1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/perf_event.h>
29 #include <asm/sysreg.h>
30
31 #include <trace/events/kvm.h>
32
33 #include "sys_regs.h"
34
35 #include "trace.h"
36
37 /*
38 * All of this file is extremly similar to the ARM coproc.c, but the
39 * types are different. My gut feeling is that it should be pretty
40 * easy to merge, but that would be an ABI breakage -- again. VFP
41 * would also need to be abstracted.
42 *
43 * For AArch32, we only take care of what is being trapped. Anything
44 * that has to do with init and userspace access has to go via the
45 * 64bit interface.
46 */
47
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49 struct sys_reg_params *params,
50 const struct sys_reg_desc *r)
51 {
52 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53 print_sys_reg_instr(params);
54 kvm_inject_undefined(vcpu);
55 return false;
56 }
57
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59 struct sys_reg_params *params,
60 const struct sys_reg_desc *r)
61 {
62 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63 print_sys_reg_instr(params);
64 kvm_inject_undefined(vcpu);
65 return false;
66 }
67
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,int reg)68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69 {
70 if (!vcpu->arch.sysregs_loaded_on_cpu)
71 goto immediate_read;
72
73 /*
74 * System registers listed in the switch are not saved on every
75 * exit from the guest but are only saved on vcpu_put.
76 *
77 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
78 * should never be listed below, because the guest cannot modify its
79 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
80 * thread when emulating cross-VCPU communication.
81 */
82 switch (reg) {
83 case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1);
84 case SCTLR_EL1: return read_sysreg_s(SYS_SCTLR_EL12);
85 case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1);
86 case CPACR_EL1: return read_sysreg_s(SYS_CPACR_EL12);
87 case TTBR0_EL1: return read_sysreg_s(SYS_TTBR0_EL12);
88 case TTBR1_EL1: return read_sysreg_s(SYS_TTBR1_EL12);
89 case TCR_EL1: return read_sysreg_s(SYS_TCR_EL12);
90 case ESR_EL1: return read_sysreg_s(SYS_ESR_EL12);
91 case AFSR0_EL1: return read_sysreg_s(SYS_AFSR0_EL12);
92 case AFSR1_EL1: return read_sysreg_s(SYS_AFSR1_EL12);
93 case FAR_EL1: return read_sysreg_s(SYS_FAR_EL12);
94 case MAIR_EL1: return read_sysreg_s(SYS_MAIR_EL12);
95 case VBAR_EL1: return read_sysreg_s(SYS_VBAR_EL12);
96 case CONTEXTIDR_EL1: return read_sysreg_s(SYS_CONTEXTIDR_EL12);
97 case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0);
98 case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0);
99 case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1);
100 case AMAIR_EL1: return read_sysreg_s(SYS_AMAIR_EL12);
101 case CNTKCTL_EL1: return read_sysreg_s(SYS_CNTKCTL_EL12);
102 case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1);
103 case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2);
104 case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2);
105 case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2);
106 }
107
108 immediate_read:
109 return __vcpu_sys_reg(vcpu, reg);
110 }
111
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)112 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
113 {
114 if (!vcpu->arch.sysregs_loaded_on_cpu)
115 goto immediate_write;
116
117 /*
118 * System registers listed in the switch are not restored on every
119 * entry to the guest but are only restored on vcpu_load.
120 *
121 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
122 * should never be listed below, because the the MPIDR should only be
123 * set once, before running the VCPU, and never changed later.
124 */
125 switch (reg) {
126 case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return;
127 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); return;
128 case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return;
129 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); return;
130 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); return;
131 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); return;
132 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); return;
133 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); return;
134 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); return;
135 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); return;
136 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); return;
137 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); return;
138 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); return;
139 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
140 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return;
141 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return;
142 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return;
143 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); return;
144 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); return;
145 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return;
146 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return;
147 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return;
148 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return;
149 }
150
151 immediate_write:
152 __vcpu_sys_reg(vcpu, reg) = val;
153 }
154
155 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
156 static u32 cache_levels;
157
158 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
159 #define CSSELR_MAX 12
160
161 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)162 static u32 get_ccsidr(u32 csselr)
163 {
164 u32 ccsidr;
165
166 /* Make sure noone else changes CSSELR during this! */
167 local_irq_disable();
168 write_sysreg(csselr, csselr_el1);
169 isb();
170 ccsidr = read_sysreg(ccsidr_el1);
171 local_irq_enable();
172
173 return ccsidr;
174 }
175
176 /*
177 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
178 */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)179 static bool access_dcsw(struct kvm_vcpu *vcpu,
180 struct sys_reg_params *p,
181 const struct sys_reg_desc *r)
182 {
183 if (!p->is_write)
184 return read_from_write_only(vcpu, p, r);
185
186 /*
187 * Only track S/W ops if we don't have FWB. It still indicates
188 * that the guest is a bit broken (S/W operations should only
189 * be done by firmware, knowing that there is only a single
190 * CPU left in the system, and certainly not from non-secure
191 * software).
192 */
193 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
194 kvm_set_way_flush(vcpu);
195
196 return true;
197 }
198
199 /*
200 * Generic accessor for VM registers. Only called as long as HCR_TVM
201 * is set. If the guest enables the MMU, we stop trapping the VM
202 * sys_regs and leave it in complete control of the caches.
203 */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)204 static bool access_vm_reg(struct kvm_vcpu *vcpu,
205 struct sys_reg_params *p,
206 const struct sys_reg_desc *r)
207 {
208 bool was_enabled = vcpu_has_cache_enabled(vcpu);
209 u64 val;
210 int reg = r->reg;
211
212 BUG_ON(!p->is_write);
213
214 /* See the 32bit mapping in kvm_host.h */
215 if (p->is_aarch32)
216 reg = r->reg / 2;
217
218 if (!p->is_aarch32 || !p->is_32bit) {
219 val = p->regval;
220 } else {
221 val = vcpu_read_sys_reg(vcpu, reg);
222 if (r->reg % 2)
223 val = (p->regval << 32) | (u64)lower_32_bits(val);
224 else
225 val = ((u64)upper_32_bits(val) << 32) |
226 lower_32_bits(p->regval);
227 }
228 vcpu_write_sys_reg(vcpu, val, reg);
229
230 kvm_toggle_cache(vcpu, was_enabled);
231 return true;
232 }
233
234 /*
235 * Trap handler for the GICv3 SGI generation system register.
236 * Forward the request to the VGIC emulation.
237 * The cp15_64 code makes sure this automatically works
238 * for both AArch64 and AArch32 accesses.
239 */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)240 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
241 struct sys_reg_params *p,
242 const struct sys_reg_desc *r)
243 {
244 bool g1;
245
246 if (!p->is_write)
247 return read_from_write_only(vcpu, p, r);
248
249 /*
250 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
251 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
252 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
253 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
254 * group.
255 */
256 if (p->is_aarch32) {
257 switch (p->Op1) {
258 default: /* Keep GCC quiet */
259 case 0: /* ICC_SGI1R */
260 g1 = true;
261 break;
262 case 1: /* ICC_ASGI1R */
263 case 2: /* ICC_SGI0R */
264 g1 = false;
265 break;
266 }
267 } else {
268 switch (p->Op2) {
269 default: /* Keep GCC quiet */
270 case 5: /* ICC_SGI1R_EL1 */
271 g1 = true;
272 break;
273 case 6: /* ICC_ASGI1R_EL1 */
274 case 7: /* ICC_SGI0R_EL1 */
275 g1 = false;
276 break;
277 }
278 }
279
280 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
281
282 return true;
283 }
284
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)285 static bool access_gic_sre(struct kvm_vcpu *vcpu,
286 struct sys_reg_params *p,
287 const struct sys_reg_desc *r)
288 {
289 if (p->is_write)
290 return ignore_write(vcpu, p);
291
292 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
293 return true;
294 }
295
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)296 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
297 struct sys_reg_params *p,
298 const struct sys_reg_desc *r)
299 {
300 if (p->is_write)
301 return ignore_write(vcpu, p);
302 else
303 return read_zero(vcpu, p);
304 }
305
306 /*
307 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
308 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
309 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
310 * treat it separately.
311 */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)312 static bool trap_loregion(struct kvm_vcpu *vcpu,
313 struct sys_reg_params *p,
314 const struct sys_reg_desc *r)
315 {
316 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
317 u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
318 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
319
320 if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
321 kvm_inject_undefined(vcpu);
322 return false;
323 }
324
325 if (p->is_write && sr == SYS_LORID_EL1)
326 return write_to_read_only(vcpu, p, r);
327
328 return trap_raz_wi(vcpu, p, r);
329 }
330
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)331 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
332 struct sys_reg_params *p,
333 const struct sys_reg_desc *r)
334 {
335 if (p->is_write) {
336 return ignore_write(vcpu, p);
337 } else {
338 p->regval = (1 << 3);
339 return true;
340 }
341 }
342
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)343 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
344 struct sys_reg_params *p,
345 const struct sys_reg_desc *r)
346 {
347 if (p->is_write) {
348 return ignore_write(vcpu, p);
349 } else {
350 p->regval = read_sysreg(dbgauthstatus_el1);
351 return true;
352 }
353 }
354
355 /*
356 * We want to avoid world-switching all the DBG registers all the
357 * time:
358 *
359 * - If we've touched any debug register, it is likely that we're
360 * going to touch more of them. It then makes sense to disable the
361 * traps and start doing the save/restore dance
362 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
363 * then mandatory to save/restore the registers, as the guest
364 * depends on them.
365 *
366 * For this, we use a DIRTY bit, indicating the guest has modified the
367 * debug registers, used as follow:
368 *
369 * On guest entry:
370 * - If the dirty bit is set (because we're coming back from trapping),
371 * disable the traps, save host registers, restore guest registers.
372 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
373 * set the dirty bit, disable the traps, save host registers,
374 * restore guest registers.
375 * - Otherwise, enable the traps
376 *
377 * On guest exit:
378 * - If the dirty bit is set, save guest registers, restore host
379 * registers and clear the dirty bit. This ensure that the host can
380 * now use the debug registers.
381 */
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)382 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
383 struct sys_reg_params *p,
384 const struct sys_reg_desc *r)
385 {
386 if (p->is_write) {
387 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
388 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
389 } else {
390 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
391 }
392
393 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
394
395 return true;
396 }
397
398 /*
399 * reg_to_dbg/dbg_to_reg
400 *
401 * A 32 bit write to a debug register leave top bits alone
402 * A 32 bit read from a debug register only returns the bottom bits
403 *
404 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
405 * hyp.S code switches between host and guest values in future.
406 */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,u64 * dbg_reg)407 static void reg_to_dbg(struct kvm_vcpu *vcpu,
408 struct sys_reg_params *p,
409 u64 *dbg_reg)
410 {
411 u64 val = p->regval;
412
413 if (p->is_32bit) {
414 val &= 0xffffffffUL;
415 val |= ((*dbg_reg >> 32) << 32);
416 }
417
418 *dbg_reg = val;
419 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
420 }
421
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,u64 * dbg_reg)422 static void dbg_to_reg(struct kvm_vcpu *vcpu,
423 struct sys_reg_params *p,
424 u64 *dbg_reg)
425 {
426 p->regval = *dbg_reg;
427 if (p->is_32bit)
428 p->regval &= 0xffffffffUL;
429 }
430
trap_bvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)431 static bool trap_bvr(struct kvm_vcpu *vcpu,
432 struct sys_reg_params *p,
433 const struct sys_reg_desc *rd)
434 {
435 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
436
437 if (p->is_write)
438 reg_to_dbg(vcpu, p, dbg_reg);
439 else
440 dbg_to_reg(vcpu, p, dbg_reg);
441
442 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
443
444 return true;
445 }
446
set_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)447 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
448 const struct kvm_one_reg *reg, void __user *uaddr)
449 {
450 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
451
452 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
453 return -EFAULT;
454 return 0;
455 }
456
get_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)457 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
458 const struct kvm_one_reg *reg, void __user *uaddr)
459 {
460 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
461
462 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
463 return -EFAULT;
464 return 0;
465 }
466
reset_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)467 static void reset_bvr(struct kvm_vcpu *vcpu,
468 const struct sys_reg_desc *rd)
469 {
470 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
471 }
472
trap_bcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)473 static bool trap_bcr(struct kvm_vcpu *vcpu,
474 struct sys_reg_params *p,
475 const struct sys_reg_desc *rd)
476 {
477 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
478
479 if (p->is_write)
480 reg_to_dbg(vcpu, p, dbg_reg);
481 else
482 dbg_to_reg(vcpu, p, dbg_reg);
483
484 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
485
486 return true;
487 }
488
set_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)489 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490 const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
493
494 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
495 return -EFAULT;
496
497 return 0;
498 }
499
get_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)500 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501 const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
504
505 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
506 return -EFAULT;
507 return 0;
508 }
509
reset_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)510 static void reset_bcr(struct kvm_vcpu *vcpu,
511 const struct sys_reg_desc *rd)
512 {
513 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
514 }
515
trap_wvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)516 static bool trap_wvr(struct kvm_vcpu *vcpu,
517 struct sys_reg_params *p,
518 const struct sys_reg_desc *rd)
519 {
520 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
521
522 if (p->is_write)
523 reg_to_dbg(vcpu, p, dbg_reg);
524 else
525 dbg_to_reg(vcpu, p, dbg_reg);
526
527 trace_trap_reg(__func__, rd->reg, p->is_write,
528 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
529
530 return true;
531 }
532
set_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)533 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
534 const struct kvm_one_reg *reg, void __user *uaddr)
535 {
536 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
537
538 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
539 return -EFAULT;
540 return 0;
541 }
542
get_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)543 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
544 const struct kvm_one_reg *reg, void __user *uaddr)
545 {
546 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
547
548 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
549 return -EFAULT;
550 return 0;
551 }
552
reset_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)553 static void reset_wvr(struct kvm_vcpu *vcpu,
554 const struct sys_reg_desc *rd)
555 {
556 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
557 }
558
trap_wcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)559 static bool trap_wcr(struct kvm_vcpu *vcpu,
560 struct sys_reg_params *p,
561 const struct sys_reg_desc *rd)
562 {
563 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
564
565 if (p->is_write)
566 reg_to_dbg(vcpu, p, dbg_reg);
567 else
568 dbg_to_reg(vcpu, p, dbg_reg);
569
570 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
571
572 return true;
573 }
574
set_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)575 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576 const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
579
580 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
581 return -EFAULT;
582 return 0;
583 }
584
get_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)585 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
586 const struct kvm_one_reg *reg, void __user *uaddr)
587 {
588 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
589
590 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
591 return -EFAULT;
592 return 0;
593 }
594
reset_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)595 static void reset_wcr(struct kvm_vcpu *vcpu,
596 const struct sys_reg_desc *rd)
597 {
598 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
599 }
600
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)601 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
602 {
603 u64 amair = read_sysreg(amair_el1);
604 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
605 }
606
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)607 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609 u64 mpidr;
610
611 /*
612 * Map the vcpu_id into the first three affinity level fields of
613 * the MPIDR. We limit the number of VCPUs in level 0 due to a
614 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
615 * of the GICv3 to be able to address each CPU directly when
616 * sending IPIs.
617 */
618 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
619 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
620 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
621 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
622 }
623
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)624 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
625 {
626 u64 pmcr, val;
627
628 pmcr = read_sysreg(pmcr_el0);
629 /*
630 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
631 * except PMCR.E resetting to zero.
632 */
633 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
634 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
635 if (!system_supports_32bit_el0())
636 val |= ARMV8_PMU_PMCR_LC;
637 __vcpu_sys_reg(vcpu, r->reg) = val;
638 }
639
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)640 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
641 {
642 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
643 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
644
645 if (!enabled)
646 kvm_inject_undefined(vcpu);
647
648 return !enabled;
649 }
650
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)651 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
652 {
653 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
654 }
655
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)656 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
657 {
658 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
659 }
660
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)661 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
662 {
663 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
664 }
665
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)666 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
667 {
668 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
669 }
670
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)671 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
672 const struct sys_reg_desc *r)
673 {
674 u64 val;
675
676 if (!kvm_arm_pmu_v3_ready(vcpu))
677 return trap_raz_wi(vcpu, p, r);
678
679 if (pmu_access_el0_disabled(vcpu))
680 return false;
681
682 if (p->is_write) {
683 /* Only update writeable bits of PMCR */
684 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
685 val &= ~ARMV8_PMU_PMCR_MASK;
686 val |= p->regval & ARMV8_PMU_PMCR_MASK;
687 if (!system_supports_32bit_el0())
688 val |= ARMV8_PMU_PMCR_LC;
689 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
690 kvm_pmu_handle_pmcr(vcpu, val);
691 kvm_vcpu_pmu_restore_guest(vcpu);
692 } else {
693 /* PMCR.P & PMCR.C are RAZ */
694 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
695 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
696 p->regval = val;
697 }
698
699 return true;
700 }
701
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)702 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
703 const struct sys_reg_desc *r)
704 {
705 if (!kvm_arm_pmu_v3_ready(vcpu))
706 return trap_raz_wi(vcpu, p, r);
707
708 if (pmu_access_event_counter_el0_disabled(vcpu))
709 return false;
710
711 if (p->is_write)
712 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
713 else
714 /* return PMSELR.SEL field */
715 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
716 & ARMV8_PMU_COUNTER_MASK;
717
718 return true;
719 }
720
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)721 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
722 const struct sys_reg_desc *r)
723 {
724 u64 pmceid;
725
726 if (!kvm_arm_pmu_v3_ready(vcpu))
727 return trap_raz_wi(vcpu, p, r);
728
729 BUG_ON(p->is_write);
730
731 if (pmu_access_el0_disabled(vcpu))
732 return false;
733
734 if (!(p->Op2 & 1))
735 pmceid = read_sysreg(pmceid0_el0);
736 else
737 pmceid = read_sysreg(pmceid1_el0);
738
739 p->regval = pmceid;
740
741 return true;
742 }
743
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)744 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
745 {
746 u64 pmcr, val;
747
748 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
749 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
750 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
751 kvm_inject_undefined(vcpu);
752 return false;
753 }
754
755 return true;
756 }
757
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)758 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
759 struct sys_reg_params *p,
760 const struct sys_reg_desc *r)
761 {
762 u64 idx;
763
764 if (!kvm_arm_pmu_v3_ready(vcpu))
765 return trap_raz_wi(vcpu, p, r);
766
767 if (r->CRn == 9 && r->CRm == 13) {
768 if (r->Op2 == 2) {
769 /* PMXEVCNTR_EL0 */
770 if (pmu_access_event_counter_el0_disabled(vcpu))
771 return false;
772
773 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
774 & ARMV8_PMU_COUNTER_MASK;
775 } else if (r->Op2 == 0) {
776 /* PMCCNTR_EL0 */
777 if (pmu_access_cycle_counter_el0_disabled(vcpu))
778 return false;
779
780 idx = ARMV8_PMU_CYCLE_IDX;
781 } else {
782 return false;
783 }
784 } else if (r->CRn == 0 && r->CRm == 9) {
785 /* PMCCNTR */
786 if (pmu_access_event_counter_el0_disabled(vcpu))
787 return false;
788
789 idx = ARMV8_PMU_CYCLE_IDX;
790 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
791 /* PMEVCNTRn_EL0 */
792 if (pmu_access_event_counter_el0_disabled(vcpu))
793 return false;
794
795 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
796 } else {
797 return false;
798 }
799
800 if (!pmu_counter_idx_valid(vcpu, idx))
801 return false;
802
803 if (p->is_write) {
804 if (pmu_access_el0_disabled(vcpu))
805 return false;
806
807 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
808 } else {
809 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
810 }
811
812 return true;
813 }
814
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)815 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
816 const struct sys_reg_desc *r)
817 {
818 u64 idx, reg;
819
820 if (!kvm_arm_pmu_v3_ready(vcpu))
821 return trap_raz_wi(vcpu, p, r);
822
823 if (pmu_access_el0_disabled(vcpu))
824 return false;
825
826 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
827 /* PMXEVTYPER_EL0 */
828 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
829 reg = PMEVTYPER0_EL0 + idx;
830 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
831 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
832 if (idx == ARMV8_PMU_CYCLE_IDX)
833 reg = PMCCFILTR_EL0;
834 else
835 /* PMEVTYPERn_EL0 */
836 reg = PMEVTYPER0_EL0 + idx;
837 } else {
838 BUG();
839 }
840
841 if (!pmu_counter_idx_valid(vcpu, idx))
842 return false;
843
844 if (p->is_write) {
845 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
846 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
847 kvm_vcpu_pmu_restore_guest(vcpu);
848 } else {
849 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
850 }
851
852 return true;
853 }
854
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)855 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
856 const struct sys_reg_desc *r)
857 {
858 u64 val, mask;
859
860 if (!kvm_arm_pmu_v3_ready(vcpu))
861 return trap_raz_wi(vcpu, p, r);
862
863 if (pmu_access_el0_disabled(vcpu))
864 return false;
865
866 mask = kvm_pmu_valid_counter_mask(vcpu);
867 if (p->is_write) {
868 val = p->regval & mask;
869 if (r->Op2 & 0x1) {
870 /* accessing PMCNTENSET_EL0 */
871 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
872 kvm_pmu_enable_counter_mask(vcpu, val);
873 kvm_vcpu_pmu_restore_guest(vcpu);
874 } else {
875 /* accessing PMCNTENCLR_EL0 */
876 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
877 kvm_pmu_disable_counter_mask(vcpu, val);
878 }
879 } else {
880 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
881 }
882
883 return true;
884 }
885
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)886 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
887 const struct sys_reg_desc *r)
888 {
889 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
890
891 if (!kvm_arm_pmu_v3_ready(vcpu))
892 return trap_raz_wi(vcpu, p, r);
893
894 if (!vcpu_mode_priv(vcpu)) {
895 kvm_inject_undefined(vcpu);
896 return false;
897 }
898
899 if (p->is_write) {
900 u64 val = p->regval & mask;
901
902 if (r->Op2 & 0x1)
903 /* accessing PMINTENSET_EL1 */
904 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
905 else
906 /* accessing PMINTENCLR_EL1 */
907 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
908 } else {
909 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
910 }
911
912 return true;
913 }
914
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)915 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
916 const struct sys_reg_desc *r)
917 {
918 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
919
920 if (!kvm_arm_pmu_v3_ready(vcpu))
921 return trap_raz_wi(vcpu, p, r);
922
923 if (pmu_access_el0_disabled(vcpu))
924 return false;
925
926 if (p->is_write) {
927 if (r->CRm & 0x2)
928 /* accessing PMOVSSET_EL0 */
929 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
930 else
931 /* accessing PMOVSCLR_EL0 */
932 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
933 } else {
934 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
935 }
936
937 return true;
938 }
939
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)940 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
941 const struct sys_reg_desc *r)
942 {
943 u64 mask;
944
945 if (!kvm_arm_pmu_v3_ready(vcpu))
946 return trap_raz_wi(vcpu, p, r);
947
948 if (!p->is_write)
949 return read_from_write_only(vcpu, p, r);
950
951 if (pmu_write_swinc_el0_disabled(vcpu))
952 return false;
953
954 mask = kvm_pmu_valid_counter_mask(vcpu);
955 kvm_pmu_software_increment(vcpu, p->regval & mask);
956 return true;
957 }
958
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)959 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
960 const struct sys_reg_desc *r)
961 {
962 if (!kvm_arm_pmu_v3_ready(vcpu))
963 return trap_raz_wi(vcpu, p, r);
964
965 if (p->is_write) {
966 if (!vcpu_mode_priv(vcpu)) {
967 kvm_inject_undefined(vcpu);
968 return false;
969 }
970
971 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
972 p->regval & ARMV8_PMU_USERENR_MASK;
973 } else {
974 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
975 & ARMV8_PMU_USERENR_MASK;
976 }
977
978 return true;
979 }
980
981 #define reg_to_encoding(x) \
982 sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
983 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
984
985 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
986 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
987 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
988 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
989 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
990 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
991 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
992 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
993 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
994 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
995
996 /* Macro to expand the PMEVCNTRn_EL0 register */
997 #define PMU_PMEVCNTR_EL0(n) \
998 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
999 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1000
1001 /* Macro to expand the PMEVTYPERn_EL0 register */
1002 #define PMU_PMEVTYPER_EL0(n) \
1003 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
1004 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1005
trap_ptrauth(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)1006 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1007 struct sys_reg_params *p,
1008 const struct sys_reg_desc *rd)
1009 {
1010 kvm_arm_vcpu_ptrauth_trap(vcpu);
1011
1012 /*
1013 * Return false for both cases as we never skip the trapped
1014 * instruction:
1015 *
1016 * - Either we re-execute the same key register access instruction
1017 * after enabling ptrauth.
1018 * - Or an UNDEF is injected as ptrauth is not supported/enabled.
1019 */
1020 return false;
1021 }
1022
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1023 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1024 const struct sys_reg_desc *rd)
1025 {
1026 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1027 }
1028
1029 #define __PTRAUTH_KEY(k) \
1030 { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k, \
1031 .visibility = ptrauth_visibility}
1032
1033 #define PTRAUTH_KEY(k) \
1034 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1035 __PTRAUTH_KEY(k ## KEYHI_EL1)
1036
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1037 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1038 struct sys_reg_params *p,
1039 const struct sys_reg_desc *r)
1040 {
1041 enum kvm_arch_timers tmr;
1042 enum kvm_arch_timer_regs treg;
1043 u64 reg = reg_to_encoding(r);
1044
1045 switch (reg) {
1046 case SYS_CNTP_TVAL_EL0:
1047 case SYS_AARCH32_CNTP_TVAL:
1048 tmr = TIMER_PTIMER;
1049 treg = TIMER_REG_TVAL;
1050 break;
1051 case SYS_CNTP_CTL_EL0:
1052 case SYS_AARCH32_CNTP_CTL:
1053 tmr = TIMER_PTIMER;
1054 treg = TIMER_REG_CTL;
1055 break;
1056 case SYS_CNTP_CVAL_EL0:
1057 case SYS_AARCH32_CNTP_CVAL:
1058 tmr = TIMER_PTIMER;
1059 treg = TIMER_REG_CVAL;
1060 break;
1061 default:
1062 BUG();
1063 }
1064
1065 if (p->is_write)
1066 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1067 else
1068 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1069
1070 return true;
1071 }
1072
1073 /* Read a sanitised cpufeature ID register by sys_reg_desc */
read_id_reg(const struct kvm_vcpu * vcpu,struct sys_reg_desc const * r,bool raz)1074 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1075 struct sys_reg_desc const *r, bool raz)
1076 {
1077 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1078 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1079 u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1080
1081 if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
1082 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1083 } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1084 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1085 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1086 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1087 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1088 }
1089
1090 return val;
1091 }
1092
1093 /* cpufeature ID register access trap handlers */
1094
__access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r,bool raz)1095 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1096 struct sys_reg_params *p,
1097 const struct sys_reg_desc *r,
1098 bool raz)
1099 {
1100 if (p->is_write)
1101 return write_to_read_only(vcpu, p, r);
1102
1103 p->regval = read_id_reg(vcpu, r, raz);
1104 return true;
1105 }
1106
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1107 static bool access_id_reg(struct kvm_vcpu *vcpu,
1108 struct sys_reg_params *p,
1109 const struct sys_reg_desc *r)
1110 {
1111 return __access_id_reg(vcpu, p, r, false);
1112 }
1113
access_raz_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1114 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1115 struct sys_reg_params *p,
1116 const struct sys_reg_desc *r)
1117 {
1118 return __access_id_reg(vcpu, p, r, true);
1119 }
1120
1121 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1122 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1123 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1124
1125 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1126 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1127 const struct sys_reg_desc *rd)
1128 {
1129 if (vcpu_has_sve(vcpu))
1130 return 0;
1131
1132 return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1133 }
1134
1135 /* Visibility overrides for SVE-specific ID registers */
sve_id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1136 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1137 const struct sys_reg_desc *rd)
1138 {
1139 if (vcpu_has_sve(vcpu))
1140 return 0;
1141
1142 return REG_HIDDEN_USER;
1143 }
1144
1145 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
guest_id_aa64zfr0_el1(const struct kvm_vcpu * vcpu)1146 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1147 {
1148 if (!vcpu_has_sve(vcpu))
1149 return 0;
1150
1151 return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1152 }
1153
access_id_aa64zfr0_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)1154 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1155 struct sys_reg_params *p,
1156 const struct sys_reg_desc *rd)
1157 {
1158 if (p->is_write)
1159 return write_to_read_only(vcpu, p, rd);
1160
1161 p->regval = guest_id_aa64zfr0_el1(vcpu);
1162 return true;
1163 }
1164
get_id_aa64zfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1165 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1166 const struct sys_reg_desc *rd,
1167 const struct kvm_one_reg *reg, void __user *uaddr)
1168 {
1169 u64 val;
1170
1171 if (WARN_ON(!vcpu_has_sve(vcpu)))
1172 return -ENOENT;
1173
1174 val = guest_id_aa64zfr0_el1(vcpu);
1175 return reg_to_user(uaddr, &val, reg->id);
1176 }
1177
set_id_aa64zfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1178 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1179 const struct sys_reg_desc *rd,
1180 const struct kvm_one_reg *reg, void __user *uaddr)
1181 {
1182 const u64 id = sys_reg_to_index(rd);
1183 int err;
1184 u64 val;
1185
1186 if (WARN_ON(!vcpu_has_sve(vcpu)))
1187 return -ENOENT;
1188
1189 err = reg_from_user(&val, uaddr, id);
1190 if (err)
1191 return err;
1192
1193 /* This is what we mean by invariant: you can't change it. */
1194 if (val != guest_id_aa64zfr0_el1(vcpu))
1195 return -EINVAL;
1196
1197 return 0;
1198 }
1199
1200 /*
1201 * cpufeature ID register user accessors
1202 *
1203 * For now, these registers are immutable for userspace, so no values
1204 * are stored, and for set_id_reg() we don't allow the effective value
1205 * to be changed.
1206 */
__get_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,void __user * uaddr,bool raz)1207 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1208 const struct sys_reg_desc *rd, void __user *uaddr,
1209 bool raz)
1210 {
1211 const u64 id = sys_reg_to_index(rd);
1212 const u64 val = read_id_reg(vcpu, rd, raz);
1213
1214 return reg_to_user(uaddr, &val, id);
1215 }
1216
__set_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,void __user * uaddr,bool raz)1217 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1218 const struct sys_reg_desc *rd, void __user *uaddr,
1219 bool raz)
1220 {
1221 const u64 id = sys_reg_to_index(rd);
1222 int err;
1223 u64 val;
1224
1225 err = reg_from_user(&val, uaddr, id);
1226 if (err)
1227 return err;
1228
1229 /* This is what we mean by invariant: you can't change it. */
1230 if (val != read_id_reg(vcpu, rd, raz))
1231 return -EINVAL;
1232
1233 return 0;
1234 }
1235
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1236 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1237 const struct kvm_one_reg *reg, void __user *uaddr)
1238 {
1239 return __get_id_reg(vcpu, rd, uaddr, false);
1240 }
1241
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1242 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1243 const struct kvm_one_reg *reg, void __user *uaddr)
1244 {
1245 return __set_id_reg(vcpu, rd, uaddr, false);
1246 }
1247
get_raz_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1248 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1249 const struct kvm_one_reg *reg, void __user *uaddr)
1250 {
1251 return __get_id_reg(vcpu, rd, uaddr, true);
1252 }
1253
set_raz_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1254 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1255 const struct kvm_one_reg *reg, void __user *uaddr)
1256 {
1257 return __set_id_reg(vcpu, rd, uaddr, true);
1258 }
1259
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1260 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1261 const struct sys_reg_desc *r)
1262 {
1263 if (p->is_write)
1264 return write_to_read_only(vcpu, p, r);
1265
1266 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1267 return true;
1268 }
1269
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1270 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1271 const struct sys_reg_desc *r)
1272 {
1273 if (p->is_write)
1274 return write_to_read_only(vcpu, p, r);
1275
1276 p->regval = read_sysreg(clidr_el1);
1277 return true;
1278 }
1279
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1280 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1281 const struct sys_reg_desc *r)
1282 {
1283 if (p->is_write)
1284 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
1285 else
1286 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
1287 return true;
1288 }
1289
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1290 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1291 const struct sys_reg_desc *r)
1292 {
1293 u32 csselr;
1294
1295 if (p->is_write)
1296 return write_to_read_only(vcpu, p, r);
1297
1298 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1299 p->regval = get_ccsidr(csselr);
1300
1301 /*
1302 * Guests should not be doing cache operations by set/way at all, and
1303 * for this reason, we trap them and attempt to infer the intent, so
1304 * that we can flush the entire guest's address space at the appropriate
1305 * time.
1306 * To prevent this trapping from causing performance problems, let's
1307 * expose the geometry of all data and unified caches (which are
1308 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1309 * [If guests should attempt to infer aliasing properties from the
1310 * geometry (which is not permitted by the architecture), they would
1311 * only do so for virtually indexed caches.]
1312 */
1313 if (!(csselr & 1)) // data or unified cache
1314 p->regval &= ~GENMASK(27, 3);
1315 return true;
1316 }
1317
1318 /* sys_reg_desc initialiser for known cpufeature ID registers */
1319 #define ID_SANITISED(name) { \
1320 SYS_DESC(SYS_##name), \
1321 .access = access_id_reg, \
1322 .get_user = get_id_reg, \
1323 .set_user = set_id_reg, \
1324 }
1325
1326 /*
1327 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1328 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1329 * (1 <= crm < 8, 0 <= Op2 < 8).
1330 */
1331 #define ID_UNALLOCATED(crm, op2) { \
1332 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1333 .access = access_raz_id_reg, \
1334 .get_user = get_raz_id_reg, \
1335 .set_user = set_raz_id_reg, \
1336 }
1337
1338 /*
1339 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1340 * For now, these are exposed just like unallocated ID regs: they appear
1341 * RAZ for the guest.
1342 */
1343 #define ID_HIDDEN(name) { \
1344 SYS_DESC(SYS_##name), \
1345 .access = access_raz_id_reg, \
1346 .get_user = get_raz_id_reg, \
1347 .set_user = set_raz_id_reg, \
1348 }
1349
1350 /*
1351 * Architected system registers.
1352 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1353 *
1354 * Debug handling: We do trap most, if not all debug related system
1355 * registers. The implementation is good enough to ensure that a guest
1356 * can use these with minimal performance degradation. The drawback is
1357 * that we don't implement any of the external debug, none of the
1358 * OSlock protocol. This should be revisited if we ever encounter a
1359 * more demanding guest...
1360 */
1361 static const struct sys_reg_desc sys_reg_descs[] = {
1362 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1363 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1364 { SYS_DESC(SYS_DC_CISW), access_dcsw },
1365
1366 DBG_BCR_BVR_WCR_WVR_EL1(0),
1367 DBG_BCR_BVR_WCR_WVR_EL1(1),
1368 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1369 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1370 DBG_BCR_BVR_WCR_WVR_EL1(2),
1371 DBG_BCR_BVR_WCR_WVR_EL1(3),
1372 DBG_BCR_BVR_WCR_WVR_EL1(4),
1373 DBG_BCR_BVR_WCR_WVR_EL1(5),
1374 DBG_BCR_BVR_WCR_WVR_EL1(6),
1375 DBG_BCR_BVR_WCR_WVR_EL1(7),
1376 DBG_BCR_BVR_WCR_WVR_EL1(8),
1377 DBG_BCR_BVR_WCR_WVR_EL1(9),
1378 DBG_BCR_BVR_WCR_WVR_EL1(10),
1379 DBG_BCR_BVR_WCR_WVR_EL1(11),
1380 DBG_BCR_BVR_WCR_WVR_EL1(12),
1381 DBG_BCR_BVR_WCR_WVR_EL1(13),
1382 DBG_BCR_BVR_WCR_WVR_EL1(14),
1383 DBG_BCR_BVR_WCR_WVR_EL1(15),
1384
1385 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1386 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1387 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1388 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1389 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1390 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1391 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1392 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1393
1394 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1395 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1396 // DBGDTR[TR]X_EL0 share the same encoding
1397 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1398
1399 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1400
1401 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1402
1403 /*
1404 * ID regs: all ID_SANITISED() entries here must have corresponding
1405 * entries in arm64_ftr_regs[].
1406 */
1407
1408 /* AArch64 mappings of the AArch32 ID registers */
1409 /* CRm=1 */
1410 ID_SANITISED(ID_PFR0_EL1),
1411 ID_SANITISED(ID_PFR1_EL1),
1412 ID_SANITISED(ID_DFR0_EL1),
1413 ID_HIDDEN(ID_AFR0_EL1),
1414 ID_SANITISED(ID_MMFR0_EL1),
1415 ID_SANITISED(ID_MMFR1_EL1),
1416 ID_SANITISED(ID_MMFR2_EL1),
1417 ID_SANITISED(ID_MMFR3_EL1),
1418
1419 /* CRm=2 */
1420 ID_SANITISED(ID_ISAR0_EL1),
1421 ID_SANITISED(ID_ISAR1_EL1),
1422 ID_SANITISED(ID_ISAR2_EL1),
1423 ID_SANITISED(ID_ISAR3_EL1),
1424 ID_SANITISED(ID_ISAR4_EL1),
1425 ID_SANITISED(ID_ISAR5_EL1),
1426 ID_SANITISED(ID_MMFR4_EL1),
1427 ID_UNALLOCATED(2,7),
1428
1429 /* CRm=3 */
1430 ID_SANITISED(MVFR0_EL1),
1431 ID_SANITISED(MVFR1_EL1),
1432 ID_SANITISED(MVFR2_EL1),
1433 ID_UNALLOCATED(3,3),
1434 ID_UNALLOCATED(3,4),
1435 ID_UNALLOCATED(3,5),
1436 ID_UNALLOCATED(3,6),
1437 ID_UNALLOCATED(3,7),
1438
1439 /* AArch64 ID registers */
1440 /* CRm=4 */
1441 ID_SANITISED(ID_AA64PFR0_EL1),
1442 ID_SANITISED(ID_AA64PFR1_EL1),
1443 ID_UNALLOCATED(4,2),
1444 ID_UNALLOCATED(4,3),
1445 { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1446 ID_UNALLOCATED(4,5),
1447 ID_UNALLOCATED(4,6),
1448 ID_UNALLOCATED(4,7),
1449
1450 /* CRm=5 */
1451 ID_SANITISED(ID_AA64DFR0_EL1),
1452 ID_SANITISED(ID_AA64DFR1_EL1),
1453 ID_UNALLOCATED(5,2),
1454 ID_UNALLOCATED(5,3),
1455 ID_HIDDEN(ID_AA64AFR0_EL1),
1456 ID_HIDDEN(ID_AA64AFR1_EL1),
1457 ID_UNALLOCATED(5,6),
1458 ID_UNALLOCATED(5,7),
1459
1460 /* CRm=6 */
1461 ID_SANITISED(ID_AA64ISAR0_EL1),
1462 ID_SANITISED(ID_AA64ISAR1_EL1),
1463 ID_UNALLOCATED(6,2),
1464 ID_UNALLOCATED(6,3),
1465 ID_UNALLOCATED(6,4),
1466 ID_UNALLOCATED(6,5),
1467 ID_UNALLOCATED(6,6),
1468 ID_UNALLOCATED(6,7),
1469
1470 /* CRm=7 */
1471 ID_SANITISED(ID_AA64MMFR0_EL1),
1472 ID_SANITISED(ID_AA64MMFR1_EL1),
1473 ID_SANITISED(ID_AA64MMFR2_EL1),
1474 ID_UNALLOCATED(7,3),
1475 ID_UNALLOCATED(7,4),
1476 ID_UNALLOCATED(7,5),
1477 ID_UNALLOCATED(7,6),
1478 ID_UNALLOCATED(7,7),
1479
1480 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1481 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1482 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1483 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1484 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1485 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1486
1487 PTRAUTH_KEY(APIA),
1488 PTRAUTH_KEY(APIB),
1489 PTRAUTH_KEY(APDA),
1490 PTRAUTH_KEY(APDB),
1491 PTRAUTH_KEY(APGA),
1492
1493 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1494 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1495 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1496
1497 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1498 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1499 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1500 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1501 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1502 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1503 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1504 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1505
1506 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1507 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1508
1509 { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1510 { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1511
1512 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1513 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1514
1515 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1516 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1517 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1518 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1519 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1520
1521 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1522 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1523
1524 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1525 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1526 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1527 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1528 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1529 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1530 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1531 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1532 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1533 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1534 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1535 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1536
1537 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1538 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1539
1540 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1541
1542 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1543 { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1544 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1545 { SYS_DESC(SYS_CTR_EL0), access_ctr },
1546
1547 { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1548 { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1549 { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1550 { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1551 { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1552 { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1553 { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1554 { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1555 { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1556 { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1557 { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1558 /*
1559 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1560 * in 32bit mode. Here we choose to reset it as zero for consistency.
1561 */
1562 { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1563 { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1564
1565 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1566 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1567
1568 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1569 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1570 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1571
1572 /* PMEVCNTRn_EL0 */
1573 PMU_PMEVCNTR_EL0(0),
1574 PMU_PMEVCNTR_EL0(1),
1575 PMU_PMEVCNTR_EL0(2),
1576 PMU_PMEVCNTR_EL0(3),
1577 PMU_PMEVCNTR_EL0(4),
1578 PMU_PMEVCNTR_EL0(5),
1579 PMU_PMEVCNTR_EL0(6),
1580 PMU_PMEVCNTR_EL0(7),
1581 PMU_PMEVCNTR_EL0(8),
1582 PMU_PMEVCNTR_EL0(9),
1583 PMU_PMEVCNTR_EL0(10),
1584 PMU_PMEVCNTR_EL0(11),
1585 PMU_PMEVCNTR_EL0(12),
1586 PMU_PMEVCNTR_EL0(13),
1587 PMU_PMEVCNTR_EL0(14),
1588 PMU_PMEVCNTR_EL0(15),
1589 PMU_PMEVCNTR_EL0(16),
1590 PMU_PMEVCNTR_EL0(17),
1591 PMU_PMEVCNTR_EL0(18),
1592 PMU_PMEVCNTR_EL0(19),
1593 PMU_PMEVCNTR_EL0(20),
1594 PMU_PMEVCNTR_EL0(21),
1595 PMU_PMEVCNTR_EL0(22),
1596 PMU_PMEVCNTR_EL0(23),
1597 PMU_PMEVCNTR_EL0(24),
1598 PMU_PMEVCNTR_EL0(25),
1599 PMU_PMEVCNTR_EL0(26),
1600 PMU_PMEVCNTR_EL0(27),
1601 PMU_PMEVCNTR_EL0(28),
1602 PMU_PMEVCNTR_EL0(29),
1603 PMU_PMEVCNTR_EL0(30),
1604 /* PMEVTYPERn_EL0 */
1605 PMU_PMEVTYPER_EL0(0),
1606 PMU_PMEVTYPER_EL0(1),
1607 PMU_PMEVTYPER_EL0(2),
1608 PMU_PMEVTYPER_EL0(3),
1609 PMU_PMEVTYPER_EL0(4),
1610 PMU_PMEVTYPER_EL0(5),
1611 PMU_PMEVTYPER_EL0(6),
1612 PMU_PMEVTYPER_EL0(7),
1613 PMU_PMEVTYPER_EL0(8),
1614 PMU_PMEVTYPER_EL0(9),
1615 PMU_PMEVTYPER_EL0(10),
1616 PMU_PMEVTYPER_EL0(11),
1617 PMU_PMEVTYPER_EL0(12),
1618 PMU_PMEVTYPER_EL0(13),
1619 PMU_PMEVTYPER_EL0(14),
1620 PMU_PMEVTYPER_EL0(15),
1621 PMU_PMEVTYPER_EL0(16),
1622 PMU_PMEVTYPER_EL0(17),
1623 PMU_PMEVTYPER_EL0(18),
1624 PMU_PMEVTYPER_EL0(19),
1625 PMU_PMEVTYPER_EL0(20),
1626 PMU_PMEVTYPER_EL0(21),
1627 PMU_PMEVTYPER_EL0(22),
1628 PMU_PMEVTYPER_EL0(23),
1629 PMU_PMEVTYPER_EL0(24),
1630 PMU_PMEVTYPER_EL0(25),
1631 PMU_PMEVTYPER_EL0(26),
1632 PMU_PMEVTYPER_EL0(27),
1633 PMU_PMEVTYPER_EL0(28),
1634 PMU_PMEVTYPER_EL0(29),
1635 PMU_PMEVTYPER_EL0(30),
1636 /*
1637 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1638 * in 32bit mode. Here we choose to reset it as zero for consistency.
1639 */
1640 { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1641
1642 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1643 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1644 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1645 };
1646
trap_dbgidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1647 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1648 struct sys_reg_params *p,
1649 const struct sys_reg_desc *r)
1650 {
1651 if (p->is_write) {
1652 return ignore_write(vcpu, p);
1653 } else {
1654 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1655 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1656 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1657
1658 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1659 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1660 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1661 | (6 << 16) | (el3 << 14) | (el3 << 12));
1662 return true;
1663 }
1664 }
1665
trap_debug32(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1666 static bool trap_debug32(struct kvm_vcpu *vcpu,
1667 struct sys_reg_params *p,
1668 const struct sys_reg_desc *r)
1669 {
1670 if (p->is_write) {
1671 vcpu_cp14(vcpu, r->reg) = p->regval;
1672 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1673 } else {
1674 p->regval = vcpu_cp14(vcpu, r->reg);
1675 }
1676
1677 return true;
1678 }
1679
1680 /* AArch32 debug register mappings
1681 *
1682 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1683 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1684 *
1685 * All control registers and watchpoint value registers are mapped to
1686 * the lower 32 bits of their AArch64 equivalents. We share the trap
1687 * handlers with the above AArch64 code which checks what mode the
1688 * system is in.
1689 */
1690
trap_xvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)1691 static bool trap_xvr(struct kvm_vcpu *vcpu,
1692 struct sys_reg_params *p,
1693 const struct sys_reg_desc *rd)
1694 {
1695 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1696
1697 if (p->is_write) {
1698 u64 val = *dbg_reg;
1699
1700 val &= 0xffffffffUL;
1701 val |= p->regval << 32;
1702 *dbg_reg = val;
1703
1704 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1705 } else {
1706 p->regval = *dbg_reg >> 32;
1707 }
1708
1709 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1710
1711 return true;
1712 }
1713
1714 #define DBG_BCR_BVR_WCR_WVR(n) \
1715 /* DBGBVRn */ \
1716 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1717 /* DBGBCRn */ \
1718 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1719 /* DBGWVRn */ \
1720 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1721 /* DBGWCRn */ \
1722 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1723
1724 #define DBGBXVR(n) \
1725 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1726
1727 /*
1728 * Trapped cp14 registers. We generally ignore most of the external
1729 * debug, on the principle that they don't really make sense to a
1730 * guest. Revisit this one day, would this principle change.
1731 */
1732 static const struct sys_reg_desc cp14_regs[] = {
1733 /* DBGIDR */
1734 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1735 /* DBGDTRRXext */
1736 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1737
1738 DBG_BCR_BVR_WCR_WVR(0),
1739 /* DBGDSCRint */
1740 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1741 DBG_BCR_BVR_WCR_WVR(1),
1742 /* DBGDCCINT */
1743 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1744 /* DBGDSCRext */
1745 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1746 DBG_BCR_BVR_WCR_WVR(2),
1747 /* DBGDTR[RT]Xint */
1748 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1749 /* DBGDTR[RT]Xext */
1750 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1751 DBG_BCR_BVR_WCR_WVR(3),
1752 DBG_BCR_BVR_WCR_WVR(4),
1753 DBG_BCR_BVR_WCR_WVR(5),
1754 /* DBGWFAR */
1755 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1756 /* DBGOSECCR */
1757 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1758 DBG_BCR_BVR_WCR_WVR(6),
1759 /* DBGVCR */
1760 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1761 DBG_BCR_BVR_WCR_WVR(7),
1762 DBG_BCR_BVR_WCR_WVR(8),
1763 DBG_BCR_BVR_WCR_WVR(9),
1764 DBG_BCR_BVR_WCR_WVR(10),
1765 DBG_BCR_BVR_WCR_WVR(11),
1766 DBG_BCR_BVR_WCR_WVR(12),
1767 DBG_BCR_BVR_WCR_WVR(13),
1768 DBG_BCR_BVR_WCR_WVR(14),
1769 DBG_BCR_BVR_WCR_WVR(15),
1770
1771 /* DBGDRAR (32bit) */
1772 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1773
1774 DBGBXVR(0),
1775 /* DBGOSLAR */
1776 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1777 DBGBXVR(1),
1778 /* DBGOSLSR */
1779 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1780 DBGBXVR(2),
1781 DBGBXVR(3),
1782 /* DBGOSDLR */
1783 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1784 DBGBXVR(4),
1785 /* DBGPRCR */
1786 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1787 DBGBXVR(5),
1788 DBGBXVR(6),
1789 DBGBXVR(7),
1790 DBGBXVR(8),
1791 DBGBXVR(9),
1792 DBGBXVR(10),
1793 DBGBXVR(11),
1794 DBGBXVR(12),
1795 DBGBXVR(13),
1796 DBGBXVR(14),
1797 DBGBXVR(15),
1798
1799 /* DBGDSAR (32bit) */
1800 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1801
1802 /* DBGDEVID2 */
1803 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1804 /* DBGDEVID1 */
1805 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1806 /* DBGDEVID */
1807 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1808 /* DBGCLAIMSET */
1809 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1810 /* DBGCLAIMCLR */
1811 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1812 /* DBGAUTHSTATUS */
1813 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1814 };
1815
1816 /* Trapped cp14 64bit registers */
1817 static const struct sys_reg_desc cp14_64_regs[] = {
1818 /* DBGDRAR (64bit) */
1819 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1820
1821 /* DBGDSAR (64bit) */
1822 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1823 };
1824
1825 /* Macro to expand the PMEVCNTRn register */
1826 #define PMU_PMEVCNTR(n) \
1827 /* PMEVCNTRn */ \
1828 { Op1(0), CRn(0b1110), \
1829 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1830 access_pmu_evcntr }
1831
1832 /* Macro to expand the PMEVTYPERn register */
1833 #define PMU_PMEVTYPER(n) \
1834 /* PMEVTYPERn */ \
1835 { Op1(0), CRn(0b1110), \
1836 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1837 access_pmu_evtyper }
1838
1839 /*
1840 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1841 * depending on the way they are accessed (as a 32bit or a 64bit
1842 * register).
1843 */
1844 static const struct sys_reg_desc cp15_regs[] = {
1845 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1846 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1847 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1848 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1849 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1850 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1851 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1852 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1853 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1854 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1855 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1856 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1857
1858 /*
1859 * DC{C,I,CI}SW operations:
1860 */
1861 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1862 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1863 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1864
1865 /* PMU */
1866 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1867 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1868 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1869 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1870 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1871 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1872 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1873 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1874 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1875 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1876 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1877 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1878 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1879 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1880 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1881
1882 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1883 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1884 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1885 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1886
1887 /* ICC_SRE */
1888 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1889
1890 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1891
1892 /* Arch Tmers */
1893 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1894 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1895
1896 /* PMEVCNTRn */
1897 PMU_PMEVCNTR(0),
1898 PMU_PMEVCNTR(1),
1899 PMU_PMEVCNTR(2),
1900 PMU_PMEVCNTR(3),
1901 PMU_PMEVCNTR(4),
1902 PMU_PMEVCNTR(5),
1903 PMU_PMEVCNTR(6),
1904 PMU_PMEVCNTR(7),
1905 PMU_PMEVCNTR(8),
1906 PMU_PMEVCNTR(9),
1907 PMU_PMEVCNTR(10),
1908 PMU_PMEVCNTR(11),
1909 PMU_PMEVCNTR(12),
1910 PMU_PMEVCNTR(13),
1911 PMU_PMEVCNTR(14),
1912 PMU_PMEVCNTR(15),
1913 PMU_PMEVCNTR(16),
1914 PMU_PMEVCNTR(17),
1915 PMU_PMEVCNTR(18),
1916 PMU_PMEVCNTR(19),
1917 PMU_PMEVCNTR(20),
1918 PMU_PMEVCNTR(21),
1919 PMU_PMEVCNTR(22),
1920 PMU_PMEVCNTR(23),
1921 PMU_PMEVCNTR(24),
1922 PMU_PMEVCNTR(25),
1923 PMU_PMEVCNTR(26),
1924 PMU_PMEVCNTR(27),
1925 PMU_PMEVCNTR(28),
1926 PMU_PMEVCNTR(29),
1927 PMU_PMEVCNTR(30),
1928 /* PMEVTYPERn */
1929 PMU_PMEVTYPER(0),
1930 PMU_PMEVTYPER(1),
1931 PMU_PMEVTYPER(2),
1932 PMU_PMEVTYPER(3),
1933 PMU_PMEVTYPER(4),
1934 PMU_PMEVTYPER(5),
1935 PMU_PMEVTYPER(6),
1936 PMU_PMEVTYPER(7),
1937 PMU_PMEVTYPER(8),
1938 PMU_PMEVTYPER(9),
1939 PMU_PMEVTYPER(10),
1940 PMU_PMEVTYPER(11),
1941 PMU_PMEVTYPER(12),
1942 PMU_PMEVTYPER(13),
1943 PMU_PMEVTYPER(14),
1944 PMU_PMEVTYPER(15),
1945 PMU_PMEVTYPER(16),
1946 PMU_PMEVTYPER(17),
1947 PMU_PMEVTYPER(18),
1948 PMU_PMEVTYPER(19),
1949 PMU_PMEVTYPER(20),
1950 PMU_PMEVTYPER(21),
1951 PMU_PMEVTYPER(22),
1952 PMU_PMEVTYPER(23),
1953 PMU_PMEVTYPER(24),
1954 PMU_PMEVTYPER(25),
1955 PMU_PMEVTYPER(26),
1956 PMU_PMEVTYPER(27),
1957 PMU_PMEVTYPER(28),
1958 PMU_PMEVTYPER(29),
1959 PMU_PMEVTYPER(30),
1960 /* PMCCFILTR */
1961 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1962
1963 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1964 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1965 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1966 };
1967
1968 static const struct sys_reg_desc cp15_64_regs[] = {
1969 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1970 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1971 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1972 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1973 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1974 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1975 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
1976 };
1977
1978 /* Target specific emulation tables */
1979 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1980
kvm_register_target_sys_reg_table(unsigned int target,struct kvm_sys_reg_target_table * table)1981 void kvm_register_target_sys_reg_table(unsigned int target,
1982 struct kvm_sys_reg_target_table *table)
1983 {
1984 target_tables[target] = table;
1985 }
1986
1987 /* Get specific register table for this target. */
get_target_table(unsigned target,bool mode_is_64,size_t * num)1988 static const struct sys_reg_desc *get_target_table(unsigned target,
1989 bool mode_is_64,
1990 size_t *num)
1991 {
1992 struct kvm_sys_reg_target_table *table;
1993
1994 table = target_tables[target];
1995 if (mode_is_64) {
1996 *num = table->table64.num;
1997 return table->table64.table;
1998 } else {
1999 *num = table->table32.num;
2000 return table->table32.table;
2001 }
2002 }
2003
match_sys_reg(const void * key,const void * elt)2004 static int match_sys_reg(const void *key, const void *elt)
2005 {
2006 const unsigned long pval = (unsigned long)key;
2007 const struct sys_reg_desc *r = elt;
2008
2009 return pval - reg_to_encoding(r);
2010 }
2011
find_reg(const struct sys_reg_params * params,const struct sys_reg_desc table[],unsigned int num)2012 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2013 const struct sys_reg_desc table[],
2014 unsigned int num)
2015 {
2016 unsigned long pval = reg_to_encoding(params);
2017
2018 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2019 }
2020
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu,struct kvm_run * run)2021 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2022 {
2023 kvm_inject_undefined(vcpu);
2024 return 1;
2025 }
2026
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)2027 static void perform_access(struct kvm_vcpu *vcpu,
2028 struct sys_reg_params *params,
2029 const struct sys_reg_desc *r)
2030 {
2031 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2032
2033 /* Check for regs disabled by runtime config */
2034 if (sysreg_hidden_from_guest(vcpu, r)) {
2035 kvm_inject_undefined(vcpu);
2036 return;
2037 }
2038
2039 /*
2040 * Not having an accessor means that we have configured a trap
2041 * that we don't know how to handle. This certainly qualifies
2042 * as a gross bug that should be fixed right away.
2043 */
2044 BUG_ON(!r->access);
2045
2046 /* Skip instruction if instructed so */
2047 if (likely(r->access(vcpu, params, r)))
2048 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2049 }
2050
2051 /*
2052 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2053 * call the corresponding trap handler.
2054 *
2055 * @params: pointer to the descriptor of the access
2056 * @table: array of trap descriptors
2057 * @num: size of the trap descriptor array
2058 *
2059 * Return 0 if the access has been handled, and -1 if not.
2060 */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)2061 static int emulate_cp(struct kvm_vcpu *vcpu,
2062 struct sys_reg_params *params,
2063 const struct sys_reg_desc *table,
2064 size_t num)
2065 {
2066 const struct sys_reg_desc *r;
2067
2068 if (!table)
2069 return -1; /* Not handled */
2070
2071 r = find_reg(params, table, num);
2072
2073 if (r) {
2074 perform_access(vcpu, params, r);
2075 return 0;
2076 }
2077
2078 /* Not handled */
2079 return -1;
2080 }
2081
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2082 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2083 struct sys_reg_params *params)
2084 {
2085 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2086 int cp = -1;
2087
2088 switch(hsr_ec) {
2089 case ESR_ELx_EC_CP15_32:
2090 case ESR_ELx_EC_CP15_64:
2091 cp = 15;
2092 break;
2093 case ESR_ELx_EC_CP14_MR:
2094 case ESR_ELx_EC_CP14_64:
2095 cp = 14;
2096 break;
2097 default:
2098 WARN_ON(1);
2099 }
2100
2101 kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
2102 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2103 print_sys_reg_instr(params);
2104 kvm_inject_undefined(vcpu);
2105 }
2106
2107 /**
2108 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2109 * @vcpu: The VCPU pointer
2110 * @run: The kvm_run struct
2111 */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global,const struct sys_reg_desc * target_specific,size_t nr_specific)2112 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2113 const struct sys_reg_desc *global,
2114 size_t nr_global,
2115 const struct sys_reg_desc *target_specific,
2116 size_t nr_specific)
2117 {
2118 struct sys_reg_params params;
2119 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2120 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2121 int Rt2 = (hsr >> 10) & 0x1f;
2122
2123 params.is_aarch32 = true;
2124 params.is_32bit = false;
2125 params.CRm = (hsr >> 1) & 0xf;
2126 params.is_write = ((hsr & 1) == 0);
2127
2128 params.Op0 = 0;
2129 params.Op1 = (hsr >> 16) & 0xf;
2130 params.Op2 = 0;
2131 params.CRn = 0;
2132
2133 /*
2134 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2135 * backends between AArch32 and AArch64, we get away with it.
2136 */
2137 if (params.is_write) {
2138 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2139 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2140 }
2141
2142 /*
2143 * Try to emulate the coprocessor access using the target
2144 * specific table first, and using the global table afterwards.
2145 * If either of the tables contains a handler, handle the
2146 * potential register operation in the case of a read and return
2147 * with success.
2148 */
2149 if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) ||
2150 !emulate_cp(vcpu, ¶ms, global, nr_global)) {
2151 /* Split up the value between registers for the read side */
2152 if (!params.is_write) {
2153 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2154 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2155 }
2156
2157 return 1;
2158 }
2159
2160 unhandled_cp_access(vcpu, ¶ms);
2161 return 1;
2162 }
2163
2164 /**
2165 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2166 * @vcpu: The VCPU pointer
2167 * @run: The kvm_run struct
2168 */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global,const struct sys_reg_desc * target_specific,size_t nr_specific)2169 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2170 const struct sys_reg_desc *global,
2171 size_t nr_global,
2172 const struct sys_reg_desc *target_specific,
2173 size_t nr_specific)
2174 {
2175 struct sys_reg_params params;
2176 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2177 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2178
2179 params.is_aarch32 = true;
2180 params.is_32bit = true;
2181 params.CRm = (hsr >> 1) & 0xf;
2182 params.regval = vcpu_get_reg(vcpu, Rt);
2183 params.is_write = ((hsr & 1) == 0);
2184 params.CRn = (hsr >> 10) & 0xf;
2185 params.Op0 = 0;
2186 params.Op1 = (hsr >> 14) & 0x7;
2187 params.Op2 = (hsr >> 17) & 0x7;
2188
2189 if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) ||
2190 !emulate_cp(vcpu, ¶ms, global, nr_global)) {
2191 if (!params.is_write)
2192 vcpu_set_reg(vcpu, Rt, params.regval);
2193 return 1;
2194 }
2195
2196 unhandled_cp_access(vcpu, ¶ms);
2197 return 1;
2198 }
2199
kvm_handle_cp15_64(struct kvm_vcpu * vcpu,struct kvm_run * run)2200 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2201 {
2202 const struct sys_reg_desc *target_specific;
2203 size_t num;
2204
2205 target_specific = get_target_table(vcpu->arch.target, false, &num);
2206 return kvm_handle_cp_64(vcpu,
2207 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2208 target_specific, num);
2209 }
2210
kvm_handle_cp15_32(struct kvm_vcpu * vcpu,struct kvm_run * run)2211 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2212 {
2213 const struct sys_reg_desc *target_specific;
2214 size_t num;
2215
2216 target_specific = get_target_table(vcpu->arch.target, false, &num);
2217 return kvm_handle_cp_32(vcpu,
2218 cp15_regs, ARRAY_SIZE(cp15_regs),
2219 target_specific, num);
2220 }
2221
kvm_handle_cp14_64(struct kvm_vcpu * vcpu,struct kvm_run * run)2222 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2223 {
2224 return kvm_handle_cp_64(vcpu,
2225 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2226 NULL, 0);
2227 }
2228
kvm_handle_cp14_32(struct kvm_vcpu * vcpu,struct kvm_run * run)2229 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2230 {
2231 return kvm_handle_cp_32(vcpu,
2232 cp14_regs, ARRAY_SIZE(cp14_regs),
2233 NULL, 0);
2234 }
2235
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2236 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2237 struct sys_reg_params *params)
2238 {
2239 size_t num;
2240 const struct sys_reg_desc *table, *r;
2241
2242 table = get_target_table(vcpu->arch.target, true, &num);
2243
2244 /* Search target-specific then generic table. */
2245 r = find_reg(params, table, num);
2246 if (!r)
2247 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2248
2249 if (likely(r)) {
2250 perform_access(vcpu, params, r);
2251 } else {
2252 kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2253 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2254 print_sys_reg_instr(params);
2255 kvm_inject_undefined(vcpu);
2256 }
2257 return 1;
2258 }
2259
reset_sys_reg_descs(struct kvm_vcpu * vcpu,const struct sys_reg_desc * table,size_t num,unsigned long * bmap)2260 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2261 const struct sys_reg_desc *table, size_t num,
2262 unsigned long *bmap)
2263 {
2264 unsigned long i;
2265
2266 for (i = 0; i < num; i++)
2267 if (table[i].reset) {
2268 int reg = table[i].reg;
2269
2270 table[i].reset(vcpu, &table[i]);
2271 if (reg > 0 && reg < NR_SYS_REGS)
2272 set_bit(reg, bmap);
2273 }
2274 }
2275
2276 /**
2277 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2278 * @vcpu: The VCPU pointer
2279 * @run: The kvm_run struct
2280 */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu,struct kvm_run * run)2281 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2282 {
2283 struct sys_reg_params params;
2284 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2285 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2286 int ret;
2287
2288 trace_kvm_handle_sys_reg(esr);
2289
2290 params.is_aarch32 = false;
2291 params.is_32bit = false;
2292 params.Op0 = (esr >> 20) & 3;
2293 params.Op1 = (esr >> 14) & 0x7;
2294 params.CRn = (esr >> 10) & 0xf;
2295 params.CRm = (esr >> 1) & 0xf;
2296 params.Op2 = (esr >> 17) & 0x7;
2297 params.regval = vcpu_get_reg(vcpu, Rt);
2298 params.is_write = !(esr & 1);
2299
2300 ret = emulate_sys_reg(vcpu, ¶ms);
2301
2302 if (!params.is_write)
2303 vcpu_set_reg(vcpu, Rt, params.regval);
2304 return ret;
2305 }
2306
2307 /******************************************************************************
2308 * Userspace API
2309 *****************************************************************************/
2310
index_to_params(u64 id,struct sys_reg_params * params)2311 static bool index_to_params(u64 id, struct sys_reg_params *params)
2312 {
2313 switch (id & KVM_REG_SIZE_MASK) {
2314 case KVM_REG_SIZE_U64:
2315 /* Any unused index bits means it's not valid. */
2316 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2317 | KVM_REG_ARM_COPROC_MASK
2318 | KVM_REG_ARM64_SYSREG_OP0_MASK
2319 | KVM_REG_ARM64_SYSREG_OP1_MASK
2320 | KVM_REG_ARM64_SYSREG_CRN_MASK
2321 | KVM_REG_ARM64_SYSREG_CRM_MASK
2322 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2323 return false;
2324 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2325 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2326 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2327 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2328 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2329 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2330 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2331 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2332 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2333 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2334 return true;
2335 default:
2336 return false;
2337 }
2338 }
2339
find_reg_by_id(u64 id,struct sys_reg_params * params,const struct sys_reg_desc table[],unsigned int num)2340 const struct sys_reg_desc *find_reg_by_id(u64 id,
2341 struct sys_reg_params *params,
2342 const struct sys_reg_desc table[],
2343 unsigned int num)
2344 {
2345 if (!index_to_params(id, params))
2346 return NULL;
2347
2348 return find_reg(params, table, num);
2349 }
2350
2351 /* Decode an index value, and find the sys_reg_desc entry. */
index_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id)2352 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2353 u64 id)
2354 {
2355 size_t num;
2356 const struct sys_reg_desc *table, *r;
2357 struct sys_reg_params params;
2358
2359 /* We only do sys_reg for now. */
2360 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2361 return NULL;
2362
2363 if (!index_to_params(id, ¶ms))
2364 return NULL;
2365
2366 table = get_target_table(vcpu->arch.target, true, &num);
2367 r = find_reg(¶ms, table, num);
2368 if (!r)
2369 r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2370
2371 /* Not saved in the sys_reg array and not otherwise accessible? */
2372 if (r && !(r->reg || r->get_user))
2373 r = NULL;
2374
2375 return r;
2376 }
2377
2378 /*
2379 * These are the invariant sys_reg registers: we let the guest see the
2380 * host versions of these, so they're part of the guest state.
2381 *
2382 * A future CPU may provide a mechanism to present different values to
2383 * the guest, or a future kvm may trap them.
2384 */
2385
2386 #define FUNCTION_INVARIANT(reg) \
2387 static void get_##reg(struct kvm_vcpu *v, \
2388 const struct sys_reg_desc *r) \
2389 { \
2390 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2391 }
2392
2393 FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)2394 FUNCTION_INVARIANT(revidr_el1)
2395 FUNCTION_INVARIANT(clidr_el1)
2396 FUNCTION_INVARIANT(aidr_el1)
2397
2398 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2399 {
2400 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2401 }
2402
2403 /* ->val is filled in by kvm_sys_reg_table_init() */
2404 static struct sys_reg_desc invariant_sys_regs[] = {
2405 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2406 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2407 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2408 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2409 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2410 };
2411
reg_from_user(u64 * val,const void __user * uaddr,u64 id)2412 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2413 {
2414 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2415 return -EFAULT;
2416 return 0;
2417 }
2418
reg_to_user(void __user * uaddr,const u64 * val,u64 id)2419 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2420 {
2421 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2422 return -EFAULT;
2423 return 0;
2424 }
2425
get_invariant_sys_reg(u64 id,void __user * uaddr)2426 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2427 {
2428 struct sys_reg_params params;
2429 const struct sys_reg_desc *r;
2430
2431 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2432 ARRAY_SIZE(invariant_sys_regs));
2433 if (!r)
2434 return -ENOENT;
2435
2436 return reg_to_user(uaddr, &r->val, id);
2437 }
2438
set_invariant_sys_reg(u64 id,void __user * uaddr)2439 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2440 {
2441 struct sys_reg_params params;
2442 const struct sys_reg_desc *r;
2443 int err;
2444 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2445
2446 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2447 ARRAY_SIZE(invariant_sys_regs));
2448 if (!r)
2449 return -ENOENT;
2450
2451 err = reg_from_user(&val, uaddr, id);
2452 if (err)
2453 return err;
2454
2455 /* This is what we mean by invariant: you can't change it. */
2456 if (r->val != val)
2457 return -EINVAL;
2458
2459 return 0;
2460 }
2461
is_valid_cache(u32 val)2462 static bool is_valid_cache(u32 val)
2463 {
2464 u32 level, ctype;
2465
2466 if (val >= CSSELR_MAX)
2467 return false;
2468
2469 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2470 level = (val >> 1);
2471 ctype = (cache_levels >> (level * 3)) & 7;
2472
2473 switch (ctype) {
2474 case 0: /* No cache */
2475 return false;
2476 case 1: /* Instruction cache only */
2477 return (val & 1);
2478 case 2: /* Data cache only */
2479 case 4: /* Unified cache */
2480 return !(val & 1);
2481 case 3: /* Separate instruction and data caches */
2482 return true;
2483 default: /* Reserved: we can't know instruction or data. */
2484 return false;
2485 }
2486 }
2487
demux_c15_get(u64 id,void __user * uaddr)2488 static int demux_c15_get(u64 id, void __user *uaddr)
2489 {
2490 u32 val;
2491 u32 __user *uval = uaddr;
2492
2493 /* Fail if we have unknown bits set. */
2494 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2495 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2496 return -ENOENT;
2497
2498 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2499 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2500 if (KVM_REG_SIZE(id) != 4)
2501 return -ENOENT;
2502 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2503 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2504 if (!is_valid_cache(val))
2505 return -ENOENT;
2506
2507 return put_user(get_ccsidr(val), uval);
2508 default:
2509 return -ENOENT;
2510 }
2511 }
2512
demux_c15_set(u64 id,void __user * uaddr)2513 static int demux_c15_set(u64 id, void __user *uaddr)
2514 {
2515 u32 val, newval;
2516 u32 __user *uval = uaddr;
2517
2518 /* Fail if we have unknown bits set. */
2519 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2520 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2521 return -ENOENT;
2522
2523 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2524 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2525 if (KVM_REG_SIZE(id) != 4)
2526 return -ENOENT;
2527 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2528 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2529 if (!is_valid_cache(val))
2530 return -ENOENT;
2531
2532 if (get_user(newval, uval))
2533 return -EFAULT;
2534
2535 /* This is also invariant: you can't change it. */
2536 if (newval != get_ccsidr(val))
2537 return -EINVAL;
2538 return 0;
2539 default:
2540 return -ENOENT;
2541 }
2542 }
2543
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)2544 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2545 {
2546 const struct sys_reg_desc *r;
2547 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2548
2549 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2550 return demux_c15_get(reg->id, uaddr);
2551
2552 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2553 return -ENOENT;
2554
2555 r = index_to_sys_reg_desc(vcpu, reg->id);
2556 if (!r)
2557 return get_invariant_sys_reg(reg->id, uaddr);
2558
2559 /* Check for regs disabled by runtime config */
2560 if (sysreg_hidden_from_user(vcpu, r))
2561 return -ENOENT;
2562
2563 if (r->get_user)
2564 return (r->get_user)(vcpu, r, reg, uaddr);
2565
2566 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2567 }
2568
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)2569 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2570 {
2571 const struct sys_reg_desc *r;
2572 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2573
2574 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2575 return demux_c15_set(reg->id, uaddr);
2576
2577 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2578 return -ENOENT;
2579
2580 r = index_to_sys_reg_desc(vcpu, reg->id);
2581 if (!r)
2582 return set_invariant_sys_reg(reg->id, uaddr);
2583
2584 /* Check for regs disabled by runtime config */
2585 if (sysreg_hidden_from_user(vcpu, r))
2586 return -ENOENT;
2587
2588 if (r->set_user)
2589 return (r->set_user)(vcpu, r, reg, uaddr);
2590
2591 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2592 }
2593
num_demux_regs(void)2594 static unsigned int num_demux_regs(void)
2595 {
2596 unsigned int i, count = 0;
2597
2598 for (i = 0; i < CSSELR_MAX; i++)
2599 if (is_valid_cache(i))
2600 count++;
2601
2602 return count;
2603 }
2604
write_demux_regids(u64 __user * uindices)2605 static int write_demux_regids(u64 __user *uindices)
2606 {
2607 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2608 unsigned int i;
2609
2610 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2611 for (i = 0; i < CSSELR_MAX; i++) {
2612 if (!is_valid_cache(i))
2613 continue;
2614 if (put_user(val | i, uindices))
2615 return -EFAULT;
2616 uindices++;
2617 }
2618 return 0;
2619 }
2620
sys_reg_to_index(const struct sys_reg_desc * reg)2621 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2622 {
2623 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2624 KVM_REG_ARM64_SYSREG |
2625 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2626 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2627 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2628 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2629 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2630 }
2631
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)2632 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2633 {
2634 if (!*uind)
2635 return true;
2636
2637 if (put_user(sys_reg_to_index(reg), *uind))
2638 return false;
2639
2640 (*uind)++;
2641 return true;
2642 }
2643
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)2644 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2645 const struct sys_reg_desc *rd,
2646 u64 __user **uind,
2647 unsigned int *total)
2648 {
2649 /*
2650 * Ignore registers we trap but don't save,
2651 * and for which no custom user accessor is provided.
2652 */
2653 if (!(rd->reg || rd->get_user))
2654 return 0;
2655
2656 if (sysreg_hidden_from_user(vcpu, rd))
2657 return 0;
2658
2659 if (!copy_reg_to_user(rd, uind))
2660 return -EFAULT;
2661
2662 (*total)++;
2663 return 0;
2664 }
2665
2666 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)2667 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2668 {
2669 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2670 unsigned int total = 0;
2671 size_t num;
2672 int err;
2673
2674 /* We check for duplicates here, to allow arch-specific overrides. */
2675 i1 = get_target_table(vcpu->arch.target, true, &num);
2676 end1 = i1 + num;
2677 i2 = sys_reg_descs;
2678 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2679
2680 BUG_ON(i1 == end1 || i2 == end2);
2681
2682 /* Walk carefully, as both tables may refer to the same register. */
2683 while (i1 || i2) {
2684 int cmp = cmp_sys_reg(i1, i2);
2685 /* target-specific overrides generic entry. */
2686 if (cmp <= 0)
2687 err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2688 else
2689 err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2690
2691 if (err)
2692 return err;
2693
2694 if (cmp <= 0 && ++i1 == end1)
2695 i1 = NULL;
2696 if (cmp >= 0 && ++i2 == end2)
2697 i2 = NULL;
2698 }
2699 return total;
2700 }
2701
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)2702 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2703 {
2704 return ARRAY_SIZE(invariant_sys_regs)
2705 + num_demux_regs()
2706 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2707 }
2708
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)2709 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2710 {
2711 unsigned int i;
2712 int err;
2713
2714 /* Then give them all the invariant registers' indices. */
2715 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2716 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2717 return -EFAULT;
2718 uindices++;
2719 }
2720
2721 err = walk_sys_regs(vcpu, uindices);
2722 if (err < 0)
2723 return err;
2724 uindices += err;
2725
2726 return write_demux_regids(uindices);
2727 }
2728
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n)2729 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2730 {
2731 unsigned int i;
2732
2733 for (i = 1; i < n; i++) {
2734 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2735 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2736 return 1;
2737 }
2738 }
2739
2740 return 0;
2741 }
2742
kvm_sys_reg_table_init(void)2743 void kvm_sys_reg_table_init(void)
2744 {
2745 unsigned int i;
2746 struct sys_reg_desc clidr;
2747
2748 /* Make sure tables are unique and in order. */
2749 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2750 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2751 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2752 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2753 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2754 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2755
2756 /* We abuse the reset function to overwrite the table itself. */
2757 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2758 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2759
2760 /*
2761 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2762 *
2763 * If software reads the Cache Type fields from Ctype1
2764 * upwards, once it has seen a value of 0b000, no caches
2765 * exist at further-out levels of the hierarchy. So, for
2766 * example, if Ctype3 is the first Cache Type field with a
2767 * value of 0b000, the values of Ctype4 to Ctype7 must be
2768 * ignored.
2769 */
2770 get_clidr_el1(NULL, &clidr); /* Ugly... */
2771 cache_levels = clidr.val;
2772 for (i = 0; i < 7; i++)
2773 if (((cache_levels >> (i*3)) & 7) == 0)
2774 break;
2775 /* Clear all higher bits. */
2776 cache_levels &= (1 << (i*3))-1;
2777 }
2778
2779 /**
2780 * kvm_reset_sys_regs - sets system registers to reset value
2781 * @vcpu: The VCPU pointer
2782 *
2783 * This function finds the right table above and sets the registers on the
2784 * virtual CPU struct to their architecturally defined reset values.
2785 */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)2786 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2787 {
2788 size_t num;
2789 const struct sys_reg_desc *table;
2790 DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
2791
2792 /* Generic chip reset first (so target could override). */
2793 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
2794
2795 table = get_target_table(vcpu->arch.target, true, &num);
2796 reset_sys_reg_descs(vcpu, table, num, bmap);
2797
2798 for (num = 1; num < NR_SYS_REGS; num++) {
2799 if (WARN(!test_bit(num, bmap),
2800 "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2801 break;
2802 }
2803 }
2804