• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 
37 #include <linux/ctype.h>
38 #include <symbol/kallsyms.h>
39 #include <linux/mman.h>
40 #include <linux/string.h>
41 #include <linux/zalloc.h>
42 
43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44 
dsos__init(struct dsos * dsos)45 static void dsos__init(struct dsos *dsos)
46 {
47 	INIT_LIST_HEAD(&dsos->head);
48 	dsos->root = RB_ROOT;
49 	init_rwsem(&dsos->lock);
50 }
51 
machine__threads_init(struct machine * machine)52 static void machine__threads_init(struct machine *machine)
53 {
54 	int i;
55 
56 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
57 		struct threads *threads = &machine->threads[i];
58 		threads->entries = RB_ROOT_CACHED;
59 		init_rwsem(&threads->lock);
60 		threads->nr = 0;
61 		INIT_LIST_HEAD(&threads->dead);
62 		threads->last_match = NULL;
63 	}
64 }
65 
machine__set_mmap_name(struct machine * machine)66 static int machine__set_mmap_name(struct machine *machine)
67 {
68 	if (machine__is_host(machine))
69 		machine->mmap_name = strdup("[kernel.kallsyms]");
70 	else if (machine__is_default_guest(machine))
71 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
72 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
73 			  machine->pid) < 0)
74 		machine->mmap_name = NULL;
75 
76 	return machine->mmap_name ? 0 : -ENOMEM;
77 }
78 
machine__init(struct machine * machine,const char * root_dir,pid_t pid)79 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80 {
81 	int err = -ENOMEM;
82 
83 	memset(machine, 0, sizeof(*machine));
84 	map_groups__init(&machine->kmaps, machine);
85 	RB_CLEAR_NODE(&machine->rb_node);
86 	dsos__init(&machine->dsos);
87 
88 	machine__threads_init(machine);
89 
90 	machine->vdso_info = NULL;
91 	machine->env = NULL;
92 
93 	machine->pid = pid;
94 
95 	machine->id_hdr_size = 0;
96 	machine->kptr_restrict_warned = false;
97 	machine->comm_exec = false;
98 	machine->kernel_start = 0;
99 	machine->vmlinux_map = NULL;
100 
101 	machine->root_dir = strdup(root_dir);
102 	if (machine->root_dir == NULL)
103 		return -ENOMEM;
104 
105 	if (machine__set_mmap_name(machine))
106 		goto out;
107 
108 	if (pid != HOST_KERNEL_ID) {
109 		struct thread *thread = machine__findnew_thread(machine, -1,
110 								pid);
111 		char comm[64];
112 
113 		if (thread == NULL)
114 			goto out;
115 
116 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
117 		thread__set_comm(thread, comm, 0);
118 		thread__put(thread);
119 	}
120 
121 	machine->current_tid = NULL;
122 	err = 0;
123 
124 out:
125 	if (err) {
126 		zfree(&machine->root_dir);
127 		zfree(&machine->mmap_name);
128 	}
129 	return 0;
130 }
131 
machine__new_host(void)132 struct machine *machine__new_host(void)
133 {
134 	struct machine *machine = malloc(sizeof(*machine));
135 
136 	if (machine != NULL) {
137 		machine__init(machine, "", HOST_KERNEL_ID);
138 
139 		if (machine__create_kernel_maps(machine) < 0)
140 			goto out_delete;
141 	}
142 
143 	return machine;
144 out_delete:
145 	free(machine);
146 	return NULL;
147 }
148 
machine__new_kallsyms(void)149 struct machine *machine__new_kallsyms(void)
150 {
151 	struct machine *machine = machine__new_host();
152 	/*
153 	 * FIXME:
154 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
155 	 *    ask for not using the kcore parsing code, once this one is fixed
156 	 *    to create a map per module.
157 	 */
158 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
159 		machine__delete(machine);
160 		machine = NULL;
161 	}
162 
163 	return machine;
164 }
165 
dsos__purge(struct dsos * dsos)166 static void dsos__purge(struct dsos *dsos)
167 {
168 	struct dso *pos, *n;
169 
170 	down_write(&dsos->lock);
171 
172 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
173 		RB_CLEAR_NODE(&pos->rb_node);
174 		pos->root = NULL;
175 		list_del_init(&pos->node);
176 		dso__put(pos);
177 	}
178 
179 	up_write(&dsos->lock);
180 }
181 
dsos__exit(struct dsos * dsos)182 static void dsos__exit(struct dsos *dsos)
183 {
184 	dsos__purge(dsos);
185 	exit_rwsem(&dsos->lock);
186 }
187 
machine__delete_threads(struct machine * machine)188 void machine__delete_threads(struct machine *machine)
189 {
190 	struct rb_node *nd;
191 	int i;
192 
193 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
194 		struct threads *threads = &machine->threads[i];
195 		down_write(&threads->lock);
196 		nd = rb_first_cached(&threads->entries);
197 		while (nd) {
198 			struct thread *t = rb_entry(nd, struct thread, rb_node);
199 
200 			nd = rb_next(nd);
201 			__machine__remove_thread(machine, t, false);
202 		}
203 		up_write(&threads->lock);
204 	}
205 }
206 
machine__exit(struct machine * machine)207 void machine__exit(struct machine *machine)
208 {
209 	int i;
210 
211 	if (machine == NULL)
212 		return;
213 
214 	machine__destroy_kernel_maps(machine);
215 	map_groups__exit(&machine->kmaps);
216 	dsos__exit(&machine->dsos);
217 	machine__exit_vdso(machine);
218 	zfree(&machine->root_dir);
219 	zfree(&machine->mmap_name);
220 	zfree(&machine->current_tid);
221 
222 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
223 		struct threads *threads = &machine->threads[i];
224 		struct thread *thread, *n;
225 		/*
226 		 * Forget about the dead, at this point whatever threads were
227 		 * left in the dead lists better have a reference count taken
228 		 * by who is using them, and then, when they drop those references
229 		 * and it finally hits zero, thread__put() will check and see that
230 		 * its not in the dead threads list and will not try to remove it
231 		 * from there, just calling thread__delete() straight away.
232 		 */
233 		list_for_each_entry_safe(thread, n, &threads->dead, node)
234 			list_del_init(&thread->node);
235 
236 		exit_rwsem(&threads->lock);
237 	}
238 }
239 
machine__delete(struct machine * machine)240 void machine__delete(struct machine *machine)
241 {
242 	if (machine) {
243 		machine__exit(machine);
244 		free(machine);
245 	}
246 }
247 
machines__init(struct machines * machines)248 void machines__init(struct machines *machines)
249 {
250 	machine__init(&machines->host, "", HOST_KERNEL_ID);
251 	machines->guests = RB_ROOT_CACHED;
252 }
253 
machines__exit(struct machines * machines)254 void machines__exit(struct machines *machines)
255 {
256 	machine__exit(&machines->host);
257 	/* XXX exit guest */
258 }
259 
machines__add(struct machines * machines,pid_t pid,const char * root_dir)260 struct machine *machines__add(struct machines *machines, pid_t pid,
261 			      const char *root_dir)
262 {
263 	struct rb_node **p = &machines->guests.rb_root.rb_node;
264 	struct rb_node *parent = NULL;
265 	struct machine *pos, *machine = malloc(sizeof(*machine));
266 	bool leftmost = true;
267 
268 	if (machine == NULL)
269 		return NULL;
270 
271 	if (machine__init(machine, root_dir, pid) != 0) {
272 		free(machine);
273 		return NULL;
274 	}
275 
276 	while (*p != NULL) {
277 		parent = *p;
278 		pos = rb_entry(parent, struct machine, rb_node);
279 		if (pid < pos->pid)
280 			p = &(*p)->rb_left;
281 		else {
282 			p = &(*p)->rb_right;
283 			leftmost = false;
284 		}
285 	}
286 
287 	rb_link_node(&machine->rb_node, parent, p);
288 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
289 
290 	return machine;
291 }
292 
machines__set_comm_exec(struct machines * machines,bool comm_exec)293 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
294 {
295 	struct rb_node *nd;
296 
297 	machines->host.comm_exec = comm_exec;
298 
299 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
300 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
301 
302 		machine->comm_exec = comm_exec;
303 	}
304 }
305 
machines__find(struct machines * machines,pid_t pid)306 struct machine *machines__find(struct machines *machines, pid_t pid)
307 {
308 	struct rb_node **p = &machines->guests.rb_root.rb_node;
309 	struct rb_node *parent = NULL;
310 	struct machine *machine;
311 	struct machine *default_machine = NULL;
312 
313 	if (pid == HOST_KERNEL_ID)
314 		return &machines->host;
315 
316 	while (*p != NULL) {
317 		parent = *p;
318 		machine = rb_entry(parent, struct machine, rb_node);
319 		if (pid < machine->pid)
320 			p = &(*p)->rb_left;
321 		else if (pid > machine->pid)
322 			p = &(*p)->rb_right;
323 		else
324 			return machine;
325 		if (!machine->pid)
326 			default_machine = machine;
327 	}
328 
329 	return default_machine;
330 }
331 
machines__findnew(struct machines * machines,pid_t pid)332 struct machine *machines__findnew(struct machines *machines, pid_t pid)
333 {
334 	char path[PATH_MAX];
335 	const char *root_dir = "";
336 	struct machine *machine = machines__find(machines, pid);
337 
338 	if (machine && (machine->pid == pid))
339 		goto out;
340 
341 	if ((pid != HOST_KERNEL_ID) &&
342 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
343 	    (symbol_conf.guestmount)) {
344 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
345 		if (access(path, R_OK)) {
346 			static struct strlist *seen;
347 
348 			if (!seen)
349 				seen = strlist__new(NULL, NULL);
350 
351 			if (!strlist__has_entry(seen, path)) {
352 				pr_err("Can't access file %s\n", path);
353 				strlist__add(seen, path);
354 			}
355 			machine = NULL;
356 			goto out;
357 		}
358 		root_dir = path;
359 	}
360 
361 	machine = machines__add(machines, pid, root_dir);
362 out:
363 	return machine;
364 }
365 
machines__process_guests(struct machines * machines,machine__process_t process,void * data)366 void machines__process_guests(struct machines *machines,
367 			      machine__process_t process, void *data)
368 {
369 	struct rb_node *nd;
370 
371 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
372 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
373 		process(pos, data);
374 	}
375 }
376 
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)377 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
378 {
379 	struct rb_node *node;
380 	struct machine *machine;
381 
382 	machines->host.id_hdr_size = id_hdr_size;
383 
384 	for (node = rb_first_cached(&machines->guests); node;
385 	     node = rb_next(node)) {
386 		machine = rb_entry(node, struct machine, rb_node);
387 		machine->id_hdr_size = id_hdr_size;
388 	}
389 
390 	return;
391 }
392 
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)393 static void machine__update_thread_pid(struct machine *machine,
394 				       struct thread *th, pid_t pid)
395 {
396 	struct thread *leader;
397 
398 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
399 		return;
400 
401 	th->pid_ = pid;
402 
403 	if (th->pid_ == th->tid)
404 		return;
405 
406 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
407 	if (!leader)
408 		goto out_err;
409 
410 	if (!leader->mg)
411 		leader->mg = map_groups__new(machine);
412 
413 	if (!leader->mg)
414 		goto out_err;
415 
416 	if (th->mg == leader->mg)
417 		return;
418 
419 	if (th->mg) {
420 		/*
421 		 * Maps are created from MMAP events which provide the pid and
422 		 * tid.  Consequently there never should be any maps on a thread
423 		 * with an unknown pid.  Just print an error if there are.
424 		 */
425 		if (!map_groups__empty(th->mg))
426 			pr_err("Discarding thread maps for %d:%d\n",
427 			       th->pid_, th->tid);
428 		map_groups__put(th->mg);
429 	}
430 
431 	th->mg = map_groups__get(leader->mg);
432 out_put:
433 	thread__put(leader);
434 	return;
435 out_err:
436 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
437 	goto out_put;
438 }
439 
440 /*
441  * Front-end cache - TID lookups come in blocks,
442  * so most of the time we dont have to look up
443  * the full rbtree:
444  */
445 static struct thread*
__threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)446 __threads__get_last_match(struct threads *threads, struct machine *machine,
447 			  int pid, int tid)
448 {
449 	struct thread *th;
450 
451 	th = threads->last_match;
452 	if (th != NULL) {
453 		if (th->tid == tid) {
454 			machine__update_thread_pid(machine, th, pid);
455 			return thread__get(th);
456 		}
457 
458 		threads->last_match = NULL;
459 	}
460 
461 	return NULL;
462 }
463 
464 static struct thread*
threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)465 threads__get_last_match(struct threads *threads, struct machine *machine,
466 			int pid, int tid)
467 {
468 	struct thread *th = NULL;
469 
470 	if (perf_singlethreaded)
471 		th = __threads__get_last_match(threads, machine, pid, tid);
472 
473 	return th;
474 }
475 
476 static void
__threads__set_last_match(struct threads * threads,struct thread * th)477 __threads__set_last_match(struct threads *threads, struct thread *th)
478 {
479 	threads->last_match = th;
480 }
481 
482 static void
threads__set_last_match(struct threads * threads,struct thread * th)483 threads__set_last_match(struct threads *threads, struct thread *th)
484 {
485 	if (perf_singlethreaded)
486 		__threads__set_last_match(threads, th);
487 }
488 
489 /*
490  * Caller must eventually drop thread->refcnt returned with a successful
491  * lookup/new thread inserted.
492  */
____machine__findnew_thread(struct machine * machine,struct threads * threads,pid_t pid,pid_t tid,bool create)493 static struct thread *____machine__findnew_thread(struct machine *machine,
494 						  struct threads *threads,
495 						  pid_t pid, pid_t tid,
496 						  bool create)
497 {
498 	struct rb_node **p = &threads->entries.rb_root.rb_node;
499 	struct rb_node *parent = NULL;
500 	struct thread *th;
501 	bool leftmost = true;
502 
503 	th = threads__get_last_match(threads, machine, pid, tid);
504 	if (th)
505 		return th;
506 
507 	while (*p != NULL) {
508 		parent = *p;
509 		th = rb_entry(parent, struct thread, rb_node);
510 
511 		if (th->tid == tid) {
512 			threads__set_last_match(threads, th);
513 			machine__update_thread_pid(machine, th, pid);
514 			return thread__get(th);
515 		}
516 
517 		if (tid < th->tid)
518 			p = &(*p)->rb_left;
519 		else {
520 			p = &(*p)->rb_right;
521 			leftmost = false;
522 		}
523 	}
524 
525 	if (!create)
526 		return NULL;
527 
528 	th = thread__new(pid, tid);
529 	if (th != NULL) {
530 		rb_link_node(&th->rb_node, parent, p);
531 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
532 
533 		/*
534 		 * We have to initialize map_groups separately
535 		 * after rb tree is updated.
536 		 *
537 		 * The reason is that we call machine__findnew_thread
538 		 * within thread__init_map_groups to find the thread
539 		 * leader and that would screwed the rb tree.
540 		 */
541 		if (thread__init_map_groups(th, machine)) {
542 			rb_erase_cached(&th->rb_node, &threads->entries);
543 			RB_CLEAR_NODE(&th->rb_node);
544 			thread__put(th);
545 			return NULL;
546 		}
547 		/*
548 		 * It is now in the rbtree, get a ref
549 		 */
550 		thread__get(th);
551 		threads__set_last_match(threads, th);
552 		++threads->nr;
553 	}
554 
555 	return th;
556 }
557 
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)558 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
559 {
560 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
561 }
562 
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)563 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
564 				       pid_t tid)
565 {
566 	struct threads *threads = machine__threads(machine, tid);
567 	struct thread *th;
568 
569 	down_write(&threads->lock);
570 	th = __machine__findnew_thread(machine, pid, tid);
571 	up_write(&threads->lock);
572 	return th;
573 }
574 
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)575 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
576 				    pid_t tid)
577 {
578 	struct threads *threads = machine__threads(machine, tid);
579 	struct thread *th;
580 
581 	down_read(&threads->lock);
582 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
583 	up_read(&threads->lock);
584 	return th;
585 }
586 
machine__thread_exec_comm(struct machine * machine,struct thread * thread)587 struct comm *machine__thread_exec_comm(struct machine *machine,
588 				       struct thread *thread)
589 {
590 	if (machine->comm_exec)
591 		return thread__exec_comm(thread);
592 	else
593 		return thread__comm(thread);
594 }
595 
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)596 int machine__process_comm_event(struct machine *machine, union perf_event *event,
597 				struct perf_sample *sample)
598 {
599 	struct thread *thread = machine__findnew_thread(machine,
600 							event->comm.pid,
601 							event->comm.tid);
602 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
603 	int err = 0;
604 
605 	if (exec)
606 		machine->comm_exec = true;
607 
608 	if (dump_trace)
609 		perf_event__fprintf_comm(event, stdout);
610 
611 	if (thread == NULL ||
612 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
613 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
614 		err = -1;
615 	}
616 
617 	thread__put(thread);
618 
619 	return err;
620 }
621 
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)622 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
623 				      union perf_event *event,
624 				      struct perf_sample *sample __maybe_unused)
625 {
626 	struct thread *thread = machine__findnew_thread(machine,
627 							event->namespaces.pid,
628 							event->namespaces.tid);
629 	int err = 0;
630 
631 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
632 		  "\nWARNING: kernel seems to support more namespaces than perf"
633 		  " tool.\nTry updating the perf tool..\n\n");
634 
635 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
636 		  "\nWARNING: perf tool seems to support more namespaces than"
637 		  " the kernel.\nTry updating the kernel..\n\n");
638 
639 	if (dump_trace)
640 		perf_event__fprintf_namespaces(event, stdout);
641 
642 	if (thread == NULL ||
643 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
644 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
645 		err = -1;
646 	}
647 
648 	thread__put(thread);
649 
650 	return err;
651 }
652 
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)653 int machine__process_lost_event(struct machine *machine __maybe_unused,
654 				union perf_event *event, struct perf_sample *sample __maybe_unused)
655 {
656 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
657 		    event->lost.id, event->lost.lost);
658 	return 0;
659 }
660 
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)661 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
662 					union perf_event *event, struct perf_sample *sample)
663 {
664 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
665 		    sample->id, event->lost_samples.lost);
666 	return 0;
667 }
668 
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)669 static struct dso *machine__findnew_module_dso(struct machine *machine,
670 					       struct kmod_path *m,
671 					       const char *filename)
672 {
673 	struct dso *dso;
674 
675 	down_write(&machine->dsos.lock);
676 
677 	dso = __dsos__find(&machine->dsos, m->name, true);
678 	if (!dso) {
679 		dso = __dsos__addnew(&machine->dsos, m->name);
680 		if (dso == NULL)
681 			goto out_unlock;
682 
683 		dso__set_module_info(dso, m, machine);
684 		dso__set_long_name(dso, strdup(filename), true);
685 	}
686 
687 	dso__get(dso);
688 out_unlock:
689 	up_write(&machine->dsos.lock);
690 	return dso;
691 }
692 
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)693 int machine__process_aux_event(struct machine *machine __maybe_unused,
694 			       union perf_event *event)
695 {
696 	if (dump_trace)
697 		perf_event__fprintf_aux(event, stdout);
698 	return 0;
699 }
700 
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)701 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
702 					union perf_event *event)
703 {
704 	if (dump_trace)
705 		perf_event__fprintf_itrace_start(event, stdout);
706 	return 0;
707 }
708 
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)709 int machine__process_switch_event(struct machine *machine __maybe_unused,
710 				  union perf_event *event)
711 {
712 	if (dump_trace)
713 		perf_event__fprintf_switch(event, stdout);
714 	return 0;
715 }
716 
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)717 static int machine__process_ksymbol_register(struct machine *machine,
718 					     union perf_event *event,
719 					     struct perf_sample *sample __maybe_unused)
720 {
721 	struct symbol *sym;
722 	struct map *map;
723 
724 	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
725 	if (!map) {
726 		map = dso__new_map(event->ksymbol.name);
727 		if (!map)
728 			return -ENOMEM;
729 
730 		map->start = event->ksymbol.addr;
731 		map->end = map->start + event->ksymbol.len;
732 		map_groups__insert(&machine->kmaps, map);
733 	}
734 
735 	sym = symbol__new(map->map_ip(map, map->start),
736 			  event->ksymbol.len,
737 			  0, 0, event->ksymbol.name);
738 	if (!sym)
739 		return -ENOMEM;
740 	dso__insert_symbol(map->dso, sym);
741 	return 0;
742 }
743 
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)744 static int machine__process_ksymbol_unregister(struct machine *machine,
745 					       union perf_event *event,
746 					       struct perf_sample *sample __maybe_unused)
747 {
748 	struct map *map;
749 
750 	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
751 	if (map)
752 		map_groups__remove(&machine->kmaps, map);
753 
754 	return 0;
755 }
756 
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)757 int machine__process_ksymbol(struct machine *machine __maybe_unused,
758 			     union perf_event *event,
759 			     struct perf_sample *sample)
760 {
761 	if (dump_trace)
762 		perf_event__fprintf_ksymbol(event, stdout);
763 
764 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
765 		return machine__process_ksymbol_unregister(machine, event,
766 							   sample);
767 	return machine__process_ksymbol_register(machine, event, sample);
768 }
769 
machine__findnew_module_map(struct machine * machine,u64 start,const char * filename)770 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
771 					const char *filename)
772 {
773 	struct map *map = NULL;
774 	struct dso *dso = NULL;
775 	struct kmod_path m;
776 
777 	if (kmod_path__parse_name(&m, filename))
778 		return NULL;
779 
780 	map = map_groups__find_by_name(&machine->kmaps, m.name);
781 	if (map)
782 		goto out;
783 
784 	dso = machine__findnew_module_dso(machine, &m, filename);
785 	if (dso == NULL)
786 		goto out;
787 
788 	map = map__new2(start, dso);
789 	if (map == NULL)
790 		goto out;
791 
792 	map_groups__insert(&machine->kmaps, map);
793 
794 	/* Put the map here because map_groups__insert alread got it */
795 	map__put(map);
796 out:
797 	/* put the dso here, corresponding to  machine__findnew_module_dso */
798 	dso__put(dso);
799 	zfree(&m.name);
800 	return map;
801 }
802 
machines__fprintf_dsos(struct machines * machines,FILE * fp)803 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
804 {
805 	struct rb_node *nd;
806 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
807 
808 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
809 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
810 		ret += __dsos__fprintf(&pos->dsos.head, fp);
811 	}
812 
813 	return ret;
814 }
815 
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)816 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
817 				     bool (skip)(struct dso *dso, int parm), int parm)
818 {
819 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
820 }
821 
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)822 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
823 				     bool (skip)(struct dso *dso, int parm), int parm)
824 {
825 	struct rb_node *nd;
826 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
827 
828 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
829 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
830 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
831 	}
832 	return ret;
833 }
834 
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)835 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
836 {
837 	int i;
838 	size_t printed = 0;
839 	struct dso *kdso = machine__kernel_map(machine)->dso;
840 
841 	if (kdso->has_build_id) {
842 		char filename[PATH_MAX];
843 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
844 					   false))
845 			printed += fprintf(fp, "[0] %s\n", filename);
846 	}
847 
848 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
849 		printed += fprintf(fp, "[%d] %s\n",
850 				   i + kdso->has_build_id, vmlinux_path[i]);
851 
852 	return printed;
853 }
854 
machine__fprintf(struct machine * machine,FILE * fp)855 size_t machine__fprintf(struct machine *machine, FILE *fp)
856 {
857 	struct rb_node *nd;
858 	size_t ret;
859 	int i;
860 
861 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
862 		struct threads *threads = &machine->threads[i];
863 
864 		down_read(&threads->lock);
865 
866 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
867 
868 		for (nd = rb_first_cached(&threads->entries); nd;
869 		     nd = rb_next(nd)) {
870 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
871 
872 			ret += thread__fprintf(pos, fp);
873 		}
874 
875 		up_read(&threads->lock);
876 	}
877 	return ret;
878 }
879 
machine__get_kernel(struct machine * machine)880 static struct dso *machine__get_kernel(struct machine *machine)
881 {
882 	const char *vmlinux_name = machine->mmap_name;
883 	struct dso *kernel;
884 
885 	if (machine__is_host(machine)) {
886 		if (symbol_conf.vmlinux_name)
887 			vmlinux_name = symbol_conf.vmlinux_name;
888 
889 		kernel = machine__findnew_kernel(machine, vmlinux_name,
890 						 "[kernel]", DSO_TYPE_KERNEL);
891 	} else {
892 		if (symbol_conf.default_guest_vmlinux_name)
893 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
894 
895 		kernel = machine__findnew_kernel(machine, vmlinux_name,
896 						 "[guest.kernel]",
897 						 DSO_TYPE_GUEST_KERNEL);
898 	}
899 
900 	if (kernel != NULL && (!kernel->has_build_id))
901 		dso__read_running_kernel_build_id(kernel, machine);
902 
903 	return kernel;
904 }
905 
906 struct process_args {
907 	u64 start;
908 };
909 
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)910 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
911 				    size_t bufsz)
912 {
913 	if (machine__is_default_guest(machine))
914 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
915 	else
916 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
917 }
918 
919 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
920 
921 /* Figure out the start address of kernel map from /proc/kallsyms.
922  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
923  * symbol_name if it's not that important.
924  */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)925 static int machine__get_running_kernel_start(struct machine *machine,
926 					     const char **symbol_name,
927 					     u64 *start, u64 *end)
928 {
929 	char filename[PATH_MAX];
930 	int i, err = -1;
931 	const char *name;
932 	u64 addr = 0;
933 
934 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
935 
936 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
937 		return 0;
938 
939 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
940 		err = kallsyms__get_function_start(filename, name, &addr);
941 		if (!err)
942 			break;
943 	}
944 
945 	if (err)
946 		return -1;
947 
948 	if (symbol_name)
949 		*symbol_name = name;
950 
951 	*start = addr;
952 
953 	err = kallsyms__get_function_start(filename, "_etext", &addr);
954 	if (!err)
955 		*end = addr;
956 
957 	return 0;
958 }
959 
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)960 int machine__create_extra_kernel_map(struct machine *machine,
961 				     struct dso *kernel,
962 				     struct extra_kernel_map *xm)
963 {
964 	struct kmap *kmap;
965 	struct map *map;
966 
967 	map = map__new2(xm->start, kernel);
968 	if (!map)
969 		return -1;
970 
971 	map->end   = xm->end;
972 	map->pgoff = xm->pgoff;
973 
974 	kmap = map__kmap(map);
975 
976 	kmap->kmaps = &machine->kmaps;
977 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
978 
979 	map_groups__insert(&machine->kmaps, map);
980 
981 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
982 		  kmap->name, map->start, map->end);
983 
984 	map__put(map);
985 
986 	return 0;
987 }
988 
find_entry_trampoline(struct dso * dso)989 static u64 find_entry_trampoline(struct dso *dso)
990 {
991 	/* Duplicates are removed so lookup all aliases */
992 	const char *syms[] = {
993 		"_entry_trampoline",
994 		"__entry_trampoline_start",
995 		"entry_SYSCALL_64_trampoline",
996 	};
997 	struct symbol *sym = dso__first_symbol(dso);
998 	unsigned int i;
999 
1000 	for (; sym; sym = dso__next_symbol(sym)) {
1001 		if (sym->binding != STB_GLOBAL)
1002 			continue;
1003 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1004 			if (!strcmp(sym->name, syms[i]))
1005 				return sym->start;
1006 		}
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * These values can be used for kernels that do not have symbols for the entry
1014  * trampolines in kallsyms.
1015  */
1016 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1017 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1018 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1019 
1020 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1021 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1022 					  struct dso *kernel)
1023 {
1024 	struct map_groups *kmaps = &machine->kmaps;
1025 	struct maps *maps = &kmaps->maps;
1026 	int nr_cpus_avail, cpu;
1027 	bool found = false;
1028 	struct map *map;
1029 	u64 pgoff;
1030 
1031 	/*
1032 	 * In the vmlinux case, pgoff is a virtual address which must now be
1033 	 * mapped to a vmlinux offset.
1034 	 */
1035 	for (map = maps__first(maps); map; map = map__next(map)) {
1036 		struct kmap *kmap = __map__kmap(map);
1037 		struct map *dest_map;
1038 
1039 		if (!kmap || !is_entry_trampoline(kmap->name))
1040 			continue;
1041 
1042 		dest_map = map_groups__find(kmaps, map->pgoff);
1043 		if (dest_map != map)
1044 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1045 		found = true;
1046 	}
1047 	if (found || machine->trampolines_mapped)
1048 		return 0;
1049 
1050 	pgoff = find_entry_trampoline(kernel);
1051 	if (!pgoff)
1052 		return 0;
1053 
1054 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1055 
1056 	/* Add a 1 page map for each CPU's entry trampoline */
1057 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1058 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1059 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1060 			 X86_64_ENTRY_TRAMPOLINE;
1061 		struct extra_kernel_map xm = {
1062 			.start = va,
1063 			.end   = va + page_size,
1064 			.pgoff = pgoff,
1065 		};
1066 
1067 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1068 
1069 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1070 			return -1;
1071 	}
1072 
1073 	machine->trampolines_mapped = nr_cpus_avail;
1074 
1075 	return 0;
1076 }
1077 
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1078 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1079 					     struct dso *kernel __maybe_unused)
1080 {
1081 	return 0;
1082 }
1083 
1084 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1085 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1086 {
1087 	struct kmap *kmap;
1088 	struct map *map;
1089 
1090 	/* In case of renewal the kernel map, destroy previous one */
1091 	machine__destroy_kernel_maps(machine);
1092 
1093 	machine->vmlinux_map = map__new2(0, kernel);
1094 	if (machine->vmlinux_map == NULL)
1095 		return -1;
1096 
1097 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1098 	map = machine__kernel_map(machine);
1099 	kmap = map__kmap(map);
1100 	if (!kmap)
1101 		return -1;
1102 
1103 	kmap->kmaps = &machine->kmaps;
1104 	map_groups__insert(&machine->kmaps, map);
1105 
1106 	return 0;
1107 }
1108 
machine__destroy_kernel_maps(struct machine * machine)1109 void machine__destroy_kernel_maps(struct machine *machine)
1110 {
1111 	struct kmap *kmap;
1112 	struct map *map = machine__kernel_map(machine);
1113 
1114 	if (map == NULL)
1115 		return;
1116 
1117 	kmap = map__kmap(map);
1118 	map_groups__remove(&machine->kmaps, map);
1119 	if (kmap && kmap->ref_reloc_sym) {
1120 		zfree((char **)&kmap->ref_reloc_sym->name);
1121 		zfree(&kmap->ref_reloc_sym);
1122 	}
1123 
1124 	map__zput(machine->vmlinux_map);
1125 }
1126 
machines__create_guest_kernel_maps(struct machines * machines)1127 int machines__create_guest_kernel_maps(struct machines *machines)
1128 {
1129 	int ret = 0;
1130 	struct dirent **namelist = NULL;
1131 	int i, items = 0;
1132 	char path[PATH_MAX];
1133 	pid_t pid;
1134 	char *endp;
1135 
1136 	if (symbol_conf.default_guest_vmlinux_name ||
1137 	    symbol_conf.default_guest_modules ||
1138 	    symbol_conf.default_guest_kallsyms) {
1139 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1140 	}
1141 
1142 	if (symbol_conf.guestmount) {
1143 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1144 		if (items <= 0)
1145 			return -ENOENT;
1146 		for (i = 0; i < items; i++) {
1147 			if (!isdigit(namelist[i]->d_name[0])) {
1148 				/* Filter out . and .. */
1149 				continue;
1150 			}
1151 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1152 			if ((*endp != '\0') ||
1153 			    (endp == namelist[i]->d_name) ||
1154 			    (errno == ERANGE)) {
1155 				pr_debug("invalid directory (%s). Skipping.\n",
1156 					 namelist[i]->d_name);
1157 				continue;
1158 			}
1159 			sprintf(path, "%s/%s/proc/kallsyms",
1160 				symbol_conf.guestmount,
1161 				namelist[i]->d_name);
1162 			ret = access(path, R_OK);
1163 			if (ret) {
1164 				pr_debug("Can't access file %s\n", path);
1165 				goto failure;
1166 			}
1167 			machines__create_kernel_maps(machines, pid);
1168 		}
1169 failure:
1170 		free(namelist);
1171 	}
1172 
1173 	return ret;
1174 }
1175 
machines__destroy_kernel_maps(struct machines * machines)1176 void machines__destroy_kernel_maps(struct machines *machines)
1177 {
1178 	struct rb_node *next = rb_first_cached(&machines->guests);
1179 
1180 	machine__destroy_kernel_maps(&machines->host);
1181 
1182 	while (next) {
1183 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1184 
1185 		next = rb_next(&pos->rb_node);
1186 		rb_erase_cached(&pos->rb_node, &machines->guests);
1187 		machine__delete(pos);
1188 	}
1189 }
1190 
machines__create_kernel_maps(struct machines * machines,pid_t pid)1191 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1192 {
1193 	struct machine *machine = machines__findnew(machines, pid);
1194 
1195 	if (machine == NULL)
1196 		return -1;
1197 
1198 	return machine__create_kernel_maps(machine);
1199 }
1200 
machine__load_kallsyms(struct machine * machine,const char * filename)1201 int machine__load_kallsyms(struct machine *machine, const char *filename)
1202 {
1203 	struct map *map = machine__kernel_map(machine);
1204 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1205 
1206 	if (ret > 0) {
1207 		dso__set_loaded(map->dso);
1208 		/*
1209 		 * Since /proc/kallsyms will have multiple sessions for the
1210 		 * kernel, with modules between them, fixup the end of all
1211 		 * sections.
1212 		 */
1213 		map_groups__fixup_end(&machine->kmaps);
1214 	}
1215 
1216 	return ret;
1217 }
1218 
machine__load_vmlinux_path(struct machine * machine)1219 int machine__load_vmlinux_path(struct machine *machine)
1220 {
1221 	struct map *map = machine__kernel_map(machine);
1222 	int ret = dso__load_vmlinux_path(map->dso, map);
1223 
1224 	if (ret > 0)
1225 		dso__set_loaded(map->dso);
1226 
1227 	return ret;
1228 }
1229 
get_kernel_version(const char * root_dir)1230 static char *get_kernel_version(const char *root_dir)
1231 {
1232 	char version[PATH_MAX];
1233 	FILE *file;
1234 	char *name, *tmp;
1235 	const char *prefix = "Linux version ";
1236 
1237 	sprintf(version, "%s/proc/version", root_dir);
1238 	file = fopen(version, "r");
1239 	if (!file)
1240 		return NULL;
1241 
1242 	tmp = fgets(version, sizeof(version), file);
1243 	fclose(file);
1244 	if (!tmp)
1245 		return NULL;
1246 
1247 	name = strstr(version, prefix);
1248 	if (!name)
1249 		return NULL;
1250 	name += strlen(prefix);
1251 	tmp = strchr(name, ' ');
1252 	if (tmp)
1253 		*tmp = '\0';
1254 
1255 	return strdup(name);
1256 }
1257 
is_kmod_dso(struct dso * dso)1258 static bool is_kmod_dso(struct dso *dso)
1259 {
1260 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1261 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1262 }
1263 
map_groups__set_module_path(struct map_groups * mg,const char * path,struct kmod_path * m)1264 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1265 				       struct kmod_path *m)
1266 {
1267 	char *long_name;
1268 	struct map *map = map_groups__find_by_name(mg, m->name);
1269 
1270 	if (map == NULL)
1271 		return 0;
1272 
1273 	long_name = strdup(path);
1274 	if (long_name == NULL)
1275 		return -ENOMEM;
1276 
1277 	dso__set_long_name(map->dso, long_name, true);
1278 	dso__kernel_module_get_build_id(map->dso, "");
1279 
1280 	/*
1281 	 * Full name could reveal us kmod compression, so
1282 	 * we need to update the symtab_type if needed.
1283 	 */
1284 	if (m->comp && is_kmod_dso(map->dso)) {
1285 		map->dso->symtab_type++;
1286 		map->dso->comp = m->comp;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
map_groups__set_modules_path_dir(struct map_groups * mg,const char * dir_name,int depth)1292 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1293 				const char *dir_name, int depth)
1294 {
1295 	struct dirent *dent;
1296 	DIR *dir = opendir(dir_name);
1297 	int ret = 0;
1298 
1299 	if (!dir) {
1300 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1301 		return -1;
1302 	}
1303 
1304 	while ((dent = readdir(dir)) != NULL) {
1305 		char path[PATH_MAX];
1306 		struct stat st;
1307 
1308 		/*sshfs might return bad dent->d_type, so we have to stat*/
1309 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1310 		if (stat(path, &st))
1311 			continue;
1312 
1313 		if (S_ISDIR(st.st_mode)) {
1314 			if (!strcmp(dent->d_name, ".") ||
1315 			    !strcmp(dent->d_name, ".."))
1316 				continue;
1317 
1318 			/* Do not follow top-level source and build symlinks */
1319 			if (depth == 0) {
1320 				if (!strcmp(dent->d_name, "source") ||
1321 				    !strcmp(dent->d_name, "build"))
1322 					continue;
1323 			}
1324 
1325 			ret = map_groups__set_modules_path_dir(mg, path,
1326 							       depth + 1);
1327 			if (ret < 0)
1328 				goto out;
1329 		} else {
1330 			struct kmod_path m;
1331 
1332 			ret = kmod_path__parse_name(&m, dent->d_name);
1333 			if (ret)
1334 				goto out;
1335 
1336 			if (m.kmod)
1337 				ret = map_groups__set_module_path(mg, path, &m);
1338 
1339 			zfree(&m.name);
1340 
1341 			if (ret)
1342 				goto out;
1343 		}
1344 	}
1345 
1346 out:
1347 	closedir(dir);
1348 	return ret;
1349 }
1350 
machine__set_modules_path(struct machine * machine)1351 static int machine__set_modules_path(struct machine *machine)
1352 {
1353 	char *version;
1354 	char modules_path[PATH_MAX];
1355 
1356 	version = get_kernel_version(machine->root_dir);
1357 	if (!version)
1358 		return -1;
1359 
1360 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1361 		 machine->root_dir, version);
1362 	free(version);
1363 
1364 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1365 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1366 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1367 				u64 *size __maybe_unused,
1368 				const char *name __maybe_unused)
1369 {
1370 	return 0;
1371 }
1372 
machine__create_module(void * arg,const char * name,u64 start,u64 size)1373 static int machine__create_module(void *arg, const char *name, u64 start,
1374 				  u64 size)
1375 {
1376 	struct machine *machine = arg;
1377 	struct map *map;
1378 
1379 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1380 		return -1;
1381 
1382 	map = machine__findnew_module_map(machine, start, name);
1383 	if (map == NULL)
1384 		return -1;
1385 	map->end = start + size;
1386 
1387 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1388 
1389 	return 0;
1390 }
1391 
machine__create_modules(struct machine * machine)1392 static int machine__create_modules(struct machine *machine)
1393 {
1394 	const char *modules;
1395 	char path[PATH_MAX];
1396 
1397 	if (machine__is_default_guest(machine)) {
1398 		modules = symbol_conf.default_guest_modules;
1399 	} else {
1400 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1401 		modules = path;
1402 	}
1403 
1404 	if (symbol__restricted_filename(modules, "/proc/modules"))
1405 		return -1;
1406 
1407 	if (modules__parse(modules, machine, machine__create_module))
1408 		return -1;
1409 
1410 	if (!machine__set_modules_path(machine))
1411 		return 0;
1412 
1413 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1414 
1415 	return 0;
1416 }
1417 
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1418 static void machine__set_kernel_mmap(struct machine *machine,
1419 				     u64 start, u64 end)
1420 {
1421 	machine->vmlinux_map->start = start;
1422 	machine->vmlinux_map->end   = end;
1423 	/*
1424 	 * Be a bit paranoid here, some perf.data file came with
1425 	 * a zero sized synthesized MMAP event for the kernel.
1426 	 */
1427 	if (start == 0 && end == 0)
1428 		machine->vmlinux_map->end = ~0ULL;
1429 }
1430 
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1431 static void machine__update_kernel_mmap(struct machine *machine,
1432 				     u64 start, u64 end)
1433 {
1434 	struct map *map = machine__kernel_map(machine);
1435 
1436 	map__get(map);
1437 	map_groups__remove(&machine->kmaps, map);
1438 
1439 	machine__set_kernel_mmap(machine, start, end);
1440 
1441 	map_groups__insert(&machine->kmaps, map);
1442 	map__put(map);
1443 }
1444 
machine__create_kernel_maps(struct machine * machine)1445 int machine__create_kernel_maps(struct machine *machine)
1446 {
1447 	struct dso *kernel = machine__get_kernel(machine);
1448 	const char *name = NULL;
1449 	struct map *map;
1450 	u64 start = 0, end = ~0ULL;
1451 	int ret;
1452 
1453 	if (kernel == NULL)
1454 		return -1;
1455 
1456 	ret = __machine__create_kernel_maps(machine, kernel);
1457 	if (ret < 0)
1458 		goto out_put;
1459 
1460 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1461 		if (machine__is_host(machine))
1462 			pr_debug("Problems creating module maps, "
1463 				 "continuing anyway...\n");
1464 		else
1465 			pr_debug("Problems creating module maps for guest %d, "
1466 				 "continuing anyway...\n", machine->pid);
1467 	}
1468 
1469 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1470 		if (name &&
1471 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1472 			machine__destroy_kernel_maps(machine);
1473 			ret = -1;
1474 			goto out_put;
1475 		}
1476 
1477 		/*
1478 		 * we have a real start address now, so re-order the kmaps
1479 		 * assume it's the last in the kmaps
1480 		 */
1481 		machine__update_kernel_mmap(machine, start, end);
1482 	}
1483 
1484 	if (machine__create_extra_kernel_maps(machine, kernel))
1485 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1486 
1487 	if (end == ~0ULL) {
1488 		/* update end address of the kernel map using adjacent module address */
1489 		map = map__next(machine__kernel_map(machine));
1490 		if (map)
1491 			machine__set_kernel_mmap(machine, start, map->start);
1492 	}
1493 
1494 out_put:
1495 	dso__put(kernel);
1496 	return ret;
1497 }
1498 
machine__uses_kcore(struct machine * machine)1499 static bool machine__uses_kcore(struct machine *machine)
1500 {
1501 	struct dso *dso;
1502 
1503 	list_for_each_entry(dso, &machine->dsos.head, node) {
1504 		if (dso__is_kcore(dso))
1505 			return true;
1506 	}
1507 
1508 	return false;
1509 }
1510 
perf_event__is_extra_kernel_mmap(struct machine * machine,union perf_event * event)1511 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1512 					     union perf_event *event)
1513 {
1514 	return machine__is(machine, "x86_64") &&
1515 	       is_entry_trampoline(event->mmap.filename);
1516 }
1517 
machine__process_extra_kernel_map(struct machine * machine,union perf_event * event)1518 static int machine__process_extra_kernel_map(struct machine *machine,
1519 					     union perf_event *event)
1520 {
1521 	struct map *kernel_map = machine__kernel_map(machine);
1522 	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1523 	struct extra_kernel_map xm = {
1524 		.start = event->mmap.start,
1525 		.end   = event->mmap.start + event->mmap.len,
1526 		.pgoff = event->mmap.pgoff,
1527 	};
1528 
1529 	if (kernel == NULL)
1530 		return -1;
1531 
1532 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1533 
1534 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1535 }
1536 
machine__process_kernel_mmap_event(struct machine * machine,union perf_event * event)1537 static int machine__process_kernel_mmap_event(struct machine *machine,
1538 					      union perf_event *event)
1539 {
1540 	struct map *map;
1541 	enum dso_kernel_type kernel_type;
1542 	bool is_kernel_mmap;
1543 
1544 	/* If we have maps from kcore then we do not need or want any others */
1545 	if (machine__uses_kcore(machine))
1546 		return 0;
1547 
1548 	if (machine__is_host(machine))
1549 		kernel_type = DSO_TYPE_KERNEL;
1550 	else
1551 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1552 
1553 	is_kernel_mmap = memcmp(event->mmap.filename,
1554 				machine->mmap_name,
1555 				strlen(machine->mmap_name) - 1) == 0;
1556 	if (event->mmap.filename[0] == '/' ||
1557 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1558 		map = machine__findnew_module_map(machine, event->mmap.start,
1559 						  event->mmap.filename);
1560 		if (map == NULL)
1561 			goto out_problem;
1562 
1563 		map->end = map->start + event->mmap.len;
1564 	} else if (is_kernel_mmap) {
1565 		const char *symbol_name = (event->mmap.filename +
1566 				strlen(machine->mmap_name));
1567 		/*
1568 		 * Should be there already, from the build-id table in
1569 		 * the header.
1570 		 */
1571 		struct dso *kernel = NULL;
1572 		struct dso *dso;
1573 
1574 		down_read(&machine->dsos.lock);
1575 
1576 		list_for_each_entry(dso, &machine->dsos.head, node) {
1577 
1578 			/*
1579 			 * The cpumode passed to is_kernel_module is not the
1580 			 * cpumode of *this* event. If we insist on passing
1581 			 * correct cpumode to is_kernel_module, we should
1582 			 * record the cpumode when we adding this dso to the
1583 			 * linked list.
1584 			 *
1585 			 * However we don't really need passing correct
1586 			 * cpumode.  We know the correct cpumode must be kernel
1587 			 * mode (if not, we should not link it onto kernel_dsos
1588 			 * list).
1589 			 *
1590 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1591 			 * is_kernel_module() treats it as a kernel cpumode.
1592 			 */
1593 
1594 			if (!dso->kernel ||
1595 			    is_kernel_module(dso->long_name,
1596 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1597 				continue;
1598 
1599 
1600 			kernel = dso;
1601 			break;
1602 		}
1603 
1604 		up_read(&machine->dsos.lock);
1605 
1606 		if (kernel == NULL)
1607 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1608 		if (kernel == NULL)
1609 			goto out_problem;
1610 
1611 		kernel->kernel = kernel_type;
1612 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1613 			dso__put(kernel);
1614 			goto out_problem;
1615 		}
1616 
1617 		if (strstr(kernel->long_name, "vmlinux"))
1618 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1619 
1620 		machine__update_kernel_mmap(machine, event->mmap.start,
1621 					 event->mmap.start + event->mmap.len);
1622 
1623 		/*
1624 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1625 		 * symbol. Effectively having zero here means that at record
1626 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1627 		 */
1628 		if (event->mmap.pgoff != 0) {
1629 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1630 							symbol_name,
1631 							event->mmap.pgoff);
1632 		}
1633 
1634 		if (machine__is_default_guest(machine)) {
1635 			/*
1636 			 * preload dso of guest kernel and modules
1637 			 */
1638 			dso__load(kernel, machine__kernel_map(machine));
1639 		}
1640 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1641 		return machine__process_extra_kernel_map(machine, event);
1642 	}
1643 	return 0;
1644 out_problem:
1645 	return -1;
1646 }
1647 
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1648 int machine__process_mmap2_event(struct machine *machine,
1649 				 union perf_event *event,
1650 				 struct perf_sample *sample)
1651 {
1652 	struct thread *thread;
1653 	struct map *map;
1654 	int ret = 0;
1655 
1656 	if (dump_trace)
1657 		perf_event__fprintf_mmap2(event, stdout);
1658 
1659 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1660 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1661 		ret = machine__process_kernel_mmap_event(machine, event);
1662 		if (ret < 0)
1663 			goto out_problem;
1664 		return 0;
1665 	}
1666 
1667 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1668 					event->mmap2.tid);
1669 	if (thread == NULL)
1670 		goto out_problem;
1671 
1672 	map = map__new(machine, event->mmap2.start,
1673 			event->mmap2.len, event->mmap2.pgoff,
1674 			event->mmap2.maj,
1675 			event->mmap2.min, event->mmap2.ino,
1676 			event->mmap2.ino_generation,
1677 			event->mmap2.prot,
1678 			event->mmap2.flags,
1679 			event->mmap2.filename, thread);
1680 
1681 	if (map == NULL)
1682 		goto out_problem_map;
1683 
1684 	ret = thread__insert_map(thread, map);
1685 	if (ret)
1686 		goto out_problem_insert;
1687 
1688 	thread__put(thread);
1689 	map__put(map);
1690 	return 0;
1691 
1692 out_problem_insert:
1693 	map__put(map);
1694 out_problem_map:
1695 	thread__put(thread);
1696 out_problem:
1697 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1698 	return 0;
1699 }
1700 
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1701 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1702 				struct perf_sample *sample)
1703 {
1704 	struct thread *thread;
1705 	struct map *map;
1706 	u32 prot = 0;
1707 	int ret = 0;
1708 
1709 	if (dump_trace)
1710 		perf_event__fprintf_mmap(event, stdout);
1711 
1712 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1713 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1714 		ret = machine__process_kernel_mmap_event(machine, event);
1715 		if (ret < 0)
1716 			goto out_problem;
1717 		return 0;
1718 	}
1719 
1720 	thread = machine__findnew_thread(machine, event->mmap.pid,
1721 					 event->mmap.tid);
1722 	if (thread == NULL)
1723 		goto out_problem;
1724 
1725 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1726 		prot = PROT_EXEC;
1727 
1728 	map = map__new(machine, event->mmap.start,
1729 			event->mmap.len, event->mmap.pgoff,
1730 			0, 0, 0, 0, prot, 0,
1731 			event->mmap.filename,
1732 			thread);
1733 
1734 	if (map == NULL)
1735 		goto out_problem_map;
1736 
1737 	ret = thread__insert_map(thread, map);
1738 	if (ret)
1739 		goto out_problem_insert;
1740 
1741 	thread__put(thread);
1742 	map__put(map);
1743 	return 0;
1744 
1745 out_problem_insert:
1746 	map__put(map);
1747 out_problem_map:
1748 	thread__put(thread);
1749 out_problem:
1750 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1751 	return 0;
1752 }
1753 
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1754 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1755 {
1756 	struct threads *threads = machine__threads(machine, th->tid);
1757 
1758 	if (threads->last_match == th)
1759 		threads__set_last_match(threads, NULL);
1760 
1761 	if (lock)
1762 		down_write(&threads->lock);
1763 
1764 	BUG_ON(refcount_read(&th->refcnt) == 0);
1765 
1766 	rb_erase_cached(&th->rb_node, &threads->entries);
1767 	RB_CLEAR_NODE(&th->rb_node);
1768 	--threads->nr;
1769 	/*
1770 	 * Move it first to the dead_threads list, then drop the reference,
1771 	 * if this is the last reference, then the thread__delete destructor
1772 	 * will be called and we will remove it from the dead_threads list.
1773 	 */
1774 	list_add_tail(&th->node, &threads->dead);
1775 
1776 	/*
1777 	 * We need to do the put here because if this is the last refcount,
1778 	 * then we will be touching the threads->dead head when removing the
1779 	 * thread.
1780 	 */
1781 	thread__put(th);
1782 
1783 	if (lock)
1784 		up_write(&threads->lock);
1785 }
1786 
machine__remove_thread(struct machine * machine,struct thread * th)1787 void machine__remove_thread(struct machine *machine, struct thread *th)
1788 {
1789 	return __machine__remove_thread(machine, th, true);
1790 }
1791 
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1792 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1793 				struct perf_sample *sample)
1794 {
1795 	struct thread *thread = machine__find_thread(machine,
1796 						     event->fork.pid,
1797 						     event->fork.tid);
1798 	struct thread *parent = machine__findnew_thread(machine,
1799 							event->fork.ppid,
1800 							event->fork.ptid);
1801 	bool do_maps_clone = true;
1802 	int err = 0;
1803 
1804 	if (dump_trace)
1805 		perf_event__fprintf_task(event, stdout);
1806 
1807 	/*
1808 	 * There may be an existing thread that is not actually the parent,
1809 	 * either because we are processing events out of order, or because the
1810 	 * (fork) event that would have removed the thread was lost. Assume the
1811 	 * latter case and continue on as best we can.
1812 	 */
1813 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1814 		dump_printf("removing erroneous parent thread %d/%d\n",
1815 			    parent->pid_, parent->tid);
1816 		machine__remove_thread(machine, parent);
1817 		thread__put(parent);
1818 		parent = machine__findnew_thread(machine, event->fork.ppid,
1819 						 event->fork.ptid);
1820 	}
1821 
1822 	/* if a thread currently exists for the thread id remove it */
1823 	if (thread != NULL) {
1824 		machine__remove_thread(machine, thread);
1825 		thread__put(thread);
1826 	}
1827 
1828 	thread = machine__findnew_thread(machine, event->fork.pid,
1829 					 event->fork.tid);
1830 	/*
1831 	 * When synthesizing FORK events, we are trying to create thread
1832 	 * objects for the already running tasks on the machine.
1833 	 *
1834 	 * Normally, for a kernel FORK event, we want to clone the parent's
1835 	 * maps because that is what the kernel just did.
1836 	 *
1837 	 * But when synthesizing, this should not be done.  If we do, we end up
1838 	 * with overlapping maps as we process the sythesized MMAP2 events that
1839 	 * get delivered shortly thereafter.
1840 	 *
1841 	 * Use the FORK event misc flags in an internal way to signal this
1842 	 * situation, so we can elide the map clone when appropriate.
1843 	 */
1844 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1845 		do_maps_clone = false;
1846 
1847 	if (thread == NULL || parent == NULL ||
1848 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1849 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1850 		err = -1;
1851 	}
1852 	thread__put(thread);
1853 	thread__put(parent);
1854 
1855 	return err;
1856 }
1857 
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1858 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1859 				struct perf_sample *sample __maybe_unused)
1860 {
1861 	struct thread *thread = machine__find_thread(machine,
1862 						     event->fork.pid,
1863 						     event->fork.tid);
1864 
1865 	if (dump_trace)
1866 		perf_event__fprintf_task(event, stdout);
1867 
1868 	if (thread != NULL) {
1869 		thread__exited(thread);
1870 		thread__put(thread);
1871 	}
1872 
1873 	return 0;
1874 }
1875 
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1876 int machine__process_event(struct machine *machine, union perf_event *event,
1877 			   struct perf_sample *sample)
1878 {
1879 	int ret;
1880 
1881 	switch (event->header.type) {
1882 	case PERF_RECORD_COMM:
1883 		ret = machine__process_comm_event(machine, event, sample); break;
1884 	case PERF_RECORD_MMAP:
1885 		ret = machine__process_mmap_event(machine, event, sample); break;
1886 	case PERF_RECORD_NAMESPACES:
1887 		ret = machine__process_namespaces_event(machine, event, sample); break;
1888 	case PERF_RECORD_MMAP2:
1889 		ret = machine__process_mmap2_event(machine, event, sample); break;
1890 	case PERF_RECORD_FORK:
1891 		ret = machine__process_fork_event(machine, event, sample); break;
1892 	case PERF_RECORD_EXIT:
1893 		ret = machine__process_exit_event(machine, event, sample); break;
1894 	case PERF_RECORD_LOST:
1895 		ret = machine__process_lost_event(machine, event, sample); break;
1896 	case PERF_RECORD_AUX:
1897 		ret = machine__process_aux_event(machine, event); break;
1898 	case PERF_RECORD_ITRACE_START:
1899 		ret = machine__process_itrace_start_event(machine, event); break;
1900 	case PERF_RECORD_LOST_SAMPLES:
1901 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1902 	case PERF_RECORD_SWITCH:
1903 	case PERF_RECORD_SWITCH_CPU_WIDE:
1904 		ret = machine__process_switch_event(machine, event); break;
1905 	case PERF_RECORD_KSYMBOL:
1906 		ret = machine__process_ksymbol(machine, event, sample); break;
1907 	case PERF_RECORD_BPF_EVENT:
1908 		ret = machine__process_bpf(machine, event, sample); break;
1909 	default:
1910 		ret = -1;
1911 		break;
1912 	}
1913 
1914 	return ret;
1915 }
1916 
symbol__match_regex(struct symbol * sym,regex_t * regex)1917 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1918 {
1919 	if (!regexec(regex, sym->name, 0, NULL, 0))
1920 		return 1;
1921 	return 0;
1922 }
1923 
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)1924 static void ip__resolve_ams(struct thread *thread,
1925 			    struct addr_map_symbol *ams,
1926 			    u64 ip)
1927 {
1928 	struct addr_location al;
1929 
1930 	memset(&al, 0, sizeof(al));
1931 	/*
1932 	 * We cannot use the header.misc hint to determine whether a
1933 	 * branch stack address is user, kernel, guest, hypervisor.
1934 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1935 	 * Thus, we have to try consecutively until we find a match
1936 	 * or else, the symbol is unknown
1937 	 */
1938 	thread__find_cpumode_addr_location(thread, ip, &al);
1939 
1940 	ams->addr = ip;
1941 	ams->al_addr = al.addr;
1942 	ams->sym = al.sym;
1943 	ams->map = al.map;
1944 	ams->phys_addr = 0;
1945 }
1946 
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr)1947 static void ip__resolve_data(struct thread *thread,
1948 			     u8 m, struct addr_map_symbol *ams,
1949 			     u64 addr, u64 phys_addr)
1950 {
1951 	struct addr_location al;
1952 
1953 	memset(&al, 0, sizeof(al));
1954 
1955 	thread__find_symbol(thread, m, addr, &al);
1956 
1957 	ams->addr = addr;
1958 	ams->al_addr = al.addr;
1959 	ams->sym = al.sym;
1960 	ams->map = al.map;
1961 	ams->phys_addr = phys_addr;
1962 }
1963 
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)1964 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1965 				     struct addr_location *al)
1966 {
1967 	struct mem_info *mi = mem_info__new();
1968 
1969 	if (!mi)
1970 		return NULL;
1971 
1972 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1973 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1974 			 sample->addr, sample->phys_addr);
1975 	mi->data_src.val = sample->data_src;
1976 
1977 	return mi;
1978 }
1979 
callchain_srcline(struct map * map,struct symbol * sym,u64 ip)1980 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1981 {
1982 	char *srcline = NULL;
1983 
1984 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1985 		return srcline;
1986 
1987 	srcline = srcline__tree_find(&map->dso->srclines, ip);
1988 	if (!srcline) {
1989 		bool show_sym = false;
1990 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1991 
1992 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1993 				      sym, show_sym, show_addr, ip);
1994 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1995 	}
1996 
1997 	return srcline;
1998 }
1999 
2000 struct iterations {
2001 	int nr_loop_iter;
2002 	u64 cycles;
2003 };
2004 
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)2005 static int add_callchain_ip(struct thread *thread,
2006 			    struct callchain_cursor *cursor,
2007 			    struct symbol **parent,
2008 			    struct addr_location *root_al,
2009 			    u8 *cpumode,
2010 			    u64 ip,
2011 			    bool branch,
2012 			    struct branch_flags *flags,
2013 			    struct iterations *iter,
2014 			    u64 branch_from)
2015 {
2016 	struct addr_location al;
2017 	int nr_loop_iter = 0;
2018 	u64 iter_cycles = 0;
2019 	const char *srcline = NULL;
2020 
2021 	al.filtered = 0;
2022 	al.sym = NULL;
2023 	if (!cpumode) {
2024 		thread__find_cpumode_addr_location(thread, ip, &al);
2025 	} else {
2026 		if (ip >= PERF_CONTEXT_MAX) {
2027 			switch (ip) {
2028 			case PERF_CONTEXT_HV:
2029 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2030 				break;
2031 			case PERF_CONTEXT_KERNEL:
2032 				*cpumode = PERF_RECORD_MISC_KERNEL;
2033 				break;
2034 			case PERF_CONTEXT_USER:
2035 				*cpumode = PERF_RECORD_MISC_USER;
2036 				break;
2037 			default:
2038 				pr_debug("invalid callchain context: "
2039 					 "%"PRId64"\n", (s64) ip);
2040 				/*
2041 				 * It seems the callchain is corrupted.
2042 				 * Discard all.
2043 				 */
2044 				callchain_cursor_reset(cursor);
2045 				return 1;
2046 			}
2047 			return 0;
2048 		}
2049 		thread__find_symbol(thread, *cpumode, ip, &al);
2050 	}
2051 
2052 	if (al.sym != NULL) {
2053 		if (perf_hpp_list.parent && !*parent &&
2054 		    symbol__match_regex(al.sym, &parent_regex))
2055 			*parent = al.sym;
2056 		else if (have_ignore_callees && root_al &&
2057 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2058 			/* Treat this symbol as the root,
2059 			   forgetting its callees. */
2060 			*root_al = al;
2061 			callchain_cursor_reset(cursor);
2062 		}
2063 	}
2064 
2065 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2066 		return 0;
2067 
2068 	if (iter) {
2069 		nr_loop_iter = iter->nr_loop_iter;
2070 		iter_cycles = iter->cycles;
2071 	}
2072 
2073 	srcline = callchain_srcline(al.map, al.sym, al.addr);
2074 	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2075 				       branch, flags, nr_loop_iter,
2076 				       iter_cycles, branch_from, srcline);
2077 }
2078 
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2079 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2080 					   struct addr_location *al)
2081 {
2082 	unsigned int i;
2083 	const struct branch_stack *bs = sample->branch_stack;
2084 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2085 
2086 	if (!bi)
2087 		return NULL;
2088 
2089 	for (i = 0; i < bs->nr; i++) {
2090 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2091 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2092 		bi[i].flags = bs->entries[i].flags;
2093 	}
2094 	return bi;
2095 }
2096 
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2097 static void save_iterations(struct iterations *iter,
2098 			    struct branch_entry *be, int nr)
2099 {
2100 	int i;
2101 
2102 	iter->nr_loop_iter++;
2103 	iter->cycles = 0;
2104 
2105 	for (i = 0; i < nr; i++)
2106 		iter->cycles += be[i].flags.cycles;
2107 }
2108 
2109 #define CHASHSZ 127
2110 #define CHASHBITS 7
2111 #define NO_ENTRY 0xff
2112 
2113 #define PERF_MAX_BRANCH_DEPTH 127
2114 
2115 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2116 static int remove_loops(struct branch_entry *l, int nr,
2117 			struct iterations *iter)
2118 {
2119 	int i, j, off;
2120 	unsigned char chash[CHASHSZ];
2121 
2122 	memset(chash, NO_ENTRY, sizeof(chash));
2123 
2124 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2125 
2126 	for (i = 0; i < nr; i++) {
2127 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2128 
2129 		/* no collision handling for now */
2130 		if (chash[h] == NO_ENTRY) {
2131 			chash[h] = i;
2132 		} else if (l[chash[h]].from == l[i].from) {
2133 			bool is_loop = true;
2134 			/* check if it is a real loop */
2135 			off = 0;
2136 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2137 				if (l[j].from != l[i + off].from) {
2138 					is_loop = false;
2139 					break;
2140 				}
2141 			if (is_loop) {
2142 				j = nr - (i + off);
2143 				if (j > 0) {
2144 					save_iterations(iter + i + off,
2145 						l + i, off);
2146 
2147 					memmove(iter + i, iter + i + off,
2148 						j * sizeof(*iter));
2149 
2150 					memmove(l + i, l + i + off,
2151 						j * sizeof(*l));
2152 				}
2153 
2154 				nr -= off;
2155 			}
2156 		}
2157 	}
2158 	return nr;
2159 }
2160 
2161 /*
2162  * Recolve LBR callstack chain sample
2163  * Return:
2164  * 1 on success get LBR callchain information
2165  * 0 no available LBR callchain information, should try fp
2166  * negative error code on other errors.
2167  */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2168 static int resolve_lbr_callchain_sample(struct thread *thread,
2169 					struct callchain_cursor *cursor,
2170 					struct perf_sample *sample,
2171 					struct symbol **parent,
2172 					struct addr_location *root_al,
2173 					int max_stack)
2174 {
2175 	struct ip_callchain *chain = sample->callchain;
2176 	int chain_nr = min(max_stack, (int)chain->nr), i;
2177 	u8 cpumode = PERF_RECORD_MISC_USER;
2178 	u64 ip, branch_from = 0;
2179 
2180 	for (i = 0; i < chain_nr; i++) {
2181 		if (chain->ips[i] == PERF_CONTEXT_USER)
2182 			break;
2183 	}
2184 
2185 	/* LBR only affects the user callchain */
2186 	if (i != chain_nr) {
2187 		struct branch_stack *lbr_stack = sample->branch_stack;
2188 		int lbr_nr = lbr_stack->nr, j, k;
2189 		bool branch;
2190 		struct branch_flags *flags;
2191 		/*
2192 		 * LBR callstack can only get user call chain.
2193 		 * The mix_chain_nr is kernel call chain
2194 		 * number plus LBR user call chain number.
2195 		 * i is kernel call chain number,
2196 		 * 1 is PERF_CONTEXT_USER,
2197 		 * lbr_nr + 1 is the user call chain number.
2198 		 * For details, please refer to the comments
2199 		 * in callchain__printf
2200 		 */
2201 		int mix_chain_nr = i + 1 + lbr_nr + 1;
2202 
2203 		for (j = 0; j < mix_chain_nr; j++) {
2204 			int err;
2205 			branch = false;
2206 			flags = NULL;
2207 
2208 			if (callchain_param.order == ORDER_CALLEE) {
2209 				if (j < i + 1)
2210 					ip = chain->ips[j];
2211 				else if (j > i + 1) {
2212 					k = j - i - 2;
2213 					ip = lbr_stack->entries[k].from;
2214 					branch = true;
2215 					flags = &lbr_stack->entries[k].flags;
2216 				} else {
2217 					ip = lbr_stack->entries[0].to;
2218 					branch = true;
2219 					flags = &lbr_stack->entries[0].flags;
2220 					branch_from =
2221 						lbr_stack->entries[0].from;
2222 				}
2223 			} else {
2224 				if (j < lbr_nr) {
2225 					k = lbr_nr - j - 1;
2226 					ip = lbr_stack->entries[k].from;
2227 					branch = true;
2228 					flags = &lbr_stack->entries[k].flags;
2229 				}
2230 				else if (j > lbr_nr)
2231 					ip = chain->ips[i + 1 - (j - lbr_nr)];
2232 				else {
2233 					ip = lbr_stack->entries[0].to;
2234 					branch = true;
2235 					flags = &lbr_stack->entries[0].flags;
2236 					branch_from =
2237 						lbr_stack->entries[0].from;
2238 				}
2239 			}
2240 
2241 			err = add_callchain_ip(thread, cursor, parent,
2242 					       root_al, &cpumode, ip,
2243 					       branch, flags, NULL,
2244 					       branch_from);
2245 			if (err)
2246 				return (err < 0) ? err : 0;
2247 		}
2248 		return 1;
2249 	}
2250 
2251 	return 0;
2252 }
2253 
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent)2254 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2255 			     struct callchain_cursor *cursor,
2256 			     struct symbol **parent,
2257 			     struct addr_location *root_al,
2258 			     u8 *cpumode, int ent)
2259 {
2260 	int err = 0;
2261 
2262 	while (--ent >= 0) {
2263 		u64 ip = chain->ips[ent];
2264 
2265 		if (ip >= PERF_CONTEXT_MAX) {
2266 			err = add_callchain_ip(thread, cursor, parent,
2267 					       root_al, cpumode, ip,
2268 					       false, NULL, NULL, 0);
2269 			break;
2270 		}
2271 	}
2272 	return err;
2273 }
2274 
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2275 static int thread__resolve_callchain_sample(struct thread *thread,
2276 					    struct callchain_cursor *cursor,
2277 					    struct evsel *evsel,
2278 					    struct perf_sample *sample,
2279 					    struct symbol **parent,
2280 					    struct addr_location *root_al,
2281 					    int max_stack)
2282 {
2283 	struct branch_stack *branch = sample->branch_stack;
2284 	struct ip_callchain *chain = sample->callchain;
2285 	int chain_nr = 0;
2286 	u8 cpumode = PERF_RECORD_MISC_USER;
2287 	int i, j, err, nr_entries;
2288 	int skip_idx = -1;
2289 	int first_call = 0;
2290 
2291 	if (chain)
2292 		chain_nr = chain->nr;
2293 
2294 	if (perf_evsel__has_branch_callstack(evsel)) {
2295 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2296 						   root_al, max_stack);
2297 		if (err)
2298 			return (err < 0) ? err : 0;
2299 	}
2300 
2301 	/*
2302 	 * Based on DWARF debug information, some architectures skip
2303 	 * a callchain entry saved by the kernel.
2304 	 */
2305 	skip_idx = arch_skip_callchain_idx(thread, chain);
2306 
2307 	/*
2308 	 * Add branches to call stack for easier browsing. This gives
2309 	 * more context for a sample than just the callers.
2310 	 *
2311 	 * This uses individual histograms of paths compared to the
2312 	 * aggregated histograms the normal LBR mode uses.
2313 	 *
2314 	 * Limitations for now:
2315 	 * - No extra filters
2316 	 * - No annotations (should annotate somehow)
2317 	 */
2318 
2319 	if (branch && callchain_param.branch_callstack) {
2320 		int nr = min(max_stack, (int)branch->nr);
2321 		struct branch_entry be[nr];
2322 		struct iterations iter[nr];
2323 
2324 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2325 			pr_warning("corrupted branch chain. skipping...\n");
2326 			goto check_calls;
2327 		}
2328 
2329 		for (i = 0; i < nr; i++) {
2330 			if (callchain_param.order == ORDER_CALLEE) {
2331 				be[i] = branch->entries[i];
2332 
2333 				if (chain == NULL)
2334 					continue;
2335 
2336 				/*
2337 				 * Check for overlap into the callchain.
2338 				 * The return address is one off compared to
2339 				 * the branch entry. To adjust for this
2340 				 * assume the calling instruction is not longer
2341 				 * than 8 bytes.
2342 				 */
2343 				if (i == skip_idx ||
2344 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2345 					first_call++;
2346 				else if (be[i].from < chain->ips[first_call] &&
2347 				    be[i].from >= chain->ips[first_call] - 8)
2348 					first_call++;
2349 			} else
2350 				be[i] = branch->entries[branch->nr - i - 1];
2351 		}
2352 
2353 		memset(iter, 0, sizeof(struct iterations) * nr);
2354 		nr = remove_loops(be, nr, iter);
2355 
2356 		for (i = 0; i < nr; i++) {
2357 			err = add_callchain_ip(thread, cursor, parent,
2358 					       root_al,
2359 					       NULL, be[i].to,
2360 					       true, &be[i].flags,
2361 					       NULL, be[i].from);
2362 
2363 			if (!err)
2364 				err = add_callchain_ip(thread, cursor, parent, root_al,
2365 						       NULL, be[i].from,
2366 						       true, &be[i].flags,
2367 						       &iter[i], 0);
2368 			if (err == -EINVAL)
2369 				break;
2370 			if (err)
2371 				return err;
2372 		}
2373 
2374 		if (chain_nr == 0)
2375 			return 0;
2376 
2377 		chain_nr -= nr;
2378 	}
2379 
2380 check_calls:
2381 	if (chain && callchain_param.order != ORDER_CALLEE) {
2382 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2383 					&cpumode, chain->nr - first_call);
2384 		if (err)
2385 			return (err < 0) ? err : 0;
2386 	}
2387 	for (i = first_call, nr_entries = 0;
2388 	     i < chain_nr && nr_entries < max_stack; i++) {
2389 		u64 ip;
2390 
2391 		if (callchain_param.order == ORDER_CALLEE)
2392 			j = i;
2393 		else
2394 			j = chain->nr - i - 1;
2395 
2396 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2397 		if (j == skip_idx)
2398 			continue;
2399 #endif
2400 		ip = chain->ips[j];
2401 		if (ip < PERF_CONTEXT_MAX)
2402                        ++nr_entries;
2403 		else if (callchain_param.order != ORDER_CALLEE) {
2404 			err = find_prev_cpumode(chain, thread, cursor, parent,
2405 						root_al, &cpumode, j);
2406 			if (err)
2407 				return (err < 0) ? err : 0;
2408 			continue;
2409 		}
2410 
2411 		err = add_callchain_ip(thread, cursor, parent,
2412 				       root_al, &cpumode, ip,
2413 				       false, NULL, NULL, 0);
2414 
2415 		if (err)
2416 			return (err < 0) ? err : 0;
2417 	}
2418 
2419 	return 0;
2420 }
2421 
append_inlines(struct callchain_cursor * cursor,struct map * map,struct symbol * sym,u64 ip)2422 static int append_inlines(struct callchain_cursor *cursor,
2423 			  struct map *map, struct symbol *sym, u64 ip)
2424 {
2425 	struct inline_node *inline_node;
2426 	struct inline_list *ilist;
2427 	u64 addr;
2428 	int ret = 1;
2429 
2430 	if (!symbol_conf.inline_name || !map || !sym)
2431 		return ret;
2432 
2433 	addr = map__map_ip(map, ip);
2434 	addr = map__rip_2objdump(map, addr);
2435 
2436 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2437 	if (!inline_node) {
2438 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2439 		if (!inline_node)
2440 			return ret;
2441 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2442 	}
2443 
2444 	list_for_each_entry(ilist, &inline_node->val, list) {
2445 		ret = callchain_cursor_append(cursor, ip, map,
2446 					      ilist->symbol, false,
2447 					      NULL, 0, 0, 0, ilist->srcline);
2448 
2449 		if (ret != 0)
2450 			return ret;
2451 	}
2452 
2453 	return ret;
2454 }
2455 
unwind_entry(struct unwind_entry * entry,void * arg)2456 static int unwind_entry(struct unwind_entry *entry, void *arg)
2457 {
2458 	struct callchain_cursor *cursor = arg;
2459 	const char *srcline = NULL;
2460 	u64 addr = entry->ip;
2461 
2462 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2463 		return 0;
2464 
2465 	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2466 		return 0;
2467 
2468 	/*
2469 	 * Convert entry->ip from a virtual address to an offset in
2470 	 * its corresponding binary.
2471 	 */
2472 	if (entry->map)
2473 		addr = map__map_ip(entry->map, entry->ip);
2474 
2475 	srcline = callchain_srcline(entry->map, entry->sym, addr);
2476 	return callchain_cursor_append(cursor, entry->ip,
2477 				       entry->map, entry->sym,
2478 				       false, NULL, 0, 0, 0, srcline);
2479 }
2480 
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack)2481 static int thread__resolve_callchain_unwind(struct thread *thread,
2482 					    struct callchain_cursor *cursor,
2483 					    struct evsel *evsel,
2484 					    struct perf_sample *sample,
2485 					    int max_stack)
2486 {
2487 	/* Can we do dwarf post unwind? */
2488 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2489 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2490 		return 0;
2491 
2492 	/* Bail out if nothing was captured. */
2493 	if ((!sample->user_regs.regs) ||
2494 	    (!sample->user_stack.size))
2495 		return 0;
2496 
2497 	return unwind__get_entries(unwind_entry, cursor,
2498 				   thread, sample, max_stack);
2499 }
2500 
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2501 int thread__resolve_callchain(struct thread *thread,
2502 			      struct callchain_cursor *cursor,
2503 			      struct evsel *evsel,
2504 			      struct perf_sample *sample,
2505 			      struct symbol **parent,
2506 			      struct addr_location *root_al,
2507 			      int max_stack)
2508 {
2509 	int ret = 0;
2510 
2511 	callchain_cursor_reset(cursor);
2512 
2513 	if (callchain_param.order == ORDER_CALLEE) {
2514 		ret = thread__resolve_callchain_sample(thread, cursor,
2515 						       evsel, sample,
2516 						       parent, root_al,
2517 						       max_stack);
2518 		if (ret)
2519 			return ret;
2520 		ret = thread__resolve_callchain_unwind(thread, cursor,
2521 						       evsel, sample,
2522 						       max_stack);
2523 	} else {
2524 		ret = thread__resolve_callchain_unwind(thread, cursor,
2525 						       evsel, sample,
2526 						       max_stack);
2527 		if (ret)
2528 			return ret;
2529 		ret = thread__resolve_callchain_sample(thread, cursor,
2530 						       evsel, sample,
2531 						       parent, root_al,
2532 						       max_stack);
2533 	}
2534 
2535 	return ret;
2536 }
2537 
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)2538 int machine__for_each_thread(struct machine *machine,
2539 			     int (*fn)(struct thread *thread, void *p),
2540 			     void *priv)
2541 {
2542 	struct threads *threads;
2543 	struct rb_node *nd;
2544 	struct thread *thread;
2545 	int rc = 0;
2546 	int i;
2547 
2548 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2549 		threads = &machine->threads[i];
2550 		for (nd = rb_first_cached(&threads->entries); nd;
2551 		     nd = rb_next(nd)) {
2552 			thread = rb_entry(nd, struct thread, rb_node);
2553 			rc = fn(thread, priv);
2554 			if (rc != 0)
2555 				return rc;
2556 		}
2557 
2558 		list_for_each_entry(thread, &threads->dead, node) {
2559 			rc = fn(thread, priv);
2560 			if (rc != 0)
2561 				return rc;
2562 		}
2563 	}
2564 	return rc;
2565 }
2566 
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)2567 int machines__for_each_thread(struct machines *machines,
2568 			      int (*fn)(struct thread *thread, void *p),
2569 			      void *priv)
2570 {
2571 	struct rb_node *nd;
2572 	int rc = 0;
2573 
2574 	rc = machine__for_each_thread(&machines->host, fn, priv);
2575 	if (rc != 0)
2576 		return rc;
2577 
2578 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2579 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2580 
2581 		rc = machine__for_each_thread(machine, fn, priv);
2582 		if (rc != 0)
2583 			return rc;
2584 	}
2585 	return rc;
2586 }
2587 
machine__get_current_tid(struct machine * machine,int cpu)2588 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2589 {
2590 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2591 
2592 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2593 		return -1;
2594 
2595 	return machine->current_tid[cpu];
2596 }
2597 
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)2598 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2599 			     pid_t tid)
2600 {
2601 	struct thread *thread;
2602 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2603 
2604 	if (cpu < 0)
2605 		return -EINVAL;
2606 
2607 	if (!machine->current_tid) {
2608 		int i;
2609 
2610 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2611 		if (!machine->current_tid)
2612 			return -ENOMEM;
2613 		for (i = 0; i < nr_cpus; i++)
2614 			machine->current_tid[i] = -1;
2615 	}
2616 
2617 	if (cpu >= nr_cpus) {
2618 		pr_err("Requested CPU %d too large. ", cpu);
2619 		pr_err("Consider raising MAX_NR_CPUS\n");
2620 		return -EINVAL;
2621 	}
2622 
2623 	machine->current_tid[cpu] = tid;
2624 
2625 	thread = machine__findnew_thread(machine, pid, tid);
2626 	if (!thread)
2627 		return -ENOMEM;
2628 
2629 	thread->cpu = cpu;
2630 	thread__put(thread);
2631 
2632 	return 0;
2633 }
2634 
2635 /*
2636  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2637  * normalized arch is needed.
2638  */
machine__is(struct machine * machine,const char * arch)2639 bool machine__is(struct machine *machine, const char *arch)
2640 {
2641 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2642 }
2643 
machine__nr_cpus_avail(struct machine * machine)2644 int machine__nr_cpus_avail(struct machine *machine)
2645 {
2646 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2647 }
2648 
machine__get_kernel_start(struct machine * machine)2649 int machine__get_kernel_start(struct machine *machine)
2650 {
2651 	struct map *map = machine__kernel_map(machine);
2652 	int err = 0;
2653 
2654 	/*
2655 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2656 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2657 	 * all addresses including kernel addresses are less than 2^32.  In
2658 	 * that case (32-bit system), if the kernel mapping is unknown, all
2659 	 * addresses will be assumed to be in user space - see
2660 	 * machine__kernel_ip().
2661 	 */
2662 	machine->kernel_start = 1ULL << 63;
2663 	if (map) {
2664 		err = map__load(map);
2665 		/*
2666 		 * On x86_64, PTI entry trampolines are less than the
2667 		 * start of kernel text, but still above 2^63. So leave
2668 		 * kernel_start = 1ULL << 63 for x86_64.
2669 		 */
2670 		if (!err && !machine__is(machine, "x86_64"))
2671 			machine->kernel_start = map->start;
2672 	}
2673 	return err;
2674 }
2675 
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)2676 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2677 {
2678 	u8 addr_cpumode = cpumode;
2679 	bool kernel_ip;
2680 
2681 	if (!machine->single_address_space)
2682 		goto out;
2683 
2684 	kernel_ip = machine__kernel_ip(machine, addr);
2685 	switch (cpumode) {
2686 	case PERF_RECORD_MISC_KERNEL:
2687 	case PERF_RECORD_MISC_USER:
2688 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2689 					   PERF_RECORD_MISC_USER;
2690 		break;
2691 	case PERF_RECORD_MISC_GUEST_KERNEL:
2692 	case PERF_RECORD_MISC_GUEST_USER:
2693 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2694 					   PERF_RECORD_MISC_GUEST_USER;
2695 		break;
2696 	default:
2697 		break;
2698 	}
2699 out:
2700 	return addr_cpumode;
2701 }
2702 
machine__findnew_dso(struct machine * machine,const char * filename)2703 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2704 {
2705 	return dsos__findnew(&machine->dsos, filename);
2706 }
2707 
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)2708 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2709 {
2710 	struct machine *machine = vmachine;
2711 	struct map *map;
2712 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2713 
2714 	if (sym == NULL)
2715 		return NULL;
2716 
2717 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2718 	*addrp = map->unmap_ip(map, sym->start);
2719 	return sym->name;
2720 }
2721