignment(flags, align, size),
507 flags, useroffset, usersize, ctor, NULL, NULL);
508 if (IS_ERR(s)) {
509 err = PTR_ERR(s);
510 kfree_const(cache_name);
511 }
512
513 out_unlock:
514 mutex_unlock(&slab_mutex);
515
516 memcg_put_cache_ids();
517 put_online_mems();
518 put_online_cpus();
519
520 if (err) {
521 if (flags & SLAB_PANIC)
522 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
523 name, err);
524 else {
525 pr_warn("kmem_cache_create(%s) failed with error %d\n",
526 name, err);
527 dump_stack();
528 }
529 return NULL;
530 }
531 return s;
532 }
533 EXPORT_SYMBOL(kmem_cache_create_usercopy);
534
535 /**
536 * kmem_cache_create - Create a cache.
537 * @name: A string which is used in /proc/slabinfo to identify this cache.
538 * @size: The size of objects to be created in this cache.
539 * @align: The required alignment for the objects.
540 * @flags: SLAB flags
541 * @ctor: A constructor for the objects.
542 *
543 * Cannot be called within a interrupt, but can be interrupted.
544 * The @ctor is run when new pages are allocated by the cache.
545 *
546 * The flags are
547 *
548 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
549 * to catch references to uninitialised memory.
550 *
551 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
552 * for buffer overruns.
553 *
554 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
555 * cacheline. This can be beneficial if you're counting cycles as closely
556 * as davem.
557 *
558 * Return: a pointer to the cache on success, NULL on failure.
559 */
560 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))561 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
562 slab_flags_t flags, void (*ctor)(void *))
563 {
564 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
565 ctor);
566 }
567 EXPORT_SYMBOL(kmem_cache_create);
568
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)569 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
570 {
571 LIST_HEAD(to_destroy);
572 struct kmem_cache *s, *s2;
573
574 /*
575 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
576 * @slab_caches_to_rcu_destroy list. The slab pages are freed
577 * through RCU and and the associated kmem_cache are dereferenced
578 * while freeing the pages, so the kmem_caches should be freed only
579 * after the pending RCU operations are finished. As rcu_barrier()
580 * is a pretty slow operation, we batch all pending destructions
581 * asynchronously.
582 */
583 mutex_lock(&slab_mutex);
584 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
585 mutex_unlock(&slab_mutex);
586
587 if (list_empty(&to_destroy))
588 return;
589
590 rcu_barrier();
591
592 list_for_each_entry_safe(s, s2, &to_destroy, list) {
593 #ifdef SLAB_SUPPORTS_SYSFS
594 sysfs_slab_release(s);
595 #else
596 slab_kmem_cache_release(s);
597 #endif
598 }
599 }
600
shutdown_cache(struct kmem_cache * s)601 static int shutdown_cache(struct kmem_cache *s)
602 {
603 /* free asan quarantined objects */
604 kasan_cache_shutdown(s);
605
606 if (__kmem_cache_shutdown(s) != 0)
607 return -EBUSY;
608
609 memcg_unlink_cache(s);
610 list_del(&s->list);
611
612 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
613 #ifdef SLAB_SUPPORTS_SYSFS
614 sysfs_slab_unlink(s);
615 #endif
616 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
617 schedule_work(&slab_caches_to_rcu_destroy_work);
618 } else {
619 #ifdef SLAB_SUPPORTS_SYSFS
620 sysfs_slab_unlink(s);
621 sysfs_slab_release(s);
622 #else
623 slab_kmem_cache_release(s);
624 #endif
625 }
626
627 return 0;
628 }
629
630 #ifdef CONFIG_MEMCG_KMEM
631 /*
632 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
633 * @memcg: The memory cgroup the new cache is for.
634 * @root_cache: The parent of the new cache.
635 *
636 * This function attempts to create a kmem cache that will serve allocation
637 * requests going from @memcg to @root_cache. The new cache inherits properties
638 * from its parent.
639 */
memcg_create_kmem_cache(struct mem_cgroup * memcg,struct kmem_cache * root_cache)640 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
641 struct kmem_cache *root_cache)
642 {
643 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
644 struct cgroup_subsys_state *css = &memcg->css;
645 struct memcg_cache_array *arr;
646 struct kmem_cache *s = NULL;
647 char *cache_name;
648 int idx;
649
650 get_online_cpus();
651 get_online_mems();
652
653 mutex_lock(&slab_mutex);
654
655 /*
656 * The memory cgroup could have been offlined while the cache
657 * creation work was pending.
658 */
659 if (memcg->kmem_state != KMEM_ONLINE)
660 goto out_unlock;
661
662 idx = memcg_cache_id(memcg);
663 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
664 lockdep_is_held(&slab_mutex));
665
666 /*
667 * Since per-memcg caches are created asynchronously on first
668 * allocation (see memcg_kmem_get_cache()), several threads can try to
669 * create the same cache, but only one of them may succeed.
670 */
671 if (arr->entries[idx])
672 goto out_unlock;
673
674 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
675 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
676 css->serial_nr, memcg_name_buf);
677 if (!cache_name)
678 goto out_unlock;
679
680 s = create_cache(cache_name, root_cache->object_size,
681 root_cache->align,
682 root_cache->flags & CACHE_CREATE_MASK,
683 root_cache->useroffset, root_cache->usersize,
684 root_cache->ctor, memcg, root_cache);
685 /*
686 * If we could not create a memcg cache, do not complain, because
687 * that's not critical at all as we can always proceed with the root
688 * cache.
689 */
690 if (IS_ERR(s)) {
691 kfree(cache_name);
692 goto out_unlock;
693 }
694
695 /*
696 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
697 * barrier here to ensure nobody will see the kmem_cache partially
698 * initialized.
699 */
700 smp_wmb();
701 arr->entries[idx] = s;
702
703 out_unlock:
704 mutex_unlock(&slab_mutex);
705
706 put_online_mems();
707 put_online_cpus();
708 }
709
kmemcg_workfn(struct work_struct * work)710 static void kmemcg_workfn(struct work_struct *work)
711 {
712 struct kmem_cache *s = container_of(work, struct kmem_cache,
713 memcg_params.work);
714
715 get_online_cpus();
716 get_online_mems();
717
718 mutex_lock(&slab_mutex);
719 s->memcg_params.work_fn(s);
720 mutex_unlock(&slab_mutex);
721
722 put_online_mems();
723 put_online_cpus();
724 }
725
kmemcg_rcufn(struct rcu_head * head)726 static void kmemcg_rcufn(struct rcu_head *head)
727 {
728 struct kmem_cache *s = container_of(head, struct kmem_cache,
729 memcg_params.rcu_head);
730
731 /*
732 * We need to grab blocking locks. Bounce to ->work. The
733 * work item shares the space with the RCU head and can't be
734 * initialized eariler.
735 */
736 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
737 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
738 }
739
kmemcg_cache_shutdown_fn(struct kmem_cache * s)740 static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
741 {
742 WARN_ON(shutdown_cache(s));
743 }
744
kmemcg_cache_shutdown(struct percpu_ref * percpu_ref)745 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
746 {
747 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
748 memcg_params.refcnt);
749 unsigned long flags;
750
751 spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
752 if (s->memcg_params.root_cache->memcg_params.dying)
753 goto unlock;
754
755 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
756 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
757 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
758
759 unlock:
760 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
761 }
762
kmemcg_cache_deactivate_after_rcu(struct kmem_cache * s)763 static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
764 {
765 __kmemcg_cache_deactivate_after_rcu(s);
766 percpu_ref_kill(&s->memcg_params.refcnt);
767 }
768
kmemcg_cache_deactivate(struct kmem_cache * s)769 static void kmemcg_cache_deactivate(struct kmem_cache *s)
770 {
771 if (WARN_ON_ONCE(is_root_cache(s)))
772 return;
773
774 __kmemcg_cache_deactivate(s);
775 s->flags |= SLAB_DEACTIVATED;
776
777 /*
778 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
779 * flag and make sure that no new kmem_cache deactivation tasks
780 * are queued (see flush_memcg_workqueue() ).
781 */
782 spin_lock_irq(&memcg_kmem_wq_lock);
783 if (s->memcg_params.root_cache->memcg_params.dying)
784 goto unlock;
785
786 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
787 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
788 unlock:
789 spin_unlock_irq(&memcg_kmem_wq_lock);
790 }
791
memcg_deactivate_kmem_caches(struct mem_cgroup * memcg,struct mem_cgroup * parent)792 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
793 struct mem_cgroup *parent)
794 {
795 int idx;
796 struct memcg_cache_array *arr;
797 struct kmem_cache *s, *c;
798 unsigned int nr_reparented;
799
800 idx = memcg_cache_id(memcg);
801
802 get_online_cpus();
803 get_online_mems();
804
805 mutex_lock(&slab_mutex);
806 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
807 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
808 lockdep_is_held(&slab_mutex));
809 c = arr->entries[idx];
810 if (!c)
811 continue;
812
813 kmemcg_cache_deactivate(c);
814 arr->entries[idx] = NULL;
815 }
816 nr_reparented = 0;
817 list_for_each_entry(s, &memcg->kmem_caches,
818 memcg_params.kmem_caches_node) {
819 WRITE_ONCE(s->memcg_params.memcg, parent);
820 css_put(&memcg->css);
821 nr_reparented++;
822 }
823 if (nr_reparented) {
824 list_splice_init(&memcg->kmem_caches,
825 &parent->kmem_caches);
826 css_get_many(&parent->css, nr_reparented);
827 }
828 mutex_unlock(&slab_mutex);
829
830 put_online_mems();
831 put_online_cpus();
832 }
833
shutdown_memcg_caches(struct kmem_cache * s)834 static int shutdown_memcg_caches(struct kmem_cache *s)
835 {
836 struct memcg_cache_array *arr;
837 struct kmem_cache *c, *c2;
838 LIST_HEAD(busy);
839 int i;
840
841 BUG_ON(!is_root_cache(s));
842
843 /*
844 * First, shutdown active caches, i.e. caches that belong to online
845 * memory cgroups.
846 */
847 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
848 lockdep_is_held(&slab_mutex));
849 for_each_memcg_cache_index(i) {
850 c = arr->entries[i];
851 if (!c)
852 continue;
853 if (shutdown_cache(c))
854 /*
855 * The cache still has objects. Move it to a temporary
856 * list so as not to try to destroy it for a second
857 * time while iterating over inactive caches below.
858 */
859 list_move(&c->memcg_params.children_node, &busy);
860 else
861 /*
862 * The cache is empty and will be destroyed soon. Clear
863 * the pointer to it in the memcg_caches array so that
864 * it will never be accessed even if the root cache
865 * stays alive.
866 */
867 arr->entries[i] = NULL;
868 }
869
870 /*
871 * Second, shutdown all caches left from memory cgroups that are now
872 * offline.
873 */
874 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
875 memcg_params.children_node)
876 shutdown_cache(c);
877
878 list_splice(&busy, &s->memcg_params.children);
879
880 /*
881 * A cache being destroyed must be empty. In particular, this means
882 * that all per memcg caches attached to it must be empty too.
883 */
884 if (!list_empty(&s->memcg_params.children))
885 return -EBUSY;
886 return 0;
887 }
888
flush_memcg_workqueue(struct kmem_cache * s)889 static void flush_memcg_workqueue(struct kmem_cache *s)
890 {
891 spin_lock_irq(&memcg_kmem_wq_lock);
892 s->memcg_params.dying = true;
893 spin_unlock_irq(&memcg_kmem_wq_lock);
894
895 /*
896 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
897 * sure all registered rcu callbacks have been invoked.
898 */
899 rcu_barrier();
900
901 /*
902 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
903 * deactivates the memcg kmem_caches through workqueue. Make sure all
904 * previous workitems on workqueue are processed.
905 */
906 if (likely(memcg_kmem_cache_wq))
907 flush_workqueue(memcg_kmem_cache_wq);
908
909 /*
910 * If we're racing with children kmem_cache deactivation, it might
911 * take another rcu grace period to complete their destruction.
912 * At this moment the corresponding percpu_ref_kill() call should be
913 * done, but it might take another rcu grace period to complete
914 * switching to the atomic mode.
915 * Please, note that we check without grabbing the slab_mutex. It's safe
916 * because at this moment the children list can't grow.
917 */
918 if (!list_empty(&s->memcg_params.children))
919 rcu_barrier();
920 }
921 #else
shutdown_memcg_caches(struct kmem_cache * s)922 static inline int shutdown_memcg_caches(struct kmem_cache *s)
923 {
924 return 0;
925 }
926
flush_memcg_workqueue(struct kmem_cache * s)927 static inline void flush_memcg_workqueue(struct kmem_cache *s)
928 {
929 }
930 #endif /* CONFIG_MEMCG_KMEM */
931
slab_kmem_cache_release(struct kmem_cache * s)932 void slab_kmem_cache_release(struct kmem_cache *s)
933 {
934 __kmem_cache_release(s);
935 destroy_memcg_params(s);
936 kfree_const(s->name);
937 kmem_cache_free(kmem_cache, s);
938 }
939
kmem_cache_destroy(struct kmem_cache * s)940 void kmem_cache_destroy(struct kmem_cache *s)
941 {
942 int err;
943
944 if (unlikely(!s))
945 return;
946
947 flush_memcg_workqueue(s);
948
949 get_online_cpus();
950 get_online_mems();
951
952 mutex_lock(&slab_mutex);
953
954 s->refcount--;
955 if (s->refcount)
956 goto out_unlock;
957
958 err = shutdown_memcg_caches(s);
959 if (!err)
960 err = shutdown_cache(s);
961
962 if (err) {
963 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
964 s->name);
965 dump_stack();
966 }
967 out_unlock:
968 mutex_unlock(&slab_mutex);
969
970 put_online_mems();
971 put_online_cpus();
972 }
973 EXPORT_SYMBOL(kmem_cache_destroy);
974
975 /**
976 * kmem_cache_shrink - Shrink a cache.
977 * @cachep: The cache to shrink.
978 *
979 * Releases as many slabs as possible for a cache.
980 * To help debugging, a zero exit status indicates all slabs were released.
981 *
982 * Return: %0 if all slabs were released, non-zero otherwise
983 */
kmem_cache_shrink(struct kmem_cache * cachep)984 int kmem_cache_shrink(struct kmem_cache *cachep)
985 {
986 int ret;
987
988 get_online_cpus();
989 get_online_mems();
990 kasan_cache_shrink(cachep);
991 ret = __kmem_cache_shrink(cachep);
992 put_online_mems();
993 put_online_cpus();
994 return ret;
995 }
996 EXPORT_SYMBOL(kmem_cache_shrink);
997
998 /**
999 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
1000 * @s: The cache pointer
1001 */
kmem_cache_shrink_all(struct kmem_cache * s)1002 void kmem_cache_shrink_all(struct kmem_cache *s)
1003 {
1004 struct kmem_cache *c;
1005
1006 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
1007 kmem_cache_shrink(s);
1008 return;
1009 }
1010
1011 get_online_cpus();
1012 get_online_mems();
1013 kasan_cache_shrink(s);
1014 __kmem_cache_shrink(s);
1015
1016 /*
1017 * We have to take the slab_mutex to protect from the memcg list
1018 * modification.
1019 */
1020 mutex_lock(&slab_mutex);
1021 for_each_memcg_cache(c, s) {
1022 /*
1023 * Don't need to shrink deactivated memcg caches.
1024 */
1025 if (s->flags & SLAB_DEACTIVATED)
1026 continue;
1027 kasan_cache_shrink(c);
1028 __kmem_cache_shrink(c);
1029 }
1030 mutex_unlock(&slab_mutex);
1031 put_online_mems();
1032 put_online_cpus();
1033 }
1034
slab_is_available(void)1035 bool slab_is_available(void)
1036 {
1037 return slab_state >= UP;
1038 }
1039
1040 #ifndef CONFIG_SLOB
1041 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)1042 void __init create_boot_cache(struct kmem_cache *s, const char *name,
1043 unsigned int size, slab_flags_t flags,
1044 unsigned int useroffset, unsigned int usersize)
1045 {
1046 int err;
1047 unsigned int align = ARCH_KMALLOC_MINALIGN;
1048
1049 s->name = name;
1050 s->size = s->object_size = size;
1051
1052 /*
1053 * For power of two sizes, guarantee natural alignment for kmalloc
1054 * caches, regardless of SL*B debugging options.
1055 */
1056 if (is_power_of_2(size))
1057 align = max(align, size);
1058 s->align = calculate_alignment(flags, align, size);
1059
1060 s->useroffset = useroffset;
1061 s->usersize = usersize;
1062
1063 slab_init_memcg_params(s);
1064
1065 err = __kmem_cache_create(s, flags);
1066
1067 if (err)
1068 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1069 name, size, err);
1070
1071 s->refcount = -1; /* Exempt from merging for now */
1072 }
1073
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)1074 struct kmem_cache *__init create_kmalloc_cache(const char *name,
1075 unsigned int size, slab_flags_t flags,
1076 unsigned int useroffset, unsigned int usersize)
1077 {
1078 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1079
1080 if (!s)
1081 panic("Out of memory when creating slab %s\n", name);
1082
1083 create_boot_cache(s, name, size, flags, useroffset, usersize);
1084 list_add(&s->list, &slab_caches);
1085 memcg_link_cache(s, NULL);
1086 s->refcount = 1;
1087 return s;
1088 }
1089
1090 struct kmem_cache *
1091 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
1092 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1093 EXPORT_SYMBOL(kmalloc_caches);
1094
1095 /*
1096 * Conversion table for small slabs sizes / 8 to the index in the
1097 * kmalloc array. This is necessary for slabs < 192 since we have non power
1098 * of two cache sizes there. The size of larger slabs can be determined using
1099 * fls.
1100 */
1101 static u8 size_index[24] __ro_after_init = {
1102 3, /* 8 */
1103 4, /* 16 */
1104 5, /* 24 */
1105 5, /* 32 */
1106 6, /* 40 */
1107 6, /* 48 */
1108 6, /* 56 */
1109 6, /* 64 */
1110 1, /* 72 */
1111 1, /* 80 */
1112 1, /* 88 */
1113 1, /* 96 */
1114 7, /* 104 */
1115 7, /* 112 */
1116 7, /* 120 */
1117 7, /* 128 */
1118 2, /* 136 */
1119 2, /* 144 */
1120 2, /* 152 */
1121 2, /* 160 */
1122 2, /* 168 */
1123 2, /* 176 */
1124 2, /* 184 */
1125 2 /* 192 */
1126 };
1127
size_index_elem(unsigned int bytes)1128 static inline unsigned int size_index_elem(unsigned int bytes)
1129 {
1130 return (bytes - 1) / 8;
1131 }
1132
1133 /*
1134 * Find the kmem_cache structure that serves a given size of
1135 * allocation
1136 */
kmalloc_slab(size_t size,gfp_t flags)1137 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1138 {
1139 unsigned int index;
1140
1141 if (size <= 192) {
1142 if (!size)
1143 return ZERO_SIZE_PTR;
1144
1145 index = size_index[size_index_elem(size)];
1146 } else {
1147 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1148 return NULL;
1149 index = fls(size - 1);
1150 }
1151
1152 return kmalloc_caches[kmalloc_type(flags)][index];
1153 }
1154
1155 /*
1156 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1157 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1158 * kmalloc-67108864.
1159 */
1160 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1161 {NULL, 0}, {"kmalloc-96", 96},
1162 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1163 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1164 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1165 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1166 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048},
1167 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192},
1168 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768},
1169 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072},
1170 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288},
1171 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152},
1172 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608},
1173 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432},
1174 {"kmalloc-64M", 67108864}
1175 };
1176
1177 /*
1178 * Patch up the size_index table if we have strange large alignment
1179 * requirements for the kmalloc array. This is only the case for
1180 * MIPS it seems. The standard arches will not generate any code here.
1181 *
1182 * Largest permitted alignment is 256 bytes due to the way we
1183 * handle the index determination for the smaller caches.
1184 *
1185 * Make sure that nothing crazy happens if someone starts tinkering
1186 * around with ARCH_KMALLOC_MINALIGN
1187 */
setup_kmalloc_cache_index_table(void)1188 void __init setup_kmalloc_cache_index_table(void)
1189 {
1190 unsigned int i;
1191
1192 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1193 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1194
1195 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1196 unsigned int elem = size_index_elem(i);
1197
1198 if (elem >= ARRAY_SIZE(size_index))
1199 break;
1200 size_index[elem] = KMALLOC_SHIFT_LOW;
1201 }
1202
1203 if (KMALLOC_MIN_SIZE >= 64) {
1204 /*
1205 * The 96 byte size cache is not used if the alignment
1206 * is 64 byte.
1207 */
1208 for (i = 64 + 8; i <= 96; i += 8)
1209 size_index[size_index_elem(i)] = 7;
1210
1211 }
1212
1213 if (KMALLOC_MIN_SIZE >= 128) {
1214 /*
1215 * The 192 byte sized cache is not used if the alignment
1216 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1217 * instead.
1218 */
1219 for (i = 128 + 8; i <= 192; i += 8)
1220 size_index[size_index_elem(i)] = 8;
1221 }
1222 }
1223
1224 static const char *
kmalloc_cache_name(const char * prefix,unsigned int size)1225 kmalloc_cache_name(const char *prefix, unsigned int size)
1226 {
1227
1228 static const char units[3] = "\0kM";
1229 int idx = 0;
1230
1231 while (size >= 1024 && (size % 1024 == 0)) {
1232 size /= 1024;
1233 idx++;
1234 }
1235
1236 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1237 }
1238
1239 static void __init
new_kmalloc_cache(int idx,int type,slab_flags_t flags)1240 new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1241 {
1242 const char *name;
1243
1244 if (type == KMALLOC_RECLAIM) {
1245 flags |= SLAB_RECLAIM_ACCOUNT;
1246 name = kmalloc_cache_name("kmalloc-rcl",
1247 kmalloc_info[idx].size);
1248 BUG_ON(!name);
1249 } else {
1250 name = kmalloc_info[idx].name;
1251 }
1252
1253 kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1254 kmalloc_info[idx].size, flags, 0,
1255 kmalloc_info[idx].size);
1256 }
1257
1258 /*
1259 * Create the kmalloc array. Some of the regular kmalloc arrays
1260 * may already have been created because they were needed to
1261 * enable allocations for slab creation.
1262 */
create_kmalloc_caches(slab_flags_t flags)1263 void __init create_kmalloc_caches(slab_flags_t flags)
1264 {
1265 int i, type;
1266
1267 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1268 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1269 if (!kmalloc_caches[type][i])
1270 new_kmalloc_cache(i, type, flags);
1271
1272 /*
1273 * Caches that are not of the two-to-the-power-of size.
1274 * These have to be created immediately after the
1275 * earlier power of two caches
1276 */
1277 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1278 !kmalloc_caches[type][1])
1279 new_kmalloc_cache(1, type, flags);
1280 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1281 !kmalloc_caches[type][2])
1282 new_kmalloc_cache(2, type, flags);
1283 }
1284 }
1285
1286 /* Kmalloc array is now usable */
1287 slab_state = UP;
1288
1289 #ifdef CONFIG_ZONE_DMA
1290 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1291 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1292
1293 if (s) {
1294 unsigned int size = kmalloc_size(i);
1295 const char *n = kmalloc_cache_name("dma-kmalloc", size);
1296
1297 BUG_ON(!n);
1298 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1299 n, size, SLAB_CACHE_DMA | flags, 0, 0);
1300 }
1301 }
1302 #endif
1303 }
1304 #endif /* !CONFIG_SLOB */
1305
1306 /*
1307 * To avoid unnecessary overhead, we pass through large allocation requests
1308 * directly to the page allocator. We use __GFP_COMP, because we will need to
1309 * know the allocation order to free the pages properly in kfree.
1310 */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)1311 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1312 {
1313 void *ret = NULL;
1314 struct page *page;
1315
1316 flags |= __GFP_COMP;
1317 page = alloc_pages(flags, order);
1318 if (likely(page)) {
1319 ret = page_address(page);
1320 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
1321 1 << order);
1322 }
1323 ret = kasan_kmalloc_large(ret, size, flags);
1324 /* As ret might get tagged, call kmemleak hook after KASAN. */
1325 kmemleak_alloc(ret, size, 1, flags);
1326 return ret;
1327 }
1328 EXPORT_SYMBOL(kmalloc_order);
1329
1330 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)1331 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1332 {
1333 void *ret = kmalloc_order(size, flags, order);
1334 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1335 return ret;
1336 }
1337 EXPORT_SYMBOL(kmalloc_order_trace);
1338 #endif
1339
1340 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1341 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)1342 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1343 unsigned int count)
1344 {
1345 unsigned int rand;
1346 unsigned int i;
1347
1348 for (i = 0; i < count; i++)
1349 list[i] = i;
1350
1351 /* Fisher-Yates shuffle */
1352 for (i = count - 1; i > 0; i--) {
1353 rand = prandom_u32_state(state);
1354 rand %= (i + 1);
1355 swap(list[i], list[rand]);
1356 }
1357 }
1358
1359 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)1360 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1361 gfp_t gfp)
1362 {
1363 struct rnd_state state;
1364
1365 if (count < 2 || cachep->random_seq)
1366 return 0;
1367
1368 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1369 if (!cachep->random_seq)
1370 return -ENOMEM;
1371
1372 /* Get best entropy at this stage of boot */
1373 prandom_seed_state(&state, get_random_long());
1374
1375 freelist_randomize(&state, cachep->random_seq, count);
1376 return 0;
1377 }
1378
1379 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1380 void cache_random_seq_destroy(struct kmem_cache *cachep)
1381 {
1382 kfree(cachep->random_seq);
1383 cachep->random_seq = NULL;
1384 }
1385 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1386
1387 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1388 #ifdef CONFIG_SLAB
1389 #define SLABINFO_RIGHTS (0600)
1390 #else
1391 #define SLABINFO_RIGHTS (0400)
1392 #endif
1393
print_slabinfo_header(struct seq_file * m)1394 static void print_slabinfo_header(struct seq_file *m)
1395 {
1396 /*
1397 * Output format version, so at least we can change it
1398 * without _too_ many complaints.
1399 */
1400 #ifdef CONFIG_DEBUG_SLAB
1401 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1402 #else
1403 seq_puts(m, "slabinfo - version: 2.1\n");
1404 #endif
1405 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1406 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1407 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1408 #ifdef CONFIG_DEBUG_SLAB
1409 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1410 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1411 #endif
1412 seq_putc(m, '\n');
1413 }
1414
slab_start(struct seq_file * m,loff_t * pos)1415 void *slab_start(struct seq_file *m, loff_t *pos)
1416 {
1417 mutex_lock(&slab_mutex);
1418 return seq_list_start(&slab_root_caches, *pos);
1419 }
1420
slab_next(struct seq_file * m,void * p,loff_t * pos)1421 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1422 {
1423 return seq_list_next(p, &slab_root_caches, pos);
1424 }
1425
slab_stop(struct seq_file * m,void * p)1426 void slab_stop(struct seq_file *m, void *p)
1427 {
1428 mutex_unlock(&slab_mutex);
1429 }
1430
1431 static void
memcg_accumulate_slabinfo(struct kmem_cache * s,struct slabinfo * info)1432 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1433 {
1434 struct kmem_cache *c;
1435 struct slabinfo sinfo;
1436
1437 if (!is_root_cache(s))
1438 return;
1439
1440 for_each_memcg_cache(c, s) {
1441 memset(&sinfo, 0, sizeof(sinfo));
1442 get_slabinfo(c, &sinfo);
1443
1444 info->active_slabs += sinfo.active_slabs;
1445 info->num_slabs += sinfo.num_slabs;
1446 info->shared_avail += sinfo.shared_avail;
1447 info->active_objs += sinfo.active_objs;
1448 info->num_objs += sinfo.num_objs;
1449 }
1450 }
1451
cache_show(struct kmem_cache * s,struct seq_file * m)1452 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1453 {
1454 struct slabinfo sinfo;
1455
1456 memset(&sinfo, 0, sizeof(sinfo));
1457 get_slabinfo(s, &sinfo);
1458
1459 memcg_accumulate_slabinfo(s, &sinfo);
1460
1461 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1462 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1463 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1464
1465 seq_printf(m, " : tunables %4u %4u %4u",
1466 sinfo.limit, sinfo.batchcount, sinfo.shared);
1467 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1468 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1469 slabinfo_show_stats(m, s);
1470 seq_putc(m, '\n');
1471 }
1472
slab_show(struct seq_file * m,void * p)1473 static int slab_show(struct seq_file *m, void *p)
1474 {
1475 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1476
1477 if (p == slab_root_caches.next)
1478 print_slabinfo_header(m);
1479 cache_show(s, m);
1480 return 0;
1481 }
1482
dump_unreclaimable_slab(void)1483 void dump_unreclaimable_slab(void)
1484 {
1485 struct kmem_cache *s, *s2;
1486 struct slabinfo sinfo;
1487
1488 /*
1489 * Here acquiring slab_mutex is risky since we don't prefer to get
1490 * sleep in oom path. But, without mutex hold, it may introduce a
1491 * risk of crash.
1492 * Use mutex_trylock to protect the list traverse, dump nothing
1493 * without acquiring the mutex.
1494 */
1495 if (!mutex_trylock(&slab_mutex)) {
1496 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1497 return;
1498 }
1499
1500 pr_info("Unreclaimable slab info:\n");
1501 pr_info("Name Used Total\n");
1502
1503 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1504 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1505 continue;
1506
1507 get_slabinfo(s, &sinfo);
1508
1509 if (sinfo.num_objs > 0)
1510 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1511 (sinfo.active_objs * s->size) / 1024,
1512 (sinfo.num_objs * s->size) / 1024);
1513 }
1514 mutex_unlock(&slab_mutex);
1515 }
1516
1517 #if defined(CONFIG_MEMCG)
memcg_slab_start(struct seq_file * m,loff_t * pos)1518 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1519 {
1520 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1521
1522 mutex_lock(&slab_mutex);
1523 return seq_list_start(&memcg->kmem_caches, *pos);
1524 }
1525
memcg_slab_next(struct seq_file * m,void * p,loff_t * pos)1526 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1527 {
1528 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1529
1530 return seq_list_next(p, &memcg->kmem_caches, pos);
1531 }
1532
memcg_slab_stop(struct seq_file * m,void * p)1533 void memcg_slab_stop(struct seq_file *m, void *p)
1534 {
1535 mutex_unlock(&slab_mutex);
1536 }
1537
memcg_slab_show(struct seq_file * m,void * p)1538 int memcg_slab_show(struct seq_file *m, void *p)
1539 {
1540 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1541 memcg_params.kmem_caches_node);
1542 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1543
1544 if (p == memcg->kmem_caches.next)
1545 print_slabinfo_header(m);
1546 cache_show(s, m);
1547 return 0;
1548 }
1549 #endif
1550
1551 /*
1552 * slabinfo_op - iterator that generates /proc/slabinfo
1553 *
1554 * Output layout:
1555 * cache-name
1556 * num-active-objs
1557 * total-objs
1558 * object size
1559 * num-active-slabs
1560 * total-slabs
1561 * num-pages-per-slab
1562 * + further values on SMP and with statistics enabled
1563 */
1564 static const struct seq_operations slabinfo_op = {
1565 .start = slab_start,
1566 .next = slab_next,
1567 .stop = slab_stop,
1568 .show = slab_show,
1569 };
1570
slabinfo_open(struct inode * inode,struct file * file)1571 static int slabinfo_open(struct inode *inode, struct file *file)
1572 {
1573 return seq_open(file, &slabinfo_op);
1574 }
1575
1576 static const struct file_operations proc_slabinfo_operations = {
1577 .open = slabinfo_open,
1578 .read = seq_read,
1579 .write = slabinfo_write,
1580 .llseek = seq_lseek,
1581 .release = seq_release,
1582 };
1583
slab_proc_init(void)1584 static int __init slab_proc_init(void)
1585 {
1586 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1587 &proc_slabinfo_operations);
1588 return 0;
1589 }
1590 module_init(slab_proc_init);
1591
1592 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1593 /*
1594 * Display information about kmem caches that have child memcg caches.
1595 */
memcg_slabinfo_show(struct seq_file * m,void * unused)1596 static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1597 {
1598 struct kmem_cache *s, *c;
1599 struct slabinfo sinfo;
1600
1601 mutex_lock(&slab_mutex);
1602 seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1603 seq_puts(m, " <active_slabs> <num_slabs>\n");
1604 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
1605 /*
1606 * Skip kmem caches that don't have any memcg children.
1607 */
1608 if (list_empty(&s->memcg_params.children))
1609 continue;
1610
1611 memset(&sinfo, 0, sizeof(sinfo));
1612 get_slabinfo(s, &sinfo);
1613 seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n",
1614 cache_name(s), sinfo.active_objs, sinfo.num_objs,
1615 sinfo.active_slabs, sinfo.num_slabs);
1616
1617 for_each_memcg_cache(c, s) {
1618 struct cgroup_subsys_state *css;
1619 char *status = "";
1620
1621 css = &c->memcg_params.memcg->css;
1622 if (!(css->flags & CSS_ONLINE))
1623 status = ":dead";
1624 else if (c->flags & SLAB_DEACTIVATED)
1625 status = ":deact";
1626
1627 memset(&sinfo, 0, sizeof(sinfo));
1628 get_slabinfo(c, &sinfo);
1629 seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1630 cache_name(c), css->id, status,
1631 sinfo.active_objs, sinfo.num_objs,
1632 sinfo.active_slabs, sinfo.num_slabs);
1633 }
1634 }
1635 mutex_unlock(&slab_mutex);
1636 return 0;
1637 }
1638 DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1639
memcg_slabinfo_init(void)1640 static int __init memcg_slabinfo_init(void)
1641 {
1642 debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1643 NULL, NULL, &memcg_slabinfo_fops);
1644 return 0;
1645 }
1646
1647 late_initcall(memcg_slabinfo_init);
1648 #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
1649 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1650
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1651 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1652 gfp_t flags)
1653 {
1654 void *ret;
1655 size_t ks = 0;
1656
1657 if (p)
1658 ks = ksize(p);
1659
1660 if (ks >= new_size) {
1661 p = kasan_krealloc((void *)p, new_size, flags);
1662 return (void *)p;
1663 }
1664
1665 ret = kmalloc_track_caller(new_size, flags);
1666 if (ret && p)
1667 memcpy(ret, p, ks);
1668
1669 return ret;
1670 }
1671
1672 /**
1673 * __krealloc - like krealloc() but don't free @p.
1674 * @p: object to reallocate memory for.
1675 * @new_size: how many bytes of memory are required.
1676 * @flags: the type of memory to allocate.
1677 *
1678 * This function is like krealloc() except it never frees the originally
1679 * allocated buffer. Use this if you don't want to free the buffer immediately
1680 * like, for example, with RCU.
1681 *
1682 * Return: pointer to the allocated memory or %NULL in case of error
1683 */
__krealloc(const void * p,size_t new_size,gfp_t flags)1684 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1685 {
1686 if (unlikely(!new_size))
1687 return ZERO_SIZE_PTR;
1688
1689 return __do_krealloc(p, new_size, flags);
1690
1691 }
1692 EXPORT_SYMBOL(__krealloc);
1693
1694 /**
1695 * krealloc - reallocate memory. The contents will remain unchanged.
1696 * @p: object to reallocate memory for.
1697 * @new_size: how many bytes of memory are required.
1698 * @flags: the type of memory to allocate.
1699 *
1700 * The contents of the object pointed to are preserved up to the
1701 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1702 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1703 * %NULL pointer, the object pointed to is freed.
1704 *
1705 * Return: pointer to the allocated memory or %NULL in case of error
1706 */
krealloc(const void * p,size_t new_size,gfp_t flags)1707 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1708 {
1709 void *ret;
1710
1711 if (unlikely(!new_size)) {
1712 kfree(p);
1713 return ZERO_SIZE_PTR;
1714 }
1715
1716 ret = __do_krealloc(p, new_size, flags);
1717 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1718 kfree(p);
1719
1720 return ret;
1721 }
1722 EXPORT_SYMBOL(krealloc);
1723
1724 /**
1725 * kzfree - like kfree but zero memory
1726 * @p: object to free memory of
1727 *
1728 * The memory of the object @p points to is zeroed before freed.
1729 * If @p is %NULL, kzfree() does nothing.
1730 *
1731 * Note: this function zeroes the whole allocated buffer which can be a good
1732 * deal bigger than the requested buffer size passed to kmalloc(). So be
1733 * careful when using this function in performance sensitive code.
1734 */
kzfree(const void * p)1735 void kzfree(const void *p)
1736 {
1737 size_t ks;
1738 void *mem = (void *)p;
1739
1740 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1741 return;
1742 ks = ksize(mem);
1743 memset(mem, 0, ks);
1744 kfree(mem);
1745 }
1746 EXPORT_SYMBOL(kzfree);
1747
1748 /**
1749 * ksize - get the actual amount of memory allocated for a given object
1750 * @objp: Pointer to the object
1751 *
1752 * kmalloc may internally round up allocations and return more memory
1753 * than requested. ksize() can be used to determine the actual amount of
1754 * memory allocated. The caller may use this additional memory, even though
1755 * a smaller amount of memory was initially specified with the kmalloc call.
1756 * The caller must guarantee that objp points to a valid object previously
1757 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1758 * must not be freed during the duration of the call.
1759 *
1760 * Return: size of the actual memory used by @objp in bytes
1761 */
ksize(const void * objp)1762 size_t ksize(const void *objp)
1763 {
1764 size_t size;
1765
1766 if (WARN_ON_ONCE(!objp))
1767 return 0;
1768 /*
1769 * We need to check that the pointed to object is valid, and only then
1770 * unpoison the shadow memory below. We use __kasan_check_read(), to
1771 * generate a more useful report at the time ksize() is called (rather
1772 * than later where behaviour is undefined due to potential
1773 * use-after-free or double-free).
1774 *
1775 * If the pointed to memory is invalid we return 0, to avoid users of
1776 * ksize() writing to and potentially corrupting the memory region.
1777 *
1778 * We want to perform the check before __ksize(), to avoid potentially
1779 * crashing in __ksize() due to accessing invalid metadata.
1780 */
1781 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1782 return 0;
1783
1784 size = __ksize(objp);
1785 /*
1786 * We assume that ksize callers could use whole allocated area,
1787 * so we need to unpoison this area.
1788 */
1789 kasan_unpoison_shadow(objp, size);
1790 return size;
1791 }
1792 EXPORT_SYMBOL(ksize);
1793
1794 /* Tracepoints definitions. */
1795 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1796 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1797 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1798 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1799 EXPORT_TRACEPOINT_SYMBOL(kfree);
1800 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1801
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1802 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1803 {
1804 if (__should_failslab(s, gfpflags))
1805 return -ENOMEM;
1806 return 0;
1807 }
1808 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1809