1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 #include <kvm/arm_pmu.h>
24 #include <kvm/arm_psci.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_emulate.h>
40 #include <asm/kvm_coproc.h>
41 #include <asm/sections.h>
42
43 #ifdef REQUIRES_VIRT
44 __asm__(".arch_extension virt");
45 #endif
46
47 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
48 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
49
50 /* Per-CPU variable containing the currently running vcpu. */
51 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
52
53 /* The VMID used in the VTTBR */
54 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
55 static u32 kvm_next_vmid;
56 static DEFINE_SPINLOCK(kvm_vmid_lock);
57
58 static bool vgic_present;
59
60 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
61
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)62 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
63 {
64 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
65 }
66
67 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
68
69 /**
70 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
71 * Must be called from non-preemptible context
72 */
kvm_arm_get_running_vcpu(void)73 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
74 {
75 return __this_cpu_read(kvm_arm_running_vcpu);
76 }
77
78 /**
79 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
80 */
kvm_get_running_vcpus(void)81 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
82 {
83 return &kvm_arm_running_vcpu;
84 }
85
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
89 }
90
kvm_arch_hardware_setup(void)91 int kvm_arch_hardware_setup(void)
92 {
93 return 0;
94 }
95
kvm_arch_check_processor_compat(void)96 int kvm_arch_check_processor_compat(void)
97 {
98 return 0;
99 }
100
101
102 /**
103 * kvm_arch_init_vm - initializes a VM data structure
104 * @kvm: pointer to the KVM struct
105 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)106 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
107 {
108 int ret, cpu;
109
110 ret = kvm_arm_setup_stage2(kvm, type);
111 if (ret)
112 return ret;
113
114 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
115 if (!kvm->arch.last_vcpu_ran)
116 return -ENOMEM;
117
118 for_each_possible_cpu(cpu)
119 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
120
121 ret = kvm_alloc_stage2_pgd(kvm);
122 if (ret)
123 goto out_fail_alloc;
124
125 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
126 if (ret)
127 goto out_free_stage2_pgd;
128
129 kvm_vgic_early_init(kvm);
130
131 /* Mark the initial VMID generation invalid */
132 kvm->arch.vmid.vmid_gen = 0;
133
134 /* The maximum number of VCPUs is limited by the host's GIC model */
135 kvm->arch.max_vcpus = vgic_present ?
136 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
137
138 return ret;
139 out_free_stage2_pgd:
140 kvm_free_stage2_pgd(kvm);
141 out_fail_alloc:
142 free_percpu(kvm->arch.last_vcpu_ran);
143 kvm->arch.last_vcpu_ran = NULL;
144 return ret;
145 }
146
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)147 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
148 {
149 return 0;
150 }
151
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)152 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 {
154 return VM_FAULT_SIGBUS;
155 }
156
157
158 /**
159 * kvm_arch_destroy_vm - destroy the VM data structure
160 * @kvm: pointer to the KVM struct
161 */
kvm_arch_destroy_vm(struct kvm * kvm)162 void kvm_arch_destroy_vm(struct kvm *kvm)
163 {
164 int i;
165
166 kvm_vgic_destroy(kvm);
167
168 free_percpu(kvm->arch.last_vcpu_ran);
169 kvm->arch.last_vcpu_ran = NULL;
170
171 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
172 if (kvm->vcpus[i]) {
173 kvm_arch_vcpu_free(kvm->vcpus[i]);
174 kvm->vcpus[i] = NULL;
175 }
176 }
177 atomic_set(&kvm->online_vcpus, 0);
178 }
179
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)180 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
181 {
182 int r;
183 switch (ext) {
184 case KVM_CAP_IRQCHIP:
185 r = vgic_present;
186 break;
187 case KVM_CAP_IOEVENTFD:
188 case KVM_CAP_DEVICE_CTRL:
189 case KVM_CAP_USER_MEMORY:
190 case KVM_CAP_SYNC_MMU:
191 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
192 case KVM_CAP_ONE_REG:
193 case KVM_CAP_ARM_PSCI:
194 case KVM_CAP_ARM_PSCI_0_2:
195 case KVM_CAP_READONLY_MEM:
196 case KVM_CAP_MP_STATE:
197 case KVM_CAP_IMMEDIATE_EXIT:
198 case KVM_CAP_VCPU_EVENTS:
199 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
200 r = 1;
201 break;
202 case KVM_CAP_ARM_SET_DEVICE_ADDR:
203 r = 1;
204 break;
205 case KVM_CAP_NR_VCPUS:
206 r = num_online_cpus();
207 break;
208 case KVM_CAP_MAX_VCPUS:
209 r = KVM_MAX_VCPUS;
210 break;
211 case KVM_CAP_MAX_VCPU_ID:
212 r = KVM_MAX_VCPU_ID;
213 break;
214 case KVM_CAP_MSI_DEVID:
215 if (!kvm)
216 r = -EINVAL;
217 else
218 r = kvm->arch.vgic.msis_require_devid;
219 break;
220 case KVM_CAP_ARM_USER_IRQ:
221 /*
222 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
223 * (bump this number if adding more devices)
224 */
225 r = 1;
226 break;
227 default:
228 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
229 break;
230 }
231 return r;
232 }
233
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)234 long kvm_arch_dev_ioctl(struct file *filp,
235 unsigned int ioctl, unsigned long arg)
236 {
237 return -EINVAL;
238 }
239
kvm_arch_alloc_vm(void)240 struct kvm *kvm_arch_alloc_vm(void)
241 {
242 if (!has_vhe())
243 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
244
245 return vzalloc(sizeof(struct kvm));
246 }
247
kvm_arch_free_vm(struct kvm * kvm)248 void kvm_arch_free_vm(struct kvm *kvm)
249 {
250 if (!has_vhe())
251 kfree(kvm);
252 else
253 vfree(kvm);
254 }
255
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)256 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
257 {
258 int err;
259 struct kvm_vcpu *vcpu;
260
261 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
262 err = -EBUSY;
263 goto out;
264 }
265
266 if (id >= kvm->arch.max_vcpus) {
267 err = -EINVAL;
268 goto out;
269 }
270
271 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
272 if (!vcpu) {
273 err = -ENOMEM;
274 goto out;
275 }
276
277 err = kvm_vcpu_init(vcpu, kvm, id);
278 if (err)
279 goto free_vcpu;
280
281 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
282 if (err)
283 goto vcpu_uninit;
284
285 return vcpu;
286 vcpu_uninit:
287 kvm_vcpu_uninit(vcpu);
288 free_vcpu:
289 kmem_cache_free(kvm_vcpu_cache, vcpu);
290 out:
291 return ERR_PTR(err);
292 }
293
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)294 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
295 {
296 }
297
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)298 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
299 {
300 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
301 static_branch_dec(&userspace_irqchip_in_use);
302
303 kvm_mmu_free_memory_caches(vcpu);
304 kvm_timer_vcpu_terminate(vcpu);
305 kvm_pmu_vcpu_destroy(vcpu);
306 kvm_vcpu_uninit(vcpu);
307 kmem_cache_free(kvm_vcpu_cache, vcpu);
308 }
309
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)310 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
311 {
312 kvm_arch_vcpu_free(vcpu);
313 }
314
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)315 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
316 {
317 return kvm_timer_is_pending(vcpu);
318 }
319
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)320 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
321 {
322 /*
323 * If we're about to block (most likely because we've just hit a
324 * WFI), we need to sync back the state of the GIC CPU interface
325 * so that we have the lastest PMR and group enables. This ensures
326 * that kvm_arch_vcpu_runnable has up-to-date data to decide
327 * whether we have pending interrupts.
328 */
329 preempt_disable();
330 kvm_vgic_vmcr_sync(vcpu);
331 preempt_enable();
332
333 kvm_vgic_v4_enable_doorbell(vcpu);
334 }
335
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)336 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
337 {
338 kvm_vgic_v4_disable_doorbell(vcpu);
339 }
340
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)341 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
342 {
343 /* Force users to call KVM_ARM_VCPU_INIT */
344 vcpu->arch.target = -1;
345 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
346
347 /* Set up the timer */
348 kvm_timer_vcpu_init(vcpu);
349
350 kvm_pmu_vcpu_init(vcpu);
351
352 kvm_arm_reset_debug_ptr(vcpu);
353
354 return kvm_vgic_vcpu_init(vcpu);
355 }
356
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)357 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
358 {
359 int *last_ran;
360 kvm_host_data_t *cpu_data;
361
362 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
363 cpu_data = this_cpu_ptr(&kvm_host_data);
364
365 /*
366 * We might get preempted before the vCPU actually runs, but
367 * over-invalidation doesn't affect correctness.
368 */
369 if (*last_ran != vcpu->vcpu_id) {
370 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
371 *last_ran = vcpu->vcpu_id;
372 }
373
374 vcpu->cpu = cpu;
375 vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
376
377 kvm_arm_set_running_vcpu(vcpu);
378 kvm_vgic_load(vcpu);
379 kvm_timer_vcpu_load(vcpu);
380 kvm_vcpu_load_sysregs(vcpu);
381 kvm_arch_vcpu_load_fp(vcpu);
382 kvm_vcpu_pmu_restore_guest(vcpu);
383
384 if (single_task_running())
385 vcpu_clear_wfe_traps(vcpu);
386 else
387 vcpu_set_wfe_traps(vcpu);
388
389 vcpu_ptrauth_setup_lazy(vcpu);
390 }
391
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)392 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
393 {
394 kvm_arch_vcpu_put_fp(vcpu);
395 kvm_vcpu_put_sysregs(vcpu);
396 kvm_timer_vcpu_put(vcpu);
397 kvm_vgic_put(vcpu);
398 kvm_vcpu_pmu_restore_host(vcpu);
399
400 vcpu->cpu = -1;
401
402 kvm_arm_set_running_vcpu(NULL);
403 }
404
vcpu_power_off(struct kvm_vcpu * vcpu)405 static void vcpu_power_off(struct kvm_vcpu *vcpu)
406 {
407 vcpu->arch.power_off = true;
408 kvm_make_request(KVM_REQ_SLEEP, vcpu);
409 kvm_vcpu_kick(vcpu);
410 }
411
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)412 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
413 struct kvm_mp_state *mp_state)
414 {
415 if (vcpu->arch.power_off)
416 mp_state->mp_state = KVM_MP_STATE_STOPPED;
417 else
418 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
419
420 return 0;
421 }
422
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)423 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
424 struct kvm_mp_state *mp_state)
425 {
426 int ret = 0;
427
428 switch (mp_state->mp_state) {
429 case KVM_MP_STATE_RUNNABLE:
430 vcpu->arch.power_off = false;
431 break;
432 case KVM_MP_STATE_STOPPED:
433 vcpu_power_off(vcpu);
434 break;
435 default:
436 ret = -EINVAL;
437 }
438
439 return ret;
440 }
441
442 /**
443 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
444 * @v: The VCPU pointer
445 *
446 * If the guest CPU is not waiting for interrupts or an interrupt line is
447 * asserted, the CPU is by definition runnable.
448 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)449 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
450 {
451 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
452 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
453 && !v->arch.power_off && !v->arch.pause);
454 }
455
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)456 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
457 {
458 return vcpu_mode_priv(vcpu);
459 }
460
461 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)462 static void exit_vm_noop(void *info)
463 {
464 }
465
force_vm_exit(const cpumask_t * mask)466 void force_vm_exit(const cpumask_t *mask)
467 {
468 preempt_disable();
469 smp_call_function_many(mask, exit_vm_noop, NULL, true);
470 preempt_enable();
471 }
472
473 /**
474 * need_new_vmid_gen - check that the VMID is still valid
475 * @vmid: The VMID to check
476 *
477 * return true if there is a new generation of VMIDs being used
478 *
479 * The hardware supports a limited set of values with the value zero reserved
480 * for the host, so we check if an assigned value belongs to a previous
481 * generation, which which requires us to assign a new value. If we're the
482 * first to use a VMID for the new generation, we must flush necessary caches
483 * and TLBs on all CPUs.
484 */
need_new_vmid_gen(struct kvm_vmid * vmid)485 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
486 {
487 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
488 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
489 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
490 }
491
492 /**
493 * update_vmid - Update the vmid with a valid VMID for the current generation
494 * @kvm: The guest that struct vmid belongs to
495 * @vmid: The stage-2 VMID information struct
496 */
update_vmid(struct kvm_vmid * vmid)497 static void update_vmid(struct kvm_vmid *vmid)
498 {
499 if (!need_new_vmid_gen(vmid))
500 return;
501
502 spin_lock(&kvm_vmid_lock);
503
504 /*
505 * We need to re-check the vmid_gen here to ensure that if another vcpu
506 * already allocated a valid vmid for this vm, then this vcpu should
507 * use the same vmid.
508 */
509 if (!need_new_vmid_gen(vmid)) {
510 spin_unlock(&kvm_vmid_lock);
511 return;
512 }
513
514 /* First user of a new VMID generation? */
515 if (unlikely(kvm_next_vmid == 0)) {
516 atomic64_inc(&kvm_vmid_gen);
517 kvm_next_vmid = 1;
518
519 /*
520 * On SMP we know no other CPUs can use this CPU's or each
521 * other's VMID after force_vm_exit returns since the
522 * kvm_vmid_lock blocks them from reentry to the guest.
523 */
524 force_vm_exit(cpu_all_mask);
525 /*
526 * Now broadcast TLB + ICACHE invalidation over the inner
527 * shareable domain to make sure all data structures are
528 * clean.
529 */
530 kvm_call_hyp(__kvm_flush_vm_context);
531 }
532
533 vmid->vmid = kvm_next_vmid;
534 kvm_next_vmid++;
535 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
536
537 smp_wmb();
538 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
539
540 spin_unlock(&kvm_vmid_lock);
541 }
542
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)543 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
544 {
545 struct kvm *kvm = vcpu->kvm;
546 int ret = 0;
547
548 if (likely(vcpu->arch.has_run_once))
549 return 0;
550
551 if (!kvm_arm_vcpu_is_finalized(vcpu))
552 return -EPERM;
553
554 vcpu->arch.has_run_once = true;
555
556 if (likely(irqchip_in_kernel(kvm))) {
557 /*
558 * Map the VGIC hardware resources before running a vcpu the
559 * first time on this VM.
560 */
561 if (unlikely(!vgic_ready(kvm))) {
562 ret = kvm_vgic_map_resources(kvm);
563 if (ret)
564 return ret;
565 }
566 } else {
567 /*
568 * Tell the rest of the code that there are userspace irqchip
569 * VMs in the wild.
570 */
571 static_branch_inc(&userspace_irqchip_in_use);
572 }
573
574 ret = kvm_timer_enable(vcpu);
575 if (ret)
576 return ret;
577
578 ret = kvm_arm_pmu_v3_enable(vcpu);
579
580 return ret;
581 }
582
kvm_arch_intc_initialized(struct kvm * kvm)583 bool kvm_arch_intc_initialized(struct kvm *kvm)
584 {
585 return vgic_initialized(kvm);
586 }
587
kvm_arm_halt_guest(struct kvm * kvm)588 void kvm_arm_halt_guest(struct kvm *kvm)
589 {
590 int i;
591 struct kvm_vcpu *vcpu;
592
593 kvm_for_each_vcpu(i, vcpu, kvm)
594 vcpu->arch.pause = true;
595 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
596 }
597
kvm_arm_resume_guest(struct kvm * kvm)598 void kvm_arm_resume_guest(struct kvm *kvm)
599 {
600 int i;
601 struct kvm_vcpu *vcpu;
602
603 kvm_for_each_vcpu(i, vcpu, kvm) {
604 vcpu->arch.pause = false;
605 swake_up_one(kvm_arch_vcpu_wq(vcpu));
606 }
607 }
608
vcpu_req_sleep(struct kvm_vcpu * vcpu)609 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
610 {
611 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
612
613 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
614 (!vcpu->arch.pause)));
615
616 if (vcpu->arch.power_off || vcpu->arch.pause) {
617 /* Awaken to handle a signal, request we sleep again later. */
618 kvm_make_request(KVM_REQ_SLEEP, vcpu);
619 }
620
621 /*
622 * Make sure we will observe a potential reset request if we've
623 * observed a change to the power state. Pairs with the smp_wmb() in
624 * kvm_psci_vcpu_on().
625 */
626 smp_rmb();
627 }
628
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)629 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
630 {
631 return vcpu->arch.target >= 0;
632 }
633
check_vcpu_requests(struct kvm_vcpu * vcpu)634 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
635 {
636 if (kvm_request_pending(vcpu)) {
637 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
638 vcpu_req_sleep(vcpu);
639
640 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
641 kvm_reset_vcpu(vcpu);
642
643 /*
644 * Clear IRQ_PENDING requests that were made to guarantee
645 * that a VCPU sees new virtual interrupts.
646 */
647 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
648 }
649 }
650
651 /**
652 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
653 * @vcpu: The VCPU pointer
654 * @run: The kvm_run structure pointer used for userspace state exchange
655 *
656 * This function is called through the VCPU_RUN ioctl called from user space. It
657 * will execute VM code in a loop until the time slice for the process is used
658 * or some emulation is needed from user space in which case the function will
659 * return with return value 0 and with the kvm_run structure filled in with the
660 * required data for the requested emulation.
661 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)662 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
663 {
664 int ret;
665
666 if (unlikely(!kvm_vcpu_initialized(vcpu)))
667 return -ENOEXEC;
668
669 ret = kvm_vcpu_first_run_init(vcpu);
670 if (ret)
671 return ret;
672
673 if (run->exit_reason == KVM_EXIT_MMIO) {
674 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
675 if (ret)
676 return ret;
677 }
678
679 if (run->immediate_exit)
680 return -EINTR;
681
682 vcpu_load(vcpu);
683
684 kvm_sigset_activate(vcpu);
685
686 ret = 1;
687 run->exit_reason = KVM_EXIT_UNKNOWN;
688 while (ret > 0) {
689 /*
690 * Check conditions before entering the guest
691 */
692 cond_resched();
693
694 update_vmid(&vcpu->kvm->arch.vmid);
695
696 check_vcpu_requests(vcpu);
697
698 /*
699 * Preparing the interrupts to be injected also
700 * involves poking the GIC, which must be done in a
701 * non-preemptible context.
702 */
703 preempt_disable();
704
705 kvm_pmu_flush_hwstate(vcpu);
706
707 local_irq_disable();
708
709 kvm_vgic_flush_hwstate(vcpu);
710
711 /*
712 * Exit if we have a signal pending so that we can deliver the
713 * signal to user space.
714 */
715 if (signal_pending(current)) {
716 ret = -EINTR;
717 run->exit_reason = KVM_EXIT_INTR;
718 }
719
720 /*
721 * If we're using a userspace irqchip, then check if we need
722 * to tell a userspace irqchip about timer or PMU level
723 * changes and if so, exit to userspace (the actual level
724 * state gets updated in kvm_timer_update_run and
725 * kvm_pmu_update_run below).
726 */
727 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
728 if (kvm_timer_should_notify_user(vcpu) ||
729 kvm_pmu_should_notify_user(vcpu)) {
730 ret = -EINTR;
731 run->exit_reason = KVM_EXIT_INTR;
732 }
733 }
734
735 /*
736 * Ensure we set mode to IN_GUEST_MODE after we disable
737 * interrupts and before the final VCPU requests check.
738 * See the comment in kvm_vcpu_exiting_guest_mode() and
739 * Documentation/virt/kvm/vcpu-requests.rst
740 */
741 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
742
743 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
744 kvm_request_pending(vcpu)) {
745 vcpu->mode = OUTSIDE_GUEST_MODE;
746 isb(); /* Ensure work in x_flush_hwstate is committed */
747 kvm_pmu_sync_hwstate(vcpu);
748 if (static_branch_unlikely(&userspace_irqchip_in_use))
749 kvm_timer_sync_hwstate(vcpu);
750 kvm_vgic_sync_hwstate(vcpu);
751 local_irq_enable();
752 preempt_enable();
753 continue;
754 }
755
756 kvm_arm_setup_debug(vcpu);
757
758 /**************************************************************
759 * Enter the guest
760 */
761 trace_kvm_entry(*vcpu_pc(vcpu));
762 guest_enter_irqoff();
763
764 if (has_vhe()) {
765 kvm_arm_vhe_guest_enter();
766 ret = kvm_vcpu_run_vhe(vcpu);
767 kvm_arm_vhe_guest_exit();
768 } else {
769 ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
770 }
771
772 vcpu->mode = OUTSIDE_GUEST_MODE;
773 vcpu->stat.exits++;
774 /*
775 * Back from guest
776 *************************************************************/
777
778 kvm_arm_clear_debug(vcpu);
779
780 /*
781 * We must sync the PMU state before the vgic state so
782 * that the vgic can properly sample the updated state of the
783 * interrupt line.
784 */
785 kvm_pmu_sync_hwstate(vcpu);
786
787 /*
788 * Sync the vgic state before syncing the timer state because
789 * the timer code needs to know if the virtual timer
790 * interrupts are active.
791 */
792 kvm_vgic_sync_hwstate(vcpu);
793
794 /*
795 * Sync the timer hardware state before enabling interrupts as
796 * we don't want vtimer interrupts to race with syncing the
797 * timer virtual interrupt state.
798 */
799 if (static_branch_unlikely(&userspace_irqchip_in_use))
800 kvm_timer_sync_hwstate(vcpu);
801
802 kvm_arch_vcpu_ctxsync_fp(vcpu);
803
804 /*
805 * We may have taken a host interrupt in HYP mode (ie
806 * while executing the guest). This interrupt is still
807 * pending, as we haven't serviced it yet!
808 *
809 * We're now back in SVC mode, with interrupts
810 * disabled. Enabling the interrupts now will have
811 * the effect of taking the interrupt again, in SVC
812 * mode this time.
813 */
814 local_irq_enable();
815
816 /*
817 * We do local_irq_enable() before calling guest_exit() so
818 * that if a timer interrupt hits while running the guest we
819 * account that tick as being spent in the guest. We enable
820 * preemption after calling guest_exit() so that if we get
821 * preempted we make sure ticks after that is not counted as
822 * guest time.
823 */
824 guest_exit();
825 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
826
827 /* Exit types that need handling before we can be preempted */
828 handle_exit_early(vcpu, run, ret);
829
830 preempt_enable();
831
832 ret = handle_exit(vcpu, run, ret);
833 }
834
835 /* Tell userspace about in-kernel device output levels */
836 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
837 kvm_timer_update_run(vcpu);
838 kvm_pmu_update_run(vcpu);
839 }
840
841 kvm_sigset_deactivate(vcpu);
842
843 vcpu_put(vcpu);
844 return ret;
845 }
846
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)847 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
848 {
849 int bit_index;
850 bool set;
851 unsigned long *hcr;
852
853 if (number == KVM_ARM_IRQ_CPU_IRQ)
854 bit_index = __ffs(HCR_VI);
855 else /* KVM_ARM_IRQ_CPU_FIQ */
856 bit_index = __ffs(HCR_VF);
857
858 hcr = vcpu_hcr(vcpu);
859 if (level)
860 set = test_and_set_bit(bit_index, hcr);
861 else
862 set = test_and_clear_bit(bit_index, hcr);
863
864 /*
865 * If we didn't change anything, no need to wake up or kick other CPUs
866 */
867 if (set == level)
868 return 0;
869
870 /*
871 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
872 * trigger a world-switch round on the running physical CPU to set the
873 * virtual IRQ/FIQ fields in the HCR appropriately.
874 */
875 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
876 kvm_vcpu_kick(vcpu);
877
878 return 0;
879 }
880
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)881 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
882 bool line_status)
883 {
884 u32 irq = irq_level->irq;
885 unsigned int irq_type, vcpu_idx, irq_num;
886 int nrcpus = atomic_read(&kvm->online_vcpus);
887 struct kvm_vcpu *vcpu = NULL;
888 bool level = irq_level->level;
889
890 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
891 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
892 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
893 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
894
895 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
896
897 switch (irq_type) {
898 case KVM_ARM_IRQ_TYPE_CPU:
899 if (irqchip_in_kernel(kvm))
900 return -ENXIO;
901
902 if (vcpu_idx >= nrcpus)
903 return -EINVAL;
904
905 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
906 if (!vcpu)
907 return -EINVAL;
908
909 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
910 return -EINVAL;
911
912 return vcpu_interrupt_line(vcpu, irq_num, level);
913 case KVM_ARM_IRQ_TYPE_PPI:
914 if (!irqchip_in_kernel(kvm))
915 return -ENXIO;
916
917 if (vcpu_idx >= nrcpus)
918 return -EINVAL;
919
920 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
921 if (!vcpu)
922 return -EINVAL;
923
924 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
925 return -EINVAL;
926
927 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
928 case KVM_ARM_IRQ_TYPE_SPI:
929 if (!irqchip_in_kernel(kvm))
930 return -ENXIO;
931
932 if (irq_num < VGIC_NR_PRIVATE_IRQS)
933 return -EINVAL;
934
935 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
936 }
937
938 return -EINVAL;
939 }
940
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)941 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
942 const struct kvm_vcpu_init *init)
943 {
944 unsigned int i, ret;
945 int phys_target = kvm_target_cpu();
946
947 if (init->target != phys_target)
948 return -EINVAL;
949
950 /*
951 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
952 * use the same target.
953 */
954 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
955 return -EINVAL;
956
957 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
958 for (i = 0; i < sizeof(init->features) * 8; i++) {
959 bool set = (init->features[i / 32] & (1 << (i % 32)));
960
961 if (set && i >= KVM_VCPU_MAX_FEATURES)
962 return -ENOENT;
963
964 /*
965 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
966 * use the same feature set.
967 */
968 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
969 test_bit(i, vcpu->arch.features) != set)
970 return -EINVAL;
971
972 if (set)
973 set_bit(i, vcpu->arch.features);
974 }
975
976 vcpu->arch.target = phys_target;
977
978 /* Now we know what it is, we can reset it. */
979 ret = kvm_reset_vcpu(vcpu);
980 if (ret) {
981 vcpu->arch.target = -1;
982 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
983 }
984
985 return ret;
986 }
987
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)988 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
989 struct kvm_vcpu_init *init)
990 {
991 int ret;
992
993 ret = kvm_vcpu_set_target(vcpu, init);
994 if (ret)
995 return ret;
996
997 /*
998 * Ensure a rebooted VM will fault in RAM pages and detect if the
999 * guest MMU is turned off and flush the caches as needed.
1000 */
1001 if (vcpu->arch.has_run_once)
1002 stage2_unmap_vm(vcpu->kvm);
1003
1004 vcpu_reset_hcr(vcpu);
1005
1006 /*
1007 * Handle the "start in power-off" case.
1008 */
1009 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1010 vcpu_power_off(vcpu);
1011 else
1012 vcpu->arch.power_off = false;
1013
1014 return 0;
1015 }
1016
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1017 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1018 struct kvm_device_attr *attr)
1019 {
1020 int ret = -ENXIO;
1021
1022 switch (attr->group) {
1023 default:
1024 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1025 break;
1026 }
1027
1028 return ret;
1029 }
1030
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1031 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1032 struct kvm_device_attr *attr)
1033 {
1034 int ret = -ENXIO;
1035
1036 switch (attr->group) {
1037 default:
1038 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1039 break;
1040 }
1041
1042 return ret;
1043 }
1044
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1045 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1046 struct kvm_device_attr *attr)
1047 {
1048 int ret = -ENXIO;
1049
1050 switch (attr->group) {
1051 default:
1052 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1053 break;
1054 }
1055
1056 return ret;
1057 }
1058
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1059 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1060 struct kvm_vcpu_events *events)
1061 {
1062 memset(events, 0, sizeof(*events));
1063
1064 return __kvm_arm_vcpu_get_events(vcpu, events);
1065 }
1066
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1067 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1068 struct kvm_vcpu_events *events)
1069 {
1070 int i;
1071
1072 /* check whether the reserved field is zero */
1073 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1074 if (events->reserved[i])
1075 return -EINVAL;
1076
1077 /* check whether the pad field is zero */
1078 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1079 if (events->exception.pad[i])
1080 return -EINVAL;
1081
1082 return __kvm_arm_vcpu_set_events(vcpu, events);
1083 }
1084
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1085 long kvm_arch_vcpu_ioctl(struct file *filp,
1086 unsigned int ioctl, unsigned long arg)
1087 {
1088 struct kvm_vcpu *vcpu = filp->private_data;
1089 void __user *argp = (void __user *)arg;
1090 struct kvm_device_attr attr;
1091 long r;
1092
1093 switch (ioctl) {
1094 case KVM_ARM_VCPU_INIT: {
1095 struct kvm_vcpu_init init;
1096
1097 r = -EFAULT;
1098 if (copy_from_user(&init, argp, sizeof(init)))
1099 break;
1100
1101 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1102 break;
1103 }
1104 case KVM_SET_ONE_REG:
1105 case KVM_GET_ONE_REG: {
1106 struct kvm_one_reg reg;
1107
1108 r = -ENOEXEC;
1109 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1110 break;
1111
1112 r = -EFAULT;
1113 if (copy_from_user(®, argp, sizeof(reg)))
1114 break;
1115
1116 if (ioctl == KVM_SET_ONE_REG)
1117 r = kvm_arm_set_reg(vcpu, ®);
1118 else
1119 r = kvm_arm_get_reg(vcpu, ®);
1120 break;
1121 }
1122 case KVM_GET_REG_LIST: {
1123 struct kvm_reg_list __user *user_list = argp;
1124 struct kvm_reg_list reg_list;
1125 unsigned n;
1126
1127 r = -ENOEXEC;
1128 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1129 break;
1130
1131 r = -EPERM;
1132 if (!kvm_arm_vcpu_is_finalized(vcpu))
1133 break;
1134
1135 r = -EFAULT;
1136 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1137 break;
1138 n = reg_list.n;
1139 reg_list.n = kvm_arm_num_regs(vcpu);
1140 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1141 break;
1142 r = -E2BIG;
1143 if (n < reg_list.n)
1144 break;
1145 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1146 break;
1147 }
1148 case KVM_SET_DEVICE_ATTR: {
1149 r = -EFAULT;
1150 if (copy_from_user(&attr, argp, sizeof(attr)))
1151 break;
1152 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1153 break;
1154 }
1155 case KVM_GET_DEVICE_ATTR: {
1156 r = -EFAULT;
1157 if (copy_from_user(&attr, argp, sizeof(attr)))
1158 break;
1159 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1160 break;
1161 }
1162 case KVM_HAS_DEVICE_ATTR: {
1163 r = -EFAULT;
1164 if (copy_from_user(&attr, argp, sizeof(attr)))
1165 break;
1166 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1167 break;
1168 }
1169 case KVM_GET_VCPU_EVENTS: {
1170 struct kvm_vcpu_events events;
1171
1172 if (kvm_arm_vcpu_get_events(vcpu, &events))
1173 return -EINVAL;
1174
1175 if (copy_to_user(argp, &events, sizeof(events)))
1176 return -EFAULT;
1177
1178 return 0;
1179 }
1180 case KVM_SET_VCPU_EVENTS: {
1181 struct kvm_vcpu_events events;
1182
1183 if (copy_from_user(&events, argp, sizeof(events)))
1184 return -EFAULT;
1185
1186 return kvm_arm_vcpu_set_events(vcpu, &events);
1187 }
1188 case KVM_ARM_VCPU_FINALIZE: {
1189 int what;
1190
1191 if (!kvm_vcpu_initialized(vcpu))
1192 return -ENOEXEC;
1193
1194 if (get_user(what, (const int __user *)argp))
1195 return -EFAULT;
1196
1197 return kvm_arm_vcpu_finalize(vcpu, what);
1198 }
1199 default:
1200 r = -EINVAL;
1201 }
1202
1203 return r;
1204 }
1205
1206 /**
1207 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1208 * @kvm: kvm instance
1209 * @log: slot id and address to which we copy the log
1210 *
1211 * Steps 1-4 below provide general overview of dirty page logging. See
1212 * kvm_get_dirty_log_protect() function description for additional details.
1213 *
1214 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1215 * always flush the TLB (step 4) even if previous step failed and the dirty
1216 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1217 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1218 * writes will be marked dirty for next log read.
1219 *
1220 * 1. Take a snapshot of the bit and clear it if needed.
1221 * 2. Write protect the corresponding page.
1222 * 3. Copy the snapshot to the userspace.
1223 * 4. Flush TLB's if needed.
1224 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1225 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1226 {
1227 bool flush = false;
1228 int r;
1229
1230 mutex_lock(&kvm->slots_lock);
1231
1232 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1233
1234 if (flush)
1235 kvm_flush_remote_tlbs(kvm);
1236
1237 mutex_unlock(&kvm->slots_lock);
1238 return r;
1239 }
1240
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)1241 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1242 {
1243 bool flush = false;
1244 int r;
1245
1246 mutex_lock(&kvm->slots_lock);
1247
1248 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1249
1250 if (flush)
1251 kvm_flush_remote_tlbs(kvm);
1252
1253 mutex_unlock(&kvm->slots_lock);
1254 return r;
1255 }
1256
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1257 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1258 struct kvm_arm_device_addr *dev_addr)
1259 {
1260 unsigned long dev_id, type;
1261
1262 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1263 KVM_ARM_DEVICE_ID_SHIFT;
1264 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1265 KVM_ARM_DEVICE_TYPE_SHIFT;
1266
1267 switch (dev_id) {
1268 case KVM_ARM_DEVICE_VGIC_V2:
1269 if (!vgic_present)
1270 return -ENXIO;
1271 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1272 default:
1273 return -ENODEV;
1274 }
1275 }
1276
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1277 long kvm_arch_vm_ioctl(struct file *filp,
1278 unsigned int ioctl, unsigned long arg)
1279 {
1280 struct kvm *kvm = filp->private_data;
1281 void __user *argp = (void __user *)arg;
1282
1283 switch (ioctl) {
1284 case KVM_CREATE_IRQCHIP: {
1285 int ret;
1286 if (!vgic_present)
1287 return -ENXIO;
1288 mutex_lock(&kvm->lock);
1289 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1290 mutex_unlock(&kvm->lock);
1291 return ret;
1292 }
1293 case KVM_ARM_SET_DEVICE_ADDR: {
1294 struct kvm_arm_device_addr dev_addr;
1295
1296 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1297 return -EFAULT;
1298 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1299 }
1300 case KVM_ARM_PREFERRED_TARGET: {
1301 int err;
1302 struct kvm_vcpu_init init;
1303
1304 err = kvm_vcpu_preferred_target(&init);
1305 if (err)
1306 return err;
1307
1308 if (copy_to_user(argp, &init, sizeof(init)))
1309 return -EFAULT;
1310
1311 return 0;
1312 }
1313 default:
1314 return -EINVAL;
1315 }
1316 }
1317
cpu_init_hyp_mode(void * dummy)1318 static void cpu_init_hyp_mode(void *dummy)
1319 {
1320 phys_addr_t pgd_ptr;
1321 unsigned long hyp_stack_ptr;
1322 unsigned long stack_page;
1323 unsigned long vector_ptr;
1324
1325 /* Switch from the HYP stub to our own HYP init vector */
1326 __hyp_set_vectors(kvm_get_idmap_vector());
1327
1328 pgd_ptr = kvm_mmu_get_httbr();
1329 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1330 hyp_stack_ptr = stack_page + PAGE_SIZE;
1331 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1332
1333 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1334 __cpu_init_stage2();
1335 }
1336
cpu_hyp_reset(void)1337 static void cpu_hyp_reset(void)
1338 {
1339 if (!is_kernel_in_hyp_mode())
1340 __hyp_reset_vectors();
1341 }
1342
cpu_hyp_reinit(void)1343 static void cpu_hyp_reinit(void)
1344 {
1345 kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1346
1347 cpu_hyp_reset();
1348
1349 if (is_kernel_in_hyp_mode())
1350 kvm_timer_init_vhe();
1351 else
1352 cpu_init_hyp_mode(NULL);
1353
1354 kvm_arm_init_debug();
1355
1356 if (vgic_present)
1357 kvm_vgic_init_cpu_hardware();
1358 }
1359
_kvm_arch_hardware_enable(void * discard)1360 static void _kvm_arch_hardware_enable(void *discard)
1361 {
1362 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1363 cpu_hyp_reinit();
1364 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1365 }
1366 }
1367
kvm_arch_hardware_enable(void)1368 int kvm_arch_hardware_enable(void)
1369 {
1370 _kvm_arch_hardware_enable(NULL);
1371 return 0;
1372 }
1373
_kvm_arch_hardware_disable(void * discard)1374 static void _kvm_arch_hardware_disable(void *discard)
1375 {
1376 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1377 cpu_hyp_reset();
1378 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1379 }
1380 }
1381
kvm_arch_hardware_disable(void)1382 void kvm_arch_hardware_disable(void)
1383 {
1384 _kvm_arch_hardware_disable(NULL);
1385 }
1386
1387 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1388 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1389 unsigned long cmd,
1390 void *v)
1391 {
1392 /*
1393 * kvm_arm_hardware_enabled is left with its old value over
1394 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1395 * re-enable hyp.
1396 */
1397 switch (cmd) {
1398 case CPU_PM_ENTER:
1399 if (__this_cpu_read(kvm_arm_hardware_enabled))
1400 /*
1401 * don't update kvm_arm_hardware_enabled here
1402 * so that the hardware will be re-enabled
1403 * when we resume. See below.
1404 */
1405 cpu_hyp_reset();
1406
1407 return NOTIFY_OK;
1408 case CPU_PM_ENTER_FAILED:
1409 case CPU_PM_EXIT:
1410 if (__this_cpu_read(kvm_arm_hardware_enabled))
1411 /* The hardware was enabled before suspend. */
1412 cpu_hyp_reinit();
1413
1414 return NOTIFY_OK;
1415
1416 default:
1417 return NOTIFY_DONE;
1418 }
1419 }
1420
1421 static struct notifier_block hyp_init_cpu_pm_nb = {
1422 .notifier_call = hyp_init_cpu_pm_notifier,
1423 };
1424
hyp_cpu_pm_init(void)1425 static void __init hyp_cpu_pm_init(void)
1426 {
1427 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1428 }
hyp_cpu_pm_exit(void)1429 static void __init hyp_cpu_pm_exit(void)
1430 {
1431 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1432 }
1433 #else
hyp_cpu_pm_init(void)1434 static inline void hyp_cpu_pm_init(void)
1435 {
1436 }
hyp_cpu_pm_exit(void)1437 static inline void hyp_cpu_pm_exit(void)
1438 {
1439 }
1440 #endif
1441
init_common_resources(void)1442 static int init_common_resources(void)
1443 {
1444 kvm_set_ipa_limit();
1445
1446 return 0;
1447 }
1448
init_subsystems(void)1449 static int init_subsystems(void)
1450 {
1451 int err = 0;
1452
1453 /*
1454 * Enable hardware so that subsystem initialisation can access EL2.
1455 */
1456 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1457
1458 /*
1459 * Register CPU lower-power notifier
1460 */
1461 hyp_cpu_pm_init();
1462
1463 /*
1464 * Init HYP view of VGIC
1465 */
1466 err = kvm_vgic_hyp_init();
1467 switch (err) {
1468 case 0:
1469 vgic_present = true;
1470 break;
1471 case -ENODEV:
1472 case -ENXIO:
1473 vgic_present = false;
1474 err = 0;
1475 break;
1476 default:
1477 goto out;
1478 }
1479
1480 /*
1481 * Init HYP architected timer support
1482 */
1483 err = kvm_timer_hyp_init(vgic_present);
1484 if (err)
1485 goto out;
1486
1487 kvm_perf_init();
1488 kvm_coproc_table_init();
1489
1490 out:
1491 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1492
1493 return err;
1494 }
1495
teardown_hyp_mode(void)1496 static void teardown_hyp_mode(void)
1497 {
1498 int cpu;
1499
1500 free_hyp_pgds();
1501 for_each_possible_cpu(cpu)
1502 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1503 hyp_cpu_pm_exit();
1504 }
1505
1506 /**
1507 * Inits Hyp-mode on all online CPUs
1508 */
init_hyp_mode(void)1509 static int init_hyp_mode(void)
1510 {
1511 int cpu;
1512 int err = 0;
1513
1514 /*
1515 * Allocate Hyp PGD and setup Hyp identity mapping
1516 */
1517 err = kvm_mmu_init();
1518 if (err)
1519 goto out_err;
1520
1521 /*
1522 * Allocate stack pages for Hypervisor-mode
1523 */
1524 for_each_possible_cpu(cpu) {
1525 unsigned long stack_page;
1526
1527 stack_page = __get_free_page(GFP_KERNEL);
1528 if (!stack_page) {
1529 err = -ENOMEM;
1530 goto out_err;
1531 }
1532
1533 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1534 }
1535
1536 /*
1537 * Map the Hyp-code called directly from the host
1538 */
1539 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1540 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1541 if (err) {
1542 kvm_err("Cannot map world-switch code\n");
1543 goto out_err;
1544 }
1545
1546 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1547 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1548 if (err) {
1549 kvm_err("Cannot map rodata section\n");
1550 goto out_err;
1551 }
1552
1553 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1554 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1555 if (err) {
1556 kvm_err("Cannot map bss section\n");
1557 goto out_err;
1558 }
1559
1560 err = kvm_map_vectors();
1561 if (err) {
1562 kvm_err("Cannot map vectors\n");
1563 goto out_err;
1564 }
1565
1566 /*
1567 * Map the Hyp stack pages
1568 */
1569 for_each_possible_cpu(cpu) {
1570 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1571 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1572 PAGE_HYP);
1573
1574 if (err) {
1575 kvm_err("Cannot map hyp stack\n");
1576 goto out_err;
1577 }
1578 }
1579
1580 for_each_possible_cpu(cpu) {
1581 kvm_host_data_t *cpu_data;
1582
1583 cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1584 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1585
1586 if (err) {
1587 kvm_err("Cannot map host CPU state: %d\n", err);
1588 goto out_err;
1589 }
1590 }
1591
1592 err = hyp_map_aux_data();
1593 if (err)
1594 kvm_err("Cannot map host auxiliary data: %d\n", err);
1595
1596 return 0;
1597
1598 out_err:
1599 teardown_hyp_mode();
1600 kvm_err("error initializing Hyp mode: %d\n", err);
1601 return err;
1602 }
1603
check_kvm_target_cpu(void * ret)1604 static void check_kvm_target_cpu(void *ret)
1605 {
1606 *(int *)ret = kvm_target_cpu();
1607 }
1608
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1609 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1610 {
1611 struct kvm_vcpu *vcpu;
1612 int i;
1613
1614 mpidr &= MPIDR_HWID_BITMASK;
1615 kvm_for_each_vcpu(i, vcpu, kvm) {
1616 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1617 return vcpu;
1618 }
1619 return NULL;
1620 }
1621
kvm_arch_has_irq_bypass(void)1622 bool kvm_arch_has_irq_bypass(void)
1623 {
1624 return true;
1625 }
1626
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)1627 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1628 struct irq_bypass_producer *prod)
1629 {
1630 struct kvm_kernel_irqfd *irqfd =
1631 container_of(cons, struct kvm_kernel_irqfd, consumer);
1632
1633 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1634 &irqfd->irq_entry);
1635 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)1636 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1637 struct irq_bypass_producer *prod)
1638 {
1639 struct kvm_kernel_irqfd *irqfd =
1640 container_of(cons, struct kvm_kernel_irqfd, consumer);
1641
1642 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1643 &irqfd->irq_entry);
1644 }
1645
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)1646 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1647 {
1648 struct kvm_kernel_irqfd *irqfd =
1649 container_of(cons, struct kvm_kernel_irqfd, consumer);
1650
1651 kvm_arm_halt_guest(irqfd->kvm);
1652 }
1653
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)1654 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1655 {
1656 struct kvm_kernel_irqfd *irqfd =
1657 container_of(cons, struct kvm_kernel_irqfd, consumer);
1658
1659 kvm_arm_resume_guest(irqfd->kvm);
1660 }
1661
1662 /**
1663 * Initialize Hyp-mode and memory mappings on all CPUs.
1664 */
kvm_arch_init(void * opaque)1665 int kvm_arch_init(void *opaque)
1666 {
1667 int err;
1668 int ret, cpu;
1669 bool in_hyp_mode;
1670
1671 if (!is_hyp_mode_available()) {
1672 kvm_info("HYP mode not available\n");
1673 return -ENODEV;
1674 }
1675
1676 in_hyp_mode = is_kernel_in_hyp_mode();
1677
1678 if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1679 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1680 return -ENODEV;
1681 }
1682
1683 for_each_online_cpu(cpu) {
1684 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1685 if (ret < 0) {
1686 kvm_err("Error, CPU %d not supported!\n", cpu);
1687 return -ENODEV;
1688 }
1689 }
1690
1691 err = init_common_resources();
1692 if (err)
1693 return err;
1694
1695 err = kvm_arm_init_sve();
1696 if (err)
1697 return err;
1698
1699 if (!in_hyp_mode) {
1700 err = init_hyp_mode();
1701 if (err)
1702 goto out_err;
1703 }
1704
1705 err = init_subsystems();
1706 if (err)
1707 goto out_hyp;
1708
1709 if (in_hyp_mode)
1710 kvm_info("VHE mode initialized successfully\n");
1711 else
1712 kvm_info("Hyp mode initialized successfully\n");
1713
1714 return 0;
1715
1716 out_hyp:
1717 if (!in_hyp_mode)
1718 teardown_hyp_mode();
1719 out_err:
1720 return err;
1721 }
1722
1723 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1724 void kvm_arch_exit(void)
1725 {
1726 kvm_perf_teardown();
1727 }
1728
arm_init(void)1729 static int arm_init(void)
1730 {
1731 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1732 return rc;
1733 }
1734
1735 module_init(arm_init);
1736