• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56 
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
96 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146 
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149 
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153 
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156 
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159 
160 #define KVM_NR_SHARED_MSRS 16
161 
162 struct kvm_shared_msrs_global {
163 	int nr;
164 	u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166 
167 struct kvm_shared_msrs {
168 	struct user_return_notifier urn;
169 	bool registered;
170 	struct kvm_shared_msr_values {
171 		u64 host;
172 		u64 curr;
173 	} values[KVM_NR_SHARED_MSRS];
174 };
175 
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178 
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
181 	{ "pf_guest", VCPU_STAT(pf_guest) },
182 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
183 	{ "invlpg", VCPU_STAT(invlpg) },
184 	{ "exits", VCPU_STAT(exits) },
185 	{ "io_exits", VCPU_STAT(io_exits) },
186 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
187 	{ "signal_exits", VCPU_STAT(signal_exits) },
188 	{ "irq_window", VCPU_STAT(irq_window_exits) },
189 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
190 	{ "halt_exits", VCPU_STAT(halt_exits) },
191 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
195 	{ "hypercalls", VCPU_STAT(hypercalls) },
196 	{ "request_irq", VCPU_STAT(request_irq_exits) },
197 	{ "irq_exits", VCPU_STAT(irq_exits) },
198 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
199 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
200 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
201 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202 	{ "irq_injections", VCPU_STAT(irq_injections) },
203 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
204 	{ "req_event", VCPU_STAT(req_event) },
205 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
206 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
208 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
211 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
212 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
214 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215 	{ "largepages", VM_STAT(lpages, .mode = 0444) },
216 	{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
217 	{ "max_mmu_page_hash_collisions",
218 		VM_STAT(max_mmu_page_hash_collisions) },
219 	{ NULL }
220 };
221 
222 u64 __read_mostly host_xcr0;
223 
224 struct kmem_cache *x86_fpu_cache;
225 EXPORT_SYMBOL_GPL(x86_fpu_cache);
226 
227 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
228 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)229 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
230 {
231 	int i;
232 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
233 		vcpu->arch.apf.gfns[i] = ~0;
234 }
235 
kvm_on_user_return(struct user_return_notifier * urn)236 static void kvm_on_user_return(struct user_return_notifier *urn)
237 {
238 	unsigned slot;
239 	struct kvm_shared_msrs *locals
240 		= container_of(urn, struct kvm_shared_msrs, urn);
241 	struct kvm_shared_msr_values *values;
242 	unsigned long flags;
243 
244 	/*
245 	 * Disabling irqs at this point since the following code could be
246 	 * interrupted and executed through kvm_arch_hardware_disable()
247 	 */
248 	local_irq_save(flags);
249 	if (locals->registered) {
250 		locals->registered = false;
251 		user_return_notifier_unregister(urn);
252 	}
253 	local_irq_restore(flags);
254 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
255 		values = &locals->values[slot];
256 		if (values->host != values->curr) {
257 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
258 			values->curr = values->host;
259 		}
260 	}
261 }
262 
shared_msr_update(unsigned slot,u32 msr)263 static void shared_msr_update(unsigned slot, u32 msr)
264 {
265 	u64 value;
266 	unsigned int cpu = smp_processor_id();
267 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
268 
269 	/* only read, and nobody should modify it at this time,
270 	 * so don't need lock */
271 	if (slot >= shared_msrs_global.nr) {
272 		printk(KERN_ERR "kvm: invalid MSR slot!");
273 		return;
274 	}
275 	rdmsrl_safe(msr, &value);
276 	smsr->values[slot].host = value;
277 	smsr->values[slot].curr = value;
278 }
279 
kvm_define_shared_msr(unsigned slot,u32 msr)280 void kvm_define_shared_msr(unsigned slot, u32 msr)
281 {
282 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
283 	shared_msrs_global.msrs[slot] = msr;
284 	if (slot >= shared_msrs_global.nr)
285 		shared_msrs_global.nr = slot + 1;
286 }
287 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
288 
kvm_shared_msr_cpu_online(void)289 static void kvm_shared_msr_cpu_online(void)
290 {
291 	unsigned i;
292 
293 	for (i = 0; i < shared_msrs_global.nr; ++i)
294 		shared_msr_update(i, shared_msrs_global.msrs[i]);
295 }
296 
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)297 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
298 {
299 	unsigned int cpu = smp_processor_id();
300 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301 	int err;
302 
303 	value = (value & mask) | (smsr->values[slot].host & ~mask);
304 	if (value == smsr->values[slot].curr)
305 		return 0;
306 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
307 	if (err)
308 		return 1;
309 
310 	smsr->values[slot].curr = value;
311 	if (!smsr->registered) {
312 		smsr->urn.on_user_return = kvm_on_user_return;
313 		user_return_notifier_register(&smsr->urn);
314 		smsr->registered = true;
315 	}
316 	return 0;
317 }
318 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
319 
drop_user_return_notifiers(void)320 static void drop_user_return_notifiers(void)
321 {
322 	unsigned int cpu = smp_processor_id();
323 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
324 
325 	if (smsr->registered)
326 		kvm_on_user_return(&smsr->urn);
327 }
328 
kvm_get_apic_base(struct kvm_vcpu * vcpu)329 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
330 {
331 	return vcpu->arch.apic_base;
332 }
333 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
334 
kvm_get_apic_mode(struct kvm_vcpu * vcpu)335 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
336 {
337 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
338 }
339 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
340 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)341 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
342 {
343 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
344 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
345 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
346 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
347 
348 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
349 		return 1;
350 	if (!msr_info->host_initiated) {
351 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
352 			return 1;
353 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
354 			return 1;
355 	}
356 
357 	kvm_lapic_set_base(vcpu, msr_info->data);
358 	return 0;
359 }
360 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
361 
kvm_spurious_fault(void)362 asmlinkage __visible void kvm_spurious_fault(void)
363 {
364 	/* Fault while not rebooting.  We want the trace. */
365 	BUG_ON(!kvm_rebooting);
366 }
367 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
368 
369 #define EXCPT_BENIGN		0
370 #define EXCPT_CONTRIBUTORY	1
371 #define EXCPT_PF		2
372 
exception_class(int vector)373 static int exception_class(int vector)
374 {
375 	switch (vector) {
376 	case PF_VECTOR:
377 		return EXCPT_PF;
378 	case DE_VECTOR:
379 	case TS_VECTOR:
380 	case NP_VECTOR:
381 	case SS_VECTOR:
382 	case GP_VECTOR:
383 		return EXCPT_CONTRIBUTORY;
384 	default:
385 		break;
386 	}
387 	return EXCPT_BENIGN;
388 }
389 
390 #define EXCPT_FAULT		0
391 #define EXCPT_TRAP		1
392 #define EXCPT_ABORT		2
393 #define EXCPT_INTERRUPT		3
394 
exception_type(int vector)395 static int exception_type(int vector)
396 {
397 	unsigned int mask;
398 
399 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
400 		return EXCPT_INTERRUPT;
401 
402 	mask = 1 << vector;
403 
404 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
405 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
406 		return EXCPT_TRAP;
407 
408 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
409 		return EXCPT_ABORT;
410 
411 	/* Reserved exceptions will result in fault */
412 	return EXCPT_FAULT;
413 }
414 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)415 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
416 {
417 	unsigned nr = vcpu->arch.exception.nr;
418 	bool has_payload = vcpu->arch.exception.has_payload;
419 	unsigned long payload = vcpu->arch.exception.payload;
420 
421 	if (!has_payload)
422 		return;
423 
424 	switch (nr) {
425 	case DB_VECTOR:
426 		/*
427 		 * "Certain debug exceptions may clear bit 0-3.  The
428 		 * remaining contents of the DR6 register are never
429 		 * cleared by the processor".
430 		 */
431 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
432 		/*
433 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
434 		 */
435 		vcpu->arch.dr6 |= DR6_RTM;
436 		vcpu->arch.dr6 |= payload;
437 		/*
438 		 * Bit 16 should be set in the payload whenever the #DB
439 		 * exception should clear DR6.RTM. This makes the payload
440 		 * compatible with the pending debug exceptions under VMX.
441 		 * Though not currently documented in the SDM, this also
442 		 * makes the payload compatible with the exit qualification
443 		 * for #DB exceptions under VMX.
444 		 */
445 		vcpu->arch.dr6 ^= payload & DR6_RTM;
446 		break;
447 	case PF_VECTOR:
448 		vcpu->arch.cr2 = payload;
449 		break;
450 	}
451 
452 	vcpu->arch.exception.has_payload = false;
453 	vcpu->arch.exception.payload = 0;
454 }
455 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
456 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)457 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
458 		unsigned nr, bool has_error, u32 error_code,
459 	        bool has_payload, unsigned long payload, bool reinject)
460 {
461 	u32 prev_nr;
462 	int class1, class2;
463 
464 	kvm_make_request(KVM_REQ_EVENT, vcpu);
465 
466 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
467 	queue:
468 		if (has_error && !is_protmode(vcpu))
469 			has_error = false;
470 		if (reinject) {
471 			/*
472 			 * On vmentry, vcpu->arch.exception.pending is only
473 			 * true if an event injection was blocked by
474 			 * nested_run_pending.  In that case, however,
475 			 * vcpu_enter_guest requests an immediate exit,
476 			 * and the guest shouldn't proceed far enough to
477 			 * need reinjection.
478 			 */
479 			WARN_ON_ONCE(vcpu->arch.exception.pending);
480 			vcpu->arch.exception.injected = true;
481 			if (WARN_ON_ONCE(has_payload)) {
482 				/*
483 				 * A reinjected event has already
484 				 * delivered its payload.
485 				 */
486 				has_payload = false;
487 				payload = 0;
488 			}
489 		} else {
490 			vcpu->arch.exception.pending = true;
491 			vcpu->arch.exception.injected = false;
492 		}
493 		vcpu->arch.exception.has_error_code = has_error;
494 		vcpu->arch.exception.nr = nr;
495 		vcpu->arch.exception.error_code = error_code;
496 		vcpu->arch.exception.has_payload = has_payload;
497 		vcpu->arch.exception.payload = payload;
498 		/*
499 		 * In guest mode, payload delivery should be deferred,
500 		 * so that the L1 hypervisor can intercept #PF before
501 		 * CR2 is modified (or intercept #DB before DR6 is
502 		 * modified under nVMX).  However, for ABI
503 		 * compatibility with KVM_GET_VCPU_EVENTS and
504 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
505 		 * delivery unless userspace has enabled this
506 		 * functionality via the per-VM capability,
507 		 * KVM_CAP_EXCEPTION_PAYLOAD.
508 		 */
509 		if (!vcpu->kvm->arch.exception_payload_enabled ||
510 		    !is_guest_mode(vcpu))
511 			kvm_deliver_exception_payload(vcpu);
512 		return;
513 	}
514 
515 	/* to check exception */
516 	prev_nr = vcpu->arch.exception.nr;
517 	if (prev_nr == DF_VECTOR) {
518 		/* triple fault -> shutdown */
519 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
520 		return;
521 	}
522 	class1 = exception_class(prev_nr);
523 	class2 = exception_class(nr);
524 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
525 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
526 		/*
527 		 * Generate double fault per SDM Table 5-5.  Set
528 		 * exception.pending = true so that the double fault
529 		 * can trigger a nested vmexit.
530 		 */
531 		vcpu->arch.exception.pending = true;
532 		vcpu->arch.exception.injected = false;
533 		vcpu->arch.exception.has_error_code = true;
534 		vcpu->arch.exception.nr = DF_VECTOR;
535 		vcpu->arch.exception.error_code = 0;
536 		vcpu->arch.exception.has_payload = false;
537 		vcpu->arch.exception.payload = 0;
538 	} else
539 		/* replace previous exception with a new one in a hope
540 		   that instruction re-execution will regenerate lost
541 		   exception */
542 		goto queue;
543 }
544 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)545 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
546 {
547 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
548 }
549 EXPORT_SYMBOL_GPL(kvm_queue_exception);
550 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)551 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
552 {
553 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
554 }
555 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
556 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)557 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
558 				  unsigned long payload)
559 {
560 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
561 }
562 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)563 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
564 				    u32 error_code, unsigned long payload)
565 {
566 	kvm_multiple_exception(vcpu, nr, true, error_code,
567 			       true, payload, false);
568 }
569 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)570 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
571 {
572 	if (err)
573 		kvm_inject_gp(vcpu, 0);
574 	else
575 		return kvm_skip_emulated_instruction(vcpu);
576 
577 	return 1;
578 }
579 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
580 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)581 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
582 {
583 	++vcpu->stat.pf_guest;
584 	vcpu->arch.exception.nested_apf =
585 		is_guest_mode(vcpu) && fault->async_page_fault;
586 	if (vcpu->arch.exception.nested_apf) {
587 		vcpu->arch.apf.nested_apf_token = fault->address;
588 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
589 	} else {
590 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
591 					fault->address);
592 	}
593 }
594 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
595 
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)596 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
597 {
598 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
599 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
600 	else
601 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
602 
603 	return fault->nested_page_fault;
604 }
605 
kvm_inject_nmi(struct kvm_vcpu * vcpu)606 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
607 {
608 	atomic_inc(&vcpu->arch.nmi_queued);
609 	kvm_make_request(KVM_REQ_NMI, vcpu);
610 }
611 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
612 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)613 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
614 {
615 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
616 }
617 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
618 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)619 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
620 {
621 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
622 }
623 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
624 
625 /*
626  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
627  * a #GP and return false.
628  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)629 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
630 {
631 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
632 		return true;
633 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
634 	return false;
635 }
636 EXPORT_SYMBOL_GPL(kvm_require_cpl);
637 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)638 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
639 {
640 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
641 		return true;
642 
643 	kvm_queue_exception(vcpu, UD_VECTOR);
644 	return false;
645 }
646 EXPORT_SYMBOL_GPL(kvm_require_dr);
647 
648 /*
649  * This function will be used to read from the physical memory of the currently
650  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
651  * can read from guest physical or from the guest's guest physical memory.
652  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)653 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
654 			    gfn_t ngfn, void *data, int offset, int len,
655 			    u32 access)
656 {
657 	struct x86_exception exception;
658 	gfn_t real_gfn;
659 	gpa_t ngpa;
660 
661 	ngpa     = gfn_to_gpa(ngfn);
662 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
663 	if (real_gfn == UNMAPPED_GVA)
664 		return -EFAULT;
665 
666 	real_gfn = gpa_to_gfn(real_gfn);
667 
668 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
669 }
670 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
671 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)672 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
673 			       void *data, int offset, int len, u32 access)
674 {
675 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
676 				       data, offset, len, access);
677 }
678 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)679 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
680 {
681 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
682 	       rsvd_bits(1, 2);
683 }
684 
685 /*
686  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
687  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)688 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
689 {
690 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
691 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
692 	int i;
693 	int ret;
694 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
695 
696 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
697 				      offset * sizeof(u64), sizeof(pdpte),
698 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
699 	if (ret < 0) {
700 		ret = 0;
701 		goto out;
702 	}
703 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
704 		if ((pdpte[i] & PT_PRESENT_MASK) &&
705 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
706 			ret = 0;
707 			goto out;
708 		}
709 	}
710 	ret = 1;
711 
712 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
713 	__set_bit(VCPU_EXREG_PDPTR,
714 		  (unsigned long *)&vcpu->arch.regs_avail);
715 	__set_bit(VCPU_EXREG_PDPTR,
716 		  (unsigned long *)&vcpu->arch.regs_dirty);
717 out:
718 
719 	return ret;
720 }
721 EXPORT_SYMBOL_GPL(load_pdptrs);
722 
pdptrs_changed(struct kvm_vcpu * vcpu)723 bool pdptrs_changed(struct kvm_vcpu *vcpu)
724 {
725 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
726 	bool changed = true;
727 	int offset;
728 	gfn_t gfn;
729 	int r;
730 
731 	if (!is_pae_paging(vcpu))
732 		return false;
733 
734 	if (!test_bit(VCPU_EXREG_PDPTR,
735 		      (unsigned long *)&vcpu->arch.regs_avail))
736 		return true;
737 
738 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
739 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
740 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
741 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
742 	if (r < 0)
743 		goto out;
744 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
745 out:
746 
747 	return changed;
748 }
749 EXPORT_SYMBOL_GPL(pdptrs_changed);
750 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)751 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
752 {
753 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
754 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
755 
756 	cr0 |= X86_CR0_ET;
757 
758 #ifdef CONFIG_X86_64
759 	if (cr0 & 0xffffffff00000000UL)
760 		return 1;
761 #endif
762 
763 	cr0 &= ~CR0_RESERVED_BITS;
764 
765 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
766 		return 1;
767 
768 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
769 		return 1;
770 
771 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
772 #ifdef CONFIG_X86_64
773 		if ((vcpu->arch.efer & EFER_LME)) {
774 			int cs_db, cs_l;
775 
776 			if (!is_pae(vcpu))
777 				return 1;
778 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
779 			if (cs_l)
780 				return 1;
781 		} else
782 #endif
783 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
784 						 kvm_read_cr3(vcpu)))
785 			return 1;
786 	}
787 
788 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
789 		return 1;
790 
791 	kvm_x86_ops->set_cr0(vcpu, cr0);
792 
793 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
794 		kvm_clear_async_pf_completion_queue(vcpu);
795 		kvm_async_pf_hash_reset(vcpu);
796 	}
797 
798 	if ((cr0 ^ old_cr0) & update_bits)
799 		kvm_mmu_reset_context(vcpu);
800 
801 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
802 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
803 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
804 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
805 
806 	return 0;
807 }
808 EXPORT_SYMBOL_GPL(kvm_set_cr0);
809 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)810 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
811 {
812 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
813 }
814 EXPORT_SYMBOL_GPL(kvm_lmsw);
815 
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)816 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
817 {
818 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
819 			!vcpu->guest_xcr0_loaded) {
820 		/* kvm_set_xcr() also depends on this */
821 		if (vcpu->arch.xcr0 != host_xcr0)
822 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
823 		vcpu->guest_xcr0_loaded = 1;
824 	}
825 }
826 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
827 
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)828 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
829 {
830 	if (vcpu->guest_xcr0_loaded) {
831 		if (vcpu->arch.xcr0 != host_xcr0)
832 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
833 		vcpu->guest_xcr0_loaded = 0;
834 	}
835 }
836 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
837 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)838 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
839 {
840 	u64 xcr0 = xcr;
841 	u64 old_xcr0 = vcpu->arch.xcr0;
842 	u64 valid_bits;
843 
844 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
845 	if (index != XCR_XFEATURE_ENABLED_MASK)
846 		return 1;
847 	if (!(xcr0 & XFEATURE_MASK_FP))
848 		return 1;
849 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
850 		return 1;
851 
852 	/*
853 	 * Do not allow the guest to set bits that we do not support
854 	 * saving.  However, xcr0 bit 0 is always set, even if the
855 	 * emulated CPU does not support XSAVE (see fx_init).
856 	 */
857 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
858 	if (xcr0 & ~valid_bits)
859 		return 1;
860 
861 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
862 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
863 		return 1;
864 
865 	if (xcr0 & XFEATURE_MASK_AVX512) {
866 		if (!(xcr0 & XFEATURE_MASK_YMM))
867 			return 1;
868 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
869 			return 1;
870 	}
871 	vcpu->arch.xcr0 = xcr0;
872 
873 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
874 		kvm_update_cpuid(vcpu);
875 	return 0;
876 }
877 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)878 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
879 {
880 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
881 	    __kvm_set_xcr(vcpu, index, xcr)) {
882 		kvm_inject_gp(vcpu, 0);
883 		return 1;
884 	}
885 	return 0;
886 }
887 EXPORT_SYMBOL_GPL(kvm_set_xcr);
888 
kvm_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)889 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
890 {
891 	if (cr4 & CR4_RESERVED_BITS)
892 		return -EINVAL;
893 
894 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
895 		return -EINVAL;
896 
897 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
898 		return -EINVAL;
899 
900 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
901 		return -EINVAL;
902 
903 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
904 		return -EINVAL;
905 
906 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
907 		return -EINVAL;
908 
909 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
910 		return -EINVAL;
911 
912 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
913 		return -EINVAL;
914 
915 	return 0;
916 }
917 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)918 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
919 {
920 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
921 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
922 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
923 
924 	if (kvm_valid_cr4(vcpu, cr4))
925 		return 1;
926 
927 	if (is_long_mode(vcpu)) {
928 		if (!(cr4 & X86_CR4_PAE))
929 			return 1;
930 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
931 		   && ((cr4 ^ old_cr4) & pdptr_bits)
932 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
933 				   kvm_read_cr3(vcpu)))
934 		return 1;
935 
936 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
937 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
938 			return 1;
939 
940 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
941 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
942 			return 1;
943 	}
944 
945 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
946 		return 1;
947 
948 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
949 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
950 		kvm_mmu_reset_context(vcpu);
951 
952 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
953 		kvm_update_cpuid(vcpu);
954 
955 	return 0;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_cr4);
958 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)959 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
960 {
961 	bool skip_tlb_flush = false;
962 #ifdef CONFIG_X86_64
963 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
964 
965 	if (pcid_enabled) {
966 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
967 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
968 	}
969 #endif
970 
971 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
972 		if (!skip_tlb_flush) {
973 			kvm_mmu_sync_roots(vcpu);
974 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
975 		}
976 		return 0;
977 	}
978 
979 	if (is_long_mode(vcpu) &&
980 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
981 		return 1;
982 	else if (is_pae_paging(vcpu) &&
983 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
984 		return 1;
985 
986 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
987 	vcpu->arch.cr3 = cr3;
988 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
989 
990 	return 0;
991 }
992 EXPORT_SYMBOL_GPL(kvm_set_cr3);
993 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)994 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
995 {
996 	if (cr8 & CR8_RESERVED_BITS)
997 		return 1;
998 	if (lapic_in_kernel(vcpu))
999 		kvm_lapic_set_tpr(vcpu, cr8);
1000 	else
1001 		vcpu->arch.cr8 = cr8;
1002 	return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1005 
kvm_get_cr8(struct kvm_vcpu * vcpu)1006 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1007 {
1008 	if (lapic_in_kernel(vcpu))
1009 		return kvm_lapic_get_cr8(vcpu);
1010 	else
1011 		return vcpu->arch.cr8;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1014 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1015 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1016 {
1017 	int i;
1018 
1019 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1020 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1021 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1022 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1023 	}
1024 }
1025 
kvm_update_dr6(struct kvm_vcpu * vcpu)1026 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1027 {
1028 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1029 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1030 }
1031 
kvm_update_dr7(struct kvm_vcpu * vcpu)1032 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1033 {
1034 	unsigned long dr7;
1035 
1036 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1037 		dr7 = vcpu->arch.guest_debug_dr7;
1038 	else
1039 		dr7 = vcpu->arch.dr7;
1040 	kvm_x86_ops->set_dr7(vcpu, dr7);
1041 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1042 	if (dr7 & DR7_BP_EN_MASK)
1043 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1044 }
1045 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1046 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1047 {
1048 	u64 fixed = DR6_FIXED_1;
1049 
1050 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1051 		fixed |= DR6_RTM;
1052 	return fixed;
1053 }
1054 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1055 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1056 {
1057 	switch (dr) {
1058 	case 0 ... 3:
1059 		vcpu->arch.db[dr] = val;
1060 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1061 			vcpu->arch.eff_db[dr] = val;
1062 		break;
1063 	case 4:
1064 		/* fall through */
1065 	case 6:
1066 		if (val & 0xffffffff00000000ULL)
1067 			return -1; /* #GP */
1068 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1069 		kvm_update_dr6(vcpu);
1070 		break;
1071 	case 5:
1072 		/* fall through */
1073 	default: /* 7 */
1074 		if (val & 0xffffffff00000000ULL)
1075 			return -1; /* #GP */
1076 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1077 		kvm_update_dr7(vcpu);
1078 		break;
1079 	}
1080 
1081 	return 0;
1082 }
1083 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1084 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1085 {
1086 	if (__kvm_set_dr(vcpu, dr, val)) {
1087 		kvm_inject_gp(vcpu, 0);
1088 		return 1;
1089 	}
1090 	return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(kvm_set_dr);
1093 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1094 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1095 {
1096 	switch (dr) {
1097 	case 0 ... 3:
1098 		*val = vcpu->arch.db[dr];
1099 		break;
1100 	case 4:
1101 		/* fall through */
1102 	case 6:
1103 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1104 			*val = vcpu->arch.dr6;
1105 		else
1106 			*val = kvm_x86_ops->get_dr6(vcpu);
1107 		break;
1108 	case 5:
1109 		/* fall through */
1110 	default: /* 7 */
1111 		*val = vcpu->arch.dr7;
1112 		break;
1113 	}
1114 	return 0;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_get_dr);
1117 
kvm_rdpmc(struct kvm_vcpu * vcpu)1118 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1119 {
1120 	u32 ecx = kvm_rcx_read(vcpu);
1121 	u64 data;
1122 	int err;
1123 
1124 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1125 	if (err)
1126 		return err;
1127 	kvm_rax_write(vcpu, (u32)data);
1128 	kvm_rdx_write(vcpu, data >> 32);
1129 	return err;
1130 }
1131 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1132 
1133 /*
1134  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1135  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1136  *
1137  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1138  * extract the supported MSRs from the related const lists.
1139  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1140  * capabilities of the host cpu. This capabilities test skips MSRs that are
1141  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1142  * may depend on host virtualization features rather than host cpu features.
1143  */
1144 
1145 static const u32 msrs_to_save_all[] = {
1146 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1147 	MSR_STAR,
1148 #ifdef CONFIG_X86_64
1149 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1150 #endif
1151 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1152 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1153 	MSR_IA32_SPEC_CTRL,
1154 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1155 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1156 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1157 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1158 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1159 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1160 	MSR_IA32_UMWAIT_CONTROL,
1161 
1162 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1163 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1164 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1165 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1166 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1167 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1168 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1169 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1170 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1171 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1172 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1173 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1174 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1175 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1176 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1177 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1178 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1179 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1180 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1181 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1182 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1183 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1184 };
1185 
1186 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1187 static unsigned num_msrs_to_save;
1188 
1189 static const u32 emulated_msrs_all[] = {
1190 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1191 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1192 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1193 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1194 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1195 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1196 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1197 	HV_X64_MSR_RESET,
1198 	HV_X64_MSR_VP_INDEX,
1199 	HV_X64_MSR_VP_RUNTIME,
1200 	HV_X64_MSR_SCONTROL,
1201 	HV_X64_MSR_STIMER0_CONFIG,
1202 	HV_X64_MSR_VP_ASSIST_PAGE,
1203 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1204 	HV_X64_MSR_TSC_EMULATION_STATUS,
1205 
1206 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1207 	MSR_KVM_PV_EOI_EN,
1208 
1209 	MSR_IA32_TSC_ADJUST,
1210 	MSR_IA32_TSCDEADLINE,
1211 	MSR_IA32_ARCH_CAPABILITIES,
1212 	MSR_IA32_MISC_ENABLE,
1213 	MSR_IA32_MCG_STATUS,
1214 	MSR_IA32_MCG_CTL,
1215 	MSR_IA32_MCG_EXT_CTL,
1216 	MSR_IA32_SMBASE,
1217 	MSR_SMI_COUNT,
1218 	MSR_PLATFORM_INFO,
1219 	MSR_MISC_FEATURES_ENABLES,
1220 	MSR_AMD64_VIRT_SPEC_CTRL,
1221 	MSR_IA32_POWER_CTL,
1222 
1223 	/*
1224 	 * The following list leaves out MSRs whose values are determined
1225 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1226 	 * We always support the "true" VMX control MSRs, even if the host
1227 	 * processor does not, so I am putting these registers here rather
1228 	 * than in msrs_to_save_all.
1229 	 */
1230 	MSR_IA32_VMX_BASIC,
1231 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1232 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1233 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1234 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1235 	MSR_IA32_VMX_MISC,
1236 	MSR_IA32_VMX_CR0_FIXED0,
1237 	MSR_IA32_VMX_CR4_FIXED0,
1238 	MSR_IA32_VMX_VMCS_ENUM,
1239 	MSR_IA32_VMX_PROCBASED_CTLS2,
1240 	MSR_IA32_VMX_EPT_VPID_CAP,
1241 	MSR_IA32_VMX_VMFUNC,
1242 
1243 	MSR_K7_HWCR,
1244 	MSR_KVM_POLL_CONTROL,
1245 };
1246 
1247 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1248 static unsigned num_emulated_msrs;
1249 
1250 /*
1251  * List of msr numbers which are used to expose MSR-based features that
1252  * can be used by a hypervisor to validate requested CPU features.
1253  */
1254 static const u32 msr_based_features_all[] = {
1255 	MSR_IA32_VMX_BASIC,
1256 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1257 	MSR_IA32_VMX_PINBASED_CTLS,
1258 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1259 	MSR_IA32_VMX_PROCBASED_CTLS,
1260 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1261 	MSR_IA32_VMX_EXIT_CTLS,
1262 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1263 	MSR_IA32_VMX_ENTRY_CTLS,
1264 	MSR_IA32_VMX_MISC,
1265 	MSR_IA32_VMX_CR0_FIXED0,
1266 	MSR_IA32_VMX_CR0_FIXED1,
1267 	MSR_IA32_VMX_CR4_FIXED0,
1268 	MSR_IA32_VMX_CR4_FIXED1,
1269 	MSR_IA32_VMX_VMCS_ENUM,
1270 	MSR_IA32_VMX_PROCBASED_CTLS2,
1271 	MSR_IA32_VMX_EPT_VPID_CAP,
1272 	MSR_IA32_VMX_VMFUNC,
1273 
1274 	MSR_F10H_DECFG,
1275 	MSR_IA32_UCODE_REV,
1276 	MSR_IA32_ARCH_CAPABILITIES,
1277 };
1278 
1279 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1280 static unsigned int num_msr_based_features;
1281 
kvm_get_arch_capabilities(void)1282 static u64 kvm_get_arch_capabilities(void)
1283 {
1284 	u64 data = 0;
1285 
1286 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1287 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1288 
1289 	/*
1290 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1291 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1292 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1293 	 * L1 guests, so it need not worry about its own (L2) guests.
1294 	 */
1295 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1296 
1297 	/*
1298 	 * If we're doing cache flushes (either "always" or "cond")
1299 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1300 	 * If an outer hypervisor is doing the cache flush for us
1301 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1302 	 * capability to the guest too, and if EPT is disabled we're not
1303 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1304 	 * require a nested hypervisor to do a flush of its own.
1305 	 */
1306 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1307 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1308 
1309 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1310 		data |= ARCH_CAP_RDCL_NO;
1311 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1312 		data |= ARCH_CAP_SSB_NO;
1313 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1314 		data |= ARCH_CAP_MDS_NO;
1315 
1316 	/*
1317 	 * On TAA affected systems, export MDS_NO=0 when:
1318 	 *	- TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
1319 	 *	- Updated microcode is present. This is detected by
1320 	 *	  the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
1321 	 *	  that VERW clears CPU buffers.
1322 	 *
1323 	 * When MDS_NO=0 is exported, guests deploy clear CPU buffer
1324 	 * mitigation and don't complain:
1325 	 *
1326 	 *	"Vulnerable: Clear CPU buffers attempted, no microcode"
1327 	 *
1328 	 * If TSX is disabled on the system, guests are also mitigated against
1329 	 * TAA and clear CPU buffer mitigation is not required for guests.
1330 	 */
1331 	if (!boot_cpu_has(X86_FEATURE_RTM))
1332 		data &= ~ARCH_CAP_TAA_NO;
1333 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1334 		data |= ARCH_CAP_TAA_NO;
1335 	else if (data & ARCH_CAP_TSX_CTRL_MSR)
1336 		data &= ~ARCH_CAP_MDS_NO;
1337 
1338 	/* KVM does not emulate MSR_IA32_TSX_CTRL.  */
1339 	data &= ~ARCH_CAP_TSX_CTRL_MSR;
1340 	return data;
1341 }
1342 
kvm_get_msr_feature(struct kvm_msr_entry * msr)1343 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1344 {
1345 	switch (msr->index) {
1346 	case MSR_IA32_ARCH_CAPABILITIES:
1347 		msr->data = kvm_get_arch_capabilities();
1348 		break;
1349 	case MSR_IA32_UCODE_REV:
1350 		rdmsrl_safe(msr->index, &msr->data);
1351 		break;
1352 	default:
1353 		if (kvm_x86_ops->get_msr_feature(msr))
1354 			return 1;
1355 	}
1356 	return 0;
1357 }
1358 
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1359 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1360 {
1361 	struct kvm_msr_entry msr;
1362 	int r;
1363 
1364 	msr.index = index;
1365 	r = kvm_get_msr_feature(&msr);
1366 	if (r)
1367 		return r;
1368 
1369 	*data = msr.data;
1370 
1371 	return 0;
1372 }
1373 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1374 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1375 {
1376 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1377 		return false;
1378 
1379 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1380 		return false;
1381 
1382 	if (efer & (EFER_LME | EFER_LMA) &&
1383 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1384 		return false;
1385 
1386 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1387 		return false;
1388 
1389 	return true;
1390 
1391 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1392 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1393 {
1394 	if (efer & efer_reserved_bits)
1395 		return false;
1396 
1397 	return __kvm_valid_efer(vcpu, efer);
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1400 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1401 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1402 {
1403 	u64 old_efer = vcpu->arch.efer;
1404 	u64 efer = msr_info->data;
1405 
1406 	if (efer & efer_reserved_bits)
1407 		return 1;
1408 
1409 	if (!msr_info->host_initiated) {
1410 		if (!__kvm_valid_efer(vcpu, efer))
1411 			return 1;
1412 
1413 		if (is_paging(vcpu) &&
1414 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1415 			return 1;
1416 	}
1417 
1418 	efer &= ~EFER_LMA;
1419 	efer |= vcpu->arch.efer & EFER_LMA;
1420 
1421 	kvm_x86_ops->set_efer(vcpu, efer);
1422 
1423 	/* Update reserved bits */
1424 	if ((efer ^ old_efer) & EFER_NX)
1425 		kvm_mmu_reset_context(vcpu);
1426 
1427 	return 0;
1428 }
1429 
kvm_enable_efer_bits(u64 mask)1430 void kvm_enable_efer_bits(u64 mask)
1431 {
1432        efer_reserved_bits &= ~mask;
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1435 
1436 /*
1437  * Write @data into the MSR specified by @index.  Select MSR specific fault
1438  * checks are bypassed if @host_initiated is %true.
1439  * Returns 0 on success, non-0 otherwise.
1440  * Assumes vcpu_load() was already called.
1441  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1442 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1443 			 bool host_initiated)
1444 {
1445 	struct msr_data msr;
1446 
1447 	switch (index) {
1448 	case MSR_FS_BASE:
1449 	case MSR_GS_BASE:
1450 	case MSR_KERNEL_GS_BASE:
1451 	case MSR_CSTAR:
1452 	case MSR_LSTAR:
1453 		if (is_noncanonical_address(data, vcpu))
1454 			return 1;
1455 		break;
1456 	case MSR_IA32_SYSENTER_EIP:
1457 	case MSR_IA32_SYSENTER_ESP:
1458 		/*
1459 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1460 		 * non-canonical address is written on Intel but not on
1461 		 * AMD (which ignores the top 32-bits, because it does
1462 		 * not implement 64-bit SYSENTER).
1463 		 *
1464 		 * 64-bit code should hence be able to write a non-canonical
1465 		 * value on AMD.  Making the address canonical ensures that
1466 		 * vmentry does not fail on Intel after writing a non-canonical
1467 		 * value, and that something deterministic happens if the guest
1468 		 * invokes 64-bit SYSENTER.
1469 		 */
1470 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1471 	}
1472 
1473 	msr.data = data;
1474 	msr.index = index;
1475 	msr.host_initiated = host_initiated;
1476 
1477 	return kvm_x86_ops->set_msr(vcpu, &msr);
1478 }
1479 
1480 /*
1481  * Read the MSR specified by @index into @data.  Select MSR specific fault
1482  * checks are bypassed if @host_initiated is %true.
1483  * Returns 0 on success, non-0 otherwise.
1484  * Assumes vcpu_load() was already called.
1485  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1486 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1487 			 bool host_initiated)
1488 {
1489 	struct msr_data msr;
1490 	int ret;
1491 
1492 	msr.index = index;
1493 	msr.host_initiated = host_initiated;
1494 
1495 	ret = kvm_x86_ops->get_msr(vcpu, &msr);
1496 	if (!ret)
1497 		*data = msr.data;
1498 	return ret;
1499 }
1500 
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1501 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1502 {
1503 	return __kvm_get_msr(vcpu, index, data, false);
1504 }
1505 EXPORT_SYMBOL_GPL(kvm_get_msr);
1506 
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1507 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1508 {
1509 	return __kvm_set_msr(vcpu, index, data, false);
1510 }
1511 EXPORT_SYMBOL_GPL(kvm_set_msr);
1512 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)1513 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1514 {
1515 	u32 ecx = kvm_rcx_read(vcpu);
1516 	u64 data;
1517 
1518 	if (kvm_get_msr(vcpu, ecx, &data)) {
1519 		trace_kvm_msr_read_ex(ecx);
1520 		kvm_inject_gp(vcpu, 0);
1521 		return 1;
1522 	}
1523 
1524 	trace_kvm_msr_read(ecx, data);
1525 
1526 	kvm_rax_write(vcpu, data & -1u);
1527 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1528 	return kvm_skip_emulated_instruction(vcpu);
1529 }
1530 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1531 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)1532 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1533 {
1534 	u32 ecx = kvm_rcx_read(vcpu);
1535 	u64 data = kvm_read_edx_eax(vcpu);
1536 
1537 	if (kvm_set_msr(vcpu, ecx, data)) {
1538 		trace_kvm_msr_write_ex(ecx, data);
1539 		kvm_inject_gp(vcpu, 0);
1540 		return 1;
1541 	}
1542 
1543 	trace_kvm_msr_write(ecx, data);
1544 	return kvm_skip_emulated_instruction(vcpu);
1545 }
1546 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1547 
1548 /*
1549  * Adapt set_msr() to msr_io()'s calling convention
1550  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1551 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1552 {
1553 	return __kvm_get_msr(vcpu, index, data, true);
1554 }
1555 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1556 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1557 {
1558 	return __kvm_set_msr(vcpu, index, *data, true);
1559 }
1560 
1561 #ifdef CONFIG_X86_64
1562 struct pvclock_gtod_data {
1563 	seqcount_t	seq;
1564 
1565 	struct { /* extract of a clocksource struct */
1566 		int vclock_mode;
1567 		u64	cycle_last;
1568 		u64	mask;
1569 		u32	mult;
1570 		u32	shift;
1571 	} clock;
1572 
1573 	u64		boot_ns;
1574 	u64		nsec_base;
1575 	u64		wall_time_sec;
1576 };
1577 
1578 static struct pvclock_gtod_data pvclock_gtod_data;
1579 
update_pvclock_gtod(struct timekeeper * tk)1580 static void update_pvclock_gtod(struct timekeeper *tk)
1581 {
1582 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1583 	u64 boot_ns;
1584 
1585 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1586 
1587 	write_seqcount_begin(&vdata->seq);
1588 
1589 	/* copy pvclock gtod data */
1590 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1591 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1592 	vdata->clock.mask		= tk->tkr_mono.mask;
1593 	vdata->clock.mult		= tk->tkr_mono.mult;
1594 	vdata->clock.shift		= tk->tkr_mono.shift;
1595 
1596 	vdata->boot_ns			= boot_ns;
1597 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1598 
1599 	vdata->wall_time_sec            = tk->xtime_sec;
1600 
1601 	write_seqcount_end(&vdata->seq);
1602 }
1603 #endif
1604 
kvm_set_pending_timer(struct kvm_vcpu * vcpu)1605 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1606 {
1607 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1608 	kvm_vcpu_kick(vcpu);
1609 }
1610 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1611 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1612 {
1613 	int version;
1614 	int r;
1615 	struct pvclock_wall_clock wc;
1616 	struct timespec64 boot;
1617 
1618 	if (!wall_clock)
1619 		return;
1620 
1621 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1622 	if (r)
1623 		return;
1624 
1625 	if (version & 1)
1626 		++version;  /* first time write, random junk */
1627 
1628 	++version;
1629 
1630 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1631 		return;
1632 
1633 	/*
1634 	 * The guest calculates current wall clock time by adding
1635 	 * system time (updated by kvm_guest_time_update below) to the
1636 	 * wall clock specified here.  guest system time equals host
1637 	 * system time for us, thus we must fill in host boot time here.
1638 	 */
1639 	getboottime64(&boot);
1640 
1641 	if (kvm->arch.kvmclock_offset) {
1642 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1643 		boot = timespec64_sub(boot, ts);
1644 	}
1645 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1646 	wc.nsec = boot.tv_nsec;
1647 	wc.version = version;
1648 
1649 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1650 
1651 	version++;
1652 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1653 }
1654 
div_frac(uint32_t dividend,uint32_t divisor)1655 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1656 {
1657 	do_shl32_div32(dividend, divisor);
1658 	return dividend;
1659 }
1660 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)1661 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1662 			       s8 *pshift, u32 *pmultiplier)
1663 {
1664 	uint64_t scaled64;
1665 	int32_t  shift = 0;
1666 	uint64_t tps64;
1667 	uint32_t tps32;
1668 
1669 	tps64 = base_hz;
1670 	scaled64 = scaled_hz;
1671 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1672 		tps64 >>= 1;
1673 		shift--;
1674 	}
1675 
1676 	tps32 = (uint32_t)tps64;
1677 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1678 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1679 			scaled64 >>= 1;
1680 		else
1681 			tps32 <<= 1;
1682 		shift++;
1683 	}
1684 
1685 	*pshift = shift;
1686 	*pmultiplier = div_frac(scaled64, tps32);
1687 }
1688 
1689 #ifdef CONFIG_X86_64
1690 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1691 #endif
1692 
1693 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1694 static unsigned long max_tsc_khz;
1695 
adjust_tsc_khz(u32 khz,s32 ppm)1696 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1697 {
1698 	u64 v = (u64)khz * (1000000 + ppm);
1699 	do_div(v, 1000000);
1700 	return v;
1701 }
1702 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)1703 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1704 {
1705 	u64 ratio;
1706 
1707 	/* Guest TSC same frequency as host TSC? */
1708 	if (!scale) {
1709 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1710 		return 0;
1711 	}
1712 
1713 	/* TSC scaling supported? */
1714 	if (!kvm_has_tsc_control) {
1715 		if (user_tsc_khz > tsc_khz) {
1716 			vcpu->arch.tsc_catchup = 1;
1717 			vcpu->arch.tsc_always_catchup = 1;
1718 			return 0;
1719 		} else {
1720 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1721 			return -1;
1722 		}
1723 	}
1724 
1725 	/* TSC scaling required  - calculate ratio */
1726 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1727 				user_tsc_khz, tsc_khz);
1728 
1729 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1730 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1731 			            user_tsc_khz);
1732 		return -1;
1733 	}
1734 
1735 	vcpu->arch.tsc_scaling_ratio = ratio;
1736 	return 0;
1737 }
1738 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)1739 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1740 {
1741 	u32 thresh_lo, thresh_hi;
1742 	int use_scaling = 0;
1743 
1744 	/* tsc_khz can be zero if TSC calibration fails */
1745 	if (user_tsc_khz == 0) {
1746 		/* set tsc_scaling_ratio to a safe value */
1747 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1748 		return -1;
1749 	}
1750 
1751 	/* Compute a scale to convert nanoseconds in TSC cycles */
1752 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1753 			   &vcpu->arch.virtual_tsc_shift,
1754 			   &vcpu->arch.virtual_tsc_mult);
1755 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1756 
1757 	/*
1758 	 * Compute the variation in TSC rate which is acceptable
1759 	 * within the range of tolerance and decide if the
1760 	 * rate being applied is within that bounds of the hardware
1761 	 * rate.  If so, no scaling or compensation need be done.
1762 	 */
1763 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1764 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1765 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1766 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1767 		use_scaling = 1;
1768 	}
1769 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1770 }
1771 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1772 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1773 {
1774 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1775 				      vcpu->arch.virtual_tsc_mult,
1776 				      vcpu->arch.virtual_tsc_shift);
1777 	tsc += vcpu->arch.this_tsc_write;
1778 	return tsc;
1779 }
1780 
gtod_is_based_on_tsc(int mode)1781 static inline int gtod_is_based_on_tsc(int mode)
1782 {
1783 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1784 }
1785 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1786 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1787 {
1788 #ifdef CONFIG_X86_64
1789 	bool vcpus_matched;
1790 	struct kvm_arch *ka = &vcpu->kvm->arch;
1791 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1792 
1793 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1794 			 atomic_read(&vcpu->kvm->online_vcpus));
1795 
1796 	/*
1797 	 * Once the masterclock is enabled, always perform request in
1798 	 * order to update it.
1799 	 *
1800 	 * In order to enable masterclock, the host clocksource must be TSC
1801 	 * and the vcpus need to have matched TSCs.  When that happens,
1802 	 * perform request to enable masterclock.
1803 	 */
1804 	if (ka->use_master_clock ||
1805 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1806 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1807 
1808 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1809 			    atomic_read(&vcpu->kvm->online_vcpus),
1810 		            ka->use_master_clock, gtod->clock.vclock_mode);
1811 #endif
1812 }
1813 
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1814 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1815 {
1816 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1817 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1818 }
1819 
1820 /*
1821  * Multiply tsc by a fixed point number represented by ratio.
1822  *
1823  * The most significant 64-N bits (mult) of ratio represent the
1824  * integral part of the fixed point number; the remaining N bits
1825  * (frac) represent the fractional part, ie. ratio represents a fixed
1826  * point number (mult + frac * 2^(-N)).
1827  *
1828  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1829  */
__scale_tsc(u64 ratio,u64 tsc)1830 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1831 {
1832 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1833 }
1834 
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)1835 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1836 {
1837 	u64 _tsc = tsc;
1838 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1839 
1840 	if (ratio != kvm_default_tsc_scaling_ratio)
1841 		_tsc = __scale_tsc(ratio, tsc);
1842 
1843 	return _tsc;
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1846 
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1847 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1848 {
1849 	u64 tsc;
1850 
1851 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1852 
1853 	return target_tsc - tsc;
1854 }
1855 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)1856 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1857 {
1858 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1859 
1860 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1863 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1864 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1865 {
1866 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1867 }
1868 
kvm_check_tsc_unstable(void)1869 static inline bool kvm_check_tsc_unstable(void)
1870 {
1871 #ifdef CONFIG_X86_64
1872 	/*
1873 	 * TSC is marked unstable when we're running on Hyper-V,
1874 	 * 'TSC page' clocksource is good.
1875 	 */
1876 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1877 		return false;
1878 #endif
1879 	return check_tsc_unstable();
1880 }
1881 
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1882 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1883 {
1884 	struct kvm *kvm = vcpu->kvm;
1885 	u64 offset, ns, elapsed;
1886 	unsigned long flags;
1887 	bool matched;
1888 	bool already_matched;
1889 	u64 data = msr->data;
1890 	bool synchronizing = false;
1891 
1892 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1893 	offset = kvm_compute_tsc_offset(vcpu, data);
1894 	ns = ktime_get_boottime_ns();
1895 	elapsed = ns - kvm->arch.last_tsc_nsec;
1896 
1897 	if (vcpu->arch.virtual_tsc_khz) {
1898 		if (data == 0 && msr->host_initiated) {
1899 			/*
1900 			 * detection of vcpu initialization -- need to sync
1901 			 * with other vCPUs. This particularly helps to keep
1902 			 * kvm_clock stable after CPU hotplug
1903 			 */
1904 			synchronizing = true;
1905 		} else {
1906 			u64 tsc_exp = kvm->arch.last_tsc_write +
1907 						nsec_to_cycles(vcpu, elapsed);
1908 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1909 			/*
1910 			 * Special case: TSC write with a small delta (1 second)
1911 			 * of virtual cycle time against real time is
1912 			 * interpreted as an attempt to synchronize the CPU.
1913 			 */
1914 			synchronizing = data < tsc_exp + tsc_hz &&
1915 					data + tsc_hz > tsc_exp;
1916 		}
1917 	}
1918 
1919 	/*
1920 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1921 	 * TSC, we add elapsed time in this computation.  We could let the
1922 	 * compensation code attempt to catch up if we fall behind, but
1923 	 * it's better to try to match offsets from the beginning.
1924          */
1925 	if (synchronizing &&
1926 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1927 		if (!kvm_check_tsc_unstable()) {
1928 			offset = kvm->arch.cur_tsc_offset;
1929 		} else {
1930 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1931 			data += delta;
1932 			offset = kvm_compute_tsc_offset(vcpu, data);
1933 		}
1934 		matched = true;
1935 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1936 	} else {
1937 		/*
1938 		 * We split periods of matched TSC writes into generations.
1939 		 * For each generation, we track the original measured
1940 		 * nanosecond time, offset, and write, so if TSCs are in
1941 		 * sync, we can match exact offset, and if not, we can match
1942 		 * exact software computation in compute_guest_tsc()
1943 		 *
1944 		 * These values are tracked in kvm->arch.cur_xxx variables.
1945 		 */
1946 		kvm->arch.cur_tsc_generation++;
1947 		kvm->arch.cur_tsc_nsec = ns;
1948 		kvm->arch.cur_tsc_write = data;
1949 		kvm->arch.cur_tsc_offset = offset;
1950 		matched = false;
1951 	}
1952 
1953 	/*
1954 	 * We also track th most recent recorded KHZ, write and time to
1955 	 * allow the matching interval to be extended at each write.
1956 	 */
1957 	kvm->arch.last_tsc_nsec = ns;
1958 	kvm->arch.last_tsc_write = data;
1959 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1960 
1961 	vcpu->arch.last_guest_tsc = data;
1962 
1963 	/* Keep track of which generation this VCPU has synchronized to */
1964 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1965 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1966 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1967 
1968 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1969 		update_ia32_tsc_adjust_msr(vcpu, offset);
1970 
1971 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1972 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1973 
1974 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1975 	if (!matched) {
1976 		kvm->arch.nr_vcpus_matched_tsc = 0;
1977 	} else if (!already_matched) {
1978 		kvm->arch.nr_vcpus_matched_tsc++;
1979 	}
1980 
1981 	kvm_track_tsc_matching(vcpu);
1982 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1983 }
1984 
1985 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1986 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)1987 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1988 					   s64 adjustment)
1989 {
1990 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1991 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1992 }
1993 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)1994 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1995 {
1996 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1997 		WARN_ON(adjustment < 0);
1998 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1999 	adjust_tsc_offset_guest(vcpu, adjustment);
2000 }
2001 
2002 #ifdef CONFIG_X86_64
2003 
read_tsc(void)2004 static u64 read_tsc(void)
2005 {
2006 	u64 ret = (u64)rdtsc_ordered();
2007 	u64 last = pvclock_gtod_data.clock.cycle_last;
2008 
2009 	if (likely(ret >= last))
2010 		return ret;
2011 
2012 	/*
2013 	 * GCC likes to generate cmov here, but this branch is extremely
2014 	 * predictable (it's just a function of time and the likely is
2015 	 * very likely) and there's a data dependence, so force GCC
2016 	 * to generate a branch instead.  I don't barrier() because
2017 	 * we don't actually need a barrier, and if this function
2018 	 * ever gets inlined it will generate worse code.
2019 	 */
2020 	asm volatile ("");
2021 	return last;
2022 }
2023 
vgettsc(u64 * tsc_timestamp,int * mode)2024 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
2025 {
2026 	long v;
2027 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2028 	u64 tsc_pg_val;
2029 
2030 	switch (gtod->clock.vclock_mode) {
2031 	case VCLOCK_HVCLOCK:
2032 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2033 						  tsc_timestamp);
2034 		if (tsc_pg_val != U64_MAX) {
2035 			/* TSC page valid */
2036 			*mode = VCLOCK_HVCLOCK;
2037 			v = (tsc_pg_val - gtod->clock.cycle_last) &
2038 				gtod->clock.mask;
2039 		} else {
2040 			/* TSC page invalid */
2041 			*mode = VCLOCK_NONE;
2042 		}
2043 		break;
2044 	case VCLOCK_TSC:
2045 		*mode = VCLOCK_TSC;
2046 		*tsc_timestamp = read_tsc();
2047 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
2048 			gtod->clock.mask;
2049 		break;
2050 	default:
2051 		*mode = VCLOCK_NONE;
2052 	}
2053 
2054 	if (*mode == VCLOCK_NONE)
2055 		*tsc_timestamp = v = 0;
2056 
2057 	return v * gtod->clock.mult;
2058 }
2059 
do_monotonic_boot(s64 * t,u64 * tsc_timestamp)2060 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
2061 {
2062 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2063 	unsigned long seq;
2064 	int mode;
2065 	u64 ns;
2066 
2067 	do {
2068 		seq = read_seqcount_begin(&gtod->seq);
2069 		ns = gtod->nsec_base;
2070 		ns += vgettsc(tsc_timestamp, &mode);
2071 		ns >>= gtod->clock.shift;
2072 		ns += gtod->boot_ns;
2073 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2074 	*t = ns;
2075 
2076 	return mode;
2077 }
2078 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2079 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2080 {
2081 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2082 	unsigned long seq;
2083 	int mode;
2084 	u64 ns;
2085 
2086 	do {
2087 		seq = read_seqcount_begin(&gtod->seq);
2088 		ts->tv_sec = gtod->wall_time_sec;
2089 		ns = gtod->nsec_base;
2090 		ns += vgettsc(tsc_timestamp, &mode);
2091 		ns >>= gtod->clock.shift;
2092 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2093 
2094 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2095 	ts->tv_nsec = ns;
2096 
2097 	return mode;
2098 }
2099 
2100 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2101 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2102 {
2103 	/* checked again under seqlock below */
2104 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2105 		return false;
2106 
2107 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
2108 						      tsc_timestamp));
2109 }
2110 
2111 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2112 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2113 					   u64 *tsc_timestamp)
2114 {
2115 	/* checked again under seqlock below */
2116 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2117 		return false;
2118 
2119 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2120 }
2121 #endif
2122 
2123 /*
2124  *
2125  * Assuming a stable TSC across physical CPUS, and a stable TSC
2126  * across virtual CPUs, the following condition is possible.
2127  * Each numbered line represents an event visible to both
2128  * CPUs at the next numbered event.
2129  *
2130  * "timespecX" represents host monotonic time. "tscX" represents
2131  * RDTSC value.
2132  *
2133  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2134  *
2135  * 1.  read timespec0,tsc0
2136  * 2.					| timespec1 = timespec0 + N
2137  * 					| tsc1 = tsc0 + M
2138  * 3. transition to guest		| transition to guest
2139  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2140  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2141  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2142  *
2143  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2144  *
2145  * 	- ret0 < ret1
2146  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2147  *		...
2148  *	- 0 < N - M => M < N
2149  *
2150  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2151  * always the case (the difference between two distinct xtime instances
2152  * might be smaller then the difference between corresponding TSC reads,
2153  * when updating guest vcpus pvclock areas).
2154  *
2155  * To avoid that problem, do not allow visibility of distinct
2156  * system_timestamp/tsc_timestamp values simultaneously: use a master
2157  * copy of host monotonic time values. Update that master copy
2158  * in lockstep.
2159  *
2160  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2161  *
2162  */
2163 
pvclock_update_vm_gtod_copy(struct kvm * kvm)2164 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2165 {
2166 #ifdef CONFIG_X86_64
2167 	struct kvm_arch *ka = &kvm->arch;
2168 	int vclock_mode;
2169 	bool host_tsc_clocksource, vcpus_matched;
2170 
2171 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2172 			atomic_read(&kvm->online_vcpus));
2173 
2174 	/*
2175 	 * If the host uses TSC clock, then passthrough TSC as stable
2176 	 * to the guest.
2177 	 */
2178 	host_tsc_clocksource = kvm_get_time_and_clockread(
2179 					&ka->master_kernel_ns,
2180 					&ka->master_cycle_now);
2181 
2182 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2183 				&& !ka->backwards_tsc_observed
2184 				&& !ka->boot_vcpu_runs_old_kvmclock;
2185 
2186 	if (ka->use_master_clock)
2187 		atomic_set(&kvm_guest_has_master_clock, 1);
2188 
2189 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2190 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2191 					vcpus_matched);
2192 #endif
2193 }
2194 
kvm_make_mclock_inprogress_request(struct kvm * kvm)2195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2196 {
2197 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2198 }
2199 
kvm_gen_update_masterclock(struct kvm * kvm)2200 static void kvm_gen_update_masterclock(struct kvm *kvm)
2201 {
2202 #ifdef CONFIG_X86_64
2203 	int i;
2204 	struct kvm_vcpu *vcpu;
2205 	struct kvm_arch *ka = &kvm->arch;
2206 
2207 	spin_lock(&ka->pvclock_gtod_sync_lock);
2208 	kvm_make_mclock_inprogress_request(kvm);
2209 	/* no guest entries from this point */
2210 	pvclock_update_vm_gtod_copy(kvm);
2211 
2212 	kvm_for_each_vcpu(i, vcpu, kvm)
2213 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2214 
2215 	/* guest entries allowed */
2216 	kvm_for_each_vcpu(i, vcpu, kvm)
2217 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2218 
2219 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2220 #endif
2221 }
2222 
get_kvmclock_ns(struct kvm * kvm)2223 u64 get_kvmclock_ns(struct kvm *kvm)
2224 {
2225 	struct kvm_arch *ka = &kvm->arch;
2226 	struct pvclock_vcpu_time_info hv_clock;
2227 	u64 ret;
2228 
2229 	spin_lock(&ka->pvclock_gtod_sync_lock);
2230 	if (!ka->use_master_clock) {
2231 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2232 		return ktime_get_boottime_ns() + ka->kvmclock_offset;
2233 	}
2234 
2235 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2236 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2237 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2238 
2239 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2240 	get_cpu();
2241 
2242 	if (__this_cpu_read(cpu_tsc_khz)) {
2243 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2244 				   &hv_clock.tsc_shift,
2245 				   &hv_clock.tsc_to_system_mul);
2246 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2247 	} else
2248 		ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2249 
2250 	put_cpu();
2251 
2252 	return ret;
2253 }
2254 
kvm_setup_pvclock_page(struct kvm_vcpu * v)2255 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2256 {
2257 	struct kvm_vcpu_arch *vcpu = &v->arch;
2258 	struct pvclock_vcpu_time_info guest_hv_clock;
2259 
2260 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2261 		&guest_hv_clock, sizeof(guest_hv_clock))))
2262 		return;
2263 
2264 	/* This VCPU is paused, but it's legal for a guest to read another
2265 	 * VCPU's kvmclock, so we really have to follow the specification where
2266 	 * it says that version is odd if data is being modified, and even after
2267 	 * it is consistent.
2268 	 *
2269 	 * Version field updates must be kept separate.  This is because
2270 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2271 	 * writes within a string instruction are weakly ordered.  So there
2272 	 * are three writes overall.
2273 	 *
2274 	 * As a small optimization, only write the version field in the first
2275 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2276 	 * version field is the first in the struct.
2277 	 */
2278 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2279 
2280 	if (guest_hv_clock.version & 1)
2281 		++guest_hv_clock.version;  /* first time write, random junk */
2282 
2283 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2284 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2285 				&vcpu->hv_clock,
2286 				sizeof(vcpu->hv_clock.version));
2287 
2288 	smp_wmb();
2289 
2290 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2291 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2292 
2293 	if (vcpu->pvclock_set_guest_stopped_request) {
2294 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2295 		vcpu->pvclock_set_guest_stopped_request = false;
2296 	}
2297 
2298 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2299 
2300 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2301 				&vcpu->hv_clock,
2302 				sizeof(vcpu->hv_clock));
2303 
2304 	smp_wmb();
2305 
2306 	vcpu->hv_clock.version++;
2307 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2308 				&vcpu->hv_clock,
2309 				sizeof(vcpu->hv_clock.version));
2310 }
2311 
kvm_guest_time_update(struct kvm_vcpu * v)2312 static int kvm_guest_time_update(struct kvm_vcpu *v)
2313 {
2314 	unsigned long flags, tgt_tsc_khz;
2315 	struct kvm_vcpu_arch *vcpu = &v->arch;
2316 	struct kvm_arch *ka = &v->kvm->arch;
2317 	s64 kernel_ns;
2318 	u64 tsc_timestamp, host_tsc;
2319 	u8 pvclock_flags;
2320 	bool use_master_clock;
2321 
2322 	kernel_ns = 0;
2323 	host_tsc = 0;
2324 
2325 	/*
2326 	 * If the host uses TSC clock, then passthrough TSC as stable
2327 	 * to the guest.
2328 	 */
2329 	spin_lock(&ka->pvclock_gtod_sync_lock);
2330 	use_master_clock = ka->use_master_clock;
2331 	if (use_master_clock) {
2332 		host_tsc = ka->master_cycle_now;
2333 		kernel_ns = ka->master_kernel_ns;
2334 	}
2335 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2336 
2337 	/* Keep irq disabled to prevent changes to the clock */
2338 	local_irq_save(flags);
2339 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2340 	if (unlikely(tgt_tsc_khz == 0)) {
2341 		local_irq_restore(flags);
2342 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2343 		return 1;
2344 	}
2345 	if (!use_master_clock) {
2346 		host_tsc = rdtsc();
2347 		kernel_ns = ktime_get_boottime_ns();
2348 	}
2349 
2350 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2351 
2352 	/*
2353 	 * We may have to catch up the TSC to match elapsed wall clock
2354 	 * time for two reasons, even if kvmclock is used.
2355 	 *   1) CPU could have been running below the maximum TSC rate
2356 	 *   2) Broken TSC compensation resets the base at each VCPU
2357 	 *      entry to avoid unknown leaps of TSC even when running
2358 	 *      again on the same CPU.  This may cause apparent elapsed
2359 	 *      time to disappear, and the guest to stand still or run
2360 	 *	very slowly.
2361 	 */
2362 	if (vcpu->tsc_catchup) {
2363 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2364 		if (tsc > tsc_timestamp) {
2365 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2366 			tsc_timestamp = tsc;
2367 		}
2368 	}
2369 
2370 	local_irq_restore(flags);
2371 
2372 	/* With all the info we got, fill in the values */
2373 
2374 	if (kvm_has_tsc_control)
2375 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2376 
2377 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2378 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2379 				   &vcpu->hv_clock.tsc_shift,
2380 				   &vcpu->hv_clock.tsc_to_system_mul);
2381 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2382 	}
2383 
2384 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2385 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2386 	vcpu->last_guest_tsc = tsc_timestamp;
2387 
2388 	/* If the host uses TSC clocksource, then it is stable */
2389 	pvclock_flags = 0;
2390 	if (use_master_clock)
2391 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2392 
2393 	vcpu->hv_clock.flags = pvclock_flags;
2394 
2395 	if (vcpu->pv_time_enabled)
2396 		kvm_setup_pvclock_page(v);
2397 	if (v == kvm_get_vcpu(v->kvm, 0))
2398 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2399 	return 0;
2400 }
2401 
2402 /*
2403  * kvmclock updates which are isolated to a given vcpu, such as
2404  * vcpu->cpu migration, should not allow system_timestamp from
2405  * the rest of the vcpus to remain static. Otherwise ntp frequency
2406  * correction applies to one vcpu's system_timestamp but not
2407  * the others.
2408  *
2409  * So in those cases, request a kvmclock update for all vcpus.
2410  * We need to rate-limit these requests though, as they can
2411  * considerably slow guests that have a large number of vcpus.
2412  * The time for a remote vcpu to update its kvmclock is bound
2413  * by the delay we use to rate-limit the updates.
2414  */
2415 
2416 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2417 
kvmclock_update_fn(struct work_struct * work)2418 static void kvmclock_update_fn(struct work_struct *work)
2419 {
2420 	int i;
2421 	struct delayed_work *dwork = to_delayed_work(work);
2422 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2423 					   kvmclock_update_work);
2424 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2425 	struct kvm_vcpu *vcpu;
2426 
2427 	kvm_for_each_vcpu(i, vcpu, kvm) {
2428 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2429 		kvm_vcpu_kick(vcpu);
2430 	}
2431 }
2432 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2433 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2434 {
2435 	struct kvm *kvm = v->kvm;
2436 
2437 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2438 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2439 					KVMCLOCK_UPDATE_DELAY);
2440 }
2441 
2442 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2443 
kvmclock_sync_fn(struct work_struct * work)2444 static void kvmclock_sync_fn(struct work_struct *work)
2445 {
2446 	struct delayed_work *dwork = to_delayed_work(work);
2447 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2448 					   kvmclock_sync_work);
2449 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2450 
2451 	if (!kvmclock_periodic_sync)
2452 		return;
2453 
2454 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2455 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2456 					KVMCLOCK_SYNC_PERIOD);
2457 }
2458 
2459 /*
2460  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2461  */
can_set_mci_status(struct kvm_vcpu * vcpu)2462 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2463 {
2464 	/* McStatusWrEn enabled? */
2465 	if (guest_cpuid_is_amd(vcpu))
2466 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2467 
2468 	return false;
2469 }
2470 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2471 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2472 {
2473 	u64 mcg_cap = vcpu->arch.mcg_cap;
2474 	unsigned bank_num = mcg_cap & 0xff;
2475 	u32 msr = msr_info->index;
2476 	u64 data = msr_info->data;
2477 
2478 	switch (msr) {
2479 	case MSR_IA32_MCG_STATUS:
2480 		vcpu->arch.mcg_status = data;
2481 		break;
2482 	case MSR_IA32_MCG_CTL:
2483 		if (!(mcg_cap & MCG_CTL_P) &&
2484 		    (data || !msr_info->host_initiated))
2485 			return 1;
2486 		if (data != 0 && data != ~(u64)0)
2487 			return 1;
2488 		vcpu->arch.mcg_ctl = data;
2489 		break;
2490 	default:
2491 		if (msr >= MSR_IA32_MC0_CTL &&
2492 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2493 			u32 offset = msr - MSR_IA32_MC0_CTL;
2494 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2495 			 * some Linux kernels though clear bit 10 in bank 4 to
2496 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2497 			 * this to avoid an uncatched #GP in the guest
2498 			 */
2499 			if ((offset & 0x3) == 0 &&
2500 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2501 				return -1;
2502 
2503 			/* MCi_STATUS */
2504 			if (!msr_info->host_initiated &&
2505 			    (offset & 0x3) == 1 && data != 0) {
2506 				if (!can_set_mci_status(vcpu))
2507 					return -1;
2508 			}
2509 
2510 			vcpu->arch.mce_banks[offset] = data;
2511 			break;
2512 		}
2513 		return 1;
2514 	}
2515 	return 0;
2516 }
2517 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2518 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2519 {
2520 	struct kvm *kvm = vcpu->kvm;
2521 	int lm = is_long_mode(vcpu);
2522 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2523 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2524 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2525 		: kvm->arch.xen_hvm_config.blob_size_32;
2526 	u32 page_num = data & ~PAGE_MASK;
2527 	u64 page_addr = data & PAGE_MASK;
2528 	u8 *page;
2529 	int r;
2530 
2531 	r = -E2BIG;
2532 	if (page_num >= blob_size)
2533 		goto out;
2534 	r = -ENOMEM;
2535 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2536 	if (IS_ERR(page)) {
2537 		r = PTR_ERR(page);
2538 		goto out;
2539 	}
2540 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2541 		goto out_free;
2542 	r = 0;
2543 out_free:
2544 	kfree(page);
2545 out:
2546 	return r;
2547 }
2548 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2549 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2550 {
2551 	gpa_t gpa = data & ~0x3f;
2552 
2553 	/* Bits 3:5 are reserved, Should be zero */
2554 	if (data & 0x38)
2555 		return 1;
2556 
2557 	vcpu->arch.apf.msr_val = data;
2558 
2559 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2560 		kvm_clear_async_pf_completion_queue(vcpu);
2561 		kvm_async_pf_hash_reset(vcpu);
2562 		return 0;
2563 	}
2564 
2565 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2566 					sizeof(u32)))
2567 		return 1;
2568 
2569 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2570 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2571 	kvm_async_pf_wakeup_all(vcpu);
2572 	return 0;
2573 }
2574 
kvmclock_reset(struct kvm_vcpu * vcpu)2575 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2576 {
2577 	vcpu->arch.pv_time_enabled = false;
2578 	vcpu->arch.time = 0;
2579 }
2580 
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)2581 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2582 {
2583 	++vcpu->stat.tlb_flush;
2584 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2585 }
2586 
record_steal_time(struct kvm_vcpu * vcpu)2587 static void record_steal_time(struct kvm_vcpu *vcpu)
2588 {
2589 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2590 		return;
2591 
2592 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2593 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2594 		return;
2595 
2596 	/*
2597 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2598 	 * expensive IPIs.
2599 	 */
2600 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2601 		vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2602 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2603 		kvm_vcpu_flush_tlb(vcpu, false);
2604 
2605 	if (vcpu->arch.st.steal.version & 1)
2606 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2607 
2608 	vcpu->arch.st.steal.version += 1;
2609 
2610 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2611 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2612 
2613 	smp_wmb();
2614 
2615 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2616 		vcpu->arch.st.last_steal;
2617 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2618 
2619 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2620 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2621 
2622 	smp_wmb();
2623 
2624 	vcpu->arch.st.steal.version += 1;
2625 
2626 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2627 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2628 }
2629 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2630 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2631 {
2632 	bool pr = false;
2633 	u32 msr = msr_info->index;
2634 	u64 data = msr_info->data;
2635 
2636 	switch (msr) {
2637 	case MSR_AMD64_NB_CFG:
2638 	case MSR_IA32_UCODE_WRITE:
2639 	case MSR_VM_HSAVE_PA:
2640 	case MSR_AMD64_PATCH_LOADER:
2641 	case MSR_AMD64_BU_CFG2:
2642 	case MSR_AMD64_DC_CFG:
2643 	case MSR_F15H_EX_CFG:
2644 		break;
2645 
2646 	case MSR_IA32_UCODE_REV:
2647 		if (msr_info->host_initiated)
2648 			vcpu->arch.microcode_version = data;
2649 		break;
2650 	case MSR_IA32_ARCH_CAPABILITIES:
2651 		if (!msr_info->host_initiated)
2652 			return 1;
2653 		vcpu->arch.arch_capabilities = data;
2654 		break;
2655 	case MSR_EFER:
2656 		return set_efer(vcpu, msr_info);
2657 	case MSR_K7_HWCR:
2658 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2659 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2660 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2661 
2662 		/* Handle McStatusWrEn */
2663 		if (data == BIT_ULL(18)) {
2664 			vcpu->arch.msr_hwcr = data;
2665 		} else if (data != 0) {
2666 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2667 				    data);
2668 			return 1;
2669 		}
2670 		break;
2671 	case MSR_FAM10H_MMIO_CONF_BASE:
2672 		if (data != 0) {
2673 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2674 				    "0x%llx\n", data);
2675 			return 1;
2676 		}
2677 		break;
2678 	case MSR_IA32_DEBUGCTLMSR:
2679 		if (!data) {
2680 			/* We support the non-activated case already */
2681 			break;
2682 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2683 			/* Values other than LBR and BTF are vendor-specific,
2684 			   thus reserved and should throw a #GP */
2685 			return 1;
2686 		}
2687 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2688 			    __func__, data);
2689 		break;
2690 	case 0x200 ... 0x2ff:
2691 		return kvm_mtrr_set_msr(vcpu, msr, data);
2692 	case MSR_IA32_APICBASE:
2693 		return kvm_set_apic_base(vcpu, msr_info);
2694 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2695 		return kvm_x2apic_msr_write(vcpu, msr, data);
2696 	case MSR_IA32_TSCDEADLINE:
2697 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2698 		break;
2699 	case MSR_IA32_TSC_ADJUST:
2700 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2701 			if (!msr_info->host_initiated) {
2702 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2703 				adjust_tsc_offset_guest(vcpu, adj);
2704 			}
2705 			vcpu->arch.ia32_tsc_adjust_msr = data;
2706 		}
2707 		break;
2708 	case MSR_IA32_MISC_ENABLE:
2709 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2710 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2711 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2712 				return 1;
2713 			vcpu->arch.ia32_misc_enable_msr = data;
2714 			kvm_update_cpuid(vcpu);
2715 		} else {
2716 			vcpu->arch.ia32_misc_enable_msr = data;
2717 		}
2718 		break;
2719 	case MSR_IA32_SMBASE:
2720 		if (!msr_info->host_initiated)
2721 			return 1;
2722 		vcpu->arch.smbase = data;
2723 		break;
2724 	case MSR_IA32_POWER_CTL:
2725 		vcpu->arch.msr_ia32_power_ctl = data;
2726 		break;
2727 	case MSR_IA32_TSC:
2728 		kvm_write_tsc(vcpu, msr_info);
2729 		break;
2730 	case MSR_SMI_COUNT:
2731 		if (!msr_info->host_initiated)
2732 			return 1;
2733 		vcpu->arch.smi_count = data;
2734 		break;
2735 	case MSR_KVM_WALL_CLOCK_NEW:
2736 	case MSR_KVM_WALL_CLOCK:
2737 		vcpu->kvm->arch.wall_clock = data;
2738 		kvm_write_wall_clock(vcpu->kvm, data);
2739 		break;
2740 	case MSR_KVM_SYSTEM_TIME_NEW:
2741 	case MSR_KVM_SYSTEM_TIME: {
2742 		struct kvm_arch *ka = &vcpu->kvm->arch;
2743 
2744 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2745 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2746 
2747 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2748 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2749 
2750 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2751 		}
2752 
2753 		vcpu->arch.time = data;
2754 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2755 
2756 		/* we verify if the enable bit is set... */
2757 		vcpu->arch.pv_time_enabled = false;
2758 		if (!(data & 1))
2759 			break;
2760 
2761 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2762 		     &vcpu->arch.pv_time, data & ~1ULL,
2763 		     sizeof(struct pvclock_vcpu_time_info)))
2764 			vcpu->arch.pv_time_enabled = true;
2765 
2766 		break;
2767 	}
2768 	case MSR_KVM_ASYNC_PF_EN:
2769 		if (kvm_pv_enable_async_pf(vcpu, data))
2770 			return 1;
2771 		break;
2772 	case MSR_KVM_STEAL_TIME:
2773 
2774 		if (unlikely(!sched_info_on()))
2775 			return 1;
2776 
2777 		if (data & KVM_STEAL_RESERVED_MASK)
2778 			return 1;
2779 
2780 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2781 						data & KVM_STEAL_VALID_BITS,
2782 						sizeof(struct kvm_steal_time)))
2783 			return 1;
2784 
2785 		vcpu->arch.st.msr_val = data;
2786 
2787 		if (!(data & KVM_MSR_ENABLED))
2788 			break;
2789 
2790 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2791 
2792 		break;
2793 	case MSR_KVM_PV_EOI_EN:
2794 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2795 			return 1;
2796 		break;
2797 
2798 	case MSR_KVM_POLL_CONTROL:
2799 		/* only enable bit supported */
2800 		if (data & (-1ULL << 1))
2801 			return 1;
2802 
2803 		vcpu->arch.msr_kvm_poll_control = data;
2804 		break;
2805 
2806 	case MSR_IA32_MCG_CTL:
2807 	case MSR_IA32_MCG_STATUS:
2808 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2809 		return set_msr_mce(vcpu, msr_info);
2810 
2811 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2812 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2813 		pr = true; /* fall through */
2814 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2815 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2816 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2817 			return kvm_pmu_set_msr(vcpu, msr_info);
2818 
2819 		if (pr || data != 0)
2820 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2821 				    "0x%x data 0x%llx\n", msr, data);
2822 		break;
2823 	case MSR_K7_CLK_CTL:
2824 		/*
2825 		 * Ignore all writes to this no longer documented MSR.
2826 		 * Writes are only relevant for old K7 processors,
2827 		 * all pre-dating SVM, but a recommended workaround from
2828 		 * AMD for these chips. It is possible to specify the
2829 		 * affected processor models on the command line, hence
2830 		 * the need to ignore the workaround.
2831 		 */
2832 		break;
2833 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2834 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2835 	case HV_X64_MSR_CRASH_CTL:
2836 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2837 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2838 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2839 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2840 		return kvm_hv_set_msr_common(vcpu, msr, data,
2841 					     msr_info->host_initiated);
2842 	case MSR_IA32_BBL_CR_CTL3:
2843 		/* Drop writes to this legacy MSR -- see rdmsr
2844 		 * counterpart for further detail.
2845 		 */
2846 		if (report_ignored_msrs)
2847 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2848 				msr, data);
2849 		break;
2850 	case MSR_AMD64_OSVW_ID_LENGTH:
2851 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2852 			return 1;
2853 		vcpu->arch.osvw.length = data;
2854 		break;
2855 	case MSR_AMD64_OSVW_STATUS:
2856 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2857 			return 1;
2858 		vcpu->arch.osvw.status = data;
2859 		break;
2860 	case MSR_PLATFORM_INFO:
2861 		if (!msr_info->host_initiated ||
2862 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2863 		     cpuid_fault_enabled(vcpu)))
2864 			return 1;
2865 		vcpu->arch.msr_platform_info = data;
2866 		break;
2867 	case MSR_MISC_FEATURES_ENABLES:
2868 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2869 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2870 		     !supports_cpuid_fault(vcpu)))
2871 			return 1;
2872 		vcpu->arch.msr_misc_features_enables = data;
2873 		break;
2874 	default:
2875 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2876 			return xen_hvm_config(vcpu, data);
2877 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2878 			return kvm_pmu_set_msr(vcpu, msr_info);
2879 		if (!ignore_msrs) {
2880 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2881 				    msr, data);
2882 			return 1;
2883 		} else {
2884 			if (report_ignored_msrs)
2885 				vcpu_unimpl(vcpu,
2886 					"ignored wrmsr: 0x%x data 0x%llx\n",
2887 					msr, data);
2888 			break;
2889 		}
2890 	}
2891 	return 0;
2892 }
2893 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2894 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)2895 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2896 {
2897 	u64 data;
2898 	u64 mcg_cap = vcpu->arch.mcg_cap;
2899 	unsigned bank_num = mcg_cap & 0xff;
2900 
2901 	switch (msr) {
2902 	case MSR_IA32_P5_MC_ADDR:
2903 	case MSR_IA32_P5_MC_TYPE:
2904 		data = 0;
2905 		break;
2906 	case MSR_IA32_MCG_CAP:
2907 		data = vcpu->arch.mcg_cap;
2908 		break;
2909 	case MSR_IA32_MCG_CTL:
2910 		if (!(mcg_cap & MCG_CTL_P) && !host)
2911 			return 1;
2912 		data = vcpu->arch.mcg_ctl;
2913 		break;
2914 	case MSR_IA32_MCG_STATUS:
2915 		data = vcpu->arch.mcg_status;
2916 		break;
2917 	default:
2918 		if (msr >= MSR_IA32_MC0_CTL &&
2919 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2920 			u32 offset = msr - MSR_IA32_MC0_CTL;
2921 			data = vcpu->arch.mce_banks[offset];
2922 			break;
2923 		}
2924 		return 1;
2925 	}
2926 	*pdata = data;
2927 	return 0;
2928 }
2929 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2930 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2931 {
2932 	switch (msr_info->index) {
2933 	case MSR_IA32_PLATFORM_ID:
2934 	case MSR_IA32_EBL_CR_POWERON:
2935 	case MSR_IA32_DEBUGCTLMSR:
2936 	case MSR_IA32_LASTBRANCHFROMIP:
2937 	case MSR_IA32_LASTBRANCHTOIP:
2938 	case MSR_IA32_LASTINTFROMIP:
2939 	case MSR_IA32_LASTINTTOIP:
2940 	case MSR_K8_SYSCFG:
2941 	case MSR_K8_TSEG_ADDR:
2942 	case MSR_K8_TSEG_MASK:
2943 	case MSR_VM_HSAVE_PA:
2944 	case MSR_K8_INT_PENDING_MSG:
2945 	case MSR_AMD64_NB_CFG:
2946 	case MSR_FAM10H_MMIO_CONF_BASE:
2947 	case MSR_AMD64_BU_CFG2:
2948 	case MSR_IA32_PERF_CTL:
2949 	case MSR_AMD64_DC_CFG:
2950 	case MSR_F15H_EX_CFG:
2951 		msr_info->data = 0;
2952 		break;
2953 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2954 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2955 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2956 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2957 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2958 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2959 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2960 		msr_info->data = 0;
2961 		break;
2962 	case MSR_IA32_UCODE_REV:
2963 		msr_info->data = vcpu->arch.microcode_version;
2964 		break;
2965 	case MSR_IA32_ARCH_CAPABILITIES:
2966 		if (!msr_info->host_initiated &&
2967 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2968 			return 1;
2969 		msr_info->data = vcpu->arch.arch_capabilities;
2970 		break;
2971 	case MSR_IA32_POWER_CTL:
2972 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2973 		break;
2974 	case MSR_IA32_TSC:
2975 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2976 		break;
2977 	case MSR_MTRRcap:
2978 	case 0x200 ... 0x2ff:
2979 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2980 	case 0xcd: /* fsb frequency */
2981 		msr_info->data = 3;
2982 		break;
2983 		/*
2984 		 * MSR_EBC_FREQUENCY_ID
2985 		 * Conservative value valid for even the basic CPU models.
2986 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2987 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2988 		 * and 266MHz for model 3, or 4. Set Core Clock
2989 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2990 		 * 31:24) even though these are only valid for CPU
2991 		 * models > 2, however guests may end up dividing or
2992 		 * multiplying by zero otherwise.
2993 		 */
2994 	case MSR_EBC_FREQUENCY_ID:
2995 		msr_info->data = 1 << 24;
2996 		break;
2997 	case MSR_IA32_APICBASE:
2998 		msr_info->data = kvm_get_apic_base(vcpu);
2999 		break;
3000 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3001 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3002 		break;
3003 	case MSR_IA32_TSCDEADLINE:
3004 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3005 		break;
3006 	case MSR_IA32_TSC_ADJUST:
3007 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3008 		break;
3009 	case MSR_IA32_MISC_ENABLE:
3010 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3011 		break;
3012 	case MSR_IA32_SMBASE:
3013 		if (!msr_info->host_initiated)
3014 			return 1;
3015 		msr_info->data = vcpu->arch.smbase;
3016 		break;
3017 	case MSR_SMI_COUNT:
3018 		msr_info->data = vcpu->arch.smi_count;
3019 		break;
3020 	case MSR_IA32_PERF_STATUS:
3021 		/* TSC increment by tick */
3022 		msr_info->data = 1000ULL;
3023 		/* CPU multiplier */
3024 		msr_info->data |= (((uint64_t)4ULL) << 40);
3025 		break;
3026 	case MSR_EFER:
3027 		msr_info->data = vcpu->arch.efer;
3028 		break;
3029 	case MSR_KVM_WALL_CLOCK:
3030 	case MSR_KVM_WALL_CLOCK_NEW:
3031 		msr_info->data = vcpu->kvm->arch.wall_clock;
3032 		break;
3033 	case MSR_KVM_SYSTEM_TIME:
3034 	case MSR_KVM_SYSTEM_TIME_NEW:
3035 		msr_info->data = vcpu->arch.time;
3036 		break;
3037 	case MSR_KVM_ASYNC_PF_EN:
3038 		msr_info->data = vcpu->arch.apf.msr_val;
3039 		break;
3040 	case MSR_KVM_STEAL_TIME:
3041 		msr_info->data = vcpu->arch.st.msr_val;
3042 		break;
3043 	case MSR_KVM_PV_EOI_EN:
3044 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3045 		break;
3046 	case MSR_KVM_POLL_CONTROL:
3047 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3048 		break;
3049 	case MSR_IA32_P5_MC_ADDR:
3050 	case MSR_IA32_P5_MC_TYPE:
3051 	case MSR_IA32_MCG_CAP:
3052 	case MSR_IA32_MCG_CTL:
3053 	case MSR_IA32_MCG_STATUS:
3054 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3055 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3056 				   msr_info->host_initiated);
3057 	case MSR_K7_CLK_CTL:
3058 		/*
3059 		 * Provide expected ramp-up count for K7. All other
3060 		 * are set to zero, indicating minimum divisors for
3061 		 * every field.
3062 		 *
3063 		 * This prevents guest kernels on AMD host with CPU
3064 		 * type 6, model 8 and higher from exploding due to
3065 		 * the rdmsr failing.
3066 		 */
3067 		msr_info->data = 0x20000000;
3068 		break;
3069 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3070 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3071 	case HV_X64_MSR_CRASH_CTL:
3072 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3073 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3074 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3075 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3076 		return kvm_hv_get_msr_common(vcpu,
3077 					     msr_info->index, &msr_info->data,
3078 					     msr_info->host_initiated);
3079 		break;
3080 	case MSR_IA32_BBL_CR_CTL3:
3081 		/* This legacy MSR exists but isn't fully documented in current
3082 		 * silicon.  It is however accessed by winxp in very narrow
3083 		 * scenarios where it sets bit #19, itself documented as
3084 		 * a "reserved" bit.  Best effort attempt to source coherent
3085 		 * read data here should the balance of the register be
3086 		 * interpreted by the guest:
3087 		 *
3088 		 * L2 cache control register 3: 64GB range, 256KB size,
3089 		 * enabled, latency 0x1, configured
3090 		 */
3091 		msr_info->data = 0xbe702111;
3092 		break;
3093 	case MSR_AMD64_OSVW_ID_LENGTH:
3094 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3095 			return 1;
3096 		msr_info->data = vcpu->arch.osvw.length;
3097 		break;
3098 	case MSR_AMD64_OSVW_STATUS:
3099 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3100 			return 1;
3101 		msr_info->data = vcpu->arch.osvw.status;
3102 		break;
3103 	case MSR_PLATFORM_INFO:
3104 		if (!msr_info->host_initiated &&
3105 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3106 			return 1;
3107 		msr_info->data = vcpu->arch.msr_platform_info;
3108 		break;
3109 	case MSR_MISC_FEATURES_ENABLES:
3110 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3111 		break;
3112 	case MSR_K7_HWCR:
3113 		msr_info->data = vcpu->arch.msr_hwcr;
3114 		break;
3115 	default:
3116 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3117 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3118 		if (!ignore_msrs) {
3119 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3120 					       msr_info->index);
3121 			return 1;
3122 		} else {
3123 			if (report_ignored_msrs)
3124 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3125 					msr_info->index);
3126 			msr_info->data = 0;
3127 		}
3128 		break;
3129 	}
3130 	return 0;
3131 }
3132 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3133 
3134 /*
3135  * Read or write a bunch of msrs. All parameters are kernel addresses.
3136  *
3137  * @return number of msrs set successfully.
3138  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))3139 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3140 		    struct kvm_msr_entry *entries,
3141 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3142 				  unsigned index, u64 *data))
3143 {
3144 	int i;
3145 
3146 	for (i = 0; i < msrs->nmsrs; ++i)
3147 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3148 			break;
3149 
3150 	return i;
3151 }
3152 
3153 /*
3154  * Read or write a bunch of msrs. Parameters are user addresses.
3155  *
3156  * @return number of msrs set successfully.
3157  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)3158 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3159 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3160 				unsigned index, u64 *data),
3161 		  int writeback)
3162 {
3163 	struct kvm_msrs msrs;
3164 	struct kvm_msr_entry *entries;
3165 	int r, n;
3166 	unsigned size;
3167 
3168 	r = -EFAULT;
3169 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3170 		goto out;
3171 
3172 	r = -E2BIG;
3173 	if (msrs.nmsrs >= MAX_IO_MSRS)
3174 		goto out;
3175 
3176 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3177 	entries = memdup_user(user_msrs->entries, size);
3178 	if (IS_ERR(entries)) {
3179 		r = PTR_ERR(entries);
3180 		goto out;
3181 	}
3182 
3183 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3184 	if (r < 0)
3185 		goto out_free;
3186 
3187 	r = -EFAULT;
3188 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3189 		goto out_free;
3190 
3191 	r = n;
3192 
3193 out_free:
3194 	kfree(entries);
3195 out:
3196 	return r;
3197 }
3198 
kvm_can_mwait_in_guest(void)3199 static inline bool kvm_can_mwait_in_guest(void)
3200 {
3201 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3202 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3203 		boot_cpu_has(X86_FEATURE_ARAT);
3204 }
3205 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)3206 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3207 {
3208 	int r = 0;
3209 
3210 	switch (ext) {
3211 	case KVM_CAP_IRQCHIP:
3212 	case KVM_CAP_HLT:
3213 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3214 	case KVM_CAP_SET_TSS_ADDR:
3215 	case KVM_CAP_EXT_CPUID:
3216 	case KVM_CAP_EXT_EMUL_CPUID:
3217 	case KVM_CAP_CLOCKSOURCE:
3218 	case KVM_CAP_PIT:
3219 	case KVM_CAP_NOP_IO_DELAY:
3220 	case KVM_CAP_MP_STATE:
3221 	case KVM_CAP_SYNC_MMU:
3222 	case KVM_CAP_USER_NMI:
3223 	case KVM_CAP_REINJECT_CONTROL:
3224 	case KVM_CAP_IRQ_INJECT_STATUS:
3225 	case KVM_CAP_IOEVENTFD:
3226 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3227 	case KVM_CAP_PIT2:
3228 	case KVM_CAP_PIT_STATE2:
3229 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3230 	case KVM_CAP_XEN_HVM:
3231 	case KVM_CAP_VCPU_EVENTS:
3232 	case KVM_CAP_HYPERV:
3233 	case KVM_CAP_HYPERV_VAPIC:
3234 	case KVM_CAP_HYPERV_SPIN:
3235 	case KVM_CAP_HYPERV_SYNIC:
3236 	case KVM_CAP_HYPERV_SYNIC2:
3237 	case KVM_CAP_HYPERV_VP_INDEX:
3238 	case KVM_CAP_HYPERV_EVENTFD:
3239 	case KVM_CAP_HYPERV_TLBFLUSH:
3240 	case KVM_CAP_HYPERV_SEND_IPI:
3241 	case KVM_CAP_HYPERV_CPUID:
3242 	case KVM_CAP_PCI_SEGMENT:
3243 	case KVM_CAP_DEBUGREGS:
3244 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3245 	case KVM_CAP_XSAVE:
3246 	case KVM_CAP_ASYNC_PF:
3247 	case KVM_CAP_GET_TSC_KHZ:
3248 	case KVM_CAP_KVMCLOCK_CTRL:
3249 	case KVM_CAP_READONLY_MEM:
3250 	case KVM_CAP_HYPERV_TIME:
3251 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3252 	case KVM_CAP_TSC_DEADLINE_TIMER:
3253 	case KVM_CAP_DISABLE_QUIRKS:
3254 	case KVM_CAP_SET_BOOT_CPU_ID:
3255  	case KVM_CAP_SPLIT_IRQCHIP:
3256 	case KVM_CAP_IMMEDIATE_EXIT:
3257 	case KVM_CAP_PMU_EVENT_FILTER:
3258 	case KVM_CAP_GET_MSR_FEATURES:
3259 	case KVM_CAP_MSR_PLATFORM_INFO:
3260 	case KVM_CAP_EXCEPTION_PAYLOAD:
3261 		r = 1;
3262 		break;
3263 	case KVM_CAP_SYNC_REGS:
3264 		r = KVM_SYNC_X86_VALID_FIELDS;
3265 		break;
3266 	case KVM_CAP_ADJUST_CLOCK:
3267 		r = KVM_CLOCK_TSC_STABLE;
3268 		break;
3269 	case KVM_CAP_X86_DISABLE_EXITS:
3270 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3271 		      KVM_X86_DISABLE_EXITS_CSTATE;
3272 		if(kvm_can_mwait_in_guest())
3273 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3274 		break;
3275 	case KVM_CAP_X86_SMM:
3276 		/* SMBASE is usually relocated above 1M on modern chipsets,
3277 		 * and SMM handlers might indeed rely on 4G segment limits,
3278 		 * so do not report SMM to be available if real mode is
3279 		 * emulated via vm86 mode.  Still, do not go to great lengths
3280 		 * to avoid userspace's usage of the feature, because it is a
3281 		 * fringe case that is not enabled except via specific settings
3282 		 * of the module parameters.
3283 		 */
3284 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3285 		break;
3286 	case KVM_CAP_VAPIC:
3287 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3288 		break;
3289 	case KVM_CAP_NR_VCPUS:
3290 		r = KVM_SOFT_MAX_VCPUS;
3291 		break;
3292 	case KVM_CAP_MAX_VCPUS:
3293 		r = KVM_MAX_VCPUS;
3294 		break;
3295 	case KVM_CAP_MAX_VCPU_ID:
3296 		r = KVM_MAX_VCPU_ID;
3297 		break;
3298 	case KVM_CAP_PV_MMU:	/* obsolete */
3299 		r = 0;
3300 		break;
3301 	case KVM_CAP_MCE:
3302 		r = KVM_MAX_MCE_BANKS;
3303 		break;
3304 	case KVM_CAP_XCRS:
3305 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3306 		break;
3307 	case KVM_CAP_TSC_CONTROL:
3308 		r = kvm_has_tsc_control;
3309 		break;
3310 	case KVM_CAP_X2APIC_API:
3311 		r = KVM_X2APIC_API_VALID_FLAGS;
3312 		break;
3313 	case KVM_CAP_NESTED_STATE:
3314 		r = kvm_x86_ops->get_nested_state ?
3315 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3316 		break;
3317 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3318 		r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3319 		break;
3320 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3321 		r = kvm_x86_ops->nested_enable_evmcs != NULL;
3322 		break;
3323 	default:
3324 		break;
3325 	}
3326 	return r;
3327 
3328 }
3329 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3330 long kvm_arch_dev_ioctl(struct file *filp,
3331 			unsigned int ioctl, unsigned long arg)
3332 {
3333 	void __user *argp = (void __user *)arg;
3334 	long r;
3335 
3336 	switch (ioctl) {
3337 	case KVM_GET_MSR_INDEX_LIST: {
3338 		struct kvm_msr_list __user *user_msr_list = argp;
3339 		struct kvm_msr_list msr_list;
3340 		unsigned n;
3341 
3342 		r = -EFAULT;
3343 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3344 			goto out;
3345 		n = msr_list.nmsrs;
3346 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3347 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3348 			goto out;
3349 		r = -E2BIG;
3350 		if (n < msr_list.nmsrs)
3351 			goto out;
3352 		r = -EFAULT;
3353 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3354 				 num_msrs_to_save * sizeof(u32)))
3355 			goto out;
3356 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3357 				 &emulated_msrs,
3358 				 num_emulated_msrs * sizeof(u32)))
3359 			goto out;
3360 		r = 0;
3361 		break;
3362 	}
3363 	case KVM_GET_SUPPORTED_CPUID:
3364 	case KVM_GET_EMULATED_CPUID: {
3365 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3366 		struct kvm_cpuid2 cpuid;
3367 
3368 		r = -EFAULT;
3369 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3370 			goto out;
3371 
3372 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3373 					    ioctl);
3374 		if (r)
3375 			goto out;
3376 
3377 		r = -EFAULT;
3378 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3379 			goto out;
3380 		r = 0;
3381 		break;
3382 	}
3383 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3384 		r = -EFAULT;
3385 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3386 				 sizeof(kvm_mce_cap_supported)))
3387 			goto out;
3388 		r = 0;
3389 		break;
3390 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3391 		struct kvm_msr_list __user *user_msr_list = argp;
3392 		struct kvm_msr_list msr_list;
3393 		unsigned int n;
3394 
3395 		r = -EFAULT;
3396 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3397 			goto out;
3398 		n = msr_list.nmsrs;
3399 		msr_list.nmsrs = num_msr_based_features;
3400 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3401 			goto out;
3402 		r = -E2BIG;
3403 		if (n < msr_list.nmsrs)
3404 			goto out;
3405 		r = -EFAULT;
3406 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3407 				 num_msr_based_features * sizeof(u32)))
3408 			goto out;
3409 		r = 0;
3410 		break;
3411 	}
3412 	case KVM_GET_MSRS:
3413 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3414 		break;
3415 	}
3416 	default:
3417 		r = -EINVAL;
3418 	}
3419 out:
3420 	return r;
3421 }
3422 
wbinvd_ipi(void * garbage)3423 static void wbinvd_ipi(void *garbage)
3424 {
3425 	wbinvd();
3426 }
3427 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)3428 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3429 {
3430 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3431 }
3432 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3433 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3434 {
3435 	/* Address WBINVD may be executed by guest */
3436 	if (need_emulate_wbinvd(vcpu)) {
3437 		if (kvm_x86_ops->has_wbinvd_exit())
3438 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3439 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3440 			smp_call_function_single(vcpu->cpu,
3441 					wbinvd_ipi, NULL, 1);
3442 	}
3443 
3444 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3445 
3446 	fpregs_assert_state_consistent();
3447 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
3448 		switch_fpu_return();
3449 
3450 	/* Apply any externally detected TSC adjustments (due to suspend) */
3451 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3452 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3453 		vcpu->arch.tsc_offset_adjustment = 0;
3454 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3455 	}
3456 
3457 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3458 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3459 				rdtsc() - vcpu->arch.last_host_tsc;
3460 		if (tsc_delta < 0)
3461 			mark_tsc_unstable("KVM discovered backwards TSC");
3462 
3463 		if (kvm_check_tsc_unstable()) {
3464 			u64 offset = kvm_compute_tsc_offset(vcpu,
3465 						vcpu->arch.last_guest_tsc);
3466 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3467 			vcpu->arch.tsc_catchup = 1;
3468 		}
3469 
3470 		if (kvm_lapic_hv_timer_in_use(vcpu))
3471 			kvm_lapic_restart_hv_timer(vcpu);
3472 
3473 		/*
3474 		 * On a host with synchronized TSC, there is no need to update
3475 		 * kvmclock on vcpu->cpu migration
3476 		 */
3477 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3478 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3479 		if (vcpu->cpu != cpu)
3480 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3481 		vcpu->cpu = cpu;
3482 	}
3483 
3484 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3485 }
3486 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)3487 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3488 {
3489 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3490 		return;
3491 
3492 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3493 
3494 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3495 			&vcpu->arch.st.steal.preempted,
3496 			offsetof(struct kvm_steal_time, preempted),
3497 			sizeof(vcpu->arch.st.steal.preempted));
3498 }
3499 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3500 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3501 {
3502 	int idx;
3503 
3504 	if (vcpu->preempted)
3505 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3506 
3507 	/*
3508 	 * Disable page faults because we're in atomic context here.
3509 	 * kvm_write_guest_offset_cached() would call might_fault()
3510 	 * that relies on pagefault_disable() to tell if there's a
3511 	 * bug. NOTE: the write to guest memory may not go through if
3512 	 * during postcopy live migration or if there's heavy guest
3513 	 * paging.
3514 	 */
3515 	pagefault_disable();
3516 	/*
3517 	 * kvm_memslots() will be called by
3518 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3519 	 */
3520 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3521 	kvm_steal_time_set_preempted(vcpu);
3522 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3523 	pagefault_enable();
3524 	kvm_x86_ops->vcpu_put(vcpu);
3525 	vcpu->arch.last_host_tsc = rdtsc();
3526 	/*
3527 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3528 	 * on every vmexit, but if not, we might have a stale dr6 from the
3529 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3530 	 */
3531 	set_debugreg(0, 6);
3532 }
3533 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3534 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3535 				    struct kvm_lapic_state *s)
3536 {
3537 	if (vcpu->arch.apicv_active)
3538 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3539 
3540 	return kvm_apic_get_state(vcpu, s);
3541 }
3542 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3543 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3544 				    struct kvm_lapic_state *s)
3545 {
3546 	int r;
3547 
3548 	r = kvm_apic_set_state(vcpu, s);
3549 	if (r)
3550 		return r;
3551 	update_cr8_intercept(vcpu);
3552 
3553 	return 0;
3554 }
3555 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)3556 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3557 {
3558 	return (!lapic_in_kernel(vcpu) ||
3559 		kvm_apic_accept_pic_intr(vcpu));
3560 }
3561 
3562 /*
3563  * if userspace requested an interrupt window, check that the
3564  * interrupt window is open.
3565  *
3566  * No need to exit to userspace if we already have an interrupt queued.
3567  */
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)3568 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3569 {
3570 	return kvm_arch_interrupt_allowed(vcpu) &&
3571 		!kvm_cpu_has_interrupt(vcpu) &&
3572 		!kvm_event_needs_reinjection(vcpu) &&
3573 		kvm_cpu_accept_dm_intr(vcpu);
3574 }
3575 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)3576 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3577 				    struct kvm_interrupt *irq)
3578 {
3579 	if (irq->irq >= KVM_NR_INTERRUPTS)
3580 		return -EINVAL;
3581 
3582 	if (!irqchip_in_kernel(vcpu->kvm)) {
3583 		kvm_queue_interrupt(vcpu, irq->irq, false);
3584 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3585 		return 0;
3586 	}
3587 
3588 	/*
3589 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3590 	 * fail for in-kernel 8259.
3591 	 */
3592 	if (pic_in_kernel(vcpu->kvm))
3593 		return -ENXIO;
3594 
3595 	if (vcpu->arch.pending_external_vector != -1)
3596 		return -EEXIST;
3597 
3598 	vcpu->arch.pending_external_vector = irq->irq;
3599 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3600 	return 0;
3601 }
3602 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)3603 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3604 {
3605 	kvm_inject_nmi(vcpu);
3606 
3607 	return 0;
3608 }
3609 
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)3610 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3611 {
3612 	kvm_make_request(KVM_REQ_SMI, vcpu);
3613 
3614 	return 0;
3615 }
3616 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)3617 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3618 					   struct kvm_tpr_access_ctl *tac)
3619 {
3620 	if (tac->flags)
3621 		return -EINVAL;
3622 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3623 	return 0;
3624 }
3625 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)3626 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3627 					u64 mcg_cap)
3628 {
3629 	int r;
3630 	unsigned bank_num = mcg_cap & 0xff, bank;
3631 
3632 	r = -EINVAL;
3633 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3634 		goto out;
3635 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3636 		goto out;
3637 	r = 0;
3638 	vcpu->arch.mcg_cap = mcg_cap;
3639 	/* Init IA32_MCG_CTL to all 1s */
3640 	if (mcg_cap & MCG_CTL_P)
3641 		vcpu->arch.mcg_ctl = ~(u64)0;
3642 	/* Init IA32_MCi_CTL to all 1s */
3643 	for (bank = 0; bank < bank_num; bank++)
3644 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3645 
3646 	kvm_x86_ops->setup_mce(vcpu);
3647 out:
3648 	return r;
3649 }
3650 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)3651 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3652 				      struct kvm_x86_mce *mce)
3653 {
3654 	u64 mcg_cap = vcpu->arch.mcg_cap;
3655 	unsigned bank_num = mcg_cap & 0xff;
3656 	u64 *banks = vcpu->arch.mce_banks;
3657 
3658 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3659 		return -EINVAL;
3660 	/*
3661 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3662 	 * reporting is disabled
3663 	 */
3664 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3665 	    vcpu->arch.mcg_ctl != ~(u64)0)
3666 		return 0;
3667 	banks += 4 * mce->bank;
3668 	/*
3669 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3670 	 * reporting is disabled for the bank
3671 	 */
3672 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3673 		return 0;
3674 	if (mce->status & MCI_STATUS_UC) {
3675 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3676 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3677 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3678 			return 0;
3679 		}
3680 		if (banks[1] & MCI_STATUS_VAL)
3681 			mce->status |= MCI_STATUS_OVER;
3682 		banks[2] = mce->addr;
3683 		banks[3] = mce->misc;
3684 		vcpu->arch.mcg_status = mce->mcg_status;
3685 		banks[1] = mce->status;
3686 		kvm_queue_exception(vcpu, MC_VECTOR);
3687 	} else if (!(banks[1] & MCI_STATUS_VAL)
3688 		   || !(banks[1] & MCI_STATUS_UC)) {
3689 		if (banks[1] & MCI_STATUS_VAL)
3690 			mce->status |= MCI_STATUS_OVER;
3691 		banks[2] = mce->addr;
3692 		banks[3] = mce->misc;
3693 		banks[1] = mce->status;
3694 	} else
3695 		banks[1] |= MCI_STATUS_OVER;
3696 	return 0;
3697 }
3698 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3699 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3700 					       struct kvm_vcpu_events *events)
3701 {
3702 	process_nmi(vcpu);
3703 
3704 	/*
3705 	 * The API doesn't provide the instruction length for software
3706 	 * exceptions, so don't report them. As long as the guest RIP
3707 	 * isn't advanced, we should expect to encounter the exception
3708 	 * again.
3709 	 */
3710 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3711 		events->exception.injected = 0;
3712 		events->exception.pending = 0;
3713 	} else {
3714 		events->exception.injected = vcpu->arch.exception.injected;
3715 		events->exception.pending = vcpu->arch.exception.pending;
3716 		/*
3717 		 * For ABI compatibility, deliberately conflate
3718 		 * pending and injected exceptions when
3719 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3720 		 */
3721 		if (!vcpu->kvm->arch.exception_payload_enabled)
3722 			events->exception.injected |=
3723 				vcpu->arch.exception.pending;
3724 	}
3725 	events->exception.nr = vcpu->arch.exception.nr;
3726 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3727 	events->exception.error_code = vcpu->arch.exception.error_code;
3728 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3729 	events->exception_payload = vcpu->arch.exception.payload;
3730 
3731 	events->interrupt.injected =
3732 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3733 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3734 	events->interrupt.soft = 0;
3735 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3736 
3737 	events->nmi.injected = vcpu->arch.nmi_injected;
3738 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3739 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3740 	events->nmi.pad = 0;
3741 
3742 	events->sipi_vector = 0; /* never valid when reporting to user space */
3743 
3744 	events->smi.smm = is_smm(vcpu);
3745 	events->smi.pending = vcpu->arch.smi_pending;
3746 	events->smi.smm_inside_nmi =
3747 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3748 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3749 
3750 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3751 			 | KVM_VCPUEVENT_VALID_SHADOW
3752 			 | KVM_VCPUEVENT_VALID_SMM);
3753 	if (vcpu->kvm->arch.exception_payload_enabled)
3754 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3755 
3756 	memset(&events->reserved, 0, sizeof(events->reserved));
3757 }
3758 
3759 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3760 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3761 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3762 					      struct kvm_vcpu_events *events)
3763 {
3764 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3765 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3766 			      | KVM_VCPUEVENT_VALID_SHADOW
3767 			      | KVM_VCPUEVENT_VALID_SMM
3768 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3769 		return -EINVAL;
3770 
3771 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3772 		if (!vcpu->kvm->arch.exception_payload_enabled)
3773 			return -EINVAL;
3774 		if (events->exception.pending)
3775 			events->exception.injected = 0;
3776 		else
3777 			events->exception_has_payload = 0;
3778 	} else {
3779 		events->exception.pending = 0;
3780 		events->exception_has_payload = 0;
3781 	}
3782 
3783 	if ((events->exception.injected || events->exception.pending) &&
3784 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3785 		return -EINVAL;
3786 
3787 	/* INITs are latched while in SMM */
3788 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3789 	    (events->smi.smm || events->smi.pending) &&
3790 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3791 		return -EINVAL;
3792 
3793 	process_nmi(vcpu);
3794 	vcpu->arch.exception.injected = events->exception.injected;
3795 	vcpu->arch.exception.pending = events->exception.pending;
3796 	vcpu->arch.exception.nr = events->exception.nr;
3797 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3798 	vcpu->arch.exception.error_code = events->exception.error_code;
3799 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3800 	vcpu->arch.exception.payload = events->exception_payload;
3801 
3802 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3803 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3804 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3805 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3806 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3807 						  events->interrupt.shadow);
3808 
3809 	vcpu->arch.nmi_injected = events->nmi.injected;
3810 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3811 		vcpu->arch.nmi_pending = events->nmi.pending;
3812 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3813 
3814 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3815 	    lapic_in_kernel(vcpu))
3816 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3817 
3818 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3819 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3820 			if (events->smi.smm)
3821 				vcpu->arch.hflags |= HF_SMM_MASK;
3822 			else
3823 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3824 			kvm_smm_changed(vcpu);
3825 		}
3826 
3827 		vcpu->arch.smi_pending = events->smi.pending;
3828 
3829 		if (events->smi.smm) {
3830 			if (events->smi.smm_inside_nmi)
3831 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3832 			else
3833 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3834 			if (lapic_in_kernel(vcpu)) {
3835 				if (events->smi.latched_init)
3836 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3837 				else
3838 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3839 			}
3840 		}
3841 	}
3842 
3843 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3844 
3845 	return 0;
3846 }
3847 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3848 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3849 					     struct kvm_debugregs *dbgregs)
3850 {
3851 	unsigned long val;
3852 
3853 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3854 	kvm_get_dr(vcpu, 6, &val);
3855 	dbgregs->dr6 = val;
3856 	dbgregs->dr7 = vcpu->arch.dr7;
3857 	dbgregs->flags = 0;
3858 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3859 }
3860 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3861 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3862 					    struct kvm_debugregs *dbgregs)
3863 {
3864 	if (dbgregs->flags)
3865 		return -EINVAL;
3866 
3867 	if (dbgregs->dr6 & ~0xffffffffull)
3868 		return -EINVAL;
3869 	if (dbgregs->dr7 & ~0xffffffffull)
3870 		return -EINVAL;
3871 
3872 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3873 	kvm_update_dr0123(vcpu);
3874 	vcpu->arch.dr6 = dbgregs->dr6;
3875 	kvm_update_dr6(vcpu);
3876 	vcpu->arch.dr7 = dbgregs->dr7;
3877 	kvm_update_dr7(vcpu);
3878 
3879 	return 0;
3880 }
3881 
3882 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3883 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)3884 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3885 {
3886 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3887 	u64 xstate_bv = xsave->header.xfeatures;
3888 	u64 valid;
3889 
3890 	/*
3891 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3892 	 * leaves 0 and 1 in the loop below.
3893 	 */
3894 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3895 
3896 	/* Set XSTATE_BV */
3897 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3898 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3899 
3900 	/*
3901 	 * Copy each region from the possibly compacted offset to the
3902 	 * non-compacted offset.
3903 	 */
3904 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3905 	while (valid) {
3906 		u64 xfeature_mask = valid & -valid;
3907 		int xfeature_nr = fls64(xfeature_mask) - 1;
3908 		void *src = get_xsave_addr(xsave, xfeature_nr);
3909 
3910 		if (src) {
3911 			u32 size, offset, ecx, edx;
3912 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3913 				    &size, &offset, &ecx, &edx);
3914 			if (xfeature_nr == XFEATURE_PKRU)
3915 				memcpy(dest + offset, &vcpu->arch.pkru,
3916 				       sizeof(vcpu->arch.pkru));
3917 			else
3918 				memcpy(dest + offset, src, size);
3919 
3920 		}
3921 
3922 		valid -= xfeature_mask;
3923 	}
3924 }
3925 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)3926 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3927 {
3928 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3929 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3930 	u64 valid;
3931 
3932 	/*
3933 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3934 	 * leaves 0 and 1 in the loop below.
3935 	 */
3936 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3937 
3938 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3939 	xsave->header.xfeatures = xstate_bv;
3940 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3941 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3942 
3943 	/*
3944 	 * Copy each region from the non-compacted offset to the
3945 	 * possibly compacted offset.
3946 	 */
3947 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3948 	while (valid) {
3949 		u64 xfeature_mask = valid & -valid;
3950 		int xfeature_nr = fls64(xfeature_mask) - 1;
3951 		void *dest = get_xsave_addr(xsave, xfeature_nr);
3952 
3953 		if (dest) {
3954 			u32 size, offset, ecx, edx;
3955 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3956 				    &size, &offset, &ecx, &edx);
3957 			if (xfeature_nr == XFEATURE_PKRU)
3958 				memcpy(&vcpu->arch.pkru, src + offset,
3959 				       sizeof(vcpu->arch.pkru));
3960 			else
3961 				memcpy(dest, src + offset, size);
3962 		}
3963 
3964 		valid -= xfeature_mask;
3965 	}
3966 }
3967 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3968 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3969 					 struct kvm_xsave *guest_xsave)
3970 {
3971 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3972 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3973 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3974 	} else {
3975 		memcpy(guest_xsave->region,
3976 			&vcpu->arch.guest_fpu->state.fxsave,
3977 			sizeof(struct fxregs_state));
3978 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3979 			XFEATURE_MASK_FPSSE;
3980 	}
3981 }
3982 
3983 #define XSAVE_MXCSR_OFFSET 24
3984 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3985 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3986 					struct kvm_xsave *guest_xsave)
3987 {
3988 	u64 xstate_bv =
3989 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3990 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3991 
3992 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3993 		/*
3994 		 * Here we allow setting states that are not present in
3995 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3996 		 * with old userspace.
3997 		 */
3998 		if (xstate_bv & ~kvm_supported_xcr0() ||
3999 			mxcsr & ~mxcsr_feature_mask)
4000 			return -EINVAL;
4001 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4002 	} else {
4003 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4004 			mxcsr & ~mxcsr_feature_mask)
4005 			return -EINVAL;
4006 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4007 			guest_xsave->region, sizeof(struct fxregs_state));
4008 	}
4009 	return 0;
4010 }
4011 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4012 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4013 					struct kvm_xcrs *guest_xcrs)
4014 {
4015 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4016 		guest_xcrs->nr_xcrs = 0;
4017 		return;
4018 	}
4019 
4020 	guest_xcrs->nr_xcrs = 1;
4021 	guest_xcrs->flags = 0;
4022 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4023 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4024 }
4025 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4026 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4027 				       struct kvm_xcrs *guest_xcrs)
4028 {
4029 	int i, r = 0;
4030 
4031 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4032 		return -EINVAL;
4033 
4034 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4035 		return -EINVAL;
4036 
4037 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4038 		/* Only support XCR0 currently */
4039 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4040 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4041 				guest_xcrs->xcrs[i].value);
4042 			break;
4043 		}
4044 	if (r)
4045 		r = -EINVAL;
4046 	return r;
4047 }
4048 
4049 /*
4050  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4051  * stopped by the hypervisor.  This function will be called from the host only.
4052  * EINVAL is returned when the host attempts to set the flag for a guest that
4053  * does not support pv clocks.
4054  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)4055 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4056 {
4057 	if (!vcpu->arch.pv_time_enabled)
4058 		return -EINVAL;
4059 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4060 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4061 	return 0;
4062 }
4063 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)4064 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4065 				     struct kvm_enable_cap *cap)
4066 {
4067 	int r;
4068 	uint16_t vmcs_version;
4069 	void __user *user_ptr;
4070 
4071 	if (cap->flags)
4072 		return -EINVAL;
4073 
4074 	switch (cap->cap) {
4075 	case KVM_CAP_HYPERV_SYNIC2:
4076 		if (cap->args[0])
4077 			return -EINVAL;
4078 		/* fall through */
4079 
4080 	case KVM_CAP_HYPERV_SYNIC:
4081 		if (!irqchip_in_kernel(vcpu->kvm))
4082 			return -EINVAL;
4083 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4084 					     KVM_CAP_HYPERV_SYNIC2);
4085 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4086 		if (!kvm_x86_ops->nested_enable_evmcs)
4087 			return -ENOTTY;
4088 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4089 		if (!r) {
4090 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4091 			if (copy_to_user(user_ptr, &vmcs_version,
4092 					 sizeof(vmcs_version)))
4093 				r = -EFAULT;
4094 		}
4095 		return r;
4096 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4097 		if (!kvm_x86_ops->enable_direct_tlbflush)
4098 			return -ENOTTY;
4099 
4100 		return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4101 
4102 	default:
4103 		return -EINVAL;
4104 	}
4105 }
4106 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4107 long kvm_arch_vcpu_ioctl(struct file *filp,
4108 			 unsigned int ioctl, unsigned long arg)
4109 {
4110 	struct kvm_vcpu *vcpu = filp->private_data;
4111 	void __user *argp = (void __user *)arg;
4112 	int r;
4113 	union {
4114 		struct kvm_lapic_state *lapic;
4115 		struct kvm_xsave *xsave;
4116 		struct kvm_xcrs *xcrs;
4117 		void *buffer;
4118 	} u;
4119 
4120 	vcpu_load(vcpu);
4121 
4122 	u.buffer = NULL;
4123 	switch (ioctl) {
4124 	case KVM_GET_LAPIC: {
4125 		r = -EINVAL;
4126 		if (!lapic_in_kernel(vcpu))
4127 			goto out;
4128 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4129 				GFP_KERNEL_ACCOUNT);
4130 
4131 		r = -ENOMEM;
4132 		if (!u.lapic)
4133 			goto out;
4134 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4135 		if (r)
4136 			goto out;
4137 		r = -EFAULT;
4138 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4139 			goto out;
4140 		r = 0;
4141 		break;
4142 	}
4143 	case KVM_SET_LAPIC: {
4144 		r = -EINVAL;
4145 		if (!lapic_in_kernel(vcpu))
4146 			goto out;
4147 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4148 		if (IS_ERR(u.lapic)) {
4149 			r = PTR_ERR(u.lapic);
4150 			goto out_nofree;
4151 		}
4152 
4153 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4154 		break;
4155 	}
4156 	case KVM_INTERRUPT: {
4157 		struct kvm_interrupt irq;
4158 
4159 		r = -EFAULT;
4160 		if (copy_from_user(&irq, argp, sizeof(irq)))
4161 			goto out;
4162 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4163 		break;
4164 	}
4165 	case KVM_NMI: {
4166 		r = kvm_vcpu_ioctl_nmi(vcpu);
4167 		break;
4168 	}
4169 	case KVM_SMI: {
4170 		r = kvm_vcpu_ioctl_smi(vcpu);
4171 		break;
4172 	}
4173 	case KVM_SET_CPUID: {
4174 		struct kvm_cpuid __user *cpuid_arg = argp;
4175 		struct kvm_cpuid cpuid;
4176 
4177 		r = -EFAULT;
4178 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4179 			goto out;
4180 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4181 		break;
4182 	}
4183 	case KVM_SET_CPUID2: {
4184 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4185 		struct kvm_cpuid2 cpuid;
4186 
4187 		r = -EFAULT;
4188 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4189 			goto out;
4190 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4191 					      cpuid_arg->entries);
4192 		break;
4193 	}
4194 	case KVM_GET_CPUID2: {
4195 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4196 		struct kvm_cpuid2 cpuid;
4197 
4198 		r = -EFAULT;
4199 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4200 			goto out;
4201 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4202 					      cpuid_arg->entries);
4203 		if (r)
4204 			goto out;
4205 		r = -EFAULT;
4206 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4207 			goto out;
4208 		r = 0;
4209 		break;
4210 	}
4211 	case KVM_GET_MSRS: {
4212 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4213 		r = msr_io(vcpu, argp, do_get_msr, 1);
4214 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4215 		break;
4216 	}
4217 	case KVM_SET_MSRS: {
4218 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4219 		r = msr_io(vcpu, argp, do_set_msr, 0);
4220 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4221 		break;
4222 	}
4223 	case KVM_TPR_ACCESS_REPORTING: {
4224 		struct kvm_tpr_access_ctl tac;
4225 
4226 		r = -EFAULT;
4227 		if (copy_from_user(&tac, argp, sizeof(tac)))
4228 			goto out;
4229 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4230 		if (r)
4231 			goto out;
4232 		r = -EFAULT;
4233 		if (copy_to_user(argp, &tac, sizeof(tac)))
4234 			goto out;
4235 		r = 0;
4236 		break;
4237 	};
4238 	case KVM_SET_VAPIC_ADDR: {
4239 		struct kvm_vapic_addr va;
4240 		int idx;
4241 
4242 		r = -EINVAL;
4243 		if (!lapic_in_kernel(vcpu))
4244 			goto out;
4245 		r = -EFAULT;
4246 		if (copy_from_user(&va, argp, sizeof(va)))
4247 			goto out;
4248 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4249 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4250 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4251 		break;
4252 	}
4253 	case KVM_X86_SETUP_MCE: {
4254 		u64 mcg_cap;
4255 
4256 		r = -EFAULT;
4257 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4258 			goto out;
4259 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4260 		break;
4261 	}
4262 	case KVM_X86_SET_MCE: {
4263 		struct kvm_x86_mce mce;
4264 
4265 		r = -EFAULT;
4266 		if (copy_from_user(&mce, argp, sizeof(mce)))
4267 			goto out;
4268 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4269 		break;
4270 	}
4271 	case KVM_GET_VCPU_EVENTS: {
4272 		struct kvm_vcpu_events events;
4273 
4274 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4275 
4276 		r = -EFAULT;
4277 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4278 			break;
4279 		r = 0;
4280 		break;
4281 	}
4282 	case KVM_SET_VCPU_EVENTS: {
4283 		struct kvm_vcpu_events events;
4284 
4285 		r = -EFAULT;
4286 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4287 			break;
4288 
4289 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4290 		break;
4291 	}
4292 	case KVM_GET_DEBUGREGS: {
4293 		struct kvm_debugregs dbgregs;
4294 
4295 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4296 
4297 		r = -EFAULT;
4298 		if (copy_to_user(argp, &dbgregs,
4299 				 sizeof(struct kvm_debugregs)))
4300 			break;
4301 		r = 0;
4302 		break;
4303 	}
4304 	case KVM_SET_DEBUGREGS: {
4305 		struct kvm_debugregs dbgregs;
4306 
4307 		r = -EFAULT;
4308 		if (copy_from_user(&dbgregs, argp,
4309 				   sizeof(struct kvm_debugregs)))
4310 			break;
4311 
4312 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4313 		break;
4314 	}
4315 	case KVM_GET_XSAVE: {
4316 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4317 		r = -ENOMEM;
4318 		if (!u.xsave)
4319 			break;
4320 
4321 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4322 
4323 		r = -EFAULT;
4324 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4325 			break;
4326 		r = 0;
4327 		break;
4328 	}
4329 	case KVM_SET_XSAVE: {
4330 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4331 		if (IS_ERR(u.xsave)) {
4332 			r = PTR_ERR(u.xsave);
4333 			goto out_nofree;
4334 		}
4335 
4336 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4337 		break;
4338 	}
4339 	case KVM_GET_XCRS: {
4340 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4341 		r = -ENOMEM;
4342 		if (!u.xcrs)
4343 			break;
4344 
4345 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4346 
4347 		r = -EFAULT;
4348 		if (copy_to_user(argp, u.xcrs,
4349 				 sizeof(struct kvm_xcrs)))
4350 			break;
4351 		r = 0;
4352 		break;
4353 	}
4354 	case KVM_SET_XCRS: {
4355 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4356 		if (IS_ERR(u.xcrs)) {
4357 			r = PTR_ERR(u.xcrs);
4358 			goto out_nofree;
4359 		}
4360 
4361 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4362 		break;
4363 	}
4364 	case KVM_SET_TSC_KHZ: {
4365 		u32 user_tsc_khz;
4366 
4367 		r = -EINVAL;
4368 		user_tsc_khz = (u32)arg;
4369 
4370 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4371 			goto out;
4372 
4373 		if (user_tsc_khz == 0)
4374 			user_tsc_khz = tsc_khz;
4375 
4376 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4377 			r = 0;
4378 
4379 		goto out;
4380 	}
4381 	case KVM_GET_TSC_KHZ: {
4382 		r = vcpu->arch.virtual_tsc_khz;
4383 		goto out;
4384 	}
4385 	case KVM_KVMCLOCK_CTRL: {
4386 		r = kvm_set_guest_paused(vcpu);
4387 		goto out;
4388 	}
4389 	case KVM_ENABLE_CAP: {
4390 		struct kvm_enable_cap cap;
4391 
4392 		r = -EFAULT;
4393 		if (copy_from_user(&cap, argp, sizeof(cap)))
4394 			goto out;
4395 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4396 		break;
4397 	}
4398 	case KVM_GET_NESTED_STATE: {
4399 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4400 		u32 user_data_size;
4401 
4402 		r = -EINVAL;
4403 		if (!kvm_x86_ops->get_nested_state)
4404 			break;
4405 
4406 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4407 		r = -EFAULT;
4408 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4409 			break;
4410 
4411 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4412 						  user_data_size);
4413 		if (r < 0)
4414 			break;
4415 
4416 		if (r > user_data_size) {
4417 			if (put_user(r, &user_kvm_nested_state->size))
4418 				r = -EFAULT;
4419 			else
4420 				r = -E2BIG;
4421 			break;
4422 		}
4423 
4424 		r = 0;
4425 		break;
4426 	}
4427 	case KVM_SET_NESTED_STATE: {
4428 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4429 		struct kvm_nested_state kvm_state;
4430 		int idx;
4431 
4432 		r = -EINVAL;
4433 		if (!kvm_x86_ops->set_nested_state)
4434 			break;
4435 
4436 		r = -EFAULT;
4437 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4438 			break;
4439 
4440 		r = -EINVAL;
4441 		if (kvm_state.size < sizeof(kvm_state))
4442 			break;
4443 
4444 		if (kvm_state.flags &
4445 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4446 		      | KVM_STATE_NESTED_EVMCS))
4447 			break;
4448 
4449 		/* nested_run_pending implies guest_mode.  */
4450 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4451 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4452 			break;
4453 
4454 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4455 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4456 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4457 		break;
4458 	}
4459 	case KVM_GET_SUPPORTED_HV_CPUID: {
4460 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4461 		struct kvm_cpuid2 cpuid;
4462 
4463 		r = -EFAULT;
4464 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4465 			goto out;
4466 
4467 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4468 						cpuid_arg->entries);
4469 		if (r)
4470 			goto out;
4471 
4472 		r = -EFAULT;
4473 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4474 			goto out;
4475 		r = 0;
4476 		break;
4477 	}
4478 	default:
4479 		r = -EINVAL;
4480 	}
4481 out:
4482 	kfree(u.buffer);
4483 out_nofree:
4484 	vcpu_put(vcpu);
4485 	return r;
4486 }
4487 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)4488 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4489 {
4490 	return VM_FAULT_SIGBUS;
4491 }
4492 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)4493 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4494 {
4495 	int ret;
4496 
4497 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4498 		return -EINVAL;
4499 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4500 	return ret;
4501 }
4502 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4503 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4504 					      u64 ident_addr)
4505 {
4506 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4507 }
4508 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)4509 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4510 					 unsigned long kvm_nr_mmu_pages)
4511 {
4512 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4513 		return -EINVAL;
4514 
4515 	mutex_lock(&kvm->slots_lock);
4516 
4517 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4518 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4519 
4520 	mutex_unlock(&kvm->slots_lock);
4521 	return 0;
4522 }
4523 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)4524 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4525 {
4526 	return kvm->arch.n_max_mmu_pages;
4527 }
4528 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)4529 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4530 {
4531 	struct kvm_pic *pic = kvm->arch.vpic;
4532 	int r;
4533 
4534 	r = 0;
4535 	switch (chip->chip_id) {
4536 	case KVM_IRQCHIP_PIC_MASTER:
4537 		memcpy(&chip->chip.pic, &pic->pics[0],
4538 			sizeof(struct kvm_pic_state));
4539 		break;
4540 	case KVM_IRQCHIP_PIC_SLAVE:
4541 		memcpy(&chip->chip.pic, &pic->pics[1],
4542 			sizeof(struct kvm_pic_state));
4543 		break;
4544 	case KVM_IRQCHIP_IOAPIC:
4545 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4546 		break;
4547 	default:
4548 		r = -EINVAL;
4549 		break;
4550 	}
4551 	return r;
4552 }
4553 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)4554 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4555 {
4556 	struct kvm_pic *pic = kvm->arch.vpic;
4557 	int r;
4558 
4559 	r = 0;
4560 	switch (chip->chip_id) {
4561 	case KVM_IRQCHIP_PIC_MASTER:
4562 		spin_lock(&pic->lock);
4563 		memcpy(&pic->pics[0], &chip->chip.pic,
4564 			sizeof(struct kvm_pic_state));
4565 		spin_unlock(&pic->lock);
4566 		break;
4567 	case KVM_IRQCHIP_PIC_SLAVE:
4568 		spin_lock(&pic->lock);
4569 		memcpy(&pic->pics[1], &chip->chip.pic,
4570 			sizeof(struct kvm_pic_state));
4571 		spin_unlock(&pic->lock);
4572 		break;
4573 	case KVM_IRQCHIP_IOAPIC:
4574 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4575 		break;
4576 	default:
4577 		r = -EINVAL;
4578 		break;
4579 	}
4580 	kvm_pic_update_irq(pic);
4581 	return r;
4582 }
4583 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)4584 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4585 {
4586 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4587 
4588 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4589 
4590 	mutex_lock(&kps->lock);
4591 	memcpy(ps, &kps->channels, sizeof(*ps));
4592 	mutex_unlock(&kps->lock);
4593 	return 0;
4594 }
4595 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)4596 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4597 {
4598 	int i;
4599 	struct kvm_pit *pit = kvm->arch.vpit;
4600 
4601 	mutex_lock(&pit->pit_state.lock);
4602 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4603 	for (i = 0; i < 3; i++)
4604 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4605 	mutex_unlock(&pit->pit_state.lock);
4606 	return 0;
4607 }
4608 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)4609 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4610 {
4611 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4612 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4613 		sizeof(ps->channels));
4614 	ps->flags = kvm->arch.vpit->pit_state.flags;
4615 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4616 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4617 	return 0;
4618 }
4619 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)4620 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4621 {
4622 	int start = 0;
4623 	int i;
4624 	u32 prev_legacy, cur_legacy;
4625 	struct kvm_pit *pit = kvm->arch.vpit;
4626 
4627 	mutex_lock(&pit->pit_state.lock);
4628 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4629 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4630 	if (!prev_legacy && cur_legacy)
4631 		start = 1;
4632 	memcpy(&pit->pit_state.channels, &ps->channels,
4633 	       sizeof(pit->pit_state.channels));
4634 	pit->pit_state.flags = ps->flags;
4635 	for (i = 0; i < 3; i++)
4636 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4637 				   start && i == 0);
4638 	mutex_unlock(&pit->pit_state.lock);
4639 	return 0;
4640 }
4641 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)4642 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4643 				 struct kvm_reinject_control *control)
4644 {
4645 	struct kvm_pit *pit = kvm->arch.vpit;
4646 
4647 	if (!pit)
4648 		return -ENXIO;
4649 
4650 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4651 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4652 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4653 	 */
4654 	mutex_lock(&pit->pit_state.lock);
4655 	kvm_pit_set_reinject(pit, control->pit_reinject);
4656 	mutex_unlock(&pit->pit_state.lock);
4657 
4658 	return 0;
4659 }
4660 
4661 /**
4662  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4663  * @kvm: kvm instance
4664  * @log: slot id and address to which we copy the log
4665  *
4666  * Steps 1-4 below provide general overview of dirty page logging. See
4667  * kvm_get_dirty_log_protect() function description for additional details.
4668  *
4669  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4670  * always flush the TLB (step 4) even if previous step failed  and the dirty
4671  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4672  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4673  * writes will be marked dirty for next log read.
4674  *
4675  *   1. Take a snapshot of the bit and clear it if needed.
4676  *   2. Write protect the corresponding page.
4677  *   3. Copy the snapshot to the userspace.
4678  *   4. Flush TLB's if needed.
4679  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)4680 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4681 {
4682 	bool flush = false;
4683 	int r;
4684 
4685 	mutex_lock(&kvm->slots_lock);
4686 
4687 	/*
4688 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4689 	 */
4690 	if (kvm_x86_ops->flush_log_dirty)
4691 		kvm_x86_ops->flush_log_dirty(kvm);
4692 
4693 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4694 
4695 	/*
4696 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4697 	 * kvm_mmu_slot_remove_write_access().
4698 	 */
4699 	lockdep_assert_held(&kvm->slots_lock);
4700 	if (flush)
4701 		kvm_flush_remote_tlbs(kvm);
4702 
4703 	mutex_unlock(&kvm->slots_lock);
4704 	return r;
4705 }
4706 
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)4707 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4708 {
4709 	bool flush = false;
4710 	int r;
4711 
4712 	mutex_lock(&kvm->slots_lock);
4713 
4714 	/*
4715 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4716 	 */
4717 	if (kvm_x86_ops->flush_log_dirty)
4718 		kvm_x86_ops->flush_log_dirty(kvm);
4719 
4720 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4721 
4722 	/*
4723 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4724 	 * kvm_mmu_slot_remove_write_access().
4725 	 */
4726 	lockdep_assert_held(&kvm->slots_lock);
4727 	if (flush)
4728 		kvm_flush_remote_tlbs(kvm);
4729 
4730 	mutex_unlock(&kvm->slots_lock);
4731 	return r;
4732 }
4733 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)4734 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4735 			bool line_status)
4736 {
4737 	if (!irqchip_in_kernel(kvm))
4738 		return -ENXIO;
4739 
4740 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4741 					irq_event->irq, irq_event->level,
4742 					line_status);
4743 	return 0;
4744 }
4745 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4746 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4747 			    struct kvm_enable_cap *cap)
4748 {
4749 	int r;
4750 
4751 	if (cap->flags)
4752 		return -EINVAL;
4753 
4754 	switch (cap->cap) {
4755 	case KVM_CAP_DISABLE_QUIRKS:
4756 		kvm->arch.disabled_quirks = cap->args[0];
4757 		r = 0;
4758 		break;
4759 	case KVM_CAP_SPLIT_IRQCHIP: {
4760 		mutex_lock(&kvm->lock);
4761 		r = -EINVAL;
4762 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4763 			goto split_irqchip_unlock;
4764 		r = -EEXIST;
4765 		if (irqchip_in_kernel(kvm))
4766 			goto split_irqchip_unlock;
4767 		if (kvm->created_vcpus)
4768 			goto split_irqchip_unlock;
4769 		r = kvm_setup_empty_irq_routing(kvm);
4770 		if (r)
4771 			goto split_irqchip_unlock;
4772 		/* Pairs with irqchip_in_kernel. */
4773 		smp_wmb();
4774 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4775 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4776 		r = 0;
4777 split_irqchip_unlock:
4778 		mutex_unlock(&kvm->lock);
4779 		break;
4780 	}
4781 	case KVM_CAP_X2APIC_API:
4782 		r = -EINVAL;
4783 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4784 			break;
4785 
4786 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4787 			kvm->arch.x2apic_format = true;
4788 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4789 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4790 
4791 		r = 0;
4792 		break;
4793 	case KVM_CAP_X86_DISABLE_EXITS:
4794 		r = -EINVAL;
4795 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4796 			break;
4797 
4798 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4799 			kvm_can_mwait_in_guest())
4800 			kvm->arch.mwait_in_guest = true;
4801 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4802 			kvm->arch.hlt_in_guest = true;
4803 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4804 			kvm->arch.pause_in_guest = true;
4805 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4806 			kvm->arch.cstate_in_guest = true;
4807 		r = 0;
4808 		break;
4809 	case KVM_CAP_MSR_PLATFORM_INFO:
4810 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4811 		r = 0;
4812 		break;
4813 	case KVM_CAP_EXCEPTION_PAYLOAD:
4814 		kvm->arch.exception_payload_enabled = cap->args[0];
4815 		r = 0;
4816 		break;
4817 	default:
4818 		r = -EINVAL;
4819 		break;
4820 	}
4821 	return r;
4822 }
4823 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4824 long kvm_arch_vm_ioctl(struct file *filp,
4825 		       unsigned int ioctl, unsigned long arg)
4826 {
4827 	struct kvm *kvm = filp->private_data;
4828 	void __user *argp = (void __user *)arg;
4829 	int r = -ENOTTY;
4830 	/*
4831 	 * This union makes it completely explicit to gcc-3.x
4832 	 * that these two variables' stack usage should be
4833 	 * combined, not added together.
4834 	 */
4835 	union {
4836 		struct kvm_pit_state ps;
4837 		struct kvm_pit_state2 ps2;
4838 		struct kvm_pit_config pit_config;
4839 	} u;
4840 
4841 	switch (ioctl) {
4842 	case KVM_SET_TSS_ADDR:
4843 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4844 		break;
4845 	case KVM_SET_IDENTITY_MAP_ADDR: {
4846 		u64 ident_addr;
4847 
4848 		mutex_lock(&kvm->lock);
4849 		r = -EINVAL;
4850 		if (kvm->created_vcpus)
4851 			goto set_identity_unlock;
4852 		r = -EFAULT;
4853 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4854 			goto set_identity_unlock;
4855 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4856 set_identity_unlock:
4857 		mutex_unlock(&kvm->lock);
4858 		break;
4859 	}
4860 	case KVM_SET_NR_MMU_PAGES:
4861 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4862 		break;
4863 	case KVM_GET_NR_MMU_PAGES:
4864 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4865 		break;
4866 	case KVM_CREATE_IRQCHIP: {
4867 		mutex_lock(&kvm->lock);
4868 
4869 		r = -EEXIST;
4870 		if (irqchip_in_kernel(kvm))
4871 			goto create_irqchip_unlock;
4872 
4873 		r = -EINVAL;
4874 		if (kvm->created_vcpus)
4875 			goto create_irqchip_unlock;
4876 
4877 		r = kvm_pic_init(kvm);
4878 		if (r)
4879 			goto create_irqchip_unlock;
4880 
4881 		r = kvm_ioapic_init(kvm);
4882 		if (r) {
4883 			kvm_pic_destroy(kvm);
4884 			goto create_irqchip_unlock;
4885 		}
4886 
4887 		r = kvm_setup_default_irq_routing(kvm);
4888 		if (r) {
4889 			kvm_ioapic_destroy(kvm);
4890 			kvm_pic_destroy(kvm);
4891 			goto create_irqchip_unlock;
4892 		}
4893 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4894 		smp_wmb();
4895 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4896 	create_irqchip_unlock:
4897 		mutex_unlock(&kvm->lock);
4898 		break;
4899 	}
4900 	case KVM_CREATE_PIT:
4901 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4902 		goto create_pit;
4903 	case KVM_CREATE_PIT2:
4904 		r = -EFAULT;
4905 		if (copy_from_user(&u.pit_config, argp,
4906 				   sizeof(struct kvm_pit_config)))
4907 			goto out;
4908 	create_pit:
4909 		mutex_lock(&kvm->lock);
4910 		r = -EEXIST;
4911 		if (kvm->arch.vpit)
4912 			goto create_pit_unlock;
4913 		r = -ENOMEM;
4914 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4915 		if (kvm->arch.vpit)
4916 			r = 0;
4917 	create_pit_unlock:
4918 		mutex_unlock(&kvm->lock);
4919 		break;
4920 	case KVM_GET_IRQCHIP: {
4921 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4922 		struct kvm_irqchip *chip;
4923 
4924 		chip = memdup_user(argp, sizeof(*chip));
4925 		if (IS_ERR(chip)) {
4926 			r = PTR_ERR(chip);
4927 			goto out;
4928 		}
4929 
4930 		r = -ENXIO;
4931 		if (!irqchip_kernel(kvm))
4932 			goto get_irqchip_out;
4933 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4934 		if (r)
4935 			goto get_irqchip_out;
4936 		r = -EFAULT;
4937 		if (copy_to_user(argp, chip, sizeof(*chip)))
4938 			goto get_irqchip_out;
4939 		r = 0;
4940 	get_irqchip_out:
4941 		kfree(chip);
4942 		break;
4943 	}
4944 	case KVM_SET_IRQCHIP: {
4945 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4946 		struct kvm_irqchip *chip;
4947 
4948 		chip = memdup_user(argp, sizeof(*chip));
4949 		if (IS_ERR(chip)) {
4950 			r = PTR_ERR(chip);
4951 			goto out;
4952 		}
4953 
4954 		r = -ENXIO;
4955 		if (!irqchip_kernel(kvm))
4956 			goto set_irqchip_out;
4957 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4958 		if (r)
4959 			goto set_irqchip_out;
4960 		r = 0;
4961 	set_irqchip_out:
4962 		kfree(chip);
4963 		break;
4964 	}
4965 	case KVM_GET_PIT: {
4966 		r = -EFAULT;
4967 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4968 			goto out;
4969 		r = -ENXIO;
4970 		if (!kvm->arch.vpit)
4971 			goto out;
4972 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4973 		if (r)
4974 			goto out;
4975 		r = -EFAULT;
4976 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4977 			goto out;
4978 		r = 0;
4979 		break;
4980 	}
4981 	case KVM_SET_PIT: {
4982 		r = -EFAULT;
4983 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4984 			goto out;
4985 		r = -ENXIO;
4986 		if (!kvm->arch.vpit)
4987 			goto out;
4988 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4989 		break;
4990 	}
4991 	case KVM_GET_PIT2: {
4992 		r = -ENXIO;
4993 		if (!kvm->arch.vpit)
4994 			goto out;
4995 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4996 		if (r)
4997 			goto out;
4998 		r = -EFAULT;
4999 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5000 			goto out;
5001 		r = 0;
5002 		break;
5003 	}
5004 	case KVM_SET_PIT2: {
5005 		r = -EFAULT;
5006 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5007 			goto out;
5008 		r = -ENXIO;
5009 		if (!kvm->arch.vpit)
5010 			goto out;
5011 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5012 		break;
5013 	}
5014 	case KVM_REINJECT_CONTROL: {
5015 		struct kvm_reinject_control control;
5016 		r =  -EFAULT;
5017 		if (copy_from_user(&control, argp, sizeof(control)))
5018 			goto out;
5019 		r = kvm_vm_ioctl_reinject(kvm, &control);
5020 		break;
5021 	}
5022 	case KVM_SET_BOOT_CPU_ID:
5023 		r = 0;
5024 		mutex_lock(&kvm->lock);
5025 		if (kvm->created_vcpus)
5026 			r = -EBUSY;
5027 		else
5028 			kvm->arch.bsp_vcpu_id = arg;
5029 		mutex_unlock(&kvm->lock);
5030 		break;
5031 	case KVM_XEN_HVM_CONFIG: {
5032 		struct kvm_xen_hvm_config xhc;
5033 		r = -EFAULT;
5034 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5035 			goto out;
5036 		r = -EINVAL;
5037 		if (xhc.flags)
5038 			goto out;
5039 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5040 		r = 0;
5041 		break;
5042 	}
5043 	case KVM_SET_CLOCK: {
5044 		struct kvm_clock_data user_ns;
5045 		u64 now_ns;
5046 
5047 		r = -EFAULT;
5048 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5049 			goto out;
5050 
5051 		r = -EINVAL;
5052 		if (user_ns.flags)
5053 			goto out;
5054 
5055 		r = 0;
5056 		/*
5057 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5058 		 * kvm_gen_update_masterclock() can be cut down to locked
5059 		 * pvclock_update_vm_gtod_copy().
5060 		 */
5061 		kvm_gen_update_masterclock(kvm);
5062 		now_ns = get_kvmclock_ns(kvm);
5063 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5064 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5065 		break;
5066 	}
5067 	case KVM_GET_CLOCK: {
5068 		struct kvm_clock_data user_ns;
5069 		u64 now_ns;
5070 
5071 		now_ns = get_kvmclock_ns(kvm);
5072 		user_ns.clock = now_ns;
5073 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5074 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5075 
5076 		r = -EFAULT;
5077 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5078 			goto out;
5079 		r = 0;
5080 		break;
5081 	}
5082 	case KVM_MEMORY_ENCRYPT_OP: {
5083 		r = -ENOTTY;
5084 		if (kvm_x86_ops->mem_enc_op)
5085 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
5086 		break;
5087 	}
5088 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5089 		struct kvm_enc_region region;
5090 
5091 		r = -EFAULT;
5092 		if (copy_from_user(&region, argp, sizeof(region)))
5093 			goto out;
5094 
5095 		r = -ENOTTY;
5096 		if (kvm_x86_ops->mem_enc_reg_region)
5097 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5098 		break;
5099 	}
5100 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5101 		struct kvm_enc_region region;
5102 
5103 		r = -EFAULT;
5104 		if (copy_from_user(&region, argp, sizeof(region)))
5105 			goto out;
5106 
5107 		r = -ENOTTY;
5108 		if (kvm_x86_ops->mem_enc_unreg_region)
5109 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5110 		break;
5111 	}
5112 	case KVM_HYPERV_EVENTFD: {
5113 		struct kvm_hyperv_eventfd hvevfd;
5114 
5115 		r = -EFAULT;
5116 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5117 			goto out;
5118 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5119 		break;
5120 	}
5121 	case KVM_SET_PMU_EVENT_FILTER:
5122 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5123 		break;
5124 	default:
5125 		r = -ENOTTY;
5126 	}
5127 out:
5128 	return r;
5129 }
5130 
kvm_init_msr_list(void)5131 static void kvm_init_msr_list(void)
5132 {
5133 	struct x86_pmu_capability x86_pmu;
5134 	u32 dummy[2];
5135 	unsigned i;
5136 
5137 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5138 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5139 
5140 	perf_get_x86_pmu_capability(&x86_pmu);
5141 
5142 	num_msrs_to_save = 0;
5143 	num_emulated_msrs = 0;
5144 	num_msr_based_features = 0;
5145 
5146 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5147 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5148 			continue;
5149 
5150 		/*
5151 		 * Even MSRs that are valid in the host may not be exposed
5152 		 * to the guests in some cases.
5153 		 */
5154 		switch (msrs_to_save_all[i]) {
5155 		case MSR_IA32_BNDCFGS:
5156 			if (!kvm_mpx_supported())
5157 				continue;
5158 			break;
5159 		case MSR_TSC_AUX:
5160 			if (!kvm_x86_ops->rdtscp_supported())
5161 				continue;
5162 			break;
5163 		case MSR_IA32_RTIT_CTL:
5164 		case MSR_IA32_RTIT_STATUS:
5165 			if (!kvm_x86_ops->pt_supported())
5166 				continue;
5167 			break;
5168 		case MSR_IA32_RTIT_CR3_MATCH:
5169 			if (!kvm_x86_ops->pt_supported() ||
5170 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5171 				continue;
5172 			break;
5173 		case MSR_IA32_RTIT_OUTPUT_BASE:
5174 		case MSR_IA32_RTIT_OUTPUT_MASK:
5175 			if (!kvm_x86_ops->pt_supported() ||
5176 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5177 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5178 				continue;
5179 			break;
5180 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5181 			if (!kvm_x86_ops->pt_supported() ||
5182 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5183 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5184 				continue;
5185 			break;
5186 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5187 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5188 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5189 				continue;
5190 			break;
5191 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5192 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5193 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5194 				continue;
5195 		}
5196 		default:
5197 			break;
5198 		}
5199 
5200 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5201 	}
5202 
5203 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5204 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5205 			continue;
5206 
5207 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5208 	}
5209 
5210 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5211 		struct kvm_msr_entry msr;
5212 
5213 		msr.index = msr_based_features_all[i];
5214 		if (kvm_get_msr_feature(&msr))
5215 			continue;
5216 
5217 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5218 	}
5219 }
5220 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)5221 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5222 			   const void *v)
5223 {
5224 	int handled = 0;
5225 	int n;
5226 
5227 	do {
5228 		n = min(len, 8);
5229 		if (!(lapic_in_kernel(vcpu) &&
5230 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5231 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5232 			break;
5233 		handled += n;
5234 		addr += n;
5235 		len -= n;
5236 		v += n;
5237 	} while (len);
5238 
5239 	return handled;
5240 }
5241 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)5242 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5243 {
5244 	int handled = 0;
5245 	int n;
5246 
5247 	do {
5248 		n = min(len, 8);
5249 		if (!(lapic_in_kernel(vcpu) &&
5250 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5251 					 addr, n, v))
5252 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5253 			break;
5254 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5255 		handled += n;
5256 		addr += n;
5257 		len -= n;
5258 		v += n;
5259 	} while (len);
5260 
5261 	return handled;
5262 }
5263 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5264 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5265 			struct kvm_segment *var, int seg)
5266 {
5267 	kvm_x86_ops->set_segment(vcpu, var, seg);
5268 }
5269 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5270 void kvm_get_segment(struct kvm_vcpu *vcpu,
5271 		     struct kvm_segment *var, int seg)
5272 {
5273 	kvm_x86_ops->get_segment(vcpu, var, seg);
5274 }
5275 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)5276 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5277 			   struct x86_exception *exception)
5278 {
5279 	gpa_t t_gpa;
5280 
5281 	BUG_ON(!mmu_is_nested(vcpu));
5282 
5283 	/* NPT walks are always user-walks */
5284 	access |= PFERR_USER_MASK;
5285 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5286 
5287 	return t_gpa;
5288 }
5289 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5290 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5291 			      struct x86_exception *exception)
5292 {
5293 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5294 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5295 }
5296 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5297  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5298 				struct x86_exception *exception)
5299 {
5300 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5301 	access |= PFERR_FETCH_MASK;
5302 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5303 }
5304 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5305 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5306 			       struct x86_exception *exception)
5307 {
5308 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5309 	access |= PFERR_WRITE_MASK;
5310 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5311 }
5312 
5313 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5314 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5315 				struct x86_exception *exception)
5316 {
5317 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5318 }
5319 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)5320 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5321 				      struct kvm_vcpu *vcpu, u32 access,
5322 				      struct x86_exception *exception)
5323 {
5324 	void *data = val;
5325 	int r = X86EMUL_CONTINUE;
5326 
5327 	while (bytes) {
5328 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5329 							    exception);
5330 		unsigned offset = addr & (PAGE_SIZE-1);
5331 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5332 		int ret;
5333 
5334 		if (gpa == UNMAPPED_GVA)
5335 			return X86EMUL_PROPAGATE_FAULT;
5336 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5337 					       offset, toread);
5338 		if (ret < 0) {
5339 			r = X86EMUL_IO_NEEDED;
5340 			goto out;
5341 		}
5342 
5343 		bytes -= toread;
5344 		data += toread;
5345 		addr += toread;
5346 	}
5347 out:
5348 	return r;
5349 }
5350 
5351 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5352 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5353 				gva_t addr, void *val, unsigned int bytes,
5354 				struct x86_exception *exception)
5355 {
5356 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5357 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5358 	unsigned offset;
5359 	int ret;
5360 
5361 	/* Inline kvm_read_guest_virt_helper for speed.  */
5362 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5363 						    exception);
5364 	if (unlikely(gpa == UNMAPPED_GVA))
5365 		return X86EMUL_PROPAGATE_FAULT;
5366 
5367 	offset = addr & (PAGE_SIZE-1);
5368 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5369 		bytes = (unsigned)PAGE_SIZE - offset;
5370 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5371 				       offset, bytes);
5372 	if (unlikely(ret < 0))
5373 		return X86EMUL_IO_NEEDED;
5374 
5375 	return X86EMUL_CONTINUE;
5376 }
5377 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5378 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5379 			       gva_t addr, void *val, unsigned int bytes,
5380 			       struct x86_exception *exception)
5381 {
5382 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5383 
5384 	/*
5385 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5386 	 * is returned, but our callers are not ready for that and they blindly
5387 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5388 	 * uninitialized kernel stack memory into cr2 and error code.
5389 	 */
5390 	memset(exception, 0, sizeof(*exception));
5391 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5392 					  exception);
5393 }
5394 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5395 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)5396 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5397 			     gva_t addr, void *val, unsigned int bytes,
5398 			     struct x86_exception *exception, bool system)
5399 {
5400 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5401 	u32 access = 0;
5402 
5403 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5404 		access |= PFERR_USER_MASK;
5405 
5406 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5407 }
5408 
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)5409 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5410 		unsigned long addr, void *val, unsigned int bytes)
5411 {
5412 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5413 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5414 
5415 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5416 }
5417 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)5418 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5419 				      struct kvm_vcpu *vcpu, u32 access,
5420 				      struct x86_exception *exception)
5421 {
5422 	void *data = val;
5423 	int r = X86EMUL_CONTINUE;
5424 
5425 	while (bytes) {
5426 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5427 							     access,
5428 							     exception);
5429 		unsigned offset = addr & (PAGE_SIZE-1);
5430 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5431 		int ret;
5432 
5433 		if (gpa == UNMAPPED_GVA)
5434 			return X86EMUL_PROPAGATE_FAULT;
5435 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5436 		if (ret < 0) {
5437 			r = X86EMUL_IO_NEEDED;
5438 			goto out;
5439 		}
5440 
5441 		bytes -= towrite;
5442 		data += towrite;
5443 		addr += towrite;
5444 	}
5445 out:
5446 	return r;
5447 }
5448 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)5449 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5450 			      unsigned int bytes, struct x86_exception *exception,
5451 			      bool system)
5452 {
5453 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5454 	u32 access = PFERR_WRITE_MASK;
5455 
5456 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5457 		access |= PFERR_USER_MASK;
5458 
5459 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5460 					   access, exception);
5461 }
5462 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5463 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5464 				unsigned int bytes, struct x86_exception *exception)
5465 {
5466 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5467 	vcpu->arch.l1tf_flush_l1d = true;
5468 
5469 	/*
5470 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5471 	 * is returned, but our callers are not ready for that and they blindly
5472 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5473 	 * uninitialized kernel stack memory into cr2 and error code.
5474 	 */
5475 	memset(exception, 0, sizeof(*exception));
5476 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5477 					   PFERR_WRITE_MASK, exception);
5478 }
5479 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5480 
handle_ud(struct kvm_vcpu * vcpu)5481 int handle_ud(struct kvm_vcpu *vcpu)
5482 {
5483 	int emul_type = EMULTYPE_TRAP_UD;
5484 	char sig[5]; /* ud2; .ascii "kvm" */
5485 	struct x86_exception e;
5486 
5487 	if (force_emulation_prefix &&
5488 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5489 				sig, sizeof(sig), &e) == 0 &&
5490 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5491 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5492 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5493 	}
5494 
5495 	return kvm_emulate_instruction(vcpu, emul_type);
5496 }
5497 EXPORT_SYMBOL_GPL(handle_ud);
5498 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)5499 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5500 			    gpa_t gpa, bool write)
5501 {
5502 	/* For APIC access vmexit */
5503 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5504 		return 1;
5505 
5506 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5507 		trace_vcpu_match_mmio(gva, gpa, write, true);
5508 		return 1;
5509 	}
5510 
5511 	return 0;
5512 }
5513 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)5514 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5515 				gpa_t *gpa, struct x86_exception *exception,
5516 				bool write)
5517 {
5518 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5519 		| (write ? PFERR_WRITE_MASK : 0);
5520 
5521 	/*
5522 	 * currently PKRU is only applied to ept enabled guest so
5523 	 * there is no pkey in EPT page table for L1 guest or EPT
5524 	 * shadow page table for L2 guest.
5525 	 */
5526 	if (vcpu_match_mmio_gva(vcpu, gva)
5527 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5528 				 vcpu->arch.mmio_access, 0, access)) {
5529 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5530 					(gva & (PAGE_SIZE - 1));
5531 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5532 		return 1;
5533 	}
5534 
5535 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5536 
5537 	if (*gpa == UNMAPPED_GVA)
5538 		return -1;
5539 
5540 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5541 }
5542 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)5543 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5544 			const void *val, int bytes)
5545 {
5546 	int ret;
5547 
5548 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5549 	if (ret < 0)
5550 		return 0;
5551 	kvm_page_track_write(vcpu, gpa, val, bytes);
5552 	return 1;
5553 }
5554 
5555 struct read_write_emulator_ops {
5556 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5557 				  int bytes);
5558 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5559 				  void *val, int bytes);
5560 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5561 			       int bytes, void *val);
5562 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5563 				    void *val, int bytes);
5564 	bool write;
5565 };
5566 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)5567 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5568 {
5569 	if (vcpu->mmio_read_completed) {
5570 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5571 			       vcpu->mmio_fragments[0].gpa, val);
5572 		vcpu->mmio_read_completed = 0;
5573 		return 1;
5574 	}
5575 
5576 	return 0;
5577 }
5578 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5579 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5580 			void *val, int bytes)
5581 {
5582 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5583 }
5584 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5585 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5586 			 void *val, int bytes)
5587 {
5588 	return emulator_write_phys(vcpu, gpa, val, bytes);
5589 }
5590 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)5591 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5592 {
5593 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5594 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5595 }
5596 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5597 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5598 			  void *val, int bytes)
5599 {
5600 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5601 	return X86EMUL_IO_NEEDED;
5602 }
5603 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5604 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5605 			   void *val, int bytes)
5606 {
5607 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5608 
5609 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5610 	return X86EMUL_CONTINUE;
5611 }
5612 
5613 static const struct read_write_emulator_ops read_emultor = {
5614 	.read_write_prepare = read_prepare,
5615 	.read_write_emulate = read_emulate,
5616 	.read_write_mmio = vcpu_mmio_read,
5617 	.read_write_exit_mmio = read_exit_mmio,
5618 };
5619 
5620 static const struct read_write_emulator_ops write_emultor = {
5621 	.read_write_emulate = write_emulate,
5622 	.read_write_mmio = write_mmio,
5623 	.read_write_exit_mmio = write_exit_mmio,
5624 	.write = true,
5625 };
5626 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)5627 static int emulator_read_write_onepage(unsigned long addr, void *val,
5628 				       unsigned int bytes,
5629 				       struct x86_exception *exception,
5630 				       struct kvm_vcpu *vcpu,
5631 				       const struct read_write_emulator_ops *ops)
5632 {
5633 	gpa_t gpa;
5634 	int handled, ret;
5635 	bool write = ops->write;
5636 	struct kvm_mmio_fragment *frag;
5637 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5638 
5639 	/*
5640 	 * If the exit was due to a NPF we may already have a GPA.
5641 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5642 	 * Note, this cannot be used on string operations since string
5643 	 * operation using rep will only have the initial GPA from the NPF
5644 	 * occurred.
5645 	 */
5646 	if (vcpu->arch.gpa_available &&
5647 	    emulator_can_use_gpa(ctxt) &&
5648 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5649 		gpa = vcpu->arch.gpa_val;
5650 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5651 	} else {
5652 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5653 		if (ret < 0)
5654 			return X86EMUL_PROPAGATE_FAULT;
5655 	}
5656 
5657 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5658 		return X86EMUL_CONTINUE;
5659 
5660 	/*
5661 	 * Is this MMIO handled locally?
5662 	 */
5663 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5664 	if (handled == bytes)
5665 		return X86EMUL_CONTINUE;
5666 
5667 	gpa += handled;
5668 	bytes -= handled;
5669 	val += handled;
5670 
5671 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5672 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5673 	frag->gpa = gpa;
5674 	frag->data = val;
5675 	frag->len = bytes;
5676 	return X86EMUL_CONTINUE;
5677 }
5678 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)5679 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5680 			unsigned long addr,
5681 			void *val, unsigned int bytes,
5682 			struct x86_exception *exception,
5683 			const struct read_write_emulator_ops *ops)
5684 {
5685 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5686 	gpa_t gpa;
5687 	int rc;
5688 
5689 	if (ops->read_write_prepare &&
5690 		  ops->read_write_prepare(vcpu, val, bytes))
5691 		return X86EMUL_CONTINUE;
5692 
5693 	vcpu->mmio_nr_fragments = 0;
5694 
5695 	/* Crossing a page boundary? */
5696 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5697 		int now;
5698 
5699 		now = -addr & ~PAGE_MASK;
5700 		rc = emulator_read_write_onepage(addr, val, now, exception,
5701 						 vcpu, ops);
5702 
5703 		if (rc != X86EMUL_CONTINUE)
5704 			return rc;
5705 		addr += now;
5706 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5707 			addr = (u32)addr;
5708 		val += now;
5709 		bytes -= now;
5710 	}
5711 
5712 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5713 					 vcpu, ops);
5714 	if (rc != X86EMUL_CONTINUE)
5715 		return rc;
5716 
5717 	if (!vcpu->mmio_nr_fragments)
5718 		return rc;
5719 
5720 	gpa = vcpu->mmio_fragments[0].gpa;
5721 
5722 	vcpu->mmio_needed = 1;
5723 	vcpu->mmio_cur_fragment = 0;
5724 
5725 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5726 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5727 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5728 	vcpu->run->mmio.phys_addr = gpa;
5729 
5730 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5731 }
5732 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)5733 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5734 				  unsigned long addr,
5735 				  void *val,
5736 				  unsigned int bytes,
5737 				  struct x86_exception *exception)
5738 {
5739 	return emulator_read_write(ctxt, addr, val, bytes,
5740 				   exception, &read_emultor);
5741 }
5742 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)5743 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5744 			    unsigned long addr,
5745 			    const void *val,
5746 			    unsigned int bytes,
5747 			    struct x86_exception *exception)
5748 {
5749 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5750 				   exception, &write_emultor);
5751 }
5752 
5753 #define CMPXCHG_TYPE(t, ptr, old, new) \
5754 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5755 
5756 #ifdef CONFIG_X86_64
5757 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5758 #else
5759 #  define CMPXCHG64(ptr, old, new) \
5760 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5761 #endif
5762 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)5763 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5764 				     unsigned long addr,
5765 				     const void *old,
5766 				     const void *new,
5767 				     unsigned int bytes,
5768 				     struct x86_exception *exception)
5769 {
5770 	struct kvm_host_map map;
5771 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5772 	gpa_t gpa;
5773 	char *kaddr;
5774 	bool exchanged;
5775 
5776 	/* guests cmpxchg8b have to be emulated atomically */
5777 	if (bytes > 8 || (bytes & (bytes - 1)))
5778 		goto emul_write;
5779 
5780 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5781 
5782 	if (gpa == UNMAPPED_GVA ||
5783 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5784 		goto emul_write;
5785 
5786 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5787 		goto emul_write;
5788 
5789 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5790 		goto emul_write;
5791 
5792 	kaddr = map.hva + offset_in_page(gpa);
5793 
5794 	switch (bytes) {
5795 	case 1:
5796 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5797 		break;
5798 	case 2:
5799 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5800 		break;
5801 	case 4:
5802 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5803 		break;
5804 	case 8:
5805 		exchanged = CMPXCHG64(kaddr, old, new);
5806 		break;
5807 	default:
5808 		BUG();
5809 	}
5810 
5811 	kvm_vcpu_unmap(vcpu, &map, true);
5812 
5813 	if (!exchanged)
5814 		return X86EMUL_CMPXCHG_FAILED;
5815 
5816 	kvm_page_track_write(vcpu, gpa, new, bytes);
5817 
5818 	return X86EMUL_CONTINUE;
5819 
5820 emul_write:
5821 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5822 
5823 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5824 }
5825 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)5826 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5827 {
5828 	int r = 0, i;
5829 
5830 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5831 		if (vcpu->arch.pio.in)
5832 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5833 					    vcpu->arch.pio.size, pd);
5834 		else
5835 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5836 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5837 					     pd);
5838 		if (r)
5839 			break;
5840 		pd += vcpu->arch.pio.size;
5841 	}
5842 	return r;
5843 }
5844 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)5845 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5846 			       unsigned short port, void *val,
5847 			       unsigned int count, bool in)
5848 {
5849 	vcpu->arch.pio.port = port;
5850 	vcpu->arch.pio.in = in;
5851 	vcpu->arch.pio.count  = count;
5852 	vcpu->arch.pio.size = size;
5853 
5854 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5855 		vcpu->arch.pio.count = 0;
5856 		return 1;
5857 	}
5858 
5859 	vcpu->run->exit_reason = KVM_EXIT_IO;
5860 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5861 	vcpu->run->io.size = size;
5862 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5863 	vcpu->run->io.count = count;
5864 	vcpu->run->io.port = port;
5865 
5866 	return 0;
5867 }
5868 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)5869 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5870 				    int size, unsigned short port, void *val,
5871 				    unsigned int count)
5872 {
5873 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5874 	int ret;
5875 
5876 	if (vcpu->arch.pio.count)
5877 		goto data_avail;
5878 
5879 	memset(vcpu->arch.pio_data, 0, size * count);
5880 
5881 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5882 	if (ret) {
5883 data_avail:
5884 		memcpy(val, vcpu->arch.pio_data, size * count);
5885 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5886 		vcpu->arch.pio.count = 0;
5887 		return 1;
5888 	}
5889 
5890 	return 0;
5891 }
5892 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)5893 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5894 				     int size, unsigned short port,
5895 				     const void *val, unsigned int count)
5896 {
5897 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5898 
5899 	memcpy(vcpu->arch.pio_data, val, size * count);
5900 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5901 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5902 }
5903 
get_segment_base(struct kvm_vcpu * vcpu,int seg)5904 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5905 {
5906 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5907 }
5908 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)5909 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5910 {
5911 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5912 }
5913 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)5914 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5915 {
5916 	if (!need_emulate_wbinvd(vcpu))
5917 		return X86EMUL_CONTINUE;
5918 
5919 	if (kvm_x86_ops->has_wbinvd_exit()) {
5920 		int cpu = get_cpu();
5921 
5922 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5923 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5924 				wbinvd_ipi, NULL, 1);
5925 		put_cpu();
5926 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5927 	} else
5928 		wbinvd();
5929 	return X86EMUL_CONTINUE;
5930 }
5931 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)5932 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5933 {
5934 	kvm_emulate_wbinvd_noskip(vcpu);
5935 	return kvm_skip_emulated_instruction(vcpu);
5936 }
5937 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5938 
5939 
5940 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)5941 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5942 {
5943 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5944 }
5945 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)5946 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5947 			   unsigned long *dest)
5948 {
5949 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5950 }
5951 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)5952 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5953 			   unsigned long value)
5954 {
5955 
5956 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5957 }
5958 
mk_cr_64(u64 curr_cr,u32 new_val)5959 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5960 {
5961 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5962 }
5963 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)5964 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5965 {
5966 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5967 	unsigned long value;
5968 
5969 	switch (cr) {
5970 	case 0:
5971 		value = kvm_read_cr0(vcpu);
5972 		break;
5973 	case 2:
5974 		value = vcpu->arch.cr2;
5975 		break;
5976 	case 3:
5977 		value = kvm_read_cr3(vcpu);
5978 		break;
5979 	case 4:
5980 		value = kvm_read_cr4(vcpu);
5981 		break;
5982 	case 8:
5983 		value = kvm_get_cr8(vcpu);
5984 		break;
5985 	default:
5986 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5987 		return 0;
5988 	}
5989 
5990 	return value;
5991 }
5992 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)5993 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5994 {
5995 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5996 	int res = 0;
5997 
5998 	switch (cr) {
5999 	case 0:
6000 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6001 		break;
6002 	case 2:
6003 		vcpu->arch.cr2 = val;
6004 		break;
6005 	case 3:
6006 		res = kvm_set_cr3(vcpu, val);
6007 		break;
6008 	case 4:
6009 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6010 		break;
6011 	case 8:
6012 		res = kvm_set_cr8(vcpu, val);
6013 		break;
6014 	default:
6015 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6016 		res = -1;
6017 	}
6018 
6019 	return res;
6020 }
6021 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)6022 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6023 {
6024 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6025 }
6026 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6027 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6028 {
6029 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6030 }
6031 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6032 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6033 {
6034 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6035 }
6036 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6037 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6038 {
6039 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6040 }
6041 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6042 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6043 {
6044 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6045 }
6046 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)6047 static unsigned long emulator_get_cached_segment_base(
6048 	struct x86_emulate_ctxt *ctxt, int seg)
6049 {
6050 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6051 }
6052 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)6053 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6054 				 struct desc_struct *desc, u32 *base3,
6055 				 int seg)
6056 {
6057 	struct kvm_segment var;
6058 
6059 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6060 	*selector = var.selector;
6061 
6062 	if (var.unusable) {
6063 		memset(desc, 0, sizeof(*desc));
6064 		if (base3)
6065 			*base3 = 0;
6066 		return false;
6067 	}
6068 
6069 	if (var.g)
6070 		var.limit >>= 12;
6071 	set_desc_limit(desc, var.limit);
6072 	set_desc_base(desc, (unsigned long)var.base);
6073 #ifdef CONFIG_X86_64
6074 	if (base3)
6075 		*base3 = var.base >> 32;
6076 #endif
6077 	desc->type = var.type;
6078 	desc->s = var.s;
6079 	desc->dpl = var.dpl;
6080 	desc->p = var.present;
6081 	desc->avl = var.avl;
6082 	desc->l = var.l;
6083 	desc->d = var.db;
6084 	desc->g = var.g;
6085 
6086 	return true;
6087 }
6088 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)6089 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6090 				 struct desc_struct *desc, u32 base3,
6091 				 int seg)
6092 {
6093 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6094 	struct kvm_segment var;
6095 
6096 	var.selector = selector;
6097 	var.base = get_desc_base(desc);
6098 #ifdef CONFIG_X86_64
6099 	var.base |= ((u64)base3) << 32;
6100 #endif
6101 	var.limit = get_desc_limit(desc);
6102 	if (desc->g)
6103 		var.limit = (var.limit << 12) | 0xfff;
6104 	var.type = desc->type;
6105 	var.dpl = desc->dpl;
6106 	var.db = desc->d;
6107 	var.s = desc->s;
6108 	var.l = desc->l;
6109 	var.g = desc->g;
6110 	var.avl = desc->avl;
6111 	var.present = desc->p;
6112 	var.unusable = !var.present;
6113 	var.padding = 0;
6114 
6115 	kvm_set_segment(vcpu, &var, seg);
6116 	return;
6117 }
6118 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)6119 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6120 			    u32 msr_index, u64 *pdata)
6121 {
6122 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6123 }
6124 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)6125 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6126 			    u32 msr_index, u64 data)
6127 {
6128 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6129 }
6130 
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)6131 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6132 {
6133 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6134 
6135 	return vcpu->arch.smbase;
6136 }
6137 
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)6138 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6139 {
6140 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6141 
6142 	vcpu->arch.smbase = smbase;
6143 }
6144 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)6145 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6146 			      u32 pmc)
6147 {
6148 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6149 }
6150 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)6151 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6152 			     u32 pmc, u64 *pdata)
6153 {
6154 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6155 }
6156 
emulator_halt(struct x86_emulate_ctxt * ctxt)6157 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6158 {
6159 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6160 }
6161 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)6162 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6163 			      struct x86_instruction_info *info,
6164 			      enum x86_intercept_stage stage)
6165 {
6166 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6167 }
6168 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool check_limit)6169 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6170 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6171 {
6172 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6173 }
6174 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)6175 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6176 {
6177 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6178 }
6179 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)6180 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6181 {
6182 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6183 }
6184 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)6185 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6186 {
6187 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6188 }
6189 
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)6190 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6191 {
6192 	return emul_to_vcpu(ctxt)->arch.hflags;
6193 }
6194 
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)6195 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6196 {
6197 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6198 }
6199 
emulator_pre_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)6200 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6201 				  const char *smstate)
6202 {
6203 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6204 }
6205 
emulator_post_leave_smm(struct x86_emulate_ctxt * ctxt)6206 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6207 {
6208 	kvm_smm_changed(emul_to_vcpu(ctxt));
6209 }
6210 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)6211 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6212 {
6213 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6214 }
6215 
6216 static const struct x86_emulate_ops emulate_ops = {
6217 	.read_gpr            = emulator_read_gpr,
6218 	.write_gpr           = emulator_write_gpr,
6219 	.read_std            = emulator_read_std,
6220 	.write_std           = emulator_write_std,
6221 	.read_phys           = kvm_read_guest_phys_system,
6222 	.fetch               = kvm_fetch_guest_virt,
6223 	.read_emulated       = emulator_read_emulated,
6224 	.write_emulated      = emulator_write_emulated,
6225 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6226 	.invlpg              = emulator_invlpg,
6227 	.pio_in_emulated     = emulator_pio_in_emulated,
6228 	.pio_out_emulated    = emulator_pio_out_emulated,
6229 	.get_segment         = emulator_get_segment,
6230 	.set_segment         = emulator_set_segment,
6231 	.get_cached_segment_base = emulator_get_cached_segment_base,
6232 	.get_gdt             = emulator_get_gdt,
6233 	.get_idt	     = emulator_get_idt,
6234 	.set_gdt             = emulator_set_gdt,
6235 	.set_idt	     = emulator_set_idt,
6236 	.get_cr              = emulator_get_cr,
6237 	.set_cr              = emulator_set_cr,
6238 	.cpl                 = emulator_get_cpl,
6239 	.get_dr              = emulator_get_dr,
6240 	.set_dr              = emulator_set_dr,
6241 	.get_smbase          = emulator_get_smbase,
6242 	.set_smbase          = emulator_set_smbase,
6243 	.set_msr             = emulator_set_msr,
6244 	.get_msr             = emulator_get_msr,
6245 	.check_pmc	     = emulator_check_pmc,
6246 	.read_pmc            = emulator_read_pmc,
6247 	.halt                = emulator_halt,
6248 	.wbinvd              = emulator_wbinvd,
6249 	.fix_hypercall       = emulator_fix_hypercall,
6250 	.intercept           = emulator_intercept,
6251 	.get_cpuid           = emulator_get_cpuid,
6252 	.set_nmi_mask        = emulator_set_nmi_mask,
6253 	.get_hflags          = emulator_get_hflags,
6254 	.set_hflags          = emulator_set_hflags,
6255 	.pre_leave_smm       = emulator_pre_leave_smm,
6256 	.post_leave_smm      = emulator_post_leave_smm,
6257 	.set_xcr             = emulator_set_xcr,
6258 };
6259 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)6260 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6261 {
6262 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6263 	/*
6264 	 * an sti; sti; sequence only disable interrupts for the first
6265 	 * instruction. So, if the last instruction, be it emulated or
6266 	 * not, left the system with the INT_STI flag enabled, it
6267 	 * means that the last instruction is an sti. We should not
6268 	 * leave the flag on in this case. The same goes for mov ss
6269 	 */
6270 	if (int_shadow & mask)
6271 		mask = 0;
6272 	if (unlikely(int_shadow || mask)) {
6273 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6274 		if (!mask)
6275 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6276 	}
6277 }
6278 
inject_emulated_exception(struct kvm_vcpu * vcpu)6279 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6280 {
6281 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6282 	if (ctxt->exception.vector == PF_VECTOR)
6283 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6284 
6285 	if (ctxt->exception.error_code_valid)
6286 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6287 				      ctxt->exception.error_code);
6288 	else
6289 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6290 	return false;
6291 }
6292 
init_emulate_ctxt(struct kvm_vcpu * vcpu)6293 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6294 {
6295 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6296 	int cs_db, cs_l;
6297 
6298 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6299 
6300 	ctxt->eflags = kvm_get_rflags(vcpu);
6301 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6302 
6303 	ctxt->eip = kvm_rip_read(vcpu);
6304 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6305 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6306 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6307 		     cs_db				? X86EMUL_MODE_PROT32 :
6308 							  X86EMUL_MODE_PROT16;
6309 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6310 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6311 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6312 
6313 	init_decode_cache(ctxt);
6314 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6315 }
6316 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)6317 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6318 {
6319 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6320 	int ret;
6321 
6322 	init_emulate_ctxt(vcpu);
6323 
6324 	ctxt->op_bytes = 2;
6325 	ctxt->ad_bytes = 2;
6326 	ctxt->_eip = ctxt->eip + inc_eip;
6327 	ret = emulate_int_real(ctxt, irq);
6328 
6329 	if (ret != X86EMUL_CONTINUE) {
6330 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6331 	} else {
6332 		ctxt->eip = ctxt->_eip;
6333 		kvm_rip_write(vcpu, ctxt->eip);
6334 		kvm_set_rflags(vcpu, ctxt->eflags);
6335 	}
6336 }
6337 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6338 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)6339 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6340 {
6341 	++vcpu->stat.insn_emulation_fail;
6342 	trace_kvm_emulate_insn_failed(vcpu);
6343 
6344 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6345 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6346 		return 1;
6347 	}
6348 
6349 	if (emulation_type & EMULTYPE_SKIP) {
6350 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6351 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6352 		vcpu->run->internal.ndata = 0;
6353 		return 0;
6354 	}
6355 
6356 	kvm_queue_exception(vcpu, UD_VECTOR);
6357 
6358 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6359 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6360 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6361 		vcpu->run->internal.ndata = 0;
6362 		return 0;
6363 	}
6364 
6365 	return 1;
6366 }
6367 
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t cr2,bool write_fault_to_shadow_pgtable,int emulation_type)6368 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6369 				  bool write_fault_to_shadow_pgtable,
6370 				  int emulation_type)
6371 {
6372 	gpa_t gpa = cr2;
6373 	kvm_pfn_t pfn;
6374 
6375 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6376 		return false;
6377 
6378 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6379 		return false;
6380 
6381 	if (!vcpu->arch.mmu->direct_map) {
6382 		/*
6383 		 * Write permission should be allowed since only
6384 		 * write access need to be emulated.
6385 		 */
6386 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6387 
6388 		/*
6389 		 * If the mapping is invalid in guest, let cpu retry
6390 		 * it to generate fault.
6391 		 */
6392 		if (gpa == UNMAPPED_GVA)
6393 			return true;
6394 	}
6395 
6396 	/*
6397 	 * Do not retry the unhandleable instruction if it faults on the
6398 	 * readonly host memory, otherwise it will goto a infinite loop:
6399 	 * retry instruction -> write #PF -> emulation fail -> retry
6400 	 * instruction -> ...
6401 	 */
6402 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6403 
6404 	/*
6405 	 * If the instruction failed on the error pfn, it can not be fixed,
6406 	 * report the error to userspace.
6407 	 */
6408 	if (is_error_noslot_pfn(pfn))
6409 		return false;
6410 
6411 	kvm_release_pfn_clean(pfn);
6412 
6413 	/* The instructions are well-emulated on direct mmu. */
6414 	if (vcpu->arch.mmu->direct_map) {
6415 		unsigned int indirect_shadow_pages;
6416 
6417 		spin_lock(&vcpu->kvm->mmu_lock);
6418 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6419 		spin_unlock(&vcpu->kvm->mmu_lock);
6420 
6421 		if (indirect_shadow_pages)
6422 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6423 
6424 		return true;
6425 	}
6426 
6427 	/*
6428 	 * if emulation was due to access to shadowed page table
6429 	 * and it failed try to unshadow page and re-enter the
6430 	 * guest to let CPU execute the instruction.
6431 	 */
6432 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6433 
6434 	/*
6435 	 * If the access faults on its page table, it can not
6436 	 * be fixed by unprotecting shadow page and it should
6437 	 * be reported to userspace.
6438 	 */
6439 	return !write_fault_to_shadow_pgtable;
6440 }
6441 
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)6442 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6443 			      unsigned long cr2,  int emulation_type)
6444 {
6445 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6446 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6447 
6448 	last_retry_eip = vcpu->arch.last_retry_eip;
6449 	last_retry_addr = vcpu->arch.last_retry_addr;
6450 
6451 	/*
6452 	 * If the emulation is caused by #PF and it is non-page_table
6453 	 * writing instruction, it means the VM-EXIT is caused by shadow
6454 	 * page protected, we can zap the shadow page and retry this
6455 	 * instruction directly.
6456 	 *
6457 	 * Note: if the guest uses a non-page-table modifying instruction
6458 	 * on the PDE that points to the instruction, then we will unmap
6459 	 * the instruction and go to an infinite loop. So, we cache the
6460 	 * last retried eip and the last fault address, if we meet the eip
6461 	 * and the address again, we can break out of the potential infinite
6462 	 * loop.
6463 	 */
6464 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6465 
6466 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6467 		return false;
6468 
6469 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6470 		return false;
6471 
6472 	if (x86_page_table_writing_insn(ctxt))
6473 		return false;
6474 
6475 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6476 		return false;
6477 
6478 	vcpu->arch.last_retry_eip = ctxt->eip;
6479 	vcpu->arch.last_retry_addr = cr2;
6480 
6481 	if (!vcpu->arch.mmu->direct_map)
6482 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6483 
6484 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6485 
6486 	return true;
6487 }
6488 
6489 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6490 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6491 
kvm_smm_changed(struct kvm_vcpu * vcpu)6492 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6493 {
6494 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6495 		/* This is a good place to trace that we are exiting SMM.  */
6496 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6497 
6498 		/* Process a latched INIT or SMI, if any.  */
6499 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6500 	}
6501 
6502 	kvm_mmu_reset_context(vcpu);
6503 }
6504 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)6505 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6506 				unsigned long *db)
6507 {
6508 	u32 dr6 = 0;
6509 	int i;
6510 	u32 enable, rwlen;
6511 
6512 	enable = dr7;
6513 	rwlen = dr7 >> 16;
6514 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6515 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6516 			dr6 |= (1 << i);
6517 	return dr6;
6518 }
6519 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)6520 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6521 {
6522 	struct kvm_run *kvm_run = vcpu->run;
6523 
6524 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6525 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6526 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6527 		kvm_run->debug.arch.exception = DB_VECTOR;
6528 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6529 		return 0;
6530 	}
6531 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6532 	return 1;
6533 }
6534 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)6535 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6536 {
6537 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6538 	int r;
6539 
6540 	r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6541 	if (unlikely(!r))
6542 		return 0;
6543 
6544 	/*
6545 	 * rflags is the old, "raw" value of the flags.  The new value has
6546 	 * not been saved yet.
6547 	 *
6548 	 * This is correct even for TF set by the guest, because "the
6549 	 * processor will not generate this exception after the instruction
6550 	 * that sets the TF flag".
6551 	 */
6552 	if (unlikely(rflags & X86_EFLAGS_TF))
6553 		r = kvm_vcpu_do_singlestep(vcpu);
6554 	return r;
6555 }
6556 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6557 
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)6558 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6559 {
6560 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6561 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6562 		struct kvm_run *kvm_run = vcpu->run;
6563 		unsigned long eip = kvm_get_linear_rip(vcpu);
6564 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6565 					   vcpu->arch.guest_debug_dr7,
6566 					   vcpu->arch.eff_db);
6567 
6568 		if (dr6 != 0) {
6569 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6570 			kvm_run->debug.arch.pc = eip;
6571 			kvm_run->debug.arch.exception = DB_VECTOR;
6572 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6573 			*r = 0;
6574 			return true;
6575 		}
6576 	}
6577 
6578 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6579 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6580 		unsigned long eip = kvm_get_linear_rip(vcpu);
6581 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6582 					   vcpu->arch.dr7,
6583 					   vcpu->arch.db);
6584 
6585 		if (dr6 != 0) {
6586 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6587 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6588 			kvm_queue_exception(vcpu, DB_VECTOR);
6589 			*r = 1;
6590 			return true;
6591 		}
6592 	}
6593 
6594 	return false;
6595 }
6596 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)6597 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6598 {
6599 	switch (ctxt->opcode_len) {
6600 	case 1:
6601 		switch (ctxt->b) {
6602 		case 0xe4:	/* IN */
6603 		case 0xe5:
6604 		case 0xec:
6605 		case 0xed:
6606 		case 0xe6:	/* OUT */
6607 		case 0xe7:
6608 		case 0xee:
6609 		case 0xef:
6610 		case 0x6c:	/* INS */
6611 		case 0x6d:
6612 		case 0x6e:	/* OUTS */
6613 		case 0x6f:
6614 			return true;
6615 		}
6616 		break;
6617 	case 2:
6618 		switch (ctxt->b) {
6619 		case 0x33:	/* RDPMC */
6620 			return true;
6621 		}
6622 		break;
6623 	}
6624 
6625 	return false;
6626 }
6627 
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)6628 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6629 			    unsigned long cr2,
6630 			    int emulation_type,
6631 			    void *insn,
6632 			    int insn_len)
6633 {
6634 	int r;
6635 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6636 	bool writeback = true;
6637 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6638 
6639 	vcpu->arch.l1tf_flush_l1d = true;
6640 
6641 	/*
6642 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6643 	 * never reused.
6644 	 */
6645 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6646 	kvm_clear_exception_queue(vcpu);
6647 
6648 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6649 		init_emulate_ctxt(vcpu);
6650 
6651 		/*
6652 		 * We will reenter on the same instruction since
6653 		 * we do not set complete_userspace_io.  This does not
6654 		 * handle watchpoints yet, those would be handled in
6655 		 * the emulate_ops.
6656 		 */
6657 		if (!(emulation_type & EMULTYPE_SKIP) &&
6658 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6659 			return r;
6660 
6661 		ctxt->interruptibility = 0;
6662 		ctxt->have_exception = false;
6663 		ctxt->exception.vector = -1;
6664 		ctxt->perm_ok = false;
6665 
6666 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6667 
6668 		r = x86_decode_insn(ctxt, insn, insn_len);
6669 
6670 		trace_kvm_emulate_insn_start(vcpu);
6671 		++vcpu->stat.insn_emulation;
6672 		if (r != EMULATION_OK)  {
6673 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6674 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6675 				kvm_queue_exception(vcpu, UD_VECTOR);
6676 				return 1;
6677 			}
6678 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6679 						emulation_type))
6680 				return 1;
6681 			if (ctxt->have_exception) {
6682 				/*
6683 				 * #UD should result in just EMULATION_FAILED, and trap-like
6684 				 * exception should not be encountered during decode.
6685 				 */
6686 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6687 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6688 				inject_emulated_exception(vcpu);
6689 				return 1;
6690 			}
6691 			return handle_emulation_failure(vcpu, emulation_type);
6692 		}
6693 	}
6694 
6695 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6696 	    !is_vmware_backdoor_opcode(ctxt)) {
6697 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6698 		return 1;
6699 	}
6700 
6701 	/*
6702 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6703 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6704 	 * updating interruptibility state and injecting single-step #DBs.
6705 	 */
6706 	if (emulation_type & EMULTYPE_SKIP) {
6707 		kvm_rip_write(vcpu, ctxt->_eip);
6708 		if (ctxt->eflags & X86_EFLAGS_RF)
6709 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6710 		return 1;
6711 	}
6712 
6713 	if (retry_instruction(ctxt, cr2, emulation_type))
6714 		return 1;
6715 
6716 	/* this is needed for vmware backdoor interface to work since it
6717 	   changes registers values  during IO operation */
6718 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6719 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6720 		emulator_invalidate_register_cache(ctxt);
6721 	}
6722 
6723 restart:
6724 	/* Save the faulting GPA (cr2) in the address field */
6725 	ctxt->exception.address = cr2;
6726 
6727 	r = x86_emulate_insn(ctxt);
6728 
6729 	if (r == EMULATION_INTERCEPTED)
6730 		return 1;
6731 
6732 	if (r == EMULATION_FAILED) {
6733 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6734 					emulation_type))
6735 			return 1;
6736 
6737 		return handle_emulation_failure(vcpu, emulation_type);
6738 	}
6739 
6740 	if (ctxt->have_exception) {
6741 		r = 1;
6742 		if (inject_emulated_exception(vcpu))
6743 			return r;
6744 	} else if (vcpu->arch.pio.count) {
6745 		if (!vcpu->arch.pio.in) {
6746 			/* FIXME: return into emulator if single-stepping.  */
6747 			vcpu->arch.pio.count = 0;
6748 		} else {
6749 			writeback = false;
6750 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6751 		}
6752 		r = 0;
6753 	} else if (vcpu->mmio_needed) {
6754 		++vcpu->stat.mmio_exits;
6755 
6756 		if (!vcpu->mmio_is_write)
6757 			writeback = false;
6758 		r = 0;
6759 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6760 	} else if (r == EMULATION_RESTART)
6761 		goto restart;
6762 	else
6763 		r = 1;
6764 
6765 	if (writeback) {
6766 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6767 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6768 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6769 		if (!ctxt->have_exception ||
6770 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6771 			kvm_rip_write(vcpu, ctxt->eip);
6772 			if (r && ctxt->tf)
6773 				r = kvm_vcpu_do_singlestep(vcpu);
6774 			__kvm_set_rflags(vcpu, ctxt->eflags);
6775 		}
6776 
6777 		/*
6778 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6779 		 * do nothing, and it will be requested again as soon as
6780 		 * the shadow expires.  But we still need to check here,
6781 		 * because POPF has no interrupt shadow.
6782 		 */
6783 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6784 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6785 	} else
6786 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6787 
6788 	return r;
6789 }
6790 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)6791 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6792 {
6793 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6794 }
6795 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6796 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)6797 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6798 					void *insn, int insn_len)
6799 {
6800 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6801 }
6802 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6803 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)6804 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6805 {
6806 	vcpu->arch.pio.count = 0;
6807 	return 1;
6808 }
6809 
complete_fast_pio_out(struct kvm_vcpu * vcpu)6810 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6811 {
6812 	vcpu->arch.pio.count = 0;
6813 
6814 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6815 		return 1;
6816 
6817 	return kvm_skip_emulated_instruction(vcpu);
6818 }
6819 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)6820 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6821 			    unsigned short port)
6822 {
6823 	unsigned long val = kvm_rax_read(vcpu);
6824 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6825 					    size, port, &val, 1);
6826 	if (ret)
6827 		return ret;
6828 
6829 	/*
6830 	 * Workaround userspace that relies on old KVM behavior of %rip being
6831 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6832 	 */
6833 	if (port == 0x7e &&
6834 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6835 		vcpu->arch.complete_userspace_io =
6836 			complete_fast_pio_out_port_0x7e;
6837 		kvm_skip_emulated_instruction(vcpu);
6838 	} else {
6839 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6840 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6841 	}
6842 	return 0;
6843 }
6844 
complete_fast_pio_in(struct kvm_vcpu * vcpu)6845 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6846 {
6847 	unsigned long val;
6848 
6849 	/* We should only ever be called with arch.pio.count equal to 1 */
6850 	BUG_ON(vcpu->arch.pio.count != 1);
6851 
6852 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6853 		vcpu->arch.pio.count = 0;
6854 		return 1;
6855 	}
6856 
6857 	/* For size less than 4 we merge, else we zero extend */
6858 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6859 
6860 	/*
6861 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6862 	 * the copy and tracing
6863 	 */
6864 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6865 				 vcpu->arch.pio.port, &val, 1);
6866 	kvm_rax_write(vcpu, val);
6867 
6868 	return kvm_skip_emulated_instruction(vcpu);
6869 }
6870 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)6871 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6872 			   unsigned short port)
6873 {
6874 	unsigned long val;
6875 	int ret;
6876 
6877 	/* For size less than 4 we merge, else we zero extend */
6878 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6879 
6880 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6881 				       &val, 1);
6882 	if (ret) {
6883 		kvm_rax_write(vcpu, val);
6884 		return ret;
6885 	}
6886 
6887 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6888 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6889 
6890 	return 0;
6891 }
6892 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)6893 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6894 {
6895 	int ret;
6896 
6897 	if (in)
6898 		ret = kvm_fast_pio_in(vcpu, size, port);
6899 	else
6900 		ret = kvm_fast_pio_out(vcpu, size, port);
6901 	return ret && kvm_skip_emulated_instruction(vcpu);
6902 }
6903 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6904 
kvmclock_cpu_down_prep(unsigned int cpu)6905 static int kvmclock_cpu_down_prep(unsigned int cpu)
6906 {
6907 	__this_cpu_write(cpu_tsc_khz, 0);
6908 	return 0;
6909 }
6910 
tsc_khz_changed(void * data)6911 static void tsc_khz_changed(void *data)
6912 {
6913 	struct cpufreq_freqs *freq = data;
6914 	unsigned long khz = 0;
6915 
6916 	if (data)
6917 		khz = freq->new;
6918 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6919 		khz = cpufreq_quick_get(raw_smp_processor_id());
6920 	if (!khz)
6921 		khz = tsc_khz;
6922 	__this_cpu_write(cpu_tsc_khz, khz);
6923 }
6924 
6925 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)6926 static void kvm_hyperv_tsc_notifier(void)
6927 {
6928 	struct kvm *kvm;
6929 	struct kvm_vcpu *vcpu;
6930 	int cpu;
6931 
6932 	mutex_lock(&kvm_lock);
6933 	list_for_each_entry(kvm, &vm_list, vm_list)
6934 		kvm_make_mclock_inprogress_request(kvm);
6935 
6936 	hyperv_stop_tsc_emulation();
6937 
6938 	/* TSC frequency always matches when on Hyper-V */
6939 	for_each_present_cpu(cpu)
6940 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6941 	kvm_max_guest_tsc_khz = tsc_khz;
6942 
6943 	list_for_each_entry(kvm, &vm_list, vm_list) {
6944 		struct kvm_arch *ka = &kvm->arch;
6945 
6946 		spin_lock(&ka->pvclock_gtod_sync_lock);
6947 
6948 		pvclock_update_vm_gtod_copy(kvm);
6949 
6950 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6951 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6952 
6953 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6954 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6955 
6956 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6957 	}
6958 	mutex_unlock(&kvm_lock);
6959 }
6960 #endif
6961 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)6962 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6963 {
6964 	struct kvm *kvm;
6965 	struct kvm_vcpu *vcpu;
6966 	int i, send_ipi = 0;
6967 
6968 	/*
6969 	 * We allow guests to temporarily run on slowing clocks,
6970 	 * provided we notify them after, or to run on accelerating
6971 	 * clocks, provided we notify them before.  Thus time never
6972 	 * goes backwards.
6973 	 *
6974 	 * However, we have a problem.  We can't atomically update
6975 	 * the frequency of a given CPU from this function; it is
6976 	 * merely a notifier, which can be called from any CPU.
6977 	 * Changing the TSC frequency at arbitrary points in time
6978 	 * requires a recomputation of local variables related to
6979 	 * the TSC for each VCPU.  We must flag these local variables
6980 	 * to be updated and be sure the update takes place with the
6981 	 * new frequency before any guests proceed.
6982 	 *
6983 	 * Unfortunately, the combination of hotplug CPU and frequency
6984 	 * change creates an intractable locking scenario; the order
6985 	 * of when these callouts happen is undefined with respect to
6986 	 * CPU hotplug, and they can race with each other.  As such,
6987 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6988 	 * undefined; you can actually have a CPU frequency change take
6989 	 * place in between the computation of X and the setting of the
6990 	 * variable.  To protect against this problem, all updates of
6991 	 * the per_cpu tsc_khz variable are done in an interrupt
6992 	 * protected IPI, and all callers wishing to update the value
6993 	 * must wait for a synchronous IPI to complete (which is trivial
6994 	 * if the caller is on the CPU already).  This establishes the
6995 	 * necessary total order on variable updates.
6996 	 *
6997 	 * Note that because a guest time update may take place
6998 	 * anytime after the setting of the VCPU's request bit, the
6999 	 * correct TSC value must be set before the request.  However,
7000 	 * to ensure the update actually makes it to any guest which
7001 	 * starts running in hardware virtualization between the set
7002 	 * and the acquisition of the spinlock, we must also ping the
7003 	 * CPU after setting the request bit.
7004 	 *
7005 	 */
7006 
7007 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7008 
7009 	mutex_lock(&kvm_lock);
7010 	list_for_each_entry(kvm, &vm_list, vm_list) {
7011 		kvm_for_each_vcpu(i, vcpu, kvm) {
7012 			if (vcpu->cpu != cpu)
7013 				continue;
7014 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7015 			if (vcpu->cpu != raw_smp_processor_id())
7016 				send_ipi = 1;
7017 		}
7018 	}
7019 	mutex_unlock(&kvm_lock);
7020 
7021 	if (freq->old < freq->new && send_ipi) {
7022 		/*
7023 		 * We upscale the frequency.  Must make the guest
7024 		 * doesn't see old kvmclock values while running with
7025 		 * the new frequency, otherwise we risk the guest sees
7026 		 * time go backwards.
7027 		 *
7028 		 * In case we update the frequency for another cpu
7029 		 * (which might be in guest context) send an interrupt
7030 		 * to kick the cpu out of guest context.  Next time
7031 		 * guest context is entered kvmclock will be updated,
7032 		 * so the guest will not see stale values.
7033 		 */
7034 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7035 	}
7036 }
7037 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)7038 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7039 				     void *data)
7040 {
7041 	struct cpufreq_freqs *freq = data;
7042 	int cpu;
7043 
7044 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7045 		return 0;
7046 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7047 		return 0;
7048 
7049 	for_each_cpu(cpu, freq->policy->cpus)
7050 		__kvmclock_cpufreq_notifier(freq, cpu);
7051 
7052 	return 0;
7053 }
7054 
7055 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7056 	.notifier_call  = kvmclock_cpufreq_notifier
7057 };
7058 
kvmclock_cpu_online(unsigned int cpu)7059 static int kvmclock_cpu_online(unsigned int cpu)
7060 {
7061 	tsc_khz_changed(NULL);
7062 	return 0;
7063 }
7064 
kvm_timer_init(void)7065 static void kvm_timer_init(void)
7066 {
7067 	max_tsc_khz = tsc_khz;
7068 
7069 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7070 #ifdef CONFIG_CPU_FREQ
7071 		struct cpufreq_policy policy;
7072 		int cpu;
7073 
7074 		memset(&policy, 0, sizeof(policy));
7075 		cpu = get_cpu();
7076 		cpufreq_get_policy(&policy, cpu);
7077 		if (policy.cpuinfo.max_freq)
7078 			max_tsc_khz = policy.cpuinfo.max_freq;
7079 		put_cpu();
7080 #endif
7081 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7082 					  CPUFREQ_TRANSITION_NOTIFIER);
7083 	}
7084 
7085 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7086 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7087 }
7088 
7089 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7090 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7091 
kvm_is_in_guest(void)7092 int kvm_is_in_guest(void)
7093 {
7094 	return __this_cpu_read(current_vcpu) != NULL;
7095 }
7096 
kvm_is_user_mode(void)7097 static int kvm_is_user_mode(void)
7098 {
7099 	int user_mode = 3;
7100 
7101 	if (__this_cpu_read(current_vcpu))
7102 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7103 
7104 	return user_mode != 0;
7105 }
7106 
kvm_get_guest_ip(void)7107 static unsigned long kvm_get_guest_ip(void)
7108 {
7109 	unsigned long ip = 0;
7110 
7111 	if (__this_cpu_read(current_vcpu))
7112 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7113 
7114 	return ip;
7115 }
7116 
kvm_handle_intel_pt_intr(void)7117 static void kvm_handle_intel_pt_intr(void)
7118 {
7119 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7120 
7121 	kvm_make_request(KVM_REQ_PMI, vcpu);
7122 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7123 			(unsigned long *)&vcpu->arch.pmu.global_status);
7124 }
7125 
7126 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7127 	.is_in_guest		= kvm_is_in_guest,
7128 	.is_user_mode		= kvm_is_user_mode,
7129 	.get_guest_ip		= kvm_get_guest_ip,
7130 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7131 };
7132 
7133 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)7134 static void pvclock_gtod_update_fn(struct work_struct *work)
7135 {
7136 	struct kvm *kvm;
7137 
7138 	struct kvm_vcpu *vcpu;
7139 	int i;
7140 
7141 	mutex_lock(&kvm_lock);
7142 	list_for_each_entry(kvm, &vm_list, vm_list)
7143 		kvm_for_each_vcpu(i, vcpu, kvm)
7144 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7145 	atomic_set(&kvm_guest_has_master_clock, 0);
7146 	mutex_unlock(&kvm_lock);
7147 }
7148 
7149 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7150 
7151 /*
7152  * Notification about pvclock gtod data update.
7153  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)7154 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7155 			       void *priv)
7156 {
7157 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7158 	struct timekeeper *tk = priv;
7159 
7160 	update_pvclock_gtod(tk);
7161 
7162 	/* disable master clock if host does not trust, or does not
7163 	 * use, TSC based clocksource.
7164 	 */
7165 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7166 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7167 		queue_work(system_long_wq, &pvclock_gtod_work);
7168 
7169 	return 0;
7170 }
7171 
7172 static struct notifier_block pvclock_gtod_notifier = {
7173 	.notifier_call = pvclock_gtod_notify,
7174 };
7175 #endif
7176 
kvm_arch_init(void * opaque)7177 int kvm_arch_init(void *opaque)
7178 {
7179 	int r;
7180 	struct kvm_x86_ops *ops = opaque;
7181 
7182 	if (kvm_x86_ops) {
7183 		printk(KERN_ERR "kvm: already loaded the other module\n");
7184 		r = -EEXIST;
7185 		goto out;
7186 	}
7187 
7188 	if (!ops->cpu_has_kvm_support()) {
7189 		printk(KERN_ERR "kvm: no hardware support\n");
7190 		r = -EOPNOTSUPP;
7191 		goto out;
7192 	}
7193 	if (ops->disabled_by_bios()) {
7194 		printk(KERN_ERR "kvm: disabled by bios\n");
7195 		r = -EOPNOTSUPP;
7196 		goto out;
7197 	}
7198 
7199 	/*
7200 	 * KVM explicitly assumes that the guest has an FPU and
7201 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7202 	 * vCPU's FPU state as a fxregs_state struct.
7203 	 */
7204 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7205 		printk(KERN_ERR "kvm: inadequate fpu\n");
7206 		r = -EOPNOTSUPP;
7207 		goto out;
7208 	}
7209 
7210 	r = -ENOMEM;
7211 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7212 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7213 					  NULL);
7214 	if (!x86_fpu_cache) {
7215 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7216 		goto out;
7217 	}
7218 
7219 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7220 	if (!shared_msrs) {
7221 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7222 		goto out_free_x86_fpu_cache;
7223 	}
7224 
7225 	r = kvm_mmu_module_init();
7226 	if (r)
7227 		goto out_free_percpu;
7228 
7229 	kvm_x86_ops = ops;
7230 
7231 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7232 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7233 			PT_PRESENT_MASK, 0, sme_me_mask);
7234 	kvm_timer_init();
7235 
7236 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7237 
7238 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7239 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7240 
7241 	kvm_lapic_init();
7242 	if (pi_inject_timer == -1)
7243 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7244 #ifdef CONFIG_X86_64
7245 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7246 
7247 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7248 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7249 #endif
7250 
7251 	return 0;
7252 
7253 out_free_percpu:
7254 	free_percpu(shared_msrs);
7255 out_free_x86_fpu_cache:
7256 	kmem_cache_destroy(x86_fpu_cache);
7257 out:
7258 	return r;
7259 }
7260 
kvm_arch_exit(void)7261 void kvm_arch_exit(void)
7262 {
7263 #ifdef CONFIG_X86_64
7264 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7265 		clear_hv_tscchange_cb();
7266 #endif
7267 	kvm_lapic_exit();
7268 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7269 
7270 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7271 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7272 					    CPUFREQ_TRANSITION_NOTIFIER);
7273 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7274 #ifdef CONFIG_X86_64
7275 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7276 #endif
7277 	kvm_x86_ops = NULL;
7278 	kvm_mmu_module_exit();
7279 	free_percpu(shared_msrs);
7280 	kmem_cache_destroy(x86_fpu_cache);
7281 }
7282 
kvm_vcpu_halt(struct kvm_vcpu * vcpu)7283 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7284 {
7285 	++vcpu->stat.halt_exits;
7286 	if (lapic_in_kernel(vcpu)) {
7287 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7288 		return 1;
7289 	} else {
7290 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7291 		return 0;
7292 	}
7293 }
7294 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7295 
kvm_emulate_halt(struct kvm_vcpu * vcpu)7296 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7297 {
7298 	int ret = kvm_skip_emulated_instruction(vcpu);
7299 	/*
7300 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7301 	 * KVM_EXIT_DEBUG here.
7302 	 */
7303 	return kvm_vcpu_halt(vcpu) && ret;
7304 }
7305 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7306 
7307 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)7308 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7309 			        unsigned long clock_type)
7310 {
7311 	struct kvm_clock_pairing clock_pairing;
7312 	struct timespec64 ts;
7313 	u64 cycle;
7314 	int ret;
7315 
7316 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7317 		return -KVM_EOPNOTSUPP;
7318 
7319 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7320 		return -KVM_EOPNOTSUPP;
7321 
7322 	clock_pairing.sec = ts.tv_sec;
7323 	clock_pairing.nsec = ts.tv_nsec;
7324 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7325 	clock_pairing.flags = 0;
7326 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7327 
7328 	ret = 0;
7329 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7330 			    sizeof(struct kvm_clock_pairing)))
7331 		ret = -KVM_EFAULT;
7332 
7333 	return ret;
7334 }
7335 #endif
7336 
7337 /*
7338  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7339  *
7340  * @apicid - apicid of vcpu to be kicked.
7341  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)7342 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7343 {
7344 	struct kvm_lapic_irq lapic_irq;
7345 
7346 	lapic_irq.shorthand = 0;
7347 	lapic_irq.dest_mode = 0;
7348 	lapic_irq.level = 0;
7349 	lapic_irq.dest_id = apicid;
7350 	lapic_irq.msi_redir_hint = false;
7351 
7352 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7353 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7354 }
7355 
kvm_vcpu_deactivate_apicv(struct kvm_vcpu * vcpu)7356 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7357 {
7358 	if (!lapic_in_kernel(vcpu)) {
7359 		WARN_ON_ONCE(vcpu->arch.apicv_active);
7360 		return;
7361 	}
7362 	if (!vcpu->arch.apicv_active)
7363 		return;
7364 
7365 	vcpu->arch.apicv_active = false;
7366 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7367 }
7368 
kvm_sched_yield(struct kvm * kvm,unsigned long dest_id)7369 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7370 {
7371 	struct kvm_vcpu *target = NULL;
7372 	struct kvm_apic_map *map;
7373 
7374 	rcu_read_lock();
7375 	map = rcu_dereference(kvm->arch.apic_map);
7376 
7377 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7378 		target = map->phys_map[dest_id]->vcpu;
7379 
7380 	rcu_read_unlock();
7381 
7382 	if (target && READ_ONCE(target->ready))
7383 		kvm_vcpu_yield_to(target);
7384 }
7385 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)7386 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7387 {
7388 	unsigned long nr, a0, a1, a2, a3, ret;
7389 	int op_64_bit;
7390 
7391 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7392 		return kvm_hv_hypercall(vcpu);
7393 
7394 	nr = kvm_rax_read(vcpu);
7395 	a0 = kvm_rbx_read(vcpu);
7396 	a1 = kvm_rcx_read(vcpu);
7397 	a2 = kvm_rdx_read(vcpu);
7398 	a3 = kvm_rsi_read(vcpu);
7399 
7400 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7401 
7402 	op_64_bit = is_64_bit_mode(vcpu);
7403 	if (!op_64_bit) {
7404 		nr &= 0xFFFFFFFF;
7405 		a0 &= 0xFFFFFFFF;
7406 		a1 &= 0xFFFFFFFF;
7407 		a2 &= 0xFFFFFFFF;
7408 		a3 &= 0xFFFFFFFF;
7409 	}
7410 
7411 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7412 		ret = -KVM_EPERM;
7413 		goto out;
7414 	}
7415 
7416 	switch (nr) {
7417 	case KVM_HC_VAPIC_POLL_IRQ:
7418 		ret = 0;
7419 		break;
7420 	case KVM_HC_KICK_CPU:
7421 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7422 		kvm_sched_yield(vcpu->kvm, a1);
7423 		ret = 0;
7424 		break;
7425 #ifdef CONFIG_X86_64
7426 	case KVM_HC_CLOCK_PAIRING:
7427 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7428 		break;
7429 #endif
7430 	case KVM_HC_SEND_IPI:
7431 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7432 		break;
7433 	case KVM_HC_SCHED_YIELD:
7434 		kvm_sched_yield(vcpu->kvm, a0);
7435 		ret = 0;
7436 		break;
7437 	default:
7438 		ret = -KVM_ENOSYS;
7439 		break;
7440 	}
7441 out:
7442 	if (!op_64_bit)
7443 		ret = (u32)ret;
7444 	kvm_rax_write(vcpu, ret);
7445 
7446 	++vcpu->stat.hypercalls;
7447 	return kvm_skip_emulated_instruction(vcpu);
7448 }
7449 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7450 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)7451 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7452 {
7453 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7454 	char instruction[3];
7455 	unsigned long rip = kvm_rip_read(vcpu);
7456 
7457 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7458 
7459 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7460 		&ctxt->exception);
7461 }
7462 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)7463 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7464 {
7465 	return vcpu->run->request_interrupt_window &&
7466 		likely(!pic_in_kernel(vcpu->kvm));
7467 }
7468 
post_kvm_run_save(struct kvm_vcpu * vcpu)7469 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7470 {
7471 	struct kvm_run *kvm_run = vcpu->run;
7472 
7473 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7474 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7475 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7476 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7477 	kvm_run->ready_for_interrupt_injection =
7478 		pic_in_kernel(vcpu->kvm) ||
7479 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7480 }
7481 
update_cr8_intercept(struct kvm_vcpu * vcpu)7482 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7483 {
7484 	int max_irr, tpr;
7485 
7486 	if (!kvm_x86_ops->update_cr8_intercept)
7487 		return;
7488 
7489 	if (!lapic_in_kernel(vcpu))
7490 		return;
7491 
7492 	if (vcpu->arch.apicv_active)
7493 		return;
7494 
7495 	if (!vcpu->arch.apic->vapic_addr)
7496 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7497 	else
7498 		max_irr = -1;
7499 
7500 	if (max_irr != -1)
7501 		max_irr >>= 4;
7502 
7503 	tpr = kvm_lapic_get_cr8(vcpu);
7504 
7505 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7506 }
7507 
inject_pending_event(struct kvm_vcpu * vcpu,bool req_int_win)7508 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7509 {
7510 	int r;
7511 
7512 	/* try to reinject previous events if any */
7513 
7514 	if (vcpu->arch.exception.injected)
7515 		kvm_x86_ops->queue_exception(vcpu);
7516 	/*
7517 	 * Do not inject an NMI or interrupt if there is a pending
7518 	 * exception.  Exceptions and interrupts are recognized at
7519 	 * instruction boundaries, i.e. the start of an instruction.
7520 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7521 	 * NMIs and interrupts, i.e. traps are recognized before an
7522 	 * NMI/interrupt that's pending on the same instruction.
7523 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7524 	 * priority, but are only generated (pended) during instruction
7525 	 * execution, i.e. a pending fault-like exception means the
7526 	 * fault occurred on the *previous* instruction and must be
7527 	 * serviced prior to recognizing any new events in order to
7528 	 * fully complete the previous instruction.
7529 	 */
7530 	else if (!vcpu->arch.exception.pending) {
7531 		if (vcpu->arch.nmi_injected)
7532 			kvm_x86_ops->set_nmi(vcpu);
7533 		else if (vcpu->arch.interrupt.injected)
7534 			kvm_x86_ops->set_irq(vcpu);
7535 	}
7536 
7537 	/*
7538 	 * Call check_nested_events() even if we reinjected a previous event
7539 	 * in order for caller to determine if it should require immediate-exit
7540 	 * from L2 to L1 due to pending L1 events which require exit
7541 	 * from L2 to L1.
7542 	 */
7543 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7544 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7545 		if (r != 0)
7546 			return r;
7547 	}
7548 
7549 	/* try to inject new event if pending */
7550 	if (vcpu->arch.exception.pending) {
7551 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7552 					vcpu->arch.exception.has_error_code,
7553 					vcpu->arch.exception.error_code);
7554 
7555 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7556 		vcpu->arch.exception.pending = false;
7557 		vcpu->arch.exception.injected = true;
7558 
7559 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7560 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7561 					     X86_EFLAGS_RF);
7562 
7563 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7564 			/*
7565 			 * This code assumes that nSVM doesn't use
7566 			 * check_nested_events(). If it does, the
7567 			 * DR6/DR7 changes should happen before L1
7568 			 * gets a #VMEXIT for an intercepted #DB in
7569 			 * L2.  (Under VMX, on the other hand, the
7570 			 * DR6/DR7 changes should not happen in the
7571 			 * event of a VM-exit to L1 for an intercepted
7572 			 * #DB in L2.)
7573 			 */
7574 			kvm_deliver_exception_payload(vcpu);
7575 			if (vcpu->arch.dr7 & DR7_GD) {
7576 				vcpu->arch.dr7 &= ~DR7_GD;
7577 				kvm_update_dr7(vcpu);
7578 			}
7579 		}
7580 
7581 		kvm_x86_ops->queue_exception(vcpu);
7582 	}
7583 
7584 	/* Don't consider new event if we re-injected an event */
7585 	if (kvm_event_needs_reinjection(vcpu))
7586 		return 0;
7587 
7588 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7589 	    kvm_x86_ops->smi_allowed(vcpu)) {
7590 		vcpu->arch.smi_pending = false;
7591 		++vcpu->arch.smi_count;
7592 		enter_smm(vcpu);
7593 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7594 		--vcpu->arch.nmi_pending;
7595 		vcpu->arch.nmi_injected = true;
7596 		kvm_x86_ops->set_nmi(vcpu);
7597 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7598 		/*
7599 		 * Because interrupts can be injected asynchronously, we are
7600 		 * calling check_nested_events again here to avoid a race condition.
7601 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7602 		 * proposal and current concerns.  Perhaps we should be setting
7603 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7604 		 */
7605 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7606 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7607 			if (r != 0)
7608 				return r;
7609 		}
7610 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7611 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7612 					    false);
7613 			kvm_x86_ops->set_irq(vcpu);
7614 		}
7615 	}
7616 
7617 	return 0;
7618 }
7619 
process_nmi(struct kvm_vcpu * vcpu)7620 static void process_nmi(struct kvm_vcpu *vcpu)
7621 {
7622 	unsigned limit = 2;
7623 
7624 	/*
7625 	 * x86 is limited to one NMI running, and one NMI pending after it.
7626 	 * If an NMI is already in progress, limit further NMIs to just one.
7627 	 * Otherwise, allow two (and we'll inject the first one immediately).
7628 	 */
7629 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7630 		limit = 1;
7631 
7632 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7633 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7634 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7635 }
7636 
enter_smm_get_segment_flags(struct kvm_segment * seg)7637 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7638 {
7639 	u32 flags = 0;
7640 	flags |= seg->g       << 23;
7641 	flags |= seg->db      << 22;
7642 	flags |= seg->l       << 21;
7643 	flags |= seg->avl     << 20;
7644 	flags |= seg->present << 15;
7645 	flags |= seg->dpl     << 13;
7646 	flags |= seg->s       << 12;
7647 	flags |= seg->type    << 8;
7648 	return flags;
7649 }
7650 
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)7651 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7652 {
7653 	struct kvm_segment seg;
7654 	int offset;
7655 
7656 	kvm_get_segment(vcpu, &seg, n);
7657 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7658 
7659 	if (n < 3)
7660 		offset = 0x7f84 + n * 12;
7661 	else
7662 		offset = 0x7f2c + (n - 3) * 12;
7663 
7664 	put_smstate(u32, buf, offset + 8, seg.base);
7665 	put_smstate(u32, buf, offset + 4, seg.limit);
7666 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7667 }
7668 
7669 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)7670 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7671 {
7672 	struct kvm_segment seg;
7673 	int offset;
7674 	u16 flags;
7675 
7676 	kvm_get_segment(vcpu, &seg, n);
7677 	offset = 0x7e00 + n * 16;
7678 
7679 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7680 	put_smstate(u16, buf, offset, seg.selector);
7681 	put_smstate(u16, buf, offset + 2, flags);
7682 	put_smstate(u32, buf, offset + 4, seg.limit);
7683 	put_smstate(u64, buf, offset + 8, seg.base);
7684 }
7685 #endif
7686 
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)7687 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7688 {
7689 	struct desc_ptr dt;
7690 	struct kvm_segment seg;
7691 	unsigned long val;
7692 	int i;
7693 
7694 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7695 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7696 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7697 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7698 
7699 	for (i = 0; i < 8; i++)
7700 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7701 
7702 	kvm_get_dr(vcpu, 6, &val);
7703 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7704 	kvm_get_dr(vcpu, 7, &val);
7705 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7706 
7707 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7708 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7709 	put_smstate(u32, buf, 0x7f64, seg.base);
7710 	put_smstate(u32, buf, 0x7f60, seg.limit);
7711 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7712 
7713 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7714 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7715 	put_smstate(u32, buf, 0x7f80, seg.base);
7716 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7717 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7718 
7719 	kvm_x86_ops->get_gdt(vcpu, &dt);
7720 	put_smstate(u32, buf, 0x7f74, dt.address);
7721 	put_smstate(u32, buf, 0x7f70, dt.size);
7722 
7723 	kvm_x86_ops->get_idt(vcpu, &dt);
7724 	put_smstate(u32, buf, 0x7f58, dt.address);
7725 	put_smstate(u32, buf, 0x7f54, dt.size);
7726 
7727 	for (i = 0; i < 6; i++)
7728 		enter_smm_save_seg_32(vcpu, buf, i);
7729 
7730 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7731 
7732 	/* revision id */
7733 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7734 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7735 }
7736 
7737 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)7738 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7739 {
7740 	struct desc_ptr dt;
7741 	struct kvm_segment seg;
7742 	unsigned long val;
7743 	int i;
7744 
7745 	for (i = 0; i < 16; i++)
7746 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7747 
7748 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7749 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7750 
7751 	kvm_get_dr(vcpu, 6, &val);
7752 	put_smstate(u64, buf, 0x7f68, val);
7753 	kvm_get_dr(vcpu, 7, &val);
7754 	put_smstate(u64, buf, 0x7f60, val);
7755 
7756 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7757 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7758 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7759 
7760 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7761 
7762 	/* revision id */
7763 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7764 
7765 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7766 
7767 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7768 	put_smstate(u16, buf, 0x7e90, seg.selector);
7769 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7770 	put_smstate(u32, buf, 0x7e94, seg.limit);
7771 	put_smstate(u64, buf, 0x7e98, seg.base);
7772 
7773 	kvm_x86_ops->get_idt(vcpu, &dt);
7774 	put_smstate(u32, buf, 0x7e84, dt.size);
7775 	put_smstate(u64, buf, 0x7e88, dt.address);
7776 
7777 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7778 	put_smstate(u16, buf, 0x7e70, seg.selector);
7779 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7780 	put_smstate(u32, buf, 0x7e74, seg.limit);
7781 	put_smstate(u64, buf, 0x7e78, seg.base);
7782 
7783 	kvm_x86_ops->get_gdt(vcpu, &dt);
7784 	put_smstate(u32, buf, 0x7e64, dt.size);
7785 	put_smstate(u64, buf, 0x7e68, dt.address);
7786 
7787 	for (i = 0; i < 6; i++)
7788 		enter_smm_save_seg_64(vcpu, buf, i);
7789 }
7790 #endif
7791 
enter_smm(struct kvm_vcpu * vcpu)7792 static void enter_smm(struct kvm_vcpu *vcpu)
7793 {
7794 	struct kvm_segment cs, ds;
7795 	struct desc_ptr dt;
7796 	char buf[512];
7797 	u32 cr0;
7798 
7799 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7800 	memset(buf, 0, 512);
7801 #ifdef CONFIG_X86_64
7802 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7803 		enter_smm_save_state_64(vcpu, buf);
7804 	else
7805 #endif
7806 		enter_smm_save_state_32(vcpu, buf);
7807 
7808 	/*
7809 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7810 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7811 	 * the SMM state-save area.
7812 	 */
7813 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7814 
7815 	vcpu->arch.hflags |= HF_SMM_MASK;
7816 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7817 
7818 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7819 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7820 	else
7821 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7822 
7823 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7824 	kvm_rip_write(vcpu, 0x8000);
7825 
7826 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7827 	kvm_x86_ops->set_cr0(vcpu, cr0);
7828 	vcpu->arch.cr0 = cr0;
7829 
7830 	kvm_x86_ops->set_cr4(vcpu, 0);
7831 
7832 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7833 	dt.address = dt.size = 0;
7834 	kvm_x86_ops->set_idt(vcpu, &dt);
7835 
7836 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7837 
7838 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7839 	cs.base = vcpu->arch.smbase;
7840 
7841 	ds.selector = 0;
7842 	ds.base = 0;
7843 
7844 	cs.limit    = ds.limit = 0xffffffff;
7845 	cs.type     = ds.type = 0x3;
7846 	cs.dpl      = ds.dpl = 0;
7847 	cs.db       = ds.db = 0;
7848 	cs.s        = ds.s = 1;
7849 	cs.l        = ds.l = 0;
7850 	cs.g        = ds.g = 1;
7851 	cs.avl      = ds.avl = 0;
7852 	cs.present  = ds.present = 1;
7853 	cs.unusable = ds.unusable = 0;
7854 	cs.padding  = ds.padding = 0;
7855 
7856 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7857 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7858 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7859 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7860 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7861 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7862 
7863 #ifdef CONFIG_X86_64
7864 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7865 		kvm_x86_ops->set_efer(vcpu, 0);
7866 #endif
7867 
7868 	kvm_update_cpuid(vcpu);
7869 	kvm_mmu_reset_context(vcpu);
7870 }
7871 
process_smi(struct kvm_vcpu * vcpu)7872 static void process_smi(struct kvm_vcpu *vcpu)
7873 {
7874 	vcpu->arch.smi_pending = true;
7875 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7876 }
7877 
kvm_make_scan_ioapic_request(struct kvm * kvm)7878 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7879 {
7880 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7881 }
7882 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)7883 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7884 {
7885 	if (!kvm_apic_present(vcpu))
7886 		return;
7887 
7888 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7889 
7890 	if (irqchip_split(vcpu->kvm))
7891 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7892 	else {
7893 		if (vcpu->arch.apicv_active)
7894 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7895 		if (ioapic_in_kernel(vcpu->kvm))
7896 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7897 	}
7898 
7899 	if (is_guest_mode(vcpu))
7900 		vcpu->arch.load_eoi_exitmap_pending = true;
7901 	else
7902 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7903 }
7904 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)7905 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7906 {
7907 	u64 eoi_exit_bitmap[4];
7908 
7909 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7910 		return;
7911 
7912 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7913 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7914 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7915 }
7916 
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end,bool blockable)7917 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7918 		unsigned long start, unsigned long end,
7919 		bool blockable)
7920 {
7921 	unsigned long apic_address;
7922 
7923 	/*
7924 	 * The physical address of apic access page is stored in the VMCS.
7925 	 * Update it when it becomes invalid.
7926 	 */
7927 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7928 	if (start <= apic_address && apic_address < end)
7929 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7930 
7931 	return 0;
7932 }
7933 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)7934 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7935 {
7936 	struct page *page = NULL;
7937 
7938 	if (!lapic_in_kernel(vcpu))
7939 		return;
7940 
7941 	if (!kvm_x86_ops->set_apic_access_page_addr)
7942 		return;
7943 
7944 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7945 	if (is_error_page(page))
7946 		return;
7947 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7948 
7949 	/*
7950 	 * Do not pin apic access page in memory, the MMU notifier
7951 	 * will call us again if it is migrated or swapped out.
7952 	 */
7953 	put_page(page);
7954 }
7955 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7956 
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)7957 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7958 {
7959 	smp_send_reschedule(vcpu->cpu);
7960 }
7961 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7962 
7963 /*
7964  * Returns 1 to let vcpu_run() continue the guest execution loop without
7965  * exiting to the userspace.  Otherwise, the value will be returned to the
7966  * userspace.
7967  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)7968 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7969 {
7970 	int r;
7971 	bool req_int_win =
7972 		dm_request_for_irq_injection(vcpu) &&
7973 		kvm_cpu_accept_dm_intr(vcpu);
7974 
7975 	bool req_immediate_exit = false;
7976 
7977 	if (kvm_request_pending(vcpu)) {
7978 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
7979 			if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
7980 				r = 0;
7981 				goto out;
7982 			}
7983 		}
7984 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7985 			kvm_mmu_unload(vcpu);
7986 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7987 			__kvm_migrate_timers(vcpu);
7988 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7989 			kvm_gen_update_masterclock(vcpu->kvm);
7990 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7991 			kvm_gen_kvmclock_update(vcpu);
7992 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7993 			r = kvm_guest_time_update(vcpu);
7994 			if (unlikely(r))
7995 				goto out;
7996 		}
7997 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7998 			kvm_mmu_sync_roots(vcpu);
7999 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
8000 			kvm_mmu_load_cr3(vcpu);
8001 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8002 			kvm_vcpu_flush_tlb(vcpu, true);
8003 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8004 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8005 			r = 0;
8006 			goto out;
8007 		}
8008 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8009 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8010 			vcpu->mmio_needed = 0;
8011 			r = 0;
8012 			goto out;
8013 		}
8014 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8015 			/* Page is swapped out. Do synthetic halt */
8016 			vcpu->arch.apf.halted = true;
8017 			r = 1;
8018 			goto out;
8019 		}
8020 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8021 			record_steal_time(vcpu);
8022 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8023 			process_smi(vcpu);
8024 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8025 			process_nmi(vcpu);
8026 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8027 			kvm_pmu_handle_event(vcpu);
8028 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8029 			kvm_pmu_deliver_pmi(vcpu);
8030 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8031 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8032 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8033 				     vcpu->arch.ioapic_handled_vectors)) {
8034 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8035 				vcpu->run->eoi.vector =
8036 						vcpu->arch.pending_ioapic_eoi;
8037 				r = 0;
8038 				goto out;
8039 			}
8040 		}
8041 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8042 			vcpu_scan_ioapic(vcpu);
8043 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8044 			vcpu_load_eoi_exitmap(vcpu);
8045 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8046 			kvm_vcpu_reload_apic_access_page(vcpu);
8047 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8048 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8049 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8050 			r = 0;
8051 			goto out;
8052 		}
8053 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8054 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8055 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8056 			r = 0;
8057 			goto out;
8058 		}
8059 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8060 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8061 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8062 			r = 0;
8063 			goto out;
8064 		}
8065 
8066 		/*
8067 		 * KVM_REQ_HV_STIMER has to be processed after
8068 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8069 		 * depend on the guest clock being up-to-date
8070 		 */
8071 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8072 			kvm_hv_process_stimers(vcpu);
8073 	}
8074 
8075 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8076 		++vcpu->stat.req_event;
8077 		kvm_apic_accept_events(vcpu);
8078 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8079 			r = 1;
8080 			goto out;
8081 		}
8082 
8083 		if (inject_pending_event(vcpu, req_int_win) != 0)
8084 			req_immediate_exit = true;
8085 		else {
8086 			/* Enable SMI/NMI/IRQ window open exits if needed.
8087 			 *
8088 			 * SMIs have three cases:
8089 			 * 1) They can be nested, and then there is nothing to
8090 			 *    do here because RSM will cause a vmexit anyway.
8091 			 * 2) There is an ISA-specific reason why SMI cannot be
8092 			 *    injected, and the moment when this changes can be
8093 			 *    intercepted.
8094 			 * 3) Or the SMI can be pending because
8095 			 *    inject_pending_event has completed the injection
8096 			 *    of an IRQ or NMI from the previous vmexit, and
8097 			 *    then we request an immediate exit to inject the
8098 			 *    SMI.
8099 			 */
8100 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
8101 				if (!kvm_x86_ops->enable_smi_window(vcpu))
8102 					req_immediate_exit = true;
8103 			if (vcpu->arch.nmi_pending)
8104 				kvm_x86_ops->enable_nmi_window(vcpu);
8105 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8106 				kvm_x86_ops->enable_irq_window(vcpu);
8107 			WARN_ON(vcpu->arch.exception.pending);
8108 		}
8109 
8110 		if (kvm_lapic_enabled(vcpu)) {
8111 			update_cr8_intercept(vcpu);
8112 			kvm_lapic_sync_to_vapic(vcpu);
8113 		}
8114 	}
8115 
8116 	r = kvm_mmu_reload(vcpu);
8117 	if (unlikely(r)) {
8118 		goto cancel_injection;
8119 	}
8120 
8121 	preempt_disable();
8122 
8123 	kvm_x86_ops->prepare_guest_switch(vcpu);
8124 
8125 	/*
8126 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8127 	 * IPI are then delayed after guest entry, which ensures that they
8128 	 * result in virtual interrupt delivery.
8129 	 */
8130 	local_irq_disable();
8131 	vcpu->mode = IN_GUEST_MODE;
8132 
8133 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8134 
8135 	/*
8136 	 * 1) We should set ->mode before checking ->requests.  Please see
8137 	 * the comment in kvm_vcpu_exiting_guest_mode().
8138 	 *
8139 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8140 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8141 	 * (see vmx_deliver_posted_interrupt).
8142 	 *
8143 	 * 3) This also orders the write to mode from any reads to the page
8144 	 * tables done while the VCPU is running.  Please see the comment
8145 	 * in kvm_flush_remote_tlbs.
8146 	 */
8147 	smp_mb__after_srcu_read_unlock();
8148 
8149 	/*
8150 	 * This handles the case where a posted interrupt was
8151 	 * notified with kvm_vcpu_kick.
8152 	 */
8153 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8154 		kvm_x86_ops->sync_pir_to_irr(vcpu);
8155 
8156 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8157 	    || need_resched() || signal_pending(current)) {
8158 		vcpu->mode = OUTSIDE_GUEST_MODE;
8159 		smp_wmb();
8160 		local_irq_enable();
8161 		preempt_enable();
8162 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8163 		r = 1;
8164 		goto cancel_injection;
8165 	}
8166 
8167 	if (req_immediate_exit) {
8168 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8169 		kvm_x86_ops->request_immediate_exit(vcpu);
8170 	}
8171 
8172 	trace_kvm_entry(vcpu->vcpu_id);
8173 	guest_enter_irqoff();
8174 
8175 	/* The preempt notifier should have taken care of the FPU already.  */
8176 	WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8177 
8178 	if (unlikely(vcpu->arch.switch_db_regs)) {
8179 		set_debugreg(0, 7);
8180 		set_debugreg(vcpu->arch.eff_db[0], 0);
8181 		set_debugreg(vcpu->arch.eff_db[1], 1);
8182 		set_debugreg(vcpu->arch.eff_db[2], 2);
8183 		set_debugreg(vcpu->arch.eff_db[3], 3);
8184 		set_debugreg(vcpu->arch.dr6, 6);
8185 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8186 	}
8187 
8188 	kvm_x86_ops->run(vcpu);
8189 
8190 	/*
8191 	 * Do this here before restoring debug registers on the host.  And
8192 	 * since we do this before handling the vmexit, a DR access vmexit
8193 	 * can (a) read the correct value of the debug registers, (b) set
8194 	 * KVM_DEBUGREG_WONT_EXIT again.
8195 	 */
8196 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8197 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8198 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8199 		kvm_update_dr0123(vcpu);
8200 		kvm_update_dr6(vcpu);
8201 		kvm_update_dr7(vcpu);
8202 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8203 	}
8204 
8205 	/*
8206 	 * If the guest has used debug registers, at least dr7
8207 	 * will be disabled while returning to the host.
8208 	 * If we don't have active breakpoints in the host, we don't
8209 	 * care about the messed up debug address registers. But if
8210 	 * we have some of them active, restore the old state.
8211 	 */
8212 	if (hw_breakpoint_active())
8213 		hw_breakpoint_restore();
8214 
8215 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8216 
8217 	vcpu->mode = OUTSIDE_GUEST_MODE;
8218 	smp_wmb();
8219 
8220 	kvm_x86_ops->handle_exit_irqoff(vcpu);
8221 
8222 	/*
8223 	 * Consume any pending interrupts, including the possible source of
8224 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8225 	 * An instruction is required after local_irq_enable() to fully unblock
8226 	 * interrupts on processors that implement an interrupt shadow, the
8227 	 * stat.exits increment will do nicely.
8228 	 */
8229 	kvm_before_interrupt(vcpu);
8230 	local_irq_enable();
8231 	++vcpu->stat.exits;
8232 	local_irq_disable();
8233 	kvm_after_interrupt(vcpu);
8234 
8235 	guest_exit_irqoff();
8236 	if (lapic_in_kernel(vcpu)) {
8237 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8238 		if (delta != S64_MIN) {
8239 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8240 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8241 		}
8242 	}
8243 
8244 	local_irq_enable();
8245 	preempt_enable();
8246 
8247 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8248 
8249 	/*
8250 	 * Profile KVM exit RIPs:
8251 	 */
8252 	if (unlikely(prof_on == KVM_PROFILING)) {
8253 		unsigned long rip = kvm_rip_read(vcpu);
8254 		profile_hit(KVM_PROFILING, (void *)rip);
8255 	}
8256 
8257 	if (unlikely(vcpu->arch.tsc_always_catchup))
8258 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8259 
8260 	if (vcpu->arch.apic_attention)
8261 		kvm_lapic_sync_from_vapic(vcpu);
8262 
8263 	vcpu->arch.gpa_available = false;
8264 	r = kvm_x86_ops->handle_exit(vcpu);
8265 	return r;
8266 
8267 cancel_injection:
8268 	kvm_x86_ops->cancel_injection(vcpu);
8269 	if (unlikely(vcpu->arch.apic_attention))
8270 		kvm_lapic_sync_from_vapic(vcpu);
8271 out:
8272 	return r;
8273 }
8274 
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)8275 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8276 {
8277 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8278 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8279 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8280 		kvm_vcpu_block(vcpu);
8281 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8282 
8283 		if (kvm_x86_ops->post_block)
8284 			kvm_x86_ops->post_block(vcpu);
8285 
8286 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8287 			return 1;
8288 	}
8289 
8290 	kvm_apic_accept_events(vcpu);
8291 	switch(vcpu->arch.mp_state) {
8292 	case KVM_MP_STATE_HALTED:
8293 		vcpu->arch.pv.pv_unhalted = false;
8294 		vcpu->arch.mp_state =
8295 			KVM_MP_STATE_RUNNABLE;
8296 		/* fall through */
8297 	case KVM_MP_STATE_RUNNABLE:
8298 		vcpu->arch.apf.halted = false;
8299 		break;
8300 	case KVM_MP_STATE_INIT_RECEIVED:
8301 		break;
8302 	default:
8303 		return -EINTR;
8304 		break;
8305 	}
8306 	return 1;
8307 }
8308 
kvm_vcpu_running(struct kvm_vcpu * vcpu)8309 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8310 {
8311 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8312 		kvm_x86_ops->check_nested_events(vcpu, false);
8313 
8314 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8315 		!vcpu->arch.apf.halted);
8316 }
8317 
vcpu_run(struct kvm_vcpu * vcpu)8318 static int vcpu_run(struct kvm_vcpu *vcpu)
8319 {
8320 	int r;
8321 	struct kvm *kvm = vcpu->kvm;
8322 
8323 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8324 	vcpu->arch.l1tf_flush_l1d = true;
8325 
8326 	for (;;) {
8327 		if (kvm_vcpu_running(vcpu)) {
8328 			r = vcpu_enter_guest(vcpu);
8329 		} else {
8330 			r = vcpu_block(kvm, vcpu);
8331 		}
8332 
8333 		if (r <= 0)
8334 			break;
8335 
8336 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8337 		if (kvm_cpu_has_pending_timer(vcpu))
8338 			kvm_inject_pending_timer_irqs(vcpu);
8339 
8340 		if (dm_request_for_irq_injection(vcpu) &&
8341 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8342 			r = 0;
8343 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8344 			++vcpu->stat.request_irq_exits;
8345 			break;
8346 		}
8347 
8348 		kvm_check_async_pf_completion(vcpu);
8349 
8350 		if (signal_pending(current)) {
8351 			r = -EINTR;
8352 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8353 			++vcpu->stat.signal_exits;
8354 			break;
8355 		}
8356 		if (need_resched()) {
8357 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8358 			cond_resched();
8359 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8360 		}
8361 	}
8362 
8363 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8364 
8365 	return r;
8366 }
8367 
complete_emulated_io(struct kvm_vcpu * vcpu)8368 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8369 {
8370 	int r;
8371 
8372 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8373 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8374 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8375 	return r;
8376 }
8377 
complete_emulated_pio(struct kvm_vcpu * vcpu)8378 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8379 {
8380 	BUG_ON(!vcpu->arch.pio.count);
8381 
8382 	return complete_emulated_io(vcpu);
8383 }
8384 
8385 /*
8386  * Implements the following, as a state machine:
8387  *
8388  * read:
8389  *   for each fragment
8390  *     for each mmio piece in the fragment
8391  *       write gpa, len
8392  *       exit
8393  *       copy data
8394  *   execute insn
8395  *
8396  * write:
8397  *   for each fragment
8398  *     for each mmio piece in the fragment
8399  *       write gpa, len
8400  *       copy data
8401  *       exit
8402  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)8403 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8404 {
8405 	struct kvm_run *run = vcpu->run;
8406 	struct kvm_mmio_fragment *frag;
8407 	unsigned len;
8408 
8409 	BUG_ON(!vcpu->mmio_needed);
8410 
8411 	/* Complete previous fragment */
8412 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8413 	len = min(8u, frag->len);
8414 	if (!vcpu->mmio_is_write)
8415 		memcpy(frag->data, run->mmio.data, len);
8416 
8417 	if (frag->len <= 8) {
8418 		/* Switch to the next fragment. */
8419 		frag++;
8420 		vcpu->mmio_cur_fragment++;
8421 	} else {
8422 		/* Go forward to the next mmio piece. */
8423 		frag->data += len;
8424 		frag->gpa += len;
8425 		frag->len -= len;
8426 	}
8427 
8428 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8429 		vcpu->mmio_needed = 0;
8430 
8431 		/* FIXME: return into emulator if single-stepping.  */
8432 		if (vcpu->mmio_is_write)
8433 			return 1;
8434 		vcpu->mmio_read_completed = 1;
8435 		return complete_emulated_io(vcpu);
8436 	}
8437 
8438 	run->exit_reason = KVM_EXIT_MMIO;
8439 	run->mmio.phys_addr = frag->gpa;
8440 	if (vcpu->mmio_is_write)
8441 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8442 	run->mmio.len = min(8u, frag->len);
8443 	run->mmio.is_write = vcpu->mmio_is_write;
8444 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8445 	return 0;
8446 }
8447 
8448 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)8449 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8450 {
8451 	fpregs_lock();
8452 
8453 	copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8454 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8455 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8456 				~XFEATURE_MASK_PKRU);
8457 
8458 	fpregs_mark_activate();
8459 	fpregs_unlock();
8460 
8461 	trace_kvm_fpu(1);
8462 }
8463 
8464 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)8465 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8466 {
8467 	fpregs_lock();
8468 
8469 	copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8470 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8471 
8472 	fpregs_mark_activate();
8473 	fpregs_unlock();
8474 
8475 	++vcpu->stat.fpu_reload;
8476 	trace_kvm_fpu(0);
8477 }
8478 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)8479 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8480 {
8481 	int r;
8482 
8483 	vcpu_load(vcpu);
8484 	kvm_sigset_activate(vcpu);
8485 	kvm_load_guest_fpu(vcpu);
8486 
8487 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8488 		if (kvm_run->immediate_exit) {
8489 			r = -EINTR;
8490 			goto out;
8491 		}
8492 		kvm_vcpu_block(vcpu);
8493 		kvm_apic_accept_events(vcpu);
8494 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8495 		r = -EAGAIN;
8496 		if (signal_pending(current)) {
8497 			r = -EINTR;
8498 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8499 			++vcpu->stat.signal_exits;
8500 		}
8501 		goto out;
8502 	}
8503 
8504 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8505 		r = -EINVAL;
8506 		goto out;
8507 	}
8508 
8509 	if (vcpu->run->kvm_dirty_regs) {
8510 		r = sync_regs(vcpu);
8511 		if (r != 0)
8512 			goto out;
8513 	}
8514 
8515 	/* re-sync apic's tpr */
8516 	if (!lapic_in_kernel(vcpu)) {
8517 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8518 			r = -EINVAL;
8519 			goto out;
8520 		}
8521 	}
8522 
8523 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8524 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8525 		vcpu->arch.complete_userspace_io = NULL;
8526 		r = cui(vcpu);
8527 		if (r <= 0)
8528 			goto out;
8529 	} else
8530 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8531 
8532 	if (kvm_run->immediate_exit)
8533 		r = -EINTR;
8534 	else
8535 		r = vcpu_run(vcpu);
8536 
8537 out:
8538 	kvm_put_guest_fpu(vcpu);
8539 	if (vcpu->run->kvm_valid_regs)
8540 		store_regs(vcpu);
8541 	post_kvm_run_save(vcpu);
8542 	kvm_sigset_deactivate(vcpu);
8543 
8544 	vcpu_put(vcpu);
8545 	return r;
8546 }
8547 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8548 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8549 {
8550 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8551 		/*
8552 		 * We are here if userspace calls get_regs() in the middle of
8553 		 * instruction emulation. Registers state needs to be copied
8554 		 * back from emulation context to vcpu. Userspace shouldn't do
8555 		 * that usually, but some bad designed PV devices (vmware
8556 		 * backdoor interface) need this to work
8557 		 */
8558 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8559 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8560 	}
8561 	regs->rax = kvm_rax_read(vcpu);
8562 	regs->rbx = kvm_rbx_read(vcpu);
8563 	regs->rcx = kvm_rcx_read(vcpu);
8564 	regs->rdx = kvm_rdx_read(vcpu);
8565 	regs->rsi = kvm_rsi_read(vcpu);
8566 	regs->rdi = kvm_rdi_read(vcpu);
8567 	regs->rsp = kvm_rsp_read(vcpu);
8568 	regs->rbp = kvm_rbp_read(vcpu);
8569 #ifdef CONFIG_X86_64
8570 	regs->r8 = kvm_r8_read(vcpu);
8571 	regs->r9 = kvm_r9_read(vcpu);
8572 	regs->r10 = kvm_r10_read(vcpu);
8573 	regs->r11 = kvm_r11_read(vcpu);
8574 	regs->r12 = kvm_r12_read(vcpu);
8575 	regs->r13 = kvm_r13_read(vcpu);
8576 	regs->r14 = kvm_r14_read(vcpu);
8577 	regs->r15 = kvm_r15_read(vcpu);
8578 #endif
8579 
8580 	regs->rip = kvm_rip_read(vcpu);
8581 	regs->rflags = kvm_get_rflags(vcpu);
8582 }
8583 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8584 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8585 {
8586 	vcpu_load(vcpu);
8587 	__get_regs(vcpu, regs);
8588 	vcpu_put(vcpu);
8589 	return 0;
8590 }
8591 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8592 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8593 {
8594 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8595 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8596 
8597 	kvm_rax_write(vcpu, regs->rax);
8598 	kvm_rbx_write(vcpu, regs->rbx);
8599 	kvm_rcx_write(vcpu, regs->rcx);
8600 	kvm_rdx_write(vcpu, regs->rdx);
8601 	kvm_rsi_write(vcpu, regs->rsi);
8602 	kvm_rdi_write(vcpu, regs->rdi);
8603 	kvm_rsp_write(vcpu, regs->rsp);
8604 	kvm_rbp_write(vcpu, regs->rbp);
8605 #ifdef CONFIG_X86_64
8606 	kvm_r8_write(vcpu, regs->r8);
8607 	kvm_r9_write(vcpu, regs->r9);
8608 	kvm_r10_write(vcpu, regs->r10);
8609 	kvm_r11_write(vcpu, regs->r11);
8610 	kvm_r12_write(vcpu, regs->r12);
8611 	kvm_r13_write(vcpu, regs->r13);
8612 	kvm_r14_write(vcpu, regs->r14);
8613 	kvm_r15_write(vcpu, regs->r15);
8614 #endif
8615 
8616 	kvm_rip_write(vcpu, regs->rip);
8617 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8618 
8619 	vcpu->arch.exception.pending = false;
8620 
8621 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8622 }
8623 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8624 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8625 {
8626 	vcpu_load(vcpu);
8627 	__set_regs(vcpu, regs);
8628 	vcpu_put(vcpu);
8629 	return 0;
8630 }
8631 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)8632 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8633 {
8634 	struct kvm_segment cs;
8635 
8636 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8637 	*db = cs.db;
8638 	*l = cs.l;
8639 }
8640 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8641 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8642 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8643 {
8644 	struct desc_ptr dt;
8645 
8646 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8647 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8648 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8649 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8650 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8651 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8652 
8653 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8654 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8655 
8656 	kvm_x86_ops->get_idt(vcpu, &dt);
8657 	sregs->idt.limit = dt.size;
8658 	sregs->idt.base = dt.address;
8659 	kvm_x86_ops->get_gdt(vcpu, &dt);
8660 	sregs->gdt.limit = dt.size;
8661 	sregs->gdt.base = dt.address;
8662 
8663 	sregs->cr0 = kvm_read_cr0(vcpu);
8664 	sregs->cr2 = vcpu->arch.cr2;
8665 	sregs->cr3 = kvm_read_cr3(vcpu);
8666 	sregs->cr4 = kvm_read_cr4(vcpu);
8667 	sregs->cr8 = kvm_get_cr8(vcpu);
8668 	sregs->efer = vcpu->arch.efer;
8669 	sregs->apic_base = kvm_get_apic_base(vcpu);
8670 
8671 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8672 
8673 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8674 		set_bit(vcpu->arch.interrupt.nr,
8675 			(unsigned long *)sregs->interrupt_bitmap);
8676 }
8677 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8678 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8679 				  struct kvm_sregs *sregs)
8680 {
8681 	vcpu_load(vcpu);
8682 	__get_sregs(vcpu, sregs);
8683 	vcpu_put(vcpu);
8684 	return 0;
8685 }
8686 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)8687 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8688 				    struct kvm_mp_state *mp_state)
8689 {
8690 	vcpu_load(vcpu);
8691 
8692 	kvm_apic_accept_events(vcpu);
8693 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8694 					vcpu->arch.pv.pv_unhalted)
8695 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8696 	else
8697 		mp_state->mp_state = vcpu->arch.mp_state;
8698 
8699 	vcpu_put(vcpu);
8700 	return 0;
8701 }
8702 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)8703 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8704 				    struct kvm_mp_state *mp_state)
8705 {
8706 	int ret = -EINVAL;
8707 
8708 	vcpu_load(vcpu);
8709 
8710 	if (!lapic_in_kernel(vcpu) &&
8711 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8712 		goto out;
8713 
8714 	/* INITs are latched while in SMM */
8715 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8716 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8717 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8718 		goto out;
8719 
8720 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8721 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8722 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8723 	} else
8724 		vcpu->arch.mp_state = mp_state->mp_state;
8725 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8726 
8727 	ret = 0;
8728 out:
8729 	vcpu_put(vcpu);
8730 	return ret;
8731 }
8732 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)8733 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8734 		    int reason, bool has_error_code, u32 error_code)
8735 {
8736 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8737 	int ret;
8738 
8739 	init_emulate_ctxt(vcpu);
8740 
8741 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8742 				   has_error_code, error_code);
8743 	if (ret) {
8744 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8745 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8746 		vcpu->run->internal.ndata = 0;
8747 		return 0;
8748 	}
8749 
8750 	kvm_rip_write(vcpu, ctxt->eip);
8751 	kvm_set_rflags(vcpu, ctxt->eflags);
8752 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8753 	return 1;
8754 }
8755 EXPORT_SYMBOL_GPL(kvm_task_switch);
8756 
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8757 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8758 {
8759 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8760 		/*
8761 		 * When EFER.LME and CR0.PG are set, the processor is in
8762 		 * 64-bit mode (though maybe in a 32-bit code segment).
8763 		 * CR4.PAE and EFER.LMA must be set.
8764 		 */
8765 		if (!(sregs->cr4 & X86_CR4_PAE)
8766 		    || !(sregs->efer & EFER_LMA))
8767 			return -EINVAL;
8768 	} else {
8769 		/*
8770 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8771 		 * segment cannot be 64-bit.
8772 		 */
8773 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8774 			return -EINVAL;
8775 	}
8776 
8777 	return kvm_valid_cr4(vcpu, sregs->cr4);
8778 }
8779 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8780 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8781 {
8782 	struct msr_data apic_base_msr;
8783 	int mmu_reset_needed = 0;
8784 	int cpuid_update_needed = 0;
8785 	int pending_vec, max_bits, idx;
8786 	struct desc_ptr dt;
8787 	int ret = -EINVAL;
8788 
8789 	if (kvm_valid_sregs(vcpu, sregs))
8790 		goto out;
8791 
8792 	apic_base_msr.data = sregs->apic_base;
8793 	apic_base_msr.host_initiated = true;
8794 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8795 		goto out;
8796 
8797 	dt.size = sregs->idt.limit;
8798 	dt.address = sregs->idt.base;
8799 	kvm_x86_ops->set_idt(vcpu, &dt);
8800 	dt.size = sregs->gdt.limit;
8801 	dt.address = sregs->gdt.base;
8802 	kvm_x86_ops->set_gdt(vcpu, &dt);
8803 
8804 	vcpu->arch.cr2 = sregs->cr2;
8805 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8806 	vcpu->arch.cr3 = sregs->cr3;
8807 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8808 
8809 	kvm_set_cr8(vcpu, sregs->cr8);
8810 
8811 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8812 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8813 
8814 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8815 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8816 	vcpu->arch.cr0 = sregs->cr0;
8817 
8818 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8819 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8820 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8821 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8822 	if (cpuid_update_needed)
8823 		kvm_update_cpuid(vcpu);
8824 
8825 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8826 	if (is_pae_paging(vcpu)) {
8827 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8828 		mmu_reset_needed = 1;
8829 	}
8830 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8831 
8832 	if (mmu_reset_needed)
8833 		kvm_mmu_reset_context(vcpu);
8834 
8835 	max_bits = KVM_NR_INTERRUPTS;
8836 	pending_vec = find_first_bit(
8837 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8838 	if (pending_vec < max_bits) {
8839 		kvm_queue_interrupt(vcpu, pending_vec, false);
8840 		pr_debug("Set back pending irq %d\n", pending_vec);
8841 	}
8842 
8843 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8844 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8845 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8846 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8847 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8848 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8849 
8850 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8851 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8852 
8853 	update_cr8_intercept(vcpu);
8854 
8855 	/* Older userspace won't unhalt the vcpu on reset. */
8856 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8857 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8858 	    !is_protmode(vcpu))
8859 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8860 
8861 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8862 
8863 	ret = 0;
8864 out:
8865 	return ret;
8866 }
8867 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8868 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8869 				  struct kvm_sregs *sregs)
8870 {
8871 	int ret;
8872 
8873 	vcpu_load(vcpu);
8874 	ret = __set_sregs(vcpu, sregs);
8875 	vcpu_put(vcpu);
8876 	return ret;
8877 }
8878 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)8879 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8880 					struct kvm_guest_debug *dbg)
8881 {
8882 	unsigned long rflags;
8883 	int i, r;
8884 
8885 	vcpu_load(vcpu);
8886 
8887 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8888 		r = -EBUSY;
8889 		if (vcpu->arch.exception.pending)
8890 			goto out;
8891 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8892 			kvm_queue_exception(vcpu, DB_VECTOR);
8893 		else
8894 			kvm_queue_exception(vcpu, BP_VECTOR);
8895 	}
8896 
8897 	/*
8898 	 * Read rflags as long as potentially injected trace flags are still
8899 	 * filtered out.
8900 	 */
8901 	rflags = kvm_get_rflags(vcpu);
8902 
8903 	vcpu->guest_debug = dbg->control;
8904 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8905 		vcpu->guest_debug = 0;
8906 
8907 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8908 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8909 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8910 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8911 	} else {
8912 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8913 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8914 	}
8915 	kvm_update_dr7(vcpu);
8916 
8917 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8918 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8919 			get_segment_base(vcpu, VCPU_SREG_CS);
8920 
8921 	/*
8922 	 * Trigger an rflags update that will inject or remove the trace
8923 	 * flags.
8924 	 */
8925 	kvm_set_rflags(vcpu, rflags);
8926 
8927 	kvm_x86_ops->update_bp_intercept(vcpu);
8928 
8929 	r = 0;
8930 
8931 out:
8932 	vcpu_put(vcpu);
8933 	return r;
8934 }
8935 
8936 /*
8937  * Translate a guest virtual address to a guest physical address.
8938  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)8939 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8940 				    struct kvm_translation *tr)
8941 {
8942 	unsigned long vaddr = tr->linear_address;
8943 	gpa_t gpa;
8944 	int idx;
8945 
8946 	vcpu_load(vcpu);
8947 
8948 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8949 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8950 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8951 	tr->physical_address = gpa;
8952 	tr->valid = gpa != UNMAPPED_GVA;
8953 	tr->writeable = 1;
8954 	tr->usermode = 0;
8955 
8956 	vcpu_put(vcpu);
8957 	return 0;
8958 }
8959 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)8960 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8961 {
8962 	struct fxregs_state *fxsave;
8963 
8964 	vcpu_load(vcpu);
8965 
8966 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8967 	memcpy(fpu->fpr, fxsave->st_space, 128);
8968 	fpu->fcw = fxsave->cwd;
8969 	fpu->fsw = fxsave->swd;
8970 	fpu->ftwx = fxsave->twd;
8971 	fpu->last_opcode = fxsave->fop;
8972 	fpu->last_ip = fxsave->rip;
8973 	fpu->last_dp = fxsave->rdp;
8974 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8975 
8976 	vcpu_put(vcpu);
8977 	return 0;
8978 }
8979 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)8980 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8981 {
8982 	struct fxregs_state *fxsave;
8983 
8984 	vcpu_load(vcpu);
8985 
8986 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8987 
8988 	memcpy(fxsave->st_space, fpu->fpr, 128);
8989 	fxsave->cwd = fpu->fcw;
8990 	fxsave->swd = fpu->fsw;
8991 	fxsave->twd = fpu->ftwx;
8992 	fxsave->fop = fpu->last_opcode;
8993 	fxsave->rip = fpu->last_ip;
8994 	fxsave->rdp = fpu->last_dp;
8995 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8996 
8997 	vcpu_put(vcpu);
8998 	return 0;
8999 }
9000 
store_regs(struct kvm_vcpu * vcpu)9001 static void store_regs(struct kvm_vcpu *vcpu)
9002 {
9003 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9004 
9005 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9006 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9007 
9008 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9009 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9010 
9011 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9012 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9013 				vcpu, &vcpu->run->s.regs.events);
9014 }
9015 
sync_regs(struct kvm_vcpu * vcpu)9016 static int sync_regs(struct kvm_vcpu *vcpu)
9017 {
9018 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9019 		return -EINVAL;
9020 
9021 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9022 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9023 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9024 	}
9025 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9026 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9027 			return -EINVAL;
9028 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9029 	}
9030 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9031 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9032 				vcpu, &vcpu->run->s.regs.events))
9033 			return -EINVAL;
9034 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9035 	}
9036 
9037 	return 0;
9038 }
9039 
fx_init(struct kvm_vcpu * vcpu)9040 static void fx_init(struct kvm_vcpu *vcpu)
9041 {
9042 	fpstate_init(&vcpu->arch.guest_fpu->state);
9043 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9044 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9045 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9046 
9047 	/*
9048 	 * Ensure guest xcr0 is valid for loading
9049 	 */
9050 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9051 
9052 	vcpu->arch.cr0 |= X86_CR0_ET;
9053 }
9054 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)9055 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
9056 {
9057 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
9058 
9059 	kvmclock_reset(vcpu);
9060 
9061 	kvm_x86_ops->vcpu_free(vcpu);
9062 	free_cpumask_var(wbinvd_dirty_mask);
9063 }
9064 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)9065 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
9066 						unsigned int id)
9067 {
9068 	struct kvm_vcpu *vcpu;
9069 
9070 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9071 		printk_once(KERN_WARNING
9072 		"kvm: SMP vm created on host with unstable TSC; "
9073 		"guest TSC will not be reliable\n");
9074 
9075 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
9076 
9077 	return vcpu;
9078 }
9079 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)9080 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
9081 {
9082 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9083 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9084 	kvm_vcpu_mtrr_init(vcpu);
9085 	vcpu_load(vcpu);
9086 	kvm_vcpu_reset(vcpu, false);
9087 	kvm_init_mmu(vcpu, false);
9088 	vcpu_put(vcpu);
9089 	return 0;
9090 }
9091 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)9092 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9093 {
9094 	struct msr_data msr;
9095 	struct kvm *kvm = vcpu->kvm;
9096 
9097 	kvm_hv_vcpu_postcreate(vcpu);
9098 
9099 	if (mutex_lock_killable(&vcpu->mutex))
9100 		return;
9101 	vcpu_load(vcpu);
9102 	msr.data = 0x0;
9103 	msr.index = MSR_IA32_TSC;
9104 	msr.host_initiated = true;
9105 	kvm_write_tsc(vcpu, &msr);
9106 	vcpu_put(vcpu);
9107 
9108 	/* poll control enabled by default */
9109 	vcpu->arch.msr_kvm_poll_control = 1;
9110 
9111 	mutex_unlock(&vcpu->mutex);
9112 
9113 	if (!kvmclock_periodic_sync)
9114 		return;
9115 
9116 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9117 					KVMCLOCK_SYNC_PERIOD);
9118 }
9119 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)9120 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9121 {
9122 	vcpu->arch.apf.msr_val = 0;
9123 
9124 	vcpu_load(vcpu);
9125 	kvm_mmu_unload(vcpu);
9126 	vcpu_put(vcpu);
9127 
9128 	kvm_x86_ops->vcpu_free(vcpu);
9129 }
9130 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)9131 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9132 {
9133 	kvm_lapic_reset(vcpu, init_event);
9134 
9135 	vcpu->arch.hflags = 0;
9136 
9137 	vcpu->arch.smi_pending = 0;
9138 	vcpu->arch.smi_count = 0;
9139 	atomic_set(&vcpu->arch.nmi_queued, 0);
9140 	vcpu->arch.nmi_pending = 0;
9141 	vcpu->arch.nmi_injected = false;
9142 	kvm_clear_interrupt_queue(vcpu);
9143 	kvm_clear_exception_queue(vcpu);
9144 	vcpu->arch.exception.pending = false;
9145 
9146 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9147 	kvm_update_dr0123(vcpu);
9148 	vcpu->arch.dr6 = DR6_INIT;
9149 	kvm_update_dr6(vcpu);
9150 	vcpu->arch.dr7 = DR7_FIXED_1;
9151 	kvm_update_dr7(vcpu);
9152 
9153 	vcpu->arch.cr2 = 0;
9154 
9155 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9156 	vcpu->arch.apf.msr_val = 0;
9157 	vcpu->arch.st.msr_val = 0;
9158 
9159 	kvmclock_reset(vcpu);
9160 
9161 	kvm_clear_async_pf_completion_queue(vcpu);
9162 	kvm_async_pf_hash_reset(vcpu);
9163 	vcpu->arch.apf.halted = false;
9164 
9165 	if (kvm_mpx_supported()) {
9166 		void *mpx_state_buffer;
9167 
9168 		/*
9169 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9170 		 * called with loaded FPU and does not let userspace fix the state.
9171 		 */
9172 		if (init_event)
9173 			kvm_put_guest_fpu(vcpu);
9174 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9175 					XFEATURE_BNDREGS);
9176 		if (mpx_state_buffer)
9177 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9178 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9179 					XFEATURE_BNDCSR);
9180 		if (mpx_state_buffer)
9181 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9182 		if (init_event)
9183 			kvm_load_guest_fpu(vcpu);
9184 	}
9185 
9186 	if (!init_event) {
9187 		kvm_pmu_reset(vcpu);
9188 		vcpu->arch.smbase = 0x30000;
9189 
9190 		vcpu->arch.msr_misc_features_enables = 0;
9191 
9192 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9193 	}
9194 
9195 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9196 	vcpu->arch.regs_avail = ~0;
9197 	vcpu->arch.regs_dirty = ~0;
9198 
9199 	vcpu->arch.ia32_xss = 0;
9200 
9201 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
9202 }
9203 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)9204 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9205 {
9206 	struct kvm_segment cs;
9207 
9208 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9209 	cs.selector = vector << 8;
9210 	cs.base = vector << 12;
9211 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9212 	kvm_rip_write(vcpu, 0);
9213 }
9214 
kvm_arch_hardware_enable(void)9215 int kvm_arch_hardware_enable(void)
9216 {
9217 	struct kvm *kvm;
9218 	struct kvm_vcpu *vcpu;
9219 	int i;
9220 	int ret;
9221 	u64 local_tsc;
9222 	u64 max_tsc = 0;
9223 	bool stable, backwards_tsc = false;
9224 
9225 	kvm_shared_msr_cpu_online();
9226 	ret = kvm_x86_ops->hardware_enable();
9227 	if (ret != 0)
9228 		return ret;
9229 
9230 	local_tsc = rdtsc();
9231 	stable = !kvm_check_tsc_unstable();
9232 	list_for_each_entry(kvm, &vm_list, vm_list) {
9233 		kvm_for_each_vcpu(i, vcpu, kvm) {
9234 			if (!stable && vcpu->cpu == smp_processor_id())
9235 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9236 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9237 				backwards_tsc = true;
9238 				if (vcpu->arch.last_host_tsc > max_tsc)
9239 					max_tsc = vcpu->arch.last_host_tsc;
9240 			}
9241 		}
9242 	}
9243 
9244 	/*
9245 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9246 	 * platforms that reset TSC during suspend or hibernate actions, but
9247 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9248 	 * detect that condition here, which happens early in CPU bringup,
9249 	 * before any KVM threads can be running.  Unfortunately, we can't
9250 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9251 	 * enough into CPU bringup that we know how much real time has actually
9252 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9253 	 * variables that haven't been updated yet.
9254 	 *
9255 	 * So we simply find the maximum observed TSC above, then record the
9256 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9257 	 * the adjustment will be applied.  Note that we accumulate
9258 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9259 	 * gets a chance to run again.  In the event that no KVM threads get a
9260 	 * chance to run, we will miss the entire elapsed period, as we'll have
9261 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9262 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9263 	 * uniform across all VCPUs (not to mention the scenario is extremely
9264 	 * unlikely). It is possible that a second hibernate recovery happens
9265 	 * much faster than a first, causing the observed TSC here to be
9266 	 * smaller; this would require additional padding adjustment, which is
9267 	 * why we set last_host_tsc to the local tsc observed here.
9268 	 *
9269 	 * N.B. - this code below runs only on platforms with reliable TSC,
9270 	 * as that is the only way backwards_tsc is set above.  Also note
9271 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9272 	 * have the same delta_cyc adjustment applied if backwards_tsc
9273 	 * is detected.  Note further, this adjustment is only done once,
9274 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9275 	 * called multiple times (one for each physical CPU bringup).
9276 	 *
9277 	 * Platforms with unreliable TSCs don't have to deal with this, they
9278 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9279 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9280 	 * guarantee that they stay in perfect synchronization.
9281 	 */
9282 	if (backwards_tsc) {
9283 		u64 delta_cyc = max_tsc - local_tsc;
9284 		list_for_each_entry(kvm, &vm_list, vm_list) {
9285 			kvm->arch.backwards_tsc_observed = true;
9286 			kvm_for_each_vcpu(i, vcpu, kvm) {
9287 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9288 				vcpu->arch.last_host_tsc = local_tsc;
9289 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9290 			}
9291 
9292 			/*
9293 			 * We have to disable TSC offset matching.. if you were
9294 			 * booting a VM while issuing an S4 host suspend....
9295 			 * you may have some problem.  Solving this issue is
9296 			 * left as an exercise to the reader.
9297 			 */
9298 			kvm->arch.last_tsc_nsec = 0;
9299 			kvm->arch.last_tsc_write = 0;
9300 		}
9301 
9302 	}
9303 	return 0;
9304 }
9305 
kvm_arch_hardware_disable(void)9306 void kvm_arch_hardware_disable(void)
9307 {
9308 	kvm_x86_ops->hardware_disable();
9309 	drop_user_return_notifiers();
9310 }
9311 
kvm_arch_hardware_setup(void)9312 int kvm_arch_hardware_setup(void)
9313 {
9314 	int r;
9315 
9316 	r = kvm_x86_ops->hardware_setup();
9317 	if (r != 0)
9318 		return r;
9319 
9320 	if (kvm_has_tsc_control) {
9321 		/*
9322 		 * Make sure the user can only configure tsc_khz values that
9323 		 * fit into a signed integer.
9324 		 * A min value is not calculated because it will always
9325 		 * be 1 on all machines.
9326 		 */
9327 		u64 max = min(0x7fffffffULL,
9328 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9329 		kvm_max_guest_tsc_khz = max;
9330 
9331 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9332 	}
9333 
9334 	kvm_init_msr_list();
9335 	return 0;
9336 }
9337 
kvm_arch_hardware_unsetup(void)9338 void kvm_arch_hardware_unsetup(void)
9339 {
9340 	kvm_x86_ops->hardware_unsetup();
9341 }
9342 
kvm_arch_check_processor_compat(void)9343 int kvm_arch_check_processor_compat(void)
9344 {
9345 	return kvm_x86_ops->check_processor_compatibility();
9346 }
9347 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)9348 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9349 {
9350 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9351 }
9352 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9353 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)9354 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9355 {
9356 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9357 }
9358 
9359 struct static_key kvm_no_apic_vcpu __read_mostly;
9360 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9361 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)9362 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9363 {
9364 	struct page *page;
9365 	int r;
9366 
9367 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9368 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9369 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9370 	else
9371 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9372 
9373 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9374 	if (!page) {
9375 		r = -ENOMEM;
9376 		goto fail;
9377 	}
9378 	vcpu->arch.pio_data = page_address(page);
9379 
9380 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9381 
9382 	r = kvm_mmu_create(vcpu);
9383 	if (r < 0)
9384 		goto fail_free_pio_data;
9385 
9386 	if (irqchip_in_kernel(vcpu->kvm)) {
9387 		vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9388 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9389 		if (r < 0)
9390 			goto fail_mmu_destroy;
9391 	} else
9392 		static_key_slow_inc(&kvm_no_apic_vcpu);
9393 
9394 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9395 				       GFP_KERNEL_ACCOUNT);
9396 	if (!vcpu->arch.mce_banks) {
9397 		r = -ENOMEM;
9398 		goto fail_free_lapic;
9399 	}
9400 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9401 
9402 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9403 				GFP_KERNEL_ACCOUNT)) {
9404 		r = -ENOMEM;
9405 		goto fail_free_mce_banks;
9406 	}
9407 
9408 	fx_init(vcpu);
9409 
9410 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9411 
9412 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9413 
9414 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9415 
9416 	kvm_async_pf_hash_reset(vcpu);
9417 	kvm_pmu_init(vcpu);
9418 
9419 	vcpu->arch.pending_external_vector = -1;
9420 	vcpu->arch.preempted_in_kernel = false;
9421 
9422 	kvm_hv_vcpu_init(vcpu);
9423 
9424 	return 0;
9425 
9426 fail_free_mce_banks:
9427 	kfree(vcpu->arch.mce_banks);
9428 fail_free_lapic:
9429 	kvm_free_lapic(vcpu);
9430 fail_mmu_destroy:
9431 	kvm_mmu_destroy(vcpu);
9432 fail_free_pio_data:
9433 	free_page((unsigned long)vcpu->arch.pio_data);
9434 fail:
9435 	return r;
9436 }
9437 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)9438 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9439 {
9440 	int idx;
9441 
9442 	kvm_hv_vcpu_uninit(vcpu);
9443 	kvm_pmu_destroy(vcpu);
9444 	kfree(vcpu->arch.mce_banks);
9445 	kvm_free_lapic(vcpu);
9446 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9447 	kvm_mmu_destroy(vcpu);
9448 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9449 	free_page((unsigned long)vcpu->arch.pio_data);
9450 	if (!lapic_in_kernel(vcpu))
9451 		static_key_slow_dec(&kvm_no_apic_vcpu);
9452 }
9453 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)9454 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9455 {
9456 	vcpu->arch.l1tf_flush_l1d = true;
9457 	kvm_x86_ops->sched_in(vcpu, cpu);
9458 }
9459 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)9460 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9461 {
9462 	if (type)
9463 		return -EINVAL;
9464 
9465 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9466 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9467 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9468 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9469 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9470 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9471 
9472 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9473 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9474 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9475 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9476 		&kvm->arch.irq_sources_bitmap);
9477 
9478 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9479 	mutex_init(&kvm->arch.apic_map_lock);
9480 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9481 
9482 	kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9483 	pvclock_update_vm_gtod_copy(kvm);
9484 
9485 	kvm->arch.guest_can_read_msr_platform_info = true;
9486 
9487 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9488 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9489 
9490 	kvm_hv_init_vm(kvm);
9491 	kvm_page_track_init(kvm);
9492 	kvm_mmu_init_vm(kvm);
9493 
9494 	return kvm_x86_ops->vm_init(kvm);
9495 }
9496 
kvm_arch_post_init_vm(struct kvm * kvm)9497 int kvm_arch_post_init_vm(struct kvm *kvm)
9498 {
9499 	return kvm_mmu_post_init_vm(kvm);
9500 }
9501 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)9502 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9503 {
9504 	vcpu_load(vcpu);
9505 	kvm_mmu_unload(vcpu);
9506 	vcpu_put(vcpu);
9507 }
9508 
kvm_free_vcpus(struct kvm * kvm)9509 static void kvm_free_vcpus(struct kvm *kvm)
9510 {
9511 	unsigned int i;
9512 	struct kvm_vcpu *vcpu;
9513 
9514 	/*
9515 	 * Unpin any mmu pages first.
9516 	 */
9517 	kvm_for_each_vcpu(i, vcpu, kvm) {
9518 		kvm_clear_async_pf_completion_queue(vcpu);
9519 		kvm_unload_vcpu_mmu(vcpu);
9520 	}
9521 	kvm_for_each_vcpu(i, vcpu, kvm)
9522 		kvm_arch_vcpu_free(vcpu);
9523 
9524 	mutex_lock(&kvm->lock);
9525 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9526 		kvm->vcpus[i] = NULL;
9527 
9528 	atomic_set(&kvm->online_vcpus, 0);
9529 	mutex_unlock(&kvm->lock);
9530 }
9531 
kvm_arch_sync_events(struct kvm * kvm)9532 void kvm_arch_sync_events(struct kvm *kvm)
9533 {
9534 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9535 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9536 	kvm_free_pit(kvm);
9537 }
9538 
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)9539 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9540 {
9541 	int i, r;
9542 	unsigned long hva;
9543 	struct kvm_memslots *slots = kvm_memslots(kvm);
9544 	struct kvm_memory_slot *slot, old;
9545 
9546 	/* Called with kvm->slots_lock held.  */
9547 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9548 		return -EINVAL;
9549 
9550 	slot = id_to_memslot(slots, id);
9551 	if (size) {
9552 		if (slot->npages)
9553 			return -EEXIST;
9554 
9555 		/*
9556 		 * MAP_SHARED to prevent internal slot pages from being moved
9557 		 * by fork()/COW.
9558 		 */
9559 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9560 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9561 		if (IS_ERR((void *)hva))
9562 			return PTR_ERR((void *)hva);
9563 	} else {
9564 		if (!slot->npages)
9565 			return 0;
9566 
9567 		hva = 0;
9568 	}
9569 
9570 	old = *slot;
9571 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9572 		struct kvm_userspace_memory_region m;
9573 
9574 		m.slot = id | (i << 16);
9575 		m.flags = 0;
9576 		m.guest_phys_addr = gpa;
9577 		m.userspace_addr = hva;
9578 		m.memory_size = size;
9579 		r = __kvm_set_memory_region(kvm, &m);
9580 		if (r < 0)
9581 			return r;
9582 	}
9583 
9584 	if (!size)
9585 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9586 
9587 	return 0;
9588 }
9589 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9590 
x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)9591 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9592 {
9593 	int r;
9594 
9595 	mutex_lock(&kvm->slots_lock);
9596 	r = __x86_set_memory_region(kvm, id, gpa, size);
9597 	mutex_unlock(&kvm->slots_lock);
9598 
9599 	return r;
9600 }
9601 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9602 
kvm_arch_pre_destroy_vm(struct kvm * kvm)9603 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9604 {
9605 	kvm_mmu_pre_destroy_vm(kvm);
9606 }
9607 
kvm_arch_destroy_vm(struct kvm * kvm)9608 void kvm_arch_destroy_vm(struct kvm *kvm)
9609 {
9610 	if (current->mm == kvm->mm) {
9611 		/*
9612 		 * Free memory regions allocated on behalf of userspace,
9613 		 * unless the the memory map has changed due to process exit
9614 		 * or fd copying.
9615 		 */
9616 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9617 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9618 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9619 	}
9620 	if (kvm_x86_ops->vm_destroy)
9621 		kvm_x86_ops->vm_destroy(kvm);
9622 	kvm_pic_destroy(kvm);
9623 	kvm_ioapic_destroy(kvm);
9624 	kvm_free_vcpus(kvm);
9625 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9626 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9627 	kvm_mmu_uninit_vm(kvm);
9628 	kvm_page_track_cleanup(kvm);
9629 	kvm_hv_destroy_vm(kvm);
9630 }
9631 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)9632 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9633 			   struct kvm_memory_slot *dont)
9634 {
9635 	int i;
9636 
9637 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9638 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9639 			kvfree(free->arch.rmap[i]);
9640 			free->arch.rmap[i] = NULL;
9641 		}
9642 		if (i == 0)
9643 			continue;
9644 
9645 		if (!dont || free->arch.lpage_info[i - 1] !=
9646 			     dont->arch.lpage_info[i - 1]) {
9647 			kvfree(free->arch.lpage_info[i - 1]);
9648 			free->arch.lpage_info[i - 1] = NULL;
9649 		}
9650 	}
9651 
9652 	kvm_page_track_free_memslot(free, dont);
9653 }
9654 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)9655 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9656 			    unsigned long npages)
9657 {
9658 	int i;
9659 
9660 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9661 		struct kvm_lpage_info *linfo;
9662 		unsigned long ugfn;
9663 		int lpages;
9664 		int level = i + 1;
9665 
9666 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9667 				      slot->base_gfn, level) + 1;
9668 
9669 		slot->arch.rmap[i] =
9670 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9671 				 GFP_KERNEL_ACCOUNT);
9672 		if (!slot->arch.rmap[i])
9673 			goto out_free;
9674 		if (i == 0)
9675 			continue;
9676 
9677 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9678 		if (!linfo)
9679 			goto out_free;
9680 
9681 		slot->arch.lpage_info[i - 1] = linfo;
9682 
9683 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9684 			linfo[0].disallow_lpage = 1;
9685 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9686 			linfo[lpages - 1].disallow_lpage = 1;
9687 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9688 		/*
9689 		 * If the gfn and userspace address are not aligned wrt each
9690 		 * other, or if explicitly asked to, disable large page
9691 		 * support for this slot
9692 		 */
9693 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9694 		    !kvm_largepages_enabled()) {
9695 			unsigned long j;
9696 
9697 			for (j = 0; j < lpages; ++j)
9698 				linfo[j].disallow_lpage = 1;
9699 		}
9700 	}
9701 
9702 	if (kvm_page_track_create_memslot(slot, npages))
9703 		goto out_free;
9704 
9705 	return 0;
9706 
9707 out_free:
9708 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9709 		kvfree(slot->arch.rmap[i]);
9710 		slot->arch.rmap[i] = NULL;
9711 		if (i == 0)
9712 			continue;
9713 
9714 		kvfree(slot->arch.lpage_info[i - 1]);
9715 		slot->arch.lpage_info[i - 1] = NULL;
9716 	}
9717 	return -ENOMEM;
9718 }
9719 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)9720 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9721 {
9722 	/*
9723 	 * memslots->generation has been incremented.
9724 	 * mmio generation may have reached its maximum value.
9725 	 */
9726 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9727 }
9728 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)9729 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9730 				struct kvm_memory_slot *memslot,
9731 				const struct kvm_userspace_memory_region *mem,
9732 				enum kvm_mr_change change)
9733 {
9734 	return 0;
9735 }
9736 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * new)9737 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9738 				     struct kvm_memory_slot *new)
9739 {
9740 	/* Still write protect RO slot */
9741 	if (new->flags & KVM_MEM_READONLY) {
9742 		kvm_mmu_slot_remove_write_access(kvm, new);
9743 		return;
9744 	}
9745 
9746 	/*
9747 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9748 	 *
9749 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9750 	 *
9751 	 *  - KVM_MR_CREATE with dirty logging is disabled
9752 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9753 	 *
9754 	 * The reason is, in case of PML, we need to set D-bit for any slots
9755 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9756 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9757 	 * guarantees leaving PML enabled during guest's lifetime won't have
9758 	 * any additional overhead from PML when guest is running with dirty
9759 	 * logging disabled for memory slots.
9760 	 *
9761 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9762 	 * to dirty logging mode.
9763 	 *
9764 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9765 	 *
9766 	 * In case of write protect:
9767 	 *
9768 	 * Write protect all pages for dirty logging.
9769 	 *
9770 	 * All the sptes including the large sptes which point to this
9771 	 * slot are set to readonly. We can not create any new large
9772 	 * spte on this slot until the end of the logging.
9773 	 *
9774 	 * See the comments in fast_page_fault().
9775 	 */
9776 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9777 		if (kvm_x86_ops->slot_enable_log_dirty)
9778 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9779 		else
9780 			kvm_mmu_slot_remove_write_access(kvm, new);
9781 	} else {
9782 		if (kvm_x86_ops->slot_disable_log_dirty)
9783 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9784 	}
9785 }
9786 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)9787 void kvm_arch_commit_memory_region(struct kvm *kvm,
9788 				const struct kvm_userspace_memory_region *mem,
9789 				const struct kvm_memory_slot *old,
9790 				const struct kvm_memory_slot *new,
9791 				enum kvm_mr_change change)
9792 {
9793 	if (!kvm->arch.n_requested_mmu_pages)
9794 		kvm_mmu_change_mmu_pages(kvm,
9795 				kvm_mmu_calculate_default_mmu_pages(kvm));
9796 
9797 	/*
9798 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9799 	 * sptes have to be split.  If live migration is successful, the guest
9800 	 * in the source machine will be destroyed and large sptes will be
9801 	 * created in the destination. However, if the guest continues to run
9802 	 * in the source machine (for example if live migration fails), small
9803 	 * sptes will remain around and cause bad performance.
9804 	 *
9805 	 * Scan sptes if dirty logging has been stopped, dropping those
9806 	 * which can be collapsed into a single large-page spte.  Later
9807 	 * page faults will create the large-page sptes.
9808 	 *
9809 	 * There is no need to do this in any of the following cases:
9810 	 * CREATE:	No dirty mappings will already exist.
9811 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
9812 	 *		kvm_arch_flush_shadow_memslot()
9813 	 */
9814 	if (change == KVM_MR_FLAGS_ONLY &&
9815 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9816 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9817 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9818 
9819 	/*
9820 	 * Set up write protection and/or dirty logging for the new slot.
9821 	 *
9822 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9823 	 * been zapped so no dirty logging staff is needed for old slot. For
9824 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9825 	 * new and it's also covered when dealing with the new slot.
9826 	 *
9827 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9828 	 */
9829 	if (change != KVM_MR_DELETE)
9830 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9831 }
9832 
kvm_arch_flush_shadow_all(struct kvm * kvm)9833 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9834 {
9835 	kvm_mmu_zap_all(kvm);
9836 }
9837 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)9838 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9839 				   struct kvm_memory_slot *slot)
9840 {
9841 	kvm_page_track_flush_slot(kvm, slot);
9842 }
9843 
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)9844 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9845 {
9846 	return (is_guest_mode(vcpu) &&
9847 			kvm_x86_ops->guest_apic_has_interrupt &&
9848 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9849 }
9850 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)9851 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9852 {
9853 	if (!list_empty_careful(&vcpu->async_pf.done))
9854 		return true;
9855 
9856 	if (kvm_apic_has_events(vcpu))
9857 		return true;
9858 
9859 	if (vcpu->arch.pv.pv_unhalted)
9860 		return true;
9861 
9862 	if (vcpu->arch.exception.pending)
9863 		return true;
9864 
9865 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9866 	    (vcpu->arch.nmi_pending &&
9867 	     kvm_x86_ops->nmi_allowed(vcpu)))
9868 		return true;
9869 
9870 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9871 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9872 		return true;
9873 
9874 	if (kvm_arch_interrupt_allowed(vcpu) &&
9875 	    (kvm_cpu_has_interrupt(vcpu) ||
9876 	    kvm_guest_apic_has_interrupt(vcpu)))
9877 		return true;
9878 
9879 	if (kvm_hv_has_stimer_pending(vcpu))
9880 		return true;
9881 
9882 	return false;
9883 }
9884 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)9885 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9886 {
9887 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9888 }
9889 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)9890 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9891 {
9892 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9893 		return true;
9894 
9895 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9896 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
9897 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
9898 		return true;
9899 
9900 	if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9901 		return true;
9902 
9903 	return false;
9904 }
9905 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)9906 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9907 {
9908 	return vcpu->arch.preempted_in_kernel;
9909 }
9910 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)9911 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9912 {
9913 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9914 }
9915 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)9916 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9917 {
9918 	return kvm_x86_ops->interrupt_allowed(vcpu);
9919 }
9920 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)9921 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9922 {
9923 	if (is_64_bit_mode(vcpu))
9924 		return kvm_rip_read(vcpu);
9925 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9926 		     kvm_rip_read(vcpu));
9927 }
9928 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9929 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)9930 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9931 {
9932 	return kvm_get_linear_rip(vcpu) == linear_rip;
9933 }
9934 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9935 
kvm_get_rflags(struct kvm_vcpu * vcpu)9936 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9937 {
9938 	unsigned long rflags;
9939 
9940 	rflags = kvm_x86_ops->get_rflags(vcpu);
9941 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9942 		rflags &= ~X86_EFLAGS_TF;
9943 	return rflags;
9944 }
9945 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9946 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)9947 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9948 {
9949 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9950 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9951 		rflags |= X86_EFLAGS_TF;
9952 	kvm_x86_ops->set_rflags(vcpu, rflags);
9953 }
9954 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)9955 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9956 {
9957 	__kvm_set_rflags(vcpu, rflags);
9958 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9959 }
9960 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9961 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)9962 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9963 {
9964 	int r;
9965 
9966 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9967 	      work->wakeup_all)
9968 		return;
9969 
9970 	r = kvm_mmu_reload(vcpu);
9971 	if (unlikely(r))
9972 		return;
9973 
9974 	if (!vcpu->arch.mmu->direct_map &&
9975 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9976 		return;
9977 
9978 	vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9979 }
9980 
kvm_async_pf_hash_fn(gfn_t gfn)9981 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9982 {
9983 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9984 }
9985 
kvm_async_pf_next_probe(u32 key)9986 static inline u32 kvm_async_pf_next_probe(u32 key)
9987 {
9988 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9989 }
9990 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)9991 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9992 {
9993 	u32 key = kvm_async_pf_hash_fn(gfn);
9994 
9995 	while (vcpu->arch.apf.gfns[key] != ~0)
9996 		key = kvm_async_pf_next_probe(key);
9997 
9998 	vcpu->arch.apf.gfns[key] = gfn;
9999 }
10000 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)10001 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10002 {
10003 	int i;
10004 	u32 key = kvm_async_pf_hash_fn(gfn);
10005 
10006 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10007 		     (vcpu->arch.apf.gfns[key] != gfn &&
10008 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10009 		key = kvm_async_pf_next_probe(key);
10010 
10011 	return key;
10012 }
10013 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)10014 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10015 {
10016 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10017 }
10018 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)10019 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10020 {
10021 	u32 i, j, k;
10022 
10023 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10024 	while (true) {
10025 		vcpu->arch.apf.gfns[i] = ~0;
10026 		do {
10027 			j = kvm_async_pf_next_probe(j);
10028 			if (vcpu->arch.apf.gfns[j] == ~0)
10029 				return;
10030 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10031 			/*
10032 			 * k lies cyclically in ]i,j]
10033 			 * |    i.k.j |
10034 			 * |....j i.k.| or  |.k..j i...|
10035 			 */
10036 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10037 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10038 		i = j;
10039 	}
10040 }
10041 
apf_put_user(struct kvm_vcpu * vcpu,u32 val)10042 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10043 {
10044 
10045 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10046 				      sizeof(val));
10047 }
10048 
apf_get_user(struct kvm_vcpu * vcpu,u32 * val)10049 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10050 {
10051 
10052 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10053 				      sizeof(u32));
10054 }
10055 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)10056 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10057 {
10058 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10059 		return false;
10060 
10061 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10062 	    (vcpu->arch.apf.send_user_only &&
10063 	     kvm_x86_ops->get_cpl(vcpu) == 0))
10064 		return false;
10065 
10066 	return true;
10067 }
10068 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)10069 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10070 {
10071 	if (unlikely(!lapic_in_kernel(vcpu) ||
10072 		     kvm_event_needs_reinjection(vcpu) ||
10073 		     vcpu->arch.exception.pending))
10074 		return false;
10075 
10076 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10077 		return false;
10078 
10079 	/*
10080 	 * If interrupts are off we cannot even use an artificial
10081 	 * halt state.
10082 	 */
10083 	return kvm_x86_ops->interrupt_allowed(vcpu);
10084 }
10085 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)10086 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10087 				     struct kvm_async_pf *work)
10088 {
10089 	struct x86_exception fault;
10090 
10091 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
10092 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10093 
10094 	if (kvm_can_deliver_async_pf(vcpu) &&
10095 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10096 		fault.vector = PF_VECTOR;
10097 		fault.error_code_valid = true;
10098 		fault.error_code = 0;
10099 		fault.nested_page_fault = false;
10100 		fault.address = work->arch.token;
10101 		fault.async_page_fault = true;
10102 		kvm_inject_page_fault(vcpu, &fault);
10103 	} else {
10104 		/*
10105 		 * It is not possible to deliver a paravirtualized asynchronous
10106 		 * page fault, but putting the guest in an artificial halt state
10107 		 * can be beneficial nevertheless: if an interrupt arrives, we
10108 		 * can deliver it timely and perhaps the guest will schedule
10109 		 * another process.  When the instruction that triggered a page
10110 		 * fault is retried, hopefully the page will be ready in the host.
10111 		 */
10112 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10113 	}
10114 }
10115 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)10116 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10117 				 struct kvm_async_pf *work)
10118 {
10119 	struct x86_exception fault;
10120 	u32 val;
10121 
10122 	if (work->wakeup_all)
10123 		work->arch.token = ~0; /* broadcast wakeup */
10124 	else
10125 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10126 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
10127 
10128 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10129 	    !apf_get_user(vcpu, &val)) {
10130 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10131 		    vcpu->arch.exception.pending &&
10132 		    vcpu->arch.exception.nr == PF_VECTOR &&
10133 		    !apf_put_user(vcpu, 0)) {
10134 			vcpu->arch.exception.injected = false;
10135 			vcpu->arch.exception.pending = false;
10136 			vcpu->arch.exception.nr = 0;
10137 			vcpu->arch.exception.has_error_code = false;
10138 			vcpu->arch.exception.error_code = 0;
10139 			vcpu->arch.exception.has_payload = false;
10140 			vcpu->arch.exception.payload = 0;
10141 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10142 			fault.vector = PF_VECTOR;
10143 			fault.error_code_valid = true;
10144 			fault.error_code = 0;
10145 			fault.nested_page_fault = false;
10146 			fault.address = work->arch.token;
10147 			fault.async_page_fault = true;
10148 			kvm_inject_page_fault(vcpu, &fault);
10149 		}
10150 	}
10151 	vcpu->arch.apf.halted = false;
10152 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10153 }
10154 
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)10155 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10156 {
10157 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10158 		return true;
10159 	else
10160 		return kvm_can_do_async_pf(vcpu);
10161 }
10162 
kvm_arch_start_assignment(struct kvm * kvm)10163 void kvm_arch_start_assignment(struct kvm *kvm)
10164 {
10165 	atomic_inc(&kvm->arch.assigned_device_count);
10166 }
10167 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10168 
kvm_arch_end_assignment(struct kvm * kvm)10169 void kvm_arch_end_assignment(struct kvm *kvm)
10170 {
10171 	atomic_dec(&kvm->arch.assigned_device_count);
10172 }
10173 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10174 
kvm_arch_has_assigned_device(struct kvm * kvm)10175 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10176 {
10177 	return atomic_read(&kvm->arch.assigned_device_count);
10178 }
10179 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10180 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)10181 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10182 {
10183 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10184 }
10185 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10186 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)10187 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10188 {
10189 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10190 }
10191 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10192 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)10193 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10194 {
10195 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10196 }
10197 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10198 
kvm_arch_has_irq_bypass(void)10199 bool kvm_arch_has_irq_bypass(void)
10200 {
10201 	return true;
10202 }
10203 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)10204 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10205 				      struct irq_bypass_producer *prod)
10206 {
10207 	struct kvm_kernel_irqfd *irqfd =
10208 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10209 
10210 	irqfd->producer = prod;
10211 
10212 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10213 					   prod->irq, irqfd->gsi, 1);
10214 }
10215 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)10216 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10217 				      struct irq_bypass_producer *prod)
10218 {
10219 	int ret;
10220 	struct kvm_kernel_irqfd *irqfd =
10221 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10222 
10223 	WARN_ON(irqfd->producer != prod);
10224 	irqfd->producer = NULL;
10225 
10226 	/*
10227 	 * When producer of consumer is unregistered, we change back to
10228 	 * remapped mode, so we can re-use the current implementation
10229 	 * when the irq is masked/disabled or the consumer side (KVM
10230 	 * int this case doesn't want to receive the interrupts.
10231 	*/
10232 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10233 	if (ret)
10234 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10235 		       " fails: %d\n", irqfd->consumer.token, ret);
10236 }
10237 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)10238 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10239 				   uint32_t guest_irq, bool set)
10240 {
10241 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10242 }
10243 
kvm_vector_hashing_enabled(void)10244 bool kvm_vector_hashing_enabled(void)
10245 {
10246 	return vector_hashing;
10247 }
10248 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10249 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)10250 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10251 {
10252 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10253 }
10254 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10255 
10256 
10257 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10258 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10268 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10269 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10270 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10271 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10272 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10273 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10274 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10275 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10276 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10277