• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_mmio.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static pgd_t *boot_hyp_pgd;
26 static pgd_t *hyp_pgd;
27 static pgd_t *merged_hyp_pgd;
28 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
29 
30 static unsigned long hyp_idmap_start;
31 static unsigned long hyp_idmap_end;
32 static phys_addr_t hyp_idmap_vector;
33 
34 static unsigned long io_map_base;
35 
36 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
37 
38 #define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
39 #define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
40 
is_iomap(unsigned long flags)41 static bool is_iomap(unsigned long flags)
42 {
43 	return flags & KVM_S2PTE_FLAG_IS_IOMAP;
44 }
45 
memslot_is_logging(struct kvm_memory_slot * memslot)46 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
47 {
48 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
49 }
50 
51 /**
52  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
53  * @kvm:	pointer to kvm structure.
54  *
55  * Interface to HYP function to flush all VM TLB entries
56  */
kvm_flush_remote_tlbs(struct kvm * kvm)57 void kvm_flush_remote_tlbs(struct kvm *kvm)
58 {
59 	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
60 }
61 
kvm_tlb_flush_vmid_ipa(struct kvm * kvm,phys_addr_t ipa)62 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
63 {
64 	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
65 }
66 
67 /*
68  * D-Cache management functions. They take the page table entries by
69  * value, as they are flushing the cache using the kernel mapping (or
70  * kmap on 32bit).
71  */
kvm_flush_dcache_pte(pte_t pte)72 static void kvm_flush_dcache_pte(pte_t pte)
73 {
74 	__kvm_flush_dcache_pte(pte);
75 }
76 
kvm_flush_dcache_pmd(pmd_t pmd)77 static void kvm_flush_dcache_pmd(pmd_t pmd)
78 {
79 	__kvm_flush_dcache_pmd(pmd);
80 }
81 
kvm_flush_dcache_pud(pud_t pud)82 static void kvm_flush_dcache_pud(pud_t pud)
83 {
84 	__kvm_flush_dcache_pud(pud);
85 }
86 
kvm_is_device_pfn(unsigned long pfn)87 static bool kvm_is_device_pfn(unsigned long pfn)
88 {
89 	return !pfn_valid(pfn);
90 }
91 
92 /**
93  * stage2_dissolve_pmd() - clear and flush huge PMD entry
94  * @kvm:	pointer to kvm structure.
95  * @addr:	IPA
96  * @pmd:	pmd pointer for IPA
97  *
98  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
99  */
stage2_dissolve_pmd(struct kvm * kvm,phys_addr_t addr,pmd_t * pmd)100 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
101 {
102 	if (!pmd_thp_or_huge(*pmd))
103 		return;
104 
105 	pmd_clear(pmd);
106 	kvm_tlb_flush_vmid_ipa(kvm, addr);
107 	put_page(virt_to_page(pmd));
108 }
109 
110 /**
111  * stage2_dissolve_pud() - clear and flush huge PUD entry
112  * @kvm:	pointer to kvm structure.
113  * @addr:	IPA
114  * @pud:	pud pointer for IPA
115  *
116  * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
117  */
stage2_dissolve_pud(struct kvm * kvm,phys_addr_t addr,pud_t * pudp)118 static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
119 {
120 	if (!stage2_pud_huge(kvm, *pudp))
121 		return;
122 
123 	stage2_pud_clear(kvm, pudp);
124 	kvm_tlb_flush_vmid_ipa(kvm, addr);
125 	put_page(virt_to_page(pudp));
126 }
127 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,int min,int max)128 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
129 				  int min, int max)
130 {
131 	void *page;
132 
133 	BUG_ON(max > KVM_NR_MEM_OBJS);
134 	if (cache->nobjs >= min)
135 		return 0;
136 	while (cache->nobjs < max) {
137 		page = (void *)__get_free_page(GFP_PGTABLE_USER);
138 		if (!page)
139 			return -ENOMEM;
140 		cache->objects[cache->nobjs++] = page;
141 	}
142 	return 0;
143 }
144 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)145 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
146 {
147 	while (mc->nobjs)
148 		free_page((unsigned long)mc->objects[--mc->nobjs]);
149 }
150 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)151 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
152 {
153 	void *p;
154 
155 	BUG_ON(!mc || !mc->nobjs);
156 	p = mc->objects[--mc->nobjs];
157 	return p;
158 }
159 
clear_stage2_pgd_entry(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr)160 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
161 {
162 	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
163 	stage2_pgd_clear(kvm, pgd);
164 	kvm_tlb_flush_vmid_ipa(kvm, addr);
165 	stage2_pud_free(kvm, pud_table);
166 	put_page(virt_to_page(pgd));
167 }
168 
clear_stage2_pud_entry(struct kvm * kvm,pud_t * pud,phys_addr_t addr)169 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
170 {
171 	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
172 	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
173 	stage2_pud_clear(kvm, pud);
174 	kvm_tlb_flush_vmid_ipa(kvm, addr);
175 	stage2_pmd_free(kvm, pmd_table);
176 	put_page(virt_to_page(pud));
177 }
178 
clear_stage2_pmd_entry(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr)179 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
180 {
181 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
182 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
183 	pmd_clear(pmd);
184 	kvm_tlb_flush_vmid_ipa(kvm, addr);
185 	free_page((unsigned long)pte_table);
186 	put_page(virt_to_page(pmd));
187 }
188 
kvm_set_pte(pte_t * ptep,pte_t new_pte)189 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
190 {
191 	WRITE_ONCE(*ptep, new_pte);
192 	dsb(ishst);
193 }
194 
kvm_set_pmd(pmd_t * pmdp,pmd_t new_pmd)195 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
196 {
197 	WRITE_ONCE(*pmdp, new_pmd);
198 	dsb(ishst);
199 }
200 
kvm_pmd_populate(pmd_t * pmdp,pte_t * ptep)201 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
202 {
203 	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
204 }
205 
kvm_pud_populate(pud_t * pudp,pmd_t * pmdp)206 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
207 {
208 	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
209 	dsb(ishst);
210 }
211 
kvm_pgd_populate(pgd_t * pgdp,pud_t * pudp)212 static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
213 {
214 	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
215 	dsb(ishst);
216 }
217 
218 /*
219  * Unmapping vs dcache management:
220  *
221  * If a guest maps certain memory pages as uncached, all writes will
222  * bypass the data cache and go directly to RAM.  However, the CPUs
223  * can still speculate reads (not writes) and fill cache lines with
224  * data.
225  *
226  * Those cache lines will be *clean* cache lines though, so a
227  * clean+invalidate operation is equivalent to an invalidate
228  * operation, because no cache lines are marked dirty.
229  *
230  * Those clean cache lines could be filled prior to an uncached write
231  * by the guest, and the cache coherent IO subsystem would therefore
232  * end up writing old data to disk.
233  *
234  * This is why right after unmapping a page/section and invalidating
235  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
236  * the IO subsystem will never hit in the cache.
237  *
238  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
239  * we then fully enforce cacheability of RAM, no matter what the guest
240  * does.
241  */
unmap_stage2_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)242 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
243 		       phys_addr_t addr, phys_addr_t end)
244 {
245 	phys_addr_t start_addr = addr;
246 	pte_t *pte, *start_pte;
247 
248 	start_pte = pte = pte_offset_kernel(pmd, addr);
249 	do {
250 		if (!pte_none(*pte)) {
251 			pte_t old_pte = *pte;
252 
253 			kvm_set_pte(pte, __pte(0));
254 			kvm_tlb_flush_vmid_ipa(kvm, addr);
255 
256 			/* No need to invalidate the cache for device mappings */
257 			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
258 				kvm_flush_dcache_pte(old_pte);
259 
260 			put_page(virt_to_page(pte));
261 		}
262 	} while (pte++, addr += PAGE_SIZE, addr != end);
263 
264 	if (stage2_pte_table_empty(kvm, start_pte))
265 		clear_stage2_pmd_entry(kvm, pmd, start_addr);
266 }
267 
unmap_stage2_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)268 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
269 		       phys_addr_t addr, phys_addr_t end)
270 {
271 	phys_addr_t next, start_addr = addr;
272 	pmd_t *pmd, *start_pmd;
273 
274 	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
275 	do {
276 		next = stage2_pmd_addr_end(kvm, addr, end);
277 		if (!pmd_none(*pmd)) {
278 			if (pmd_thp_or_huge(*pmd)) {
279 				pmd_t old_pmd = *pmd;
280 
281 				pmd_clear(pmd);
282 				kvm_tlb_flush_vmid_ipa(kvm, addr);
283 
284 				kvm_flush_dcache_pmd(old_pmd);
285 
286 				put_page(virt_to_page(pmd));
287 			} else {
288 				unmap_stage2_ptes(kvm, pmd, addr, next);
289 			}
290 		}
291 	} while (pmd++, addr = next, addr != end);
292 
293 	if (stage2_pmd_table_empty(kvm, start_pmd))
294 		clear_stage2_pud_entry(kvm, pud, start_addr);
295 }
296 
unmap_stage2_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)297 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
298 		       phys_addr_t addr, phys_addr_t end)
299 {
300 	phys_addr_t next, start_addr = addr;
301 	pud_t *pud, *start_pud;
302 
303 	start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
304 	do {
305 		next = stage2_pud_addr_end(kvm, addr, end);
306 		if (!stage2_pud_none(kvm, *pud)) {
307 			if (stage2_pud_huge(kvm, *pud)) {
308 				pud_t old_pud = *pud;
309 
310 				stage2_pud_clear(kvm, pud);
311 				kvm_tlb_flush_vmid_ipa(kvm, addr);
312 				kvm_flush_dcache_pud(old_pud);
313 				put_page(virt_to_page(pud));
314 			} else {
315 				unmap_stage2_pmds(kvm, pud, addr, next);
316 			}
317 		}
318 	} while (pud++, addr = next, addr != end);
319 
320 	if (stage2_pud_table_empty(kvm, start_pud))
321 		clear_stage2_pgd_entry(kvm, pgd, start_addr);
322 }
323 
324 /**
325  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
326  * @kvm:   The VM pointer
327  * @start: The intermediate physical base address of the range to unmap
328  * @size:  The size of the area to unmap
329  *
330  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
331  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
332  * destroying the VM), otherwise another faulting VCPU may come in and mess
333  * with things behind our backs.
334  */
unmap_stage2_range(struct kvm * kvm,phys_addr_t start,u64 size)335 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
336 {
337 	pgd_t *pgd;
338 	phys_addr_t addr = start, end = start + size;
339 	phys_addr_t next;
340 
341 	assert_spin_locked(&kvm->mmu_lock);
342 	WARN_ON(size & ~PAGE_MASK);
343 
344 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
345 	do {
346 		/*
347 		 * Make sure the page table is still active, as another thread
348 		 * could have possibly freed the page table, while we released
349 		 * the lock.
350 		 */
351 		if (!READ_ONCE(kvm->arch.pgd))
352 			break;
353 		next = stage2_pgd_addr_end(kvm, addr, end);
354 		if (!stage2_pgd_none(kvm, *pgd))
355 			unmap_stage2_puds(kvm, pgd, addr, next);
356 		/*
357 		 * If the range is too large, release the kvm->mmu_lock
358 		 * to prevent starvation and lockup detector warnings.
359 		 */
360 		if (next != end)
361 			cond_resched_lock(&kvm->mmu_lock);
362 	} while (pgd++, addr = next, addr != end);
363 }
364 
stage2_flush_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)365 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
366 			      phys_addr_t addr, phys_addr_t end)
367 {
368 	pte_t *pte;
369 
370 	pte = pte_offset_kernel(pmd, addr);
371 	do {
372 		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
373 			kvm_flush_dcache_pte(*pte);
374 	} while (pte++, addr += PAGE_SIZE, addr != end);
375 }
376 
stage2_flush_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)377 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
378 			      phys_addr_t addr, phys_addr_t end)
379 {
380 	pmd_t *pmd;
381 	phys_addr_t next;
382 
383 	pmd = stage2_pmd_offset(kvm, pud, addr);
384 	do {
385 		next = stage2_pmd_addr_end(kvm, addr, end);
386 		if (!pmd_none(*pmd)) {
387 			if (pmd_thp_or_huge(*pmd))
388 				kvm_flush_dcache_pmd(*pmd);
389 			else
390 				stage2_flush_ptes(kvm, pmd, addr, next);
391 		}
392 	} while (pmd++, addr = next, addr != end);
393 }
394 
stage2_flush_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)395 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
396 			      phys_addr_t addr, phys_addr_t end)
397 {
398 	pud_t *pud;
399 	phys_addr_t next;
400 
401 	pud = stage2_pud_offset(kvm, pgd, addr);
402 	do {
403 		next = stage2_pud_addr_end(kvm, addr, end);
404 		if (!stage2_pud_none(kvm, *pud)) {
405 			if (stage2_pud_huge(kvm, *pud))
406 				kvm_flush_dcache_pud(*pud);
407 			else
408 				stage2_flush_pmds(kvm, pud, addr, next);
409 		}
410 	} while (pud++, addr = next, addr != end);
411 }
412 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)413 static void stage2_flush_memslot(struct kvm *kvm,
414 				 struct kvm_memory_slot *memslot)
415 {
416 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
417 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
418 	phys_addr_t next;
419 	pgd_t *pgd;
420 
421 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
422 	do {
423 		next = stage2_pgd_addr_end(kvm, addr, end);
424 		if (!stage2_pgd_none(kvm, *pgd))
425 			stage2_flush_puds(kvm, pgd, addr, next);
426 	} while (pgd++, addr = next, addr != end);
427 }
428 
429 /**
430  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
431  * @kvm: The struct kvm pointer
432  *
433  * Go through the stage 2 page tables and invalidate any cache lines
434  * backing memory already mapped to the VM.
435  */
stage2_flush_vm(struct kvm * kvm)436 static void stage2_flush_vm(struct kvm *kvm)
437 {
438 	struct kvm_memslots *slots;
439 	struct kvm_memory_slot *memslot;
440 	int idx;
441 
442 	idx = srcu_read_lock(&kvm->srcu);
443 	spin_lock(&kvm->mmu_lock);
444 
445 	slots = kvm_memslots(kvm);
446 	kvm_for_each_memslot(memslot, slots)
447 		stage2_flush_memslot(kvm, memslot);
448 
449 	spin_unlock(&kvm->mmu_lock);
450 	srcu_read_unlock(&kvm->srcu, idx);
451 }
452 
clear_hyp_pgd_entry(pgd_t * pgd)453 static void clear_hyp_pgd_entry(pgd_t *pgd)
454 {
455 	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
456 	pgd_clear(pgd);
457 	pud_free(NULL, pud_table);
458 	put_page(virt_to_page(pgd));
459 }
460 
clear_hyp_pud_entry(pud_t * pud)461 static void clear_hyp_pud_entry(pud_t *pud)
462 {
463 	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
464 	VM_BUG_ON(pud_huge(*pud));
465 	pud_clear(pud);
466 	pmd_free(NULL, pmd_table);
467 	put_page(virt_to_page(pud));
468 }
469 
clear_hyp_pmd_entry(pmd_t * pmd)470 static void clear_hyp_pmd_entry(pmd_t *pmd)
471 {
472 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
473 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
474 	pmd_clear(pmd);
475 	pte_free_kernel(NULL, pte_table);
476 	put_page(virt_to_page(pmd));
477 }
478 
unmap_hyp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)479 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
480 {
481 	pte_t *pte, *start_pte;
482 
483 	start_pte = pte = pte_offset_kernel(pmd, addr);
484 	do {
485 		if (!pte_none(*pte)) {
486 			kvm_set_pte(pte, __pte(0));
487 			put_page(virt_to_page(pte));
488 		}
489 	} while (pte++, addr += PAGE_SIZE, addr != end);
490 
491 	if (hyp_pte_table_empty(start_pte))
492 		clear_hyp_pmd_entry(pmd);
493 }
494 
unmap_hyp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)495 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
496 {
497 	phys_addr_t next;
498 	pmd_t *pmd, *start_pmd;
499 
500 	start_pmd = pmd = pmd_offset(pud, addr);
501 	do {
502 		next = pmd_addr_end(addr, end);
503 		/* Hyp doesn't use huge pmds */
504 		if (!pmd_none(*pmd))
505 			unmap_hyp_ptes(pmd, addr, next);
506 	} while (pmd++, addr = next, addr != end);
507 
508 	if (hyp_pmd_table_empty(start_pmd))
509 		clear_hyp_pud_entry(pud);
510 }
511 
unmap_hyp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)512 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
513 {
514 	phys_addr_t next;
515 	pud_t *pud, *start_pud;
516 
517 	start_pud = pud = pud_offset(pgd, addr);
518 	do {
519 		next = pud_addr_end(addr, end);
520 		/* Hyp doesn't use huge puds */
521 		if (!pud_none(*pud))
522 			unmap_hyp_pmds(pud, addr, next);
523 	} while (pud++, addr = next, addr != end);
524 
525 	if (hyp_pud_table_empty(start_pud))
526 		clear_hyp_pgd_entry(pgd);
527 }
528 
kvm_pgd_index(unsigned long addr,unsigned int ptrs_per_pgd)529 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
530 {
531 	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
532 }
533 
__unmap_hyp_range(pgd_t * pgdp,unsigned long ptrs_per_pgd,phys_addr_t start,u64 size)534 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
535 			      phys_addr_t start, u64 size)
536 {
537 	pgd_t *pgd;
538 	phys_addr_t addr = start, end = start + size;
539 	phys_addr_t next;
540 
541 	/*
542 	 * We don't unmap anything from HYP, except at the hyp tear down.
543 	 * Hence, we don't have to invalidate the TLBs here.
544 	 */
545 	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
546 	do {
547 		next = pgd_addr_end(addr, end);
548 		if (!pgd_none(*pgd))
549 			unmap_hyp_puds(pgd, addr, next);
550 	} while (pgd++, addr = next, addr != end);
551 }
552 
unmap_hyp_range(pgd_t * pgdp,phys_addr_t start,u64 size)553 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
554 {
555 	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
556 }
557 
unmap_hyp_idmap_range(pgd_t * pgdp,phys_addr_t start,u64 size)558 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
559 {
560 	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
561 }
562 
563 /**
564  * free_hyp_pgds - free Hyp-mode page tables
565  *
566  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
567  * therefore contains either mappings in the kernel memory area (above
568  * PAGE_OFFSET), or device mappings in the idmap range.
569  *
570  * boot_hyp_pgd should only map the idmap range, and is only used in
571  * the extended idmap case.
572  */
free_hyp_pgds(void)573 void free_hyp_pgds(void)
574 {
575 	pgd_t *id_pgd;
576 
577 	mutex_lock(&kvm_hyp_pgd_mutex);
578 
579 	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
580 
581 	if (id_pgd) {
582 		/* In case we never called hyp_mmu_init() */
583 		if (!io_map_base)
584 			io_map_base = hyp_idmap_start;
585 		unmap_hyp_idmap_range(id_pgd, io_map_base,
586 				      hyp_idmap_start + PAGE_SIZE - io_map_base);
587 	}
588 
589 	if (boot_hyp_pgd) {
590 		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
591 		boot_hyp_pgd = NULL;
592 	}
593 
594 	if (hyp_pgd) {
595 		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
596 				(uintptr_t)high_memory - PAGE_OFFSET);
597 
598 		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
599 		hyp_pgd = NULL;
600 	}
601 	if (merged_hyp_pgd) {
602 		clear_page(merged_hyp_pgd);
603 		free_page((unsigned long)merged_hyp_pgd);
604 		merged_hyp_pgd = NULL;
605 	}
606 
607 	mutex_unlock(&kvm_hyp_pgd_mutex);
608 }
609 
create_hyp_pte_mappings(pmd_t * pmd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)610 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
611 				    unsigned long end, unsigned long pfn,
612 				    pgprot_t prot)
613 {
614 	pte_t *pte;
615 	unsigned long addr;
616 
617 	addr = start;
618 	do {
619 		pte = pte_offset_kernel(pmd, addr);
620 		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
621 		get_page(virt_to_page(pte));
622 		pfn++;
623 	} while (addr += PAGE_SIZE, addr != end);
624 }
625 
create_hyp_pmd_mappings(pud_t * pud,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)626 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
627 				   unsigned long end, unsigned long pfn,
628 				   pgprot_t prot)
629 {
630 	pmd_t *pmd;
631 	pte_t *pte;
632 	unsigned long addr, next;
633 
634 	addr = start;
635 	do {
636 		pmd = pmd_offset(pud, addr);
637 
638 		BUG_ON(pmd_sect(*pmd));
639 
640 		if (pmd_none(*pmd)) {
641 			pte = pte_alloc_one_kernel(NULL);
642 			if (!pte) {
643 				kvm_err("Cannot allocate Hyp pte\n");
644 				return -ENOMEM;
645 			}
646 			kvm_pmd_populate(pmd, pte);
647 			get_page(virt_to_page(pmd));
648 		}
649 
650 		next = pmd_addr_end(addr, end);
651 
652 		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
653 		pfn += (next - addr) >> PAGE_SHIFT;
654 	} while (addr = next, addr != end);
655 
656 	return 0;
657 }
658 
create_hyp_pud_mappings(pgd_t * pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)659 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
660 				   unsigned long end, unsigned long pfn,
661 				   pgprot_t prot)
662 {
663 	pud_t *pud;
664 	pmd_t *pmd;
665 	unsigned long addr, next;
666 	int ret;
667 
668 	addr = start;
669 	do {
670 		pud = pud_offset(pgd, addr);
671 
672 		if (pud_none_or_clear_bad(pud)) {
673 			pmd = pmd_alloc_one(NULL, addr);
674 			if (!pmd) {
675 				kvm_err("Cannot allocate Hyp pmd\n");
676 				return -ENOMEM;
677 			}
678 			kvm_pud_populate(pud, pmd);
679 			get_page(virt_to_page(pud));
680 		}
681 
682 		next = pud_addr_end(addr, end);
683 		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
684 		if (ret)
685 			return ret;
686 		pfn += (next - addr) >> PAGE_SHIFT;
687 	} while (addr = next, addr != end);
688 
689 	return 0;
690 }
691 
__create_hyp_mappings(pgd_t * pgdp,unsigned long ptrs_per_pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)692 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
693 				 unsigned long start, unsigned long end,
694 				 unsigned long pfn, pgprot_t prot)
695 {
696 	pgd_t *pgd;
697 	pud_t *pud;
698 	unsigned long addr, next;
699 	int err = 0;
700 
701 	mutex_lock(&kvm_hyp_pgd_mutex);
702 	addr = start & PAGE_MASK;
703 	end = PAGE_ALIGN(end);
704 	do {
705 		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
706 
707 		if (pgd_none(*pgd)) {
708 			pud = pud_alloc_one(NULL, addr);
709 			if (!pud) {
710 				kvm_err("Cannot allocate Hyp pud\n");
711 				err = -ENOMEM;
712 				goto out;
713 			}
714 			kvm_pgd_populate(pgd, pud);
715 			get_page(virt_to_page(pgd));
716 		}
717 
718 		next = pgd_addr_end(addr, end);
719 		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
720 		if (err)
721 			goto out;
722 		pfn += (next - addr) >> PAGE_SHIFT;
723 	} while (addr = next, addr != end);
724 out:
725 	mutex_unlock(&kvm_hyp_pgd_mutex);
726 	return err;
727 }
728 
kvm_kaddr_to_phys(void * kaddr)729 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
730 {
731 	if (!is_vmalloc_addr(kaddr)) {
732 		BUG_ON(!virt_addr_valid(kaddr));
733 		return __pa(kaddr);
734 	} else {
735 		return page_to_phys(vmalloc_to_page(kaddr)) +
736 		       offset_in_page(kaddr);
737 	}
738 }
739 
740 /**
741  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
742  * @from:	The virtual kernel start address of the range
743  * @to:		The virtual kernel end address of the range (exclusive)
744  * @prot:	The protection to be applied to this range
745  *
746  * The same virtual address as the kernel virtual address is also used
747  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
748  * physical pages.
749  */
create_hyp_mappings(void * from,void * to,pgprot_t prot)750 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
751 {
752 	phys_addr_t phys_addr;
753 	unsigned long virt_addr;
754 	unsigned long start = kern_hyp_va((unsigned long)from);
755 	unsigned long end = kern_hyp_va((unsigned long)to);
756 
757 	if (is_kernel_in_hyp_mode())
758 		return 0;
759 
760 	start = start & PAGE_MASK;
761 	end = PAGE_ALIGN(end);
762 
763 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
764 		int err;
765 
766 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
767 		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
768 					    virt_addr, virt_addr + PAGE_SIZE,
769 					    __phys_to_pfn(phys_addr),
770 					    prot);
771 		if (err)
772 			return err;
773 	}
774 
775 	return 0;
776 }
777 
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,pgprot_t prot)778 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
779 					unsigned long *haddr, pgprot_t prot)
780 {
781 	pgd_t *pgd = hyp_pgd;
782 	unsigned long base;
783 	int ret = 0;
784 
785 	mutex_lock(&kvm_hyp_pgd_mutex);
786 
787 	/*
788 	 * This assumes that we we have enough space below the idmap
789 	 * page to allocate our VAs. If not, the check below will
790 	 * kick. A potential alternative would be to detect that
791 	 * overflow and switch to an allocation above the idmap.
792 	 *
793 	 * The allocated size is always a multiple of PAGE_SIZE.
794 	 */
795 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
796 	base = io_map_base - size;
797 
798 	/*
799 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
800 	 * allocating the new area, as it would indicate we've
801 	 * overflowed the idmap/IO address range.
802 	 */
803 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
804 		ret = -ENOMEM;
805 	else
806 		io_map_base = base;
807 
808 	mutex_unlock(&kvm_hyp_pgd_mutex);
809 
810 	if (ret)
811 		goto out;
812 
813 	if (__kvm_cpu_uses_extended_idmap())
814 		pgd = boot_hyp_pgd;
815 
816 	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
817 				    base, base + size,
818 				    __phys_to_pfn(phys_addr), prot);
819 	if (ret)
820 		goto out;
821 
822 	*haddr = base + offset_in_page(phys_addr);
823 
824 out:
825 	return ret;
826 }
827 
828 /**
829  * create_hyp_io_mappings - Map IO into both kernel and HYP
830  * @phys_addr:	The physical start address which gets mapped
831  * @size:	Size of the region being mapped
832  * @kaddr:	Kernel VA for this mapping
833  * @haddr:	HYP VA for this mapping
834  */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)835 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
836 			   void __iomem **kaddr,
837 			   void __iomem **haddr)
838 {
839 	unsigned long addr;
840 	int ret;
841 
842 	*kaddr = ioremap(phys_addr, size);
843 	if (!*kaddr)
844 		return -ENOMEM;
845 
846 	if (is_kernel_in_hyp_mode()) {
847 		*haddr = *kaddr;
848 		return 0;
849 	}
850 
851 	ret = __create_hyp_private_mapping(phys_addr, size,
852 					   &addr, PAGE_HYP_DEVICE);
853 	if (ret) {
854 		iounmap(*kaddr);
855 		*kaddr = NULL;
856 		*haddr = NULL;
857 		return ret;
858 	}
859 
860 	*haddr = (void __iomem *)addr;
861 	return 0;
862 }
863 
864 /**
865  * create_hyp_exec_mappings - Map an executable range into HYP
866  * @phys_addr:	The physical start address which gets mapped
867  * @size:	Size of the region being mapped
868  * @haddr:	HYP VA for this mapping
869  */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)870 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
871 			     void **haddr)
872 {
873 	unsigned long addr;
874 	int ret;
875 
876 	BUG_ON(is_kernel_in_hyp_mode());
877 
878 	ret = __create_hyp_private_mapping(phys_addr, size,
879 					   &addr, PAGE_HYP_EXEC);
880 	if (ret) {
881 		*haddr = NULL;
882 		return ret;
883 	}
884 
885 	*haddr = (void *)addr;
886 	return 0;
887 }
888 
889 /**
890  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
891  * @kvm:	The KVM struct pointer for the VM.
892  *
893  * Allocates only the stage-2 HW PGD level table(s) of size defined by
894  * stage2_pgd_size(kvm).
895  *
896  * Note we don't need locking here as this is only called when the VM is
897  * created, which can only be done once.
898  */
kvm_alloc_stage2_pgd(struct kvm * kvm)899 int kvm_alloc_stage2_pgd(struct kvm *kvm)
900 {
901 	phys_addr_t pgd_phys;
902 	pgd_t *pgd;
903 
904 	if (kvm->arch.pgd != NULL) {
905 		kvm_err("kvm_arch already initialized?\n");
906 		return -EINVAL;
907 	}
908 
909 	/* Allocate the HW PGD, making sure that each page gets its own refcount */
910 	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
911 	if (!pgd)
912 		return -ENOMEM;
913 
914 	pgd_phys = virt_to_phys(pgd);
915 	if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
916 		return -EINVAL;
917 
918 	kvm->arch.pgd = pgd;
919 	kvm->arch.pgd_phys = pgd_phys;
920 	return 0;
921 }
922 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)923 static void stage2_unmap_memslot(struct kvm *kvm,
924 				 struct kvm_memory_slot *memslot)
925 {
926 	hva_t hva = memslot->userspace_addr;
927 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
928 	phys_addr_t size = PAGE_SIZE * memslot->npages;
929 	hva_t reg_end = hva + size;
930 
931 	/*
932 	 * A memory region could potentially cover multiple VMAs, and any holes
933 	 * between them, so iterate over all of them to find out if we should
934 	 * unmap any of them.
935 	 *
936 	 *     +--------------------------------------------+
937 	 * +---------------+----------------+   +----------------+
938 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
939 	 * +---------------+----------------+   +----------------+
940 	 *     |               memory region                |
941 	 *     +--------------------------------------------+
942 	 */
943 	do {
944 		struct vm_area_struct *vma = find_vma(current->mm, hva);
945 		hva_t vm_start, vm_end;
946 
947 		if (!vma || vma->vm_start >= reg_end)
948 			break;
949 
950 		/*
951 		 * Take the intersection of this VMA with the memory region
952 		 */
953 		vm_start = max(hva, vma->vm_start);
954 		vm_end = min(reg_end, vma->vm_end);
955 
956 		if (!(vma->vm_flags & VM_PFNMAP)) {
957 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
958 			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
959 		}
960 		hva = vm_end;
961 	} while (hva < reg_end);
962 }
963 
964 /**
965  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
966  * @kvm: The struct kvm pointer
967  *
968  * Go through the memregions and unmap any reguler RAM
969  * backing memory already mapped to the VM.
970  */
stage2_unmap_vm(struct kvm * kvm)971 void stage2_unmap_vm(struct kvm *kvm)
972 {
973 	struct kvm_memslots *slots;
974 	struct kvm_memory_slot *memslot;
975 	int idx;
976 
977 	idx = srcu_read_lock(&kvm->srcu);
978 	down_read(&current->mm->mmap_sem);
979 	spin_lock(&kvm->mmu_lock);
980 
981 	slots = kvm_memslots(kvm);
982 	kvm_for_each_memslot(memslot, slots)
983 		stage2_unmap_memslot(kvm, memslot);
984 
985 	spin_unlock(&kvm->mmu_lock);
986 	up_read(&current->mm->mmap_sem);
987 	srcu_read_unlock(&kvm->srcu, idx);
988 }
989 
990 /**
991  * kvm_free_stage2_pgd - free all stage-2 tables
992  * @kvm:	The KVM struct pointer for the VM.
993  *
994  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
995  * underlying level-2 and level-3 tables before freeing the actual level-1 table
996  * and setting the struct pointer to NULL.
997  */
kvm_free_stage2_pgd(struct kvm * kvm)998 void kvm_free_stage2_pgd(struct kvm *kvm)
999 {
1000 	void *pgd = NULL;
1001 
1002 	spin_lock(&kvm->mmu_lock);
1003 	if (kvm->arch.pgd) {
1004 		unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1005 		pgd = READ_ONCE(kvm->arch.pgd);
1006 		kvm->arch.pgd = NULL;
1007 		kvm->arch.pgd_phys = 0;
1008 	}
1009 	spin_unlock(&kvm->mmu_lock);
1010 
1011 	/* Free the HW pgd, one page at a time */
1012 	if (pgd)
1013 		free_pages_exact(pgd, stage2_pgd_size(kvm));
1014 }
1015 
stage2_get_pud(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)1016 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1017 			     phys_addr_t addr)
1018 {
1019 	pgd_t *pgd;
1020 	pud_t *pud;
1021 
1022 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1023 	if (stage2_pgd_none(kvm, *pgd)) {
1024 		if (!cache)
1025 			return NULL;
1026 		pud = mmu_memory_cache_alloc(cache);
1027 		stage2_pgd_populate(kvm, pgd, pud);
1028 		get_page(virt_to_page(pgd));
1029 	}
1030 
1031 	return stage2_pud_offset(kvm, pgd, addr);
1032 }
1033 
stage2_get_pmd(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)1034 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1035 			     phys_addr_t addr)
1036 {
1037 	pud_t *pud;
1038 	pmd_t *pmd;
1039 
1040 	pud = stage2_get_pud(kvm, cache, addr);
1041 	if (!pud || stage2_pud_huge(kvm, *pud))
1042 		return NULL;
1043 
1044 	if (stage2_pud_none(kvm, *pud)) {
1045 		if (!cache)
1046 			return NULL;
1047 		pmd = mmu_memory_cache_alloc(cache);
1048 		stage2_pud_populate(kvm, pud, pmd);
1049 		get_page(virt_to_page(pud));
1050 	}
1051 
1052 	return stage2_pmd_offset(kvm, pud, addr);
1053 }
1054 
stage2_set_pmd_huge(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pmd_t * new_pmd)1055 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1056 			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
1057 {
1058 	pmd_t *pmd, old_pmd;
1059 
1060 retry:
1061 	pmd = stage2_get_pmd(kvm, cache, addr);
1062 	VM_BUG_ON(!pmd);
1063 
1064 	old_pmd = *pmd;
1065 	/*
1066 	 * Multiple vcpus faulting on the same PMD entry, can
1067 	 * lead to them sequentially updating the PMD with the
1068 	 * same value. Following the break-before-make
1069 	 * (pmd_clear() followed by tlb_flush()) process can
1070 	 * hinder forward progress due to refaults generated
1071 	 * on missing translations.
1072 	 *
1073 	 * Skip updating the page table if the entry is
1074 	 * unchanged.
1075 	 */
1076 	if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1077 		return 0;
1078 
1079 	if (pmd_present(old_pmd)) {
1080 		/*
1081 		 * If we already have PTE level mapping for this block,
1082 		 * we must unmap it to avoid inconsistent TLB state and
1083 		 * leaking the table page. We could end up in this situation
1084 		 * if the memory slot was marked for dirty logging and was
1085 		 * reverted, leaving PTE level mappings for the pages accessed
1086 		 * during the period. So, unmap the PTE level mapping for this
1087 		 * block and retry, as we could have released the upper level
1088 		 * table in the process.
1089 		 *
1090 		 * Normal THP split/merge follows mmu_notifier callbacks and do
1091 		 * get handled accordingly.
1092 		 */
1093 		if (!pmd_thp_or_huge(old_pmd)) {
1094 			unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
1095 			goto retry;
1096 		}
1097 		/*
1098 		 * Mapping in huge pages should only happen through a
1099 		 * fault.  If a page is merged into a transparent huge
1100 		 * page, the individual subpages of that huge page
1101 		 * should be unmapped through MMU notifiers before we
1102 		 * get here.
1103 		 *
1104 		 * Merging of CompoundPages is not supported; they
1105 		 * should become splitting first, unmapped, merged,
1106 		 * and mapped back in on-demand.
1107 		 */
1108 		WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1109 		pmd_clear(pmd);
1110 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1111 	} else {
1112 		get_page(virt_to_page(pmd));
1113 	}
1114 
1115 	kvm_set_pmd(pmd, *new_pmd);
1116 	return 0;
1117 }
1118 
stage2_set_pud_huge(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pud_t * new_pudp)1119 static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1120 			       phys_addr_t addr, const pud_t *new_pudp)
1121 {
1122 	pud_t *pudp, old_pud;
1123 
1124 retry:
1125 	pudp = stage2_get_pud(kvm, cache, addr);
1126 	VM_BUG_ON(!pudp);
1127 
1128 	old_pud = *pudp;
1129 
1130 	/*
1131 	 * A large number of vcpus faulting on the same stage 2 entry,
1132 	 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1133 	 * Skip updating the page tables if there is no change.
1134 	 */
1135 	if (pud_val(old_pud) == pud_val(*new_pudp))
1136 		return 0;
1137 
1138 	if (stage2_pud_present(kvm, old_pud)) {
1139 		/*
1140 		 * If we already have table level mapping for this block, unmap
1141 		 * the range for this block and retry.
1142 		 */
1143 		if (!stage2_pud_huge(kvm, old_pud)) {
1144 			unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
1145 			goto retry;
1146 		}
1147 
1148 		WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1149 		stage2_pud_clear(kvm, pudp);
1150 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1151 	} else {
1152 		get_page(virt_to_page(pudp));
1153 	}
1154 
1155 	kvm_set_pud(pudp, *new_pudp);
1156 	return 0;
1157 }
1158 
1159 /*
1160  * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1161  * true if a valid and present leaf-entry is found. A pointer to the
1162  * leaf-entry is returned in the appropriate level variable - pudpp,
1163  * pmdpp, ptepp.
1164  */
stage2_get_leaf_entry(struct kvm * kvm,phys_addr_t addr,pud_t ** pudpp,pmd_t ** pmdpp,pte_t ** ptepp)1165 static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
1166 				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1167 {
1168 	pud_t *pudp;
1169 	pmd_t *pmdp;
1170 	pte_t *ptep;
1171 
1172 	*pudpp = NULL;
1173 	*pmdpp = NULL;
1174 	*ptepp = NULL;
1175 
1176 	pudp = stage2_get_pud(kvm, NULL, addr);
1177 	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1178 		return false;
1179 
1180 	if (stage2_pud_huge(kvm, *pudp)) {
1181 		*pudpp = pudp;
1182 		return true;
1183 	}
1184 
1185 	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1186 	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1187 		return false;
1188 
1189 	if (pmd_thp_or_huge(*pmdp)) {
1190 		*pmdpp = pmdp;
1191 		return true;
1192 	}
1193 
1194 	ptep = pte_offset_kernel(pmdp, addr);
1195 	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1196 		return false;
1197 
1198 	*ptepp = ptep;
1199 	return true;
1200 }
1201 
stage2_is_exec(struct kvm * kvm,phys_addr_t addr)1202 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1203 {
1204 	pud_t *pudp;
1205 	pmd_t *pmdp;
1206 	pte_t *ptep;
1207 	bool found;
1208 
1209 	found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
1210 	if (!found)
1211 		return false;
1212 
1213 	if (pudp)
1214 		return kvm_s2pud_exec(pudp);
1215 	else if (pmdp)
1216 		return kvm_s2pmd_exec(pmdp);
1217 	else
1218 		return kvm_s2pte_exec(ptep);
1219 }
1220 
stage2_set_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pte_t * new_pte,unsigned long flags)1221 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1222 			  phys_addr_t addr, const pte_t *new_pte,
1223 			  unsigned long flags)
1224 {
1225 	pud_t *pud;
1226 	pmd_t *pmd;
1227 	pte_t *pte, old_pte;
1228 	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1229 	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1230 
1231 	VM_BUG_ON(logging_active && !cache);
1232 
1233 	/* Create stage-2 page table mapping - Levels 0 and 1 */
1234 	pud = stage2_get_pud(kvm, cache, addr);
1235 	if (!pud) {
1236 		/*
1237 		 * Ignore calls from kvm_set_spte_hva for unallocated
1238 		 * address ranges.
1239 		 */
1240 		return 0;
1241 	}
1242 
1243 	/*
1244 	 * While dirty page logging - dissolve huge PUD, then continue
1245 	 * on to allocate page.
1246 	 */
1247 	if (logging_active)
1248 		stage2_dissolve_pud(kvm, addr, pud);
1249 
1250 	if (stage2_pud_none(kvm, *pud)) {
1251 		if (!cache)
1252 			return 0; /* ignore calls from kvm_set_spte_hva */
1253 		pmd = mmu_memory_cache_alloc(cache);
1254 		stage2_pud_populate(kvm, pud, pmd);
1255 		get_page(virt_to_page(pud));
1256 	}
1257 
1258 	pmd = stage2_pmd_offset(kvm, pud, addr);
1259 	if (!pmd) {
1260 		/*
1261 		 * Ignore calls from kvm_set_spte_hva for unallocated
1262 		 * address ranges.
1263 		 */
1264 		return 0;
1265 	}
1266 
1267 	/*
1268 	 * While dirty page logging - dissolve huge PMD, then continue on to
1269 	 * allocate page.
1270 	 */
1271 	if (logging_active)
1272 		stage2_dissolve_pmd(kvm, addr, pmd);
1273 
1274 	/* Create stage-2 page mappings - Level 2 */
1275 	if (pmd_none(*pmd)) {
1276 		if (!cache)
1277 			return 0; /* ignore calls from kvm_set_spte_hva */
1278 		pte = mmu_memory_cache_alloc(cache);
1279 		kvm_pmd_populate(pmd, pte);
1280 		get_page(virt_to_page(pmd));
1281 	}
1282 
1283 	pte = pte_offset_kernel(pmd, addr);
1284 
1285 	if (iomap && pte_present(*pte))
1286 		return -EFAULT;
1287 
1288 	/* Create 2nd stage page table mapping - Level 3 */
1289 	old_pte = *pte;
1290 	if (pte_present(old_pte)) {
1291 		/* Skip page table update if there is no change */
1292 		if (pte_val(old_pte) == pte_val(*new_pte))
1293 			return 0;
1294 
1295 		kvm_set_pte(pte, __pte(0));
1296 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1297 	} else {
1298 		get_page(virt_to_page(pte));
1299 	}
1300 
1301 	kvm_set_pte(pte, *new_pte);
1302 	return 0;
1303 }
1304 
1305 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
stage2_ptep_test_and_clear_young(pte_t * pte)1306 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1307 {
1308 	if (pte_young(*pte)) {
1309 		*pte = pte_mkold(*pte);
1310 		return 1;
1311 	}
1312 	return 0;
1313 }
1314 #else
stage2_ptep_test_and_clear_young(pte_t * pte)1315 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1316 {
1317 	return __ptep_test_and_clear_young(pte);
1318 }
1319 #endif
1320 
stage2_pmdp_test_and_clear_young(pmd_t * pmd)1321 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1322 {
1323 	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1324 }
1325 
stage2_pudp_test_and_clear_young(pud_t * pud)1326 static int stage2_pudp_test_and_clear_young(pud_t *pud)
1327 {
1328 	return stage2_ptep_test_and_clear_young((pte_t *)pud);
1329 }
1330 
1331 /**
1332  * kvm_phys_addr_ioremap - map a device range to guest IPA
1333  *
1334  * @kvm:	The KVM pointer
1335  * @guest_ipa:	The IPA at which to insert the mapping
1336  * @pa:		The physical address of the device
1337  * @size:	The size of the mapping
1338  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1339 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1340 			  phys_addr_t pa, unsigned long size, bool writable)
1341 {
1342 	phys_addr_t addr, end;
1343 	int ret = 0;
1344 	unsigned long pfn;
1345 	struct kvm_mmu_memory_cache cache = { 0, };
1346 
1347 	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1348 	pfn = __phys_to_pfn(pa);
1349 
1350 	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1351 		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1352 
1353 		if (writable)
1354 			pte = kvm_s2pte_mkwrite(pte);
1355 
1356 		ret = mmu_topup_memory_cache(&cache,
1357 					     kvm_mmu_cache_min_pages(kvm),
1358 					     KVM_NR_MEM_OBJS);
1359 		if (ret)
1360 			goto out;
1361 		spin_lock(&kvm->mmu_lock);
1362 		ret = stage2_set_pte(kvm, &cache, addr, &pte,
1363 						KVM_S2PTE_FLAG_IS_IOMAP);
1364 		spin_unlock(&kvm->mmu_lock);
1365 		if (ret)
1366 			goto out;
1367 
1368 		pfn++;
1369 	}
1370 
1371 out:
1372 	mmu_free_memory_cache(&cache);
1373 	return ret;
1374 }
1375 
transparent_hugepage_adjust(kvm_pfn_t * pfnp,phys_addr_t * ipap)1376 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1377 {
1378 	kvm_pfn_t pfn = *pfnp;
1379 	gfn_t gfn = *ipap >> PAGE_SHIFT;
1380 	struct page *page = pfn_to_page(pfn);
1381 
1382 	/*
1383 	 * PageTransCompoundMap() returns true for THP and
1384 	 * hugetlbfs. Make sure the adjustment is done only for THP
1385 	 * pages.
1386 	 */
1387 	if (!PageHuge(page) && PageTransCompoundMap(page)) {
1388 		unsigned long mask;
1389 		/*
1390 		 * The address we faulted on is backed by a transparent huge
1391 		 * page.  However, because we map the compound huge page and
1392 		 * not the individual tail page, we need to transfer the
1393 		 * refcount to the head page.  We have to be careful that the
1394 		 * THP doesn't start to split while we are adjusting the
1395 		 * refcounts.
1396 		 *
1397 		 * We are sure this doesn't happen, because mmu_notifier_retry
1398 		 * was successful and we are holding the mmu_lock, so if this
1399 		 * THP is trying to split, it will be blocked in the mmu
1400 		 * notifier before touching any of the pages, specifically
1401 		 * before being able to call __split_huge_page_refcount().
1402 		 *
1403 		 * We can therefore safely transfer the refcount from PG_tail
1404 		 * to PG_head and switch the pfn from a tail page to the head
1405 		 * page accordingly.
1406 		 */
1407 		mask = PTRS_PER_PMD - 1;
1408 		VM_BUG_ON((gfn & mask) != (pfn & mask));
1409 		if (pfn & mask) {
1410 			*ipap &= PMD_MASK;
1411 			kvm_release_pfn_clean(pfn);
1412 			pfn &= ~mask;
1413 			kvm_get_pfn(pfn);
1414 			*pfnp = pfn;
1415 		}
1416 
1417 		return true;
1418 	}
1419 
1420 	return false;
1421 }
1422 
1423 /**
1424  * stage2_wp_ptes - write protect PMD range
1425  * @pmd:	pointer to pmd entry
1426  * @addr:	range start address
1427  * @end:	range end address
1428  */
stage2_wp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)1429 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1430 {
1431 	pte_t *pte;
1432 
1433 	pte = pte_offset_kernel(pmd, addr);
1434 	do {
1435 		if (!pte_none(*pte)) {
1436 			if (!kvm_s2pte_readonly(pte))
1437 				kvm_set_s2pte_readonly(pte);
1438 		}
1439 	} while (pte++, addr += PAGE_SIZE, addr != end);
1440 }
1441 
1442 /**
1443  * stage2_wp_pmds - write protect PUD range
1444  * kvm:		kvm instance for the VM
1445  * @pud:	pointer to pud entry
1446  * @addr:	range start address
1447  * @end:	range end address
1448  */
stage2_wp_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)1449 static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
1450 			   phys_addr_t addr, phys_addr_t end)
1451 {
1452 	pmd_t *pmd;
1453 	phys_addr_t next;
1454 
1455 	pmd = stage2_pmd_offset(kvm, pud, addr);
1456 
1457 	do {
1458 		next = stage2_pmd_addr_end(kvm, addr, end);
1459 		if (!pmd_none(*pmd)) {
1460 			if (pmd_thp_or_huge(*pmd)) {
1461 				if (!kvm_s2pmd_readonly(pmd))
1462 					kvm_set_s2pmd_readonly(pmd);
1463 			} else {
1464 				stage2_wp_ptes(pmd, addr, next);
1465 			}
1466 		}
1467 	} while (pmd++, addr = next, addr != end);
1468 }
1469 
1470 /**
1471  * stage2_wp_puds - write protect PGD range
1472  * @pgd:	pointer to pgd entry
1473  * @addr:	range start address
1474  * @end:	range end address
1475  */
stage2_wp_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)1476 static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
1477 			    phys_addr_t addr, phys_addr_t end)
1478 {
1479 	pud_t *pud;
1480 	phys_addr_t next;
1481 
1482 	pud = stage2_pud_offset(kvm, pgd, addr);
1483 	do {
1484 		next = stage2_pud_addr_end(kvm, addr, end);
1485 		if (!stage2_pud_none(kvm, *pud)) {
1486 			if (stage2_pud_huge(kvm, *pud)) {
1487 				if (!kvm_s2pud_readonly(pud))
1488 					kvm_set_s2pud_readonly(pud);
1489 			} else {
1490 				stage2_wp_pmds(kvm, pud, addr, next);
1491 			}
1492 		}
1493 	} while (pud++, addr = next, addr != end);
1494 }
1495 
1496 /**
1497  * stage2_wp_range() - write protect stage2 memory region range
1498  * @kvm:	The KVM pointer
1499  * @addr:	Start address of range
1500  * @end:	End address of range
1501  */
stage2_wp_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)1502 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1503 {
1504 	pgd_t *pgd;
1505 	phys_addr_t next;
1506 
1507 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1508 	do {
1509 		/*
1510 		 * Release kvm_mmu_lock periodically if the memory region is
1511 		 * large. Otherwise, we may see kernel panics with
1512 		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1513 		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1514 		 * will also starve other vCPUs. We have to also make sure
1515 		 * that the page tables are not freed while we released
1516 		 * the lock.
1517 		 */
1518 		cond_resched_lock(&kvm->mmu_lock);
1519 		if (!READ_ONCE(kvm->arch.pgd))
1520 			break;
1521 		next = stage2_pgd_addr_end(kvm, addr, end);
1522 		if (stage2_pgd_present(kvm, *pgd))
1523 			stage2_wp_puds(kvm, pgd, addr, next);
1524 	} while (pgd++, addr = next, addr != end);
1525 }
1526 
1527 /**
1528  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1529  * @kvm:	The KVM pointer
1530  * @slot:	The memory slot to write protect
1531  *
1532  * Called to start logging dirty pages after memory region
1533  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1534  * all present PUD, PMD and PTEs are write protected in the memory region.
1535  * Afterwards read of dirty page log can be called.
1536  *
1537  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1538  * serializing operations for VM memory regions.
1539  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1540 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1541 {
1542 	struct kvm_memslots *slots = kvm_memslots(kvm);
1543 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1544 	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1545 	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1546 
1547 	spin_lock(&kvm->mmu_lock);
1548 	stage2_wp_range(kvm, start, end);
1549 	spin_unlock(&kvm->mmu_lock);
1550 	kvm_flush_remote_tlbs(kvm);
1551 }
1552 
1553 /**
1554  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1555  * @kvm:	The KVM pointer
1556  * @slot:	The memory slot associated with mask
1557  * @gfn_offset:	The gfn offset in memory slot
1558  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1559  *		slot to be write protected
1560  *
1561  * Walks bits set in mask write protects the associated pte's. Caller must
1562  * acquire kvm_mmu_lock.
1563  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1564 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1565 		struct kvm_memory_slot *slot,
1566 		gfn_t gfn_offset, unsigned long mask)
1567 {
1568 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1569 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1570 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1571 
1572 	stage2_wp_range(kvm, start, end);
1573 }
1574 
1575 /*
1576  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1577  * dirty pages.
1578  *
1579  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1580  * enable dirty logging for them.
1581  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1582 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1583 		struct kvm_memory_slot *slot,
1584 		gfn_t gfn_offset, unsigned long mask)
1585 {
1586 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1587 }
1588 
clean_dcache_guest_page(kvm_pfn_t pfn,unsigned long size)1589 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1590 {
1591 	__clean_dcache_guest_page(pfn, size);
1592 }
1593 
invalidate_icache_guest_page(kvm_pfn_t pfn,unsigned long size)1594 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1595 {
1596 	__invalidate_icache_guest_page(pfn, size);
1597 }
1598 
kvm_send_hwpoison_signal(unsigned long address,struct vm_area_struct * vma)1599 static void kvm_send_hwpoison_signal(unsigned long address,
1600 				     struct vm_area_struct *vma)
1601 {
1602 	short lsb;
1603 
1604 	if (is_vm_hugetlb_page(vma))
1605 		lsb = huge_page_shift(hstate_vma(vma));
1606 	else
1607 		lsb = PAGE_SHIFT;
1608 
1609 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1610 }
1611 
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1612 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1613 					       unsigned long hva,
1614 					       unsigned long map_size)
1615 {
1616 	gpa_t gpa_start;
1617 	hva_t uaddr_start, uaddr_end;
1618 	size_t size;
1619 
1620 	size = memslot->npages * PAGE_SIZE;
1621 
1622 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1623 
1624 	uaddr_start = memslot->userspace_addr;
1625 	uaddr_end = uaddr_start + size;
1626 
1627 	/*
1628 	 * Pages belonging to memslots that don't have the same alignment
1629 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1630 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1631 	 *
1632 	 * Consider a layout like the following:
1633 	 *
1634 	 *    memslot->userspace_addr:
1635 	 *    +-----+--------------------+--------------------+---+
1636 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1637 	 *    +-----+--------------------+--------------------+---+
1638 	 *
1639 	 *    memslot->base_gfn << PAGE_SIZE:
1640 	 *      +---+--------------------+--------------------+-----+
1641 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1642 	 *      +---+--------------------+--------------------+-----+
1643 	 *
1644 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1645 	 * mapping:
1646 	 *   d -> f
1647 	 *   e -> g
1648 	 *   f -> h
1649 	 */
1650 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1651 		return false;
1652 
1653 	/*
1654 	 * Next, let's make sure we're not trying to map anything not covered
1655 	 * by the memslot. This means we have to prohibit block size mappings
1656 	 * for the beginning and end of a non-block aligned and non-block sized
1657 	 * memory slot (illustrated by the head and tail parts of the
1658 	 * userspace view above containing pages 'abcde' and 'xyz',
1659 	 * respectively).
1660 	 *
1661 	 * Note that it doesn't matter if we do the check using the
1662 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1663 	 * the check above) and equally sized.
1664 	 */
1665 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1666 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1667 }
1668 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1669 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1670 			  struct kvm_memory_slot *memslot, unsigned long hva,
1671 			  unsigned long fault_status)
1672 {
1673 	int ret;
1674 	bool write_fault, writable, force_pte = false;
1675 	bool exec_fault, needs_exec;
1676 	unsigned long mmu_seq;
1677 	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1678 	struct kvm *kvm = vcpu->kvm;
1679 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1680 	struct vm_area_struct *vma;
1681 	kvm_pfn_t pfn;
1682 	pgprot_t mem_type = PAGE_S2;
1683 	bool logging_active = memslot_is_logging(memslot);
1684 	unsigned long vma_pagesize, flags = 0;
1685 
1686 	write_fault = kvm_is_write_fault(vcpu);
1687 	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1688 	VM_BUG_ON(write_fault && exec_fault);
1689 
1690 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1691 		kvm_err("Unexpected L2 read permission error\n");
1692 		return -EFAULT;
1693 	}
1694 
1695 	/* Let's check if we will get back a huge page backed by hugetlbfs */
1696 	down_read(&current->mm->mmap_sem);
1697 	vma = find_vma_intersection(current->mm, hva, hva + 1);
1698 	if (unlikely(!vma)) {
1699 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1700 		up_read(&current->mm->mmap_sem);
1701 		return -EFAULT;
1702 	}
1703 
1704 	vma_pagesize = vma_kernel_pagesize(vma);
1705 	if (logging_active ||
1706 	    (vma->vm_flags & VM_PFNMAP) ||
1707 	    !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1708 		force_pte = true;
1709 		vma_pagesize = PAGE_SIZE;
1710 	}
1711 
1712 	/*
1713 	 * The stage2 has a minimum of 2 level table (For arm64 see
1714 	 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1715 	 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1716 	 * As for PUD huge maps, we must make sure that we have at least
1717 	 * 3 levels, i.e, PMD is not folded.
1718 	 */
1719 	if (vma_pagesize == PMD_SIZE ||
1720 	    (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1721 		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1722 	up_read(&current->mm->mmap_sem);
1723 
1724 	/* We need minimum second+third level pages */
1725 	ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1726 				     KVM_NR_MEM_OBJS);
1727 	if (ret)
1728 		return ret;
1729 
1730 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1731 	/*
1732 	 * Ensure the read of mmu_notifier_seq happens before we call
1733 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1734 	 * the page we just got a reference to gets unmapped before we have a
1735 	 * chance to grab the mmu_lock, which ensure that if the page gets
1736 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1737 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1738 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1739 	 */
1740 	smp_rmb();
1741 
1742 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1743 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1744 		kvm_send_hwpoison_signal(hva, vma);
1745 		return 0;
1746 	}
1747 	if (is_error_noslot_pfn(pfn))
1748 		return -EFAULT;
1749 
1750 	if (kvm_is_device_pfn(pfn)) {
1751 		mem_type = PAGE_S2_DEVICE;
1752 		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1753 	} else if (logging_active) {
1754 		/*
1755 		 * Faults on pages in a memslot with logging enabled
1756 		 * should not be mapped with huge pages (it introduces churn
1757 		 * and performance degradation), so force a pte mapping.
1758 		 */
1759 		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1760 
1761 		/*
1762 		 * Only actually map the page as writable if this was a write
1763 		 * fault.
1764 		 */
1765 		if (!write_fault)
1766 			writable = false;
1767 	}
1768 
1769 	if (exec_fault && is_iomap(flags))
1770 		return -ENOEXEC;
1771 
1772 	spin_lock(&kvm->mmu_lock);
1773 	if (mmu_notifier_retry(kvm, mmu_seq))
1774 		goto out_unlock;
1775 
1776 	if (vma_pagesize == PAGE_SIZE && !force_pte) {
1777 		/*
1778 		 * Only PMD_SIZE transparent hugepages(THP) are
1779 		 * currently supported. This code will need to be
1780 		 * updated to support other THP sizes.
1781 		 *
1782 		 * Make sure the host VA and the guest IPA are sufficiently
1783 		 * aligned and that the block is contained within the memslot.
1784 		 */
1785 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1786 		    transparent_hugepage_adjust(&pfn, &fault_ipa))
1787 			vma_pagesize = PMD_SIZE;
1788 	}
1789 
1790 	if (writable)
1791 		kvm_set_pfn_dirty(pfn);
1792 
1793 	if (fault_status != FSC_PERM && !is_iomap(flags))
1794 		clean_dcache_guest_page(pfn, vma_pagesize);
1795 
1796 	if (exec_fault)
1797 		invalidate_icache_guest_page(pfn, vma_pagesize);
1798 
1799 	/*
1800 	 * If we took an execution fault we have made the
1801 	 * icache/dcache coherent above and should now let the s2
1802 	 * mapping be executable.
1803 	 *
1804 	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1805 	 * execute permissions, and we preserve whatever we have.
1806 	 */
1807 	needs_exec = exec_fault ||
1808 		(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
1809 
1810 	if (vma_pagesize == PUD_SIZE) {
1811 		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1812 
1813 		new_pud = kvm_pud_mkhuge(new_pud);
1814 		if (writable)
1815 			new_pud = kvm_s2pud_mkwrite(new_pud);
1816 
1817 		if (needs_exec)
1818 			new_pud = kvm_s2pud_mkexec(new_pud);
1819 
1820 		ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
1821 	} else if (vma_pagesize == PMD_SIZE) {
1822 		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1823 
1824 		new_pmd = kvm_pmd_mkhuge(new_pmd);
1825 
1826 		if (writable)
1827 			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1828 
1829 		if (needs_exec)
1830 			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1831 
1832 		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1833 	} else {
1834 		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1835 
1836 		if (writable) {
1837 			new_pte = kvm_s2pte_mkwrite(new_pte);
1838 			mark_page_dirty(kvm, gfn);
1839 		}
1840 
1841 		if (needs_exec)
1842 			new_pte = kvm_s2pte_mkexec(new_pte);
1843 
1844 		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1845 	}
1846 
1847 out_unlock:
1848 	spin_unlock(&kvm->mmu_lock);
1849 	kvm_set_pfn_accessed(pfn);
1850 	kvm_release_pfn_clean(pfn);
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Resolve the access fault by making the page young again.
1856  * Note that because the faulting entry is guaranteed not to be
1857  * cached in the TLB, we don't need to invalidate anything.
1858  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1859  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1860  */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1861 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1862 {
1863 	pud_t *pud;
1864 	pmd_t *pmd;
1865 	pte_t *pte;
1866 	kvm_pfn_t pfn;
1867 	bool pfn_valid = false;
1868 
1869 	trace_kvm_access_fault(fault_ipa);
1870 
1871 	spin_lock(&vcpu->kvm->mmu_lock);
1872 
1873 	if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1874 		goto out;
1875 
1876 	if (pud) {		/* HugeTLB */
1877 		*pud = kvm_s2pud_mkyoung(*pud);
1878 		pfn = kvm_pud_pfn(*pud);
1879 		pfn_valid = true;
1880 	} else	if (pmd) {	/* THP, HugeTLB */
1881 		*pmd = pmd_mkyoung(*pmd);
1882 		pfn = pmd_pfn(*pmd);
1883 		pfn_valid = true;
1884 	} else {
1885 		*pte = pte_mkyoung(*pte);	/* Just a page... */
1886 		pfn = pte_pfn(*pte);
1887 		pfn_valid = true;
1888 	}
1889 
1890 out:
1891 	spin_unlock(&vcpu->kvm->mmu_lock);
1892 	if (pfn_valid)
1893 		kvm_set_pfn_accessed(pfn);
1894 }
1895 
1896 /**
1897  * kvm_handle_guest_abort - handles all 2nd stage aborts
1898  * @vcpu:	the VCPU pointer
1899  * @run:	the kvm_run structure
1900  *
1901  * Any abort that gets to the host is almost guaranteed to be caused by a
1902  * missing second stage translation table entry, which can mean that either the
1903  * guest simply needs more memory and we must allocate an appropriate page or it
1904  * can mean that the guest tried to access I/O memory, which is emulated by user
1905  * space. The distinction is based on the IPA causing the fault and whether this
1906  * memory region has been registered as standard RAM by user space.
1907  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu,struct kvm_run * run)1908 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1909 {
1910 	unsigned long fault_status;
1911 	phys_addr_t fault_ipa;
1912 	struct kvm_memory_slot *memslot;
1913 	unsigned long hva;
1914 	bool is_iabt, write_fault, writable;
1915 	gfn_t gfn;
1916 	int ret, idx;
1917 
1918 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1919 
1920 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1921 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1922 
1923 	/* Synchronous External Abort? */
1924 	if (kvm_vcpu_dabt_isextabt(vcpu)) {
1925 		/*
1926 		 * For RAS the host kernel may handle this abort.
1927 		 * There is no need to pass the error into the guest.
1928 		 */
1929 		if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1930 			return 1;
1931 
1932 		if (unlikely(!is_iabt)) {
1933 			kvm_inject_vabt(vcpu);
1934 			return 1;
1935 		}
1936 	}
1937 
1938 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1939 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1940 
1941 	/* Check the stage-2 fault is trans. fault or write fault */
1942 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1943 	    fault_status != FSC_ACCESS) {
1944 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1945 			kvm_vcpu_trap_get_class(vcpu),
1946 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1947 			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1948 		return -EFAULT;
1949 	}
1950 
1951 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1952 
1953 	gfn = fault_ipa >> PAGE_SHIFT;
1954 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1955 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1956 	write_fault = kvm_is_write_fault(vcpu);
1957 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1958 		if (is_iabt) {
1959 			/* Prefetch Abort on I/O address */
1960 			ret = -ENOEXEC;
1961 			goto out;
1962 		}
1963 
1964 		/*
1965 		 * Check for a cache maintenance operation. Since we
1966 		 * ended-up here, we know it is outside of any memory
1967 		 * slot. But we can't find out if that is for a device,
1968 		 * or if the guest is just being stupid. The only thing
1969 		 * we know for sure is that this range cannot be cached.
1970 		 *
1971 		 * So let's assume that the guest is just being
1972 		 * cautious, and skip the instruction.
1973 		 */
1974 		if (kvm_vcpu_dabt_is_cm(vcpu)) {
1975 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1976 			ret = 1;
1977 			goto out_unlock;
1978 		}
1979 
1980 		/*
1981 		 * The IPA is reported as [MAX:12], so we need to
1982 		 * complement it with the bottom 12 bits from the
1983 		 * faulting VA. This is always 12 bits, irrespective
1984 		 * of the page size.
1985 		 */
1986 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1987 		ret = io_mem_abort(vcpu, run, fault_ipa);
1988 		goto out_unlock;
1989 	}
1990 
1991 	/* Userspace should not be able to register out-of-bounds IPAs */
1992 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1993 
1994 	if (fault_status == FSC_ACCESS) {
1995 		handle_access_fault(vcpu, fault_ipa);
1996 		ret = 1;
1997 		goto out_unlock;
1998 	}
1999 
2000 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2001 	if (ret == 0)
2002 		ret = 1;
2003 out:
2004 	if (ret == -ENOEXEC) {
2005 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2006 		ret = 1;
2007 	}
2008 out_unlock:
2009 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2010 	return ret;
2011 }
2012 
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,u64 size,void * data),void * data)2013 static int handle_hva_to_gpa(struct kvm *kvm,
2014 			     unsigned long start,
2015 			     unsigned long end,
2016 			     int (*handler)(struct kvm *kvm,
2017 					    gpa_t gpa, u64 size,
2018 					    void *data),
2019 			     void *data)
2020 {
2021 	struct kvm_memslots *slots;
2022 	struct kvm_memory_slot *memslot;
2023 	int ret = 0;
2024 
2025 	slots = kvm_memslots(kvm);
2026 
2027 	/* we only care about the pages that the guest sees */
2028 	kvm_for_each_memslot(memslot, slots) {
2029 		unsigned long hva_start, hva_end;
2030 		gfn_t gpa;
2031 
2032 		hva_start = max(start, memslot->userspace_addr);
2033 		hva_end = min(end, memslot->userspace_addr +
2034 					(memslot->npages << PAGE_SHIFT));
2035 		if (hva_start >= hva_end)
2036 			continue;
2037 
2038 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2039 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2040 	}
2041 
2042 	return ret;
2043 }
2044 
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)2045 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2046 {
2047 	unmap_stage2_range(kvm, gpa, size);
2048 	return 0;
2049 }
2050 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)2051 int kvm_unmap_hva_range(struct kvm *kvm,
2052 			unsigned long start, unsigned long end)
2053 {
2054 	if (!kvm->arch.pgd)
2055 		return 0;
2056 
2057 	trace_kvm_unmap_hva_range(start, end);
2058 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2059 	return 0;
2060 }
2061 
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)2062 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2063 {
2064 	pte_t *pte = (pte_t *)data;
2065 
2066 	WARN_ON(size != PAGE_SIZE);
2067 	/*
2068 	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2069 	 * flag clear because MMU notifiers will have unmapped a huge PMD before
2070 	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2071 	 * therefore stage2_set_pte() never needs to clear out a huge PMD
2072 	 * through this calling path.
2073 	 */
2074 	stage2_set_pte(kvm, NULL, gpa, pte, 0);
2075 	return 0;
2076 }
2077 
2078 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)2079 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2080 {
2081 	unsigned long end = hva + PAGE_SIZE;
2082 	kvm_pfn_t pfn = pte_pfn(pte);
2083 	pte_t stage2_pte;
2084 
2085 	if (!kvm->arch.pgd)
2086 		return 0;
2087 
2088 	trace_kvm_set_spte_hva(hva);
2089 
2090 	/*
2091 	 * We've moved a page around, probably through CoW, so let's treat it
2092 	 * just like a translation fault and clean the cache to the PoC.
2093 	 */
2094 	clean_dcache_guest_page(pfn, PAGE_SIZE);
2095 	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2096 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2097 
2098 	return 0;
2099 }
2100 
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)2101 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2102 {
2103 	pud_t *pud;
2104 	pmd_t *pmd;
2105 	pte_t *pte;
2106 
2107 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2108 	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2109 		return 0;
2110 
2111 	if (pud)
2112 		return stage2_pudp_test_and_clear_young(pud);
2113 	else if (pmd)
2114 		return stage2_pmdp_test_and_clear_young(pmd);
2115 	else
2116 		return stage2_ptep_test_and_clear_young(pte);
2117 }
2118 
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)2119 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2120 {
2121 	pud_t *pud;
2122 	pmd_t *pmd;
2123 	pte_t *pte;
2124 
2125 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2126 	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2127 		return 0;
2128 
2129 	if (pud)
2130 		return kvm_s2pud_young(*pud);
2131 	else if (pmd)
2132 		return pmd_young(*pmd);
2133 	else
2134 		return pte_young(*pte);
2135 }
2136 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)2137 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2138 {
2139 	if (!kvm->arch.pgd)
2140 		return 0;
2141 	trace_kvm_age_hva(start, end);
2142 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2143 }
2144 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)2145 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2146 {
2147 	if (!kvm->arch.pgd)
2148 		return 0;
2149 	trace_kvm_test_age_hva(hva);
2150 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
2151 }
2152 
kvm_mmu_free_memory_caches(struct kvm_vcpu * vcpu)2153 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2154 {
2155 	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2156 }
2157 
kvm_mmu_get_httbr(void)2158 phys_addr_t kvm_mmu_get_httbr(void)
2159 {
2160 	if (__kvm_cpu_uses_extended_idmap())
2161 		return virt_to_phys(merged_hyp_pgd);
2162 	else
2163 		return virt_to_phys(hyp_pgd);
2164 }
2165 
kvm_get_idmap_vector(void)2166 phys_addr_t kvm_get_idmap_vector(void)
2167 {
2168 	return hyp_idmap_vector;
2169 }
2170 
kvm_map_idmap_text(pgd_t * pgd)2171 static int kvm_map_idmap_text(pgd_t *pgd)
2172 {
2173 	int err;
2174 
2175 	/* Create the idmap in the boot page tables */
2176 	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2177 				      hyp_idmap_start, hyp_idmap_end,
2178 				      __phys_to_pfn(hyp_idmap_start),
2179 				      PAGE_HYP_EXEC);
2180 	if (err)
2181 		kvm_err("Failed to idmap %lx-%lx\n",
2182 			hyp_idmap_start, hyp_idmap_end);
2183 
2184 	return err;
2185 }
2186 
kvm_mmu_init(void)2187 int kvm_mmu_init(void)
2188 {
2189 	int err;
2190 
2191 	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2192 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2193 	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2194 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2195 	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2196 
2197 	/*
2198 	 * We rely on the linker script to ensure at build time that the HYP
2199 	 * init code does not cross a page boundary.
2200 	 */
2201 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2202 
2203 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2204 	kvm_debug("HYP VA range: %lx:%lx\n",
2205 		  kern_hyp_va(PAGE_OFFSET),
2206 		  kern_hyp_va((unsigned long)high_memory - 1));
2207 
2208 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2209 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2210 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2211 		/*
2212 		 * The idmap page is intersecting with the VA space,
2213 		 * it is not safe to continue further.
2214 		 */
2215 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2216 		err = -EINVAL;
2217 		goto out;
2218 	}
2219 
2220 	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2221 	if (!hyp_pgd) {
2222 		kvm_err("Hyp mode PGD not allocated\n");
2223 		err = -ENOMEM;
2224 		goto out;
2225 	}
2226 
2227 	if (__kvm_cpu_uses_extended_idmap()) {
2228 		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2229 							 hyp_pgd_order);
2230 		if (!boot_hyp_pgd) {
2231 			kvm_err("Hyp boot PGD not allocated\n");
2232 			err = -ENOMEM;
2233 			goto out;
2234 		}
2235 
2236 		err = kvm_map_idmap_text(boot_hyp_pgd);
2237 		if (err)
2238 			goto out;
2239 
2240 		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2241 		if (!merged_hyp_pgd) {
2242 			kvm_err("Failed to allocate extra HYP pgd\n");
2243 			goto out;
2244 		}
2245 		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2246 				    hyp_idmap_start);
2247 	} else {
2248 		err = kvm_map_idmap_text(hyp_pgd);
2249 		if (err)
2250 			goto out;
2251 	}
2252 
2253 	io_map_base = hyp_idmap_start;
2254 	return 0;
2255 out:
2256 	free_hyp_pgds();
2257 	return err;
2258 }
2259 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2260 void kvm_arch_commit_memory_region(struct kvm *kvm,
2261 				   const struct kvm_userspace_memory_region *mem,
2262 				   const struct kvm_memory_slot *old,
2263 				   const struct kvm_memory_slot *new,
2264 				   enum kvm_mr_change change)
2265 {
2266 	/*
2267 	 * At this point memslot has been committed and there is an
2268 	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
2269 	 * memory slot is write protected.
2270 	 */
2271 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
2272 		kvm_mmu_wp_memory_region(kvm, mem->slot);
2273 }
2274 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)2275 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2276 				   struct kvm_memory_slot *memslot,
2277 				   const struct kvm_userspace_memory_region *mem,
2278 				   enum kvm_mr_change change)
2279 {
2280 	hva_t hva = mem->userspace_addr;
2281 	hva_t reg_end = hva + mem->memory_size;
2282 	bool writable = !(mem->flags & KVM_MEM_READONLY);
2283 	int ret = 0;
2284 
2285 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2286 			change != KVM_MR_FLAGS_ONLY)
2287 		return 0;
2288 
2289 	/*
2290 	 * Prevent userspace from creating a memory region outside of the IPA
2291 	 * space addressable by the KVM guest IPA space.
2292 	 */
2293 	if (memslot->base_gfn + memslot->npages >=
2294 	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2295 		return -EFAULT;
2296 
2297 	down_read(&current->mm->mmap_sem);
2298 	/*
2299 	 * A memory region could potentially cover multiple VMAs, and any holes
2300 	 * between them, so iterate over all of them to find out if we can map
2301 	 * any of them right now.
2302 	 *
2303 	 *     +--------------------------------------------+
2304 	 * +---------------+----------------+   +----------------+
2305 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2306 	 * +---------------+----------------+   +----------------+
2307 	 *     |               memory region                |
2308 	 *     +--------------------------------------------+
2309 	 */
2310 	do {
2311 		struct vm_area_struct *vma = find_vma(current->mm, hva);
2312 		hva_t vm_start, vm_end;
2313 
2314 		if (!vma || vma->vm_start >= reg_end)
2315 			break;
2316 
2317 		/*
2318 		 * Mapping a read-only VMA is only allowed if the
2319 		 * memory region is configured as read-only.
2320 		 */
2321 		if (writable && !(vma->vm_flags & VM_WRITE)) {
2322 			ret = -EPERM;
2323 			break;
2324 		}
2325 
2326 		/*
2327 		 * Take the intersection of this VMA with the memory region
2328 		 */
2329 		vm_start = max(hva, vma->vm_start);
2330 		vm_end = min(reg_end, vma->vm_end);
2331 
2332 		if (vma->vm_flags & VM_PFNMAP) {
2333 			gpa_t gpa = mem->guest_phys_addr +
2334 				    (vm_start - mem->userspace_addr);
2335 			phys_addr_t pa;
2336 
2337 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2338 			pa += vm_start - vma->vm_start;
2339 
2340 			/* IO region dirty page logging not allowed */
2341 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2342 				ret = -EINVAL;
2343 				goto out;
2344 			}
2345 
2346 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2347 						    vm_end - vm_start,
2348 						    writable);
2349 			if (ret)
2350 				break;
2351 		}
2352 		hva = vm_end;
2353 	} while (hva < reg_end);
2354 
2355 	if (change == KVM_MR_FLAGS_ONLY)
2356 		goto out;
2357 
2358 	spin_lock(&kvm->mmu_lock);
2359 	if (ret)
2360 		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2361 	else
2362 		stage2_flush_memslot(kvm, memslot);
2363 	spin_unlock(&kvm->mmu_lock);
2364 out:
2365 	up_read(&current->mm->mmap_sem);
2366 	return ret;
2367 }
2368 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)2369 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2370 			   struct kvm_memory_slot *dont)
2371 {
2372 }
2373 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)2374 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2375 			    unsigned long npages)
2376 {
2377 	return 0;
2378 }
2379 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2380 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2381 {
2382 }
2383 
kvm_arch_flush_shadow_all(struct kvm * kvm)2384 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2385 {
2386 	kvm_free_stage2_pgd(kvm);
2387 }
2388 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2389 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2390 				   struct kvm_memory_slot *slot)
2391 {
2392 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2393 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2394 
2395 	spin_lock(&kvm->mmu_lock);
2396 	unmap_stage2_range(kvm, gpa, size);
2397 	spin_unlock(&kvm->mmu_lock);
2398 }
2399 
2400 /*
2401  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2402  *
2403  * Main problems:
2404  * - S/W ops are local to a CPU (not broadcast)
2405  * - We have line migration behind our back (speculation)
2406  * - System caches don't support S/W at all (damn!)
2407  *
2408  * In the face of the above, the best we can do is to try and convert
2409  * S/W ops to VA ops. Because the guest is not allowed to infer the
2410  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2411  * which is a rather good thing for us.
2412  *
2413  * Also, it is only used when turning caches on/off ("The expected
2414  * usage of the cache maintenance instructions that operate by set/way
2415  * is associated with the cache maintenance instructions associated
2416  * with the powerdown and powerup of caches, if this is required by
2417  * the implementation.").
2418  *
2419  * We use the following policy:
2420  *
2421  * - If we trap a S/W operation, we enable VM trapping to detect
2422  *   caches being turned on/off, and do a full clean.
2423  *
2424  * - We flush the caches on both caches being turned on and off.
2425  *
2426  * - Once the caches are enabled, we stop trapping VM ops.
2427  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2428 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2429 {
2430 	unsigned long hcr = *vcpu_hcr(vcpu);
2431 
2432 	/*
2433 	 * If this is the first time we do a S/W operation
2434 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2435 	 * VM trapping.
2436 	 *
2437 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2438 	 * Caches to be turned off. At that point, we'll be able to
2439 	 * clean the caches again.
2440 	 */
2441 	if (!(hcr & HCR_TVM)) {
2442 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2443 					vcpu_has_cache_enabled(vcpu));
2444 		stage2_flush_vm(vcpu->kvm);
2445 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2446 	}
2447 }
2448 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2449 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2450 {
2451 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2452 
2453 	/*
2454 	 * If switching the MMU+caches on, need to invalidate the caches.
2455 	 * If switching it off, need to clean the caches.
2456 	 * Clean + invalidate does the trick always.
2457 	 */
2458 	if (now_enabled != was_enabled)
2459 		stage2_flush_vm(vcpu->kvm);
2460 
2461 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2462 	if (now_enabled)
2463 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2464 
2465 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2466 }
2467