1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains common generic and tag-based KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37 #include <linux/uaccess.h>
38
39 #include "kasan.h"
40 #include "../slab.h"
41
in_irqentry_text(unsigned long ptr)42 static inline int in_irqentry_text(unsigned long ptr)
43 {
44 return (ptr >= (unsigned long)&__irqentry_text_start &&
45 ptr < (unsigned long)&__irqentry_text_end) ||
46 (ptr >= (unsigned long)&__softirqentry_text_start &&
47 ptr < (unsigned long)&__softirqentry_text_end);
48 }
49
filter_irq_stacks(unsigned long * entries,unsigned int nr_entries)50 static inline unsigned int filter_irq_stacks(unsigned long *entries,
51 unsigned int nr_entries)
52 {
53 unsigned int i;
54
55 for (i = 0; i < nr_entries; i++) {
56 if (in_irqentry_text(entries[i])) {
57 /* Include the irqentry function into the stack. */
58 return i + 1;
59 }
60 }
61 return nr_entries;
62 }
63
save_stack(gfp_t flags)64 static inline depot_stack_handle_t save_stack(gfp_t flags)
65 {
66 unsigned long entries[KASAN_STACK_DEPTH];
67 unsigned int nr_entries;
68
69 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
70 nr_entries = filter_irq_stacks(entries, nr_entries);
71 return stack_depot_save(entries, nr_entries, flags);
72 }
73
set_track(struct kasan_track * track,gfp_t flags)74 static inline void set_track(struct kasan_track *track, gfp_t flags)
75 {
76 track->pid = current->pid;
77 track->stack = save_stack(flags);
78 }
79
kasan_enable_current(void)80 void kasan_enable_current(void)
81 {
82 current->kasan_depth++;
83 }
84
kasan_disable_current(void)85 void kasan_disable_current(void)
86 {
87 current->kasan_depth--;
88 }
89
__kasan_check_read(const volatile void * p,unsigned int size)90 bool __kasan_check_read(const volatile void *p, unsigned int size)
91 {
92 return check_memory_region((unsigned long)p, size, false, _RET_IP_);
93 }
94 EXPORT_SYMBOL(__kasan_check_read);
95
__kasan_check_write(const volatile void * p,unsigned int size)96 bool __kasan_check_write(const volatile void *p, unsigned int size)
97 {
98 return check_memory_region((unsigned long)p, size, true, _RET_IP_);
99 }
100 EXPORT_SYMBOL(__kasan_check_write);
101
102 #undef memset
memset(void * addr,int c,size_t len)103 void *memset(void *addr, int c, size_t len)
104 {
105 check_memory_region((unsigned long)addr, len, true, _RET_IP_);
106
107 return __memset(addr, c, len);
108 }
109
110 #undef memmove
memmove(void * dest,const void * src,size_t len)111 void *memmove(void *dest, const void *src, size_t len)
112 {
113 check_memory_region((unsigned long)src, len, false, _RET_IP_);
114 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
115
116 return __memmove(dest, src, len);
117 }
118
119 #undef memcpy
memcpy(void * dest,const void * src,size_t len)120 void *memcpy(void *dest, const void *src, size_t len)
121 {
122 check_memory_region((unsigned long)src, len, false, _RET_IP_);
123 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
124
125 return __memcpy(dest, src, len);
126 }
127
128 /*
129 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
130 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
131 */
kasan_poison_shadow(const void * address,size_t size,u8 value)132 void kasan_poison_shadow(const void *address, size_t size, u8 value)
133 {
134 void *shadow_start, *shadow_end;
135
136 /*
137 * Perform shadow offset calculation based on untagged address, as
138 * some of the callers (e.g. kasan_poison_object_data) pass tagged
139 * addresses to this function.
140 */
141 address = reset_tag(address);
142
143 shadow_start = kasan_mem_to_shadow(address);
144 shadow_end = kasan_mem_to_shadow(address + size);
145
146 __memset(shadow_start, value, shadow_end - shadow_start);
147 }
148
kasan_unpoison_shadow(const void * address,size_t size)149 void kasan_unpoison_shadow(const void *address, size_t size)
150 {
151 u8 tag = get_tag(address);
152
153 /*
154 * Perform shadow offset calculation based on untagged address, as
155 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
156 * addresses to this function.
157 */
158 address = reset_tag(address);
159
160 kasan_poison_shadow(address, size, tag);
161
162 if (size & KASAN_SHADOW_MASK) {
163 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
164
165 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
166 *shadow = tag;
167 else
168 *shadow = size & KASAN_SHADOW_MASK;
169 }
170 }
171
__kasan_unpoison_stack(struct task_struct * task,const void * sp)172 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
173 {
174 void *base = task_stack_page(task);
175 size_t size = sp - base;
176
177 kasan_unpoison_shadow(base, size);
178 }
179
180 /* Unpoison the entire stack for a task. */
kasan_unpoison_task_stack(struct task_struct * task)181 void kasan_unpoison_task_stack(struct task_struct *task)
182 {
183 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
184 }
185
186 /* Unpoison the stack for the current task beyond a watermark sp value. */
kasan_unpoison_task_stack_below(const void * watermark)187 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
188 {
189 /*
190 * Calculate the task stack base address. Avoid using 'current'
191 * because this function is called by early resume code which hasn't
192 * yet set up the percpu register (%gs).
193 */
194 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
195
196 kasan_unpoison_shadow(base, watermark - base);
197 }
198
199 /*
200 * Clear all poison for the region between the current SP and a provided
201 * watermark value, as is sometimes required prior to hand-crafted asm function
202 * returns in the middle of functions.
203 */
kasan_unpoison_stack_above_sp_to(const void * watermark)204 void kasan_unpoison_stack_above_sp_to(const void *watermark)
205 {
206 const void *sp = __builtin_frame_address(0);
207 size_t size = watermark - sp;
208
209 if (WARN_ON(sp > watermark))
210 return;
211 kasan_unpoison_shadow(sp, size);
212 }
213
kasan_alloc_pages(struct page * page,unsigned int order)214 void kasan_alloc_pages(struct page *page, unsigned int order)
215 {
216 u8 tag;
217 unsigned long i;
218
219 if (unlikely(PageHighMem(page)))
220 return;
221
222 tag = random_tag();
223 for (i = 0; i < (1 << order); i++)
224 page_kasan_tag_set(page + i, tag);
225 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
226 }
227
kasan_free_pages(struct page * page,unsigned int order)228 void kasan_free_pages(struct page *page, unsigned int order)
229 {
230 if (likely(!PageHighMem(page)))
231 kasan_poison_shadow(page_address(page),
232 PAGE_SIZE << order,
233 KASAN_FREE_PAGE);
234 }
235
236 /*
237 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
238 * For larger allocations larger redzones are used.
239 */
optimal_redzone(unsigned int object_size)240 static inline unsigned int optimal_redzone(unsigned int object_size)
241 {
242 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
243 return 0;
244
245 return
246 object_size <= 64 - 16 ? 16 :
247 object_size <= 128 - 32 ? 32 :
248 object_size <= 512 - 64 ? 64 :
249 object_size <= 4096 - 128 ? 128 :
250 object_size <= (1 << 14) - 256 ? 256 :
251 object_size <= (1 << 15) - 512 ? 512 :
252 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
253 }
254
kasan_cache_create(struct kmem_cache * cache,unsigned int * size,slab_flags_t * flags)255 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
256 slab_flags_t *flags)
257 {
258 unsigned int orig_size = *size;
259 unsigned int redzone_size;
260 int redzone_adjust;
261
262 /* Add alloc meta. */
263 cache->kasan_info.alloc_meta_offset = *size;
264 *size += sizeof(struct kasan_alloc_meta);
265
266 /* Add free meta. */
267 if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
268 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
269 cache->object_size < sizeof(struct kasan_free_meta))) {
270 cache->kasan_info.free_meta_offset = *size;
271 *size += sizeof(struct kasan_free_meta);
272 }
273
274 redzone_size = optimal_redzone(cache->object_size);
275 redzone_adjust = redzone_size - (*size - cache->object_size);
276 if (redzone_adjust > 0)
277 *size += redzone_adjust;
278
279 *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
280 max(*size, cache->object_size + redzone_size));
281
282 /*
283 * If the metadata doesn't fit, don't enable KASAN at all.
284 */
285 if (*size <= cache->kasan_info.alloc_meta_offset ||
286 *size <= cache->kasan_info.free_meta_offset) {
287 cache->kasan_info.alloc_meta_offset = 0;
288 cache->kasan_info.free_meta_offset = 0;
289 *size = orig_size;
290 return;
291 }
292
293 *flags |= SLAB_KASAN;
294 }
295
kasan_metadata_size(struct kmem_cache * cache)296 size_t kasan_metadata_size(struct kmem_cache *cache)
297 {
298 return (cache->kasan_info.alloc_meta_offset ?
299 sizeof(struct kasan_alloc_meta) : 0) +
300 (cache->kasan_info.free_meta_offset ?
301 sizeof(struct kasan_free_meta) : 0);
302 }
303
get_alloc_info(struct kmem_cache * cache,const void * object)304 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
305 const void *object)
306 {
307 return (void *)object + cache->kasan_info.alloc_meta_offset;
308 }
309
get_free_info(struct kmem_cache * cache,const void * object)310 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
311 const void *object)
312 {
313 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
314 return (void *)object + cache->kasan_info.free_meta_offset;
315 }
316
317
kasan_set_free_info(struct kmem_cache * cache,void * object,u8 tag)318 static void kasan_set_free_info(struct kmem_cache *cache,
319 void *object, u8 tag)
320 {
321 struct kasan_alloc_meta *alloc_meta;
322 u8 idx = 0;
323
324 alloc_meta = get_alloc_info(cache, object);
325
326 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
327 idx = alloc_meta->free_track_idx;
328 alloc_meta->free_pointer_tag[idx] = tag;
329 alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
330 #endif
331
332 set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
333 }
334
kasan_poison_slab(struct page * page)335 void kasan_poison_slab(struct page *page)
336 {
337 unsigned long i;
338
339 for (i = 0; i < compound_nr(page); i++)
340 page_kasan_tag_reset(page + i);
341 kasan_poison_shadow(page_address(page), page_size(page),
342 KASAN_KMALLOC_REDZONE);
343 }
344
kasan_unpoison_object_data(struct kmem_cache * cache,void * object)345 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
346 {
347 kasan_unpoison_shadow(object, cache->object_size);
348 }
349
kasan_poison_object_data(struct kmem_cache * cache,void * object)350 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
351 {
352 kasan_poison_shadow(object,
353 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
354 KASAN_KMALLOC_REDZONE);
355 }
356
357 /*
358 * This function assigns a tag to an object considering the following:
359 * 1. A cache might have a constructor, which might save a pointer to a slab
360 * object somewhere (e.g. in the object itself). We preassign a tag for
361 * each object in caches with constructors during slab creation and reuse
362 * the same tag each time a particular object is allocated.
363 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
364 * accessed after being freed. We preassign tags for objects in these
365 * caches as well.
366 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
367 * is stored as an array of indexes instead of a linked list. Assign tags
368 * based on objects indexes, so that objects that are next to each other
369 * get different tags.
370 */
assign_tag(struct kmem_cache * cache,const void * object,bool init,bool keep_tag)371 static u8 assign_tag(struct kmem_cache *cache, const void *object,
372 bool init, bool keep_tag)
373 {
374 /*
375 * 1. When an object is kmalloc()'ed, two hooks are called:
376 * kasan_slab_alloc() and kasan_kmalloc(). We assign the
377 * tag only in the first one.
378 * 2. We reuse the same tag for krealloc'ed objects.
379 */
380 if (keep_tag)
381 return get_tag(object);
382
383 /*
384 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
385 * set, assign a tag when the object is being allocated (init == false).
386 */
387 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
388 return init ? KASAN_TAG_KERNEL : random_tag();
389
390 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
391 #ifdef CONFIG_SLAB
392 /* For SLAB assign tags based on the object index in the freelist. */
393 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
394 #else
395 /*
396 * For SLUB assign a random tag during slab creation, otherwise reuse
397 * the already assigned tag.
398 */
399 return init ? random_tag() : get_tag(object);
400 #endif
401 }
402
kasan_init_slab_obj(struct kmem_cache * cache,const void * object)403 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
404 const void *object)
405 {
406 struct kasan_alloc_meta *alloc_info;
407
408 if (!(cache->flags & SLAB_KASAN))
409 return (void *)object;
410
411 alloc_info = get_alloc_info(cache, object);
412 __memset(alloc_info, 0, sizeof(*alloc_info));
413
414 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
415 object = set_tag(object,
416 assign_tag(cache, object, true, false));
417
418 return (void *)object;
419 }
420
shadow_invalid(u8 tag,s8 shadow_byte)421 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
422 {
423 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
424 return shadow_byte < 0 ||
425 shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
426
427 /* else CONFIG_KASAN_SW_TAGS: */
428 if ((u8)shadow_byte == KASAN_TAG_INVALID)
429 return true;
430 if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
431 return true;
432
433 return false;
434 }
435
__kasan_slab_free(struct kmem_cache * cache,void * object,unsigned long ip,bool quarantine)436 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
437 unsigned long ip, bool quarantine)
438 {
439 s8 shadow_byte;
440 u8 tag;
441 void *tagged_object;
442 unsigned long rounded_up_size;
443
444 tag = get_tag(object);
445 tagged_object = object;
446 object = reset_tag(object);
447
448 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
449 object)) {
450 kasan_report_invalid_free(tagged_object, ip);
451 return true;
452 }
453
454 /* RCU slabs could be legally used after free within the RCU period */
455 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
456 return false;
457
458 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
459 if (shadow_invalid(tag, shadow_byte)) {
460 kasan_report_invalid_free(tagged_object, ip);
461 return true;
462 }
463
464 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
465 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
466
467 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
468 unlikely(!(cache->flags & SLAB_KASAN)))
469 return false;
470
471 kasan_set_free_info(cache, object, tag);
472
473 quarantine_put(get_free_info(cache, object), cache);
474
475 return IS_ENABLED(CONFIG_KASAN_GENERIC);
476 }
477
kasan_slab_free(struct kmem_cache * cache,void * object,unsigned long ip)478 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
479 {
480 return __kasan_slab_free(cache, object, ip, true);
481 }
482
__kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags,bool keep_tag)483 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
484 size_t size, gfp_t flags, bool keep_tag)
485 {
486 unsigned long redzone_start;
487 unsigned long redzone_end;
488 u8 tag = 0xff;
489
490 if (gfpflags_allow_blocking(flags))
491 quarantine_reduce();
492
493 if (unlikely(object == NULL))
494 return NULL;
495
496 redzone_start = round_up((unsigned long)(object + size),
497 KASAN_SHADOW_SCALE_SIZE);
498 redzone_end = round_up((unsigned long)object + cache->object_size,
499 KASAN_SHADOW_SCALE_SIZE);
500
501 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
502 tag = assign_tag(cache, object, false, keep_tag);
503
504 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
505 kasan_unpoison_shadow(set_tag(object, tag), size);
506 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
507 KASAN_KMALLOC_REDZONE);
508
509 if (cache->flags & SLAB_KASAN)
510 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
511
512 return set_tag(object, tag);
513 }
514
kasan_slab_alloc(struct kmem_cache * cache,void * object,gfp_t flags)515 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
516 gfp_t flags)
517 {
518 return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
519 }
520
kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)521 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
522 size_t size, gfp_t flags)
523 {
524 return __kasan_kmalloc(cache, object, size, flags, true);
525 }
526 EXPORT_SYMBOL(kasan_kmalloc);
527
kasan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)528 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
529 gfp_t flags)
530 {
531 struct page *page;
532 unsigned long redzone_start;
533 unsigned long redzone_end;
534
535 if (gfpflags_allow_blocking(flags))
536 quarantine_reduce();
537
538 if (unlikely(ptr == NULL))
539 return NULL;
540
541 page = virt_to_page(ptr);
542 redzone_start = round_up((unsigned long)(ptr + size),
543 KASAN_SHADOW_SCALE_SIZE);
544 redzone_end = (unsigned long)ptr + page_size(page);
545
546 kasan_unpoison_shadow(ptr, size);
547 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
548 KASAN_PAGE_REDZONE);
549
550 return (void *)ptr;
551 }
552
kasan_krealloc(const void * object,size_t size,gfp_t flags)553 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
554 {
555 struct page *page;
556
557 if (unlikely(object == ZERO_SIZE_PTR))
558 return (void *)object;
559
560 page = virt_to_head_page(object);
561
562 if (unlikely(!PageSlab(page)))
563 return kasan_kmalloc_large(object, size, flags);
564 else
565 return __kasan_kmalloc(page->slab_cache, object, size,
566 flags, true);
567 }
568
kasan_poison_kfree(void * ptr,unsigned long ip)569 void kasan_poison_kfree(void *ptr, unsigned long ip)
570 {
571 struct page *page;
572
573 page = virt_to_head_page(ptr);
574
575 if (unlikely(!PageSlab(page))) {
576 if (ptr != page_address(page)) {
577 kasan_report_invalid_free(ptr, ip);
578 return;
579 }
580 kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
581 } else {
582 __kasan_slab_free(page->slab_cache, ptr, ip, false);
583 }
584 }
585
kasan_kfree_large(void * ptr,unsigned long ip)586 void kasan_kfree_large(void *ptr, unsigned long ip)
587 {
588 if (ptr != page_address(virt_to_head_page(ptr)))
589 kasan_report_invalid_free(ptr, ip);
590 /* The object will be poisoned by page_alloc. */
591 }
592
kasan_module_alloc(void * addr,size_t size)593 int kasan_module_alloc(void *addr, size_t size)
594 {
595 void *ret;
596 size_t scaled_size;
597 size_t shadow_size;
598 unsigned long shadow_start;
599
600 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
601 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
602 shadow_size = round_up(scaled_size, PAGE_SIZE);
603
604 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
605 return -EINVAL;
606
607 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
608 shadow_start + shadow_size,
609 GFP_KERNEL,
610 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
611 __builtin_return_address(0));
612
613 if (ret) {
614 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
615 find_vm_area(addr)->flags |= VM_KASAN;
616 kmemleak_ignore(ret);
617 return 0;
618 }
619
620 return -ENOMEM;
621 }
622
kasan_free_shadow(const struct vm_struct * vm)623 void kasan_free_shadow(const struct vm_struct *vm)
624 {
625 if (vm->flags & VM_KASAN)
626 vfree(kasan_mem_to_shadow(vm->addr));
627 }
628
629 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
630
kasan_report(unsigned long addr,size_t size,bool is_write,unsigned long ip)631 void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
632 {
633 unsigned long flags = user_access_save();
634 __kasan_report(addr, size, is_write, ip);
635 user_access_restore(flags);
636 }
637
638 #ifdef CONFIG_MEMORY_HOTPLUG
shadow_mapped(unsigned long addr)639 static bool shadow_mapped(unsigned long addr)
640 {
641 pgd_t *pgd = pgd_offset_k(addr);
642 p4d_t *p4d;
643 pud_t *pud;
644 pmd_t *pmd;
645 pte_t *pte;
646
647 if (pgd_none(*pgd))
648 return false;
649 p4d = p4d_offset(pgd, addr);
650 if (p4d_none(*p4d))
651 return false;
652 pud = pud_offset(p4d, addr);
653 if (pud_none(*pud))
654 return false;
655
656 /*
657 * We can't use pud_large() or pud_huge(), the first one is
658 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
659 * pud_bad(), if pud is bad then it's bad because it's huge.
660 */
661 if (pud_bad(*pud))
662 return true;
663 pmd = pmd_offset(pud, addr);
664 if (pmd_none(*pmd))
665 return false;
666
667 if (pmd_bad(*pmd))
668 return true;
669 pte = pte_offset_kernel(pmd, addr);
670 return !pte_none(*pte);
671 }
672
kasan_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)673 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
674 unsigned long action, void *data)
675 {
676 struct memory_notify *mem_data = data;
677 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
678 unsigned long shadow_end, shadow_size;
679
680 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
681 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
682 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
683 shadow_size = nr_shadow_pages << PAGE_SHIFT;
684 shadow_end = shadow_start + shadow_size;
685
686 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
687 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
688 return NOTIFY_BAD;
689
690 switch (action) {
691 case MEM_GOING_ONLINE: {
692 void *ret;
693
694 /*
695 * If shadow is mapped already than it must have been mapped
696 * during the boot. This could happen if we onlining previously
697 * offlined memory.
698 */
699 if (shadow_mapped(shadow_start))
700 return NOTIFY_OK;
701
702 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
703 shadow_end, GFP_KERNEL,
704 PAGE_KERNEL, VM_NO_GUARD,
705 pfn_to_nid(mem_data->start_pfn),
706 __builtin_return_address(0));
707 if (!ret)
708 return NOTIFY_BAD;
709
710 kmemleak_ignore(ret);
711 return NOTIFY_OK;
712 }
713 case MEM_CANCEL_ONLINE:
714 case MEM_OFFLINE: {
715 struct vm_struct *vm;
716
717 /*
718 * shadow_start was either mapped during boot by kasan_init()
719 * or during memory online by __vmalloc_node_range().
720 * In the latter case we can use vfree() to free shadow.
721 * Non-NULL result of the find_vm_area() will tell us if
722 * that was the second case.
723 *
724 * Currently it's not possible to free shadow mapped
725 * during boot by kasan_init(). It's because the code
726 * to do that hasn't been written yet. So we'll just
727 * leak the memory.
728 */
729 vm = find_vm_area((void *)shadow_start);
730 if (vm)
731 vfree((void *)shadow_start);
732 }
733 }
734
735 return NOTIFY_OK;
736 }
737
kasan_memhotplug_init(void)738 static int __init kasan_memhotplug_init(void)
739 {
740 hotplug_memory_notifier(kasan_mem_notifier, 0);
741
742 return 0;
743 }
744
745 core_initcall(kasan_memhotplug_init);
746 #endif
747