• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
is_migrate_movable(int mt)80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93 
94 #define get_pageblock_migratetype(page)					\
95 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
96 			PB_migrate_end, MIGRATETYPE_MASK)
97 
98 struct free_area {
99 	struct list_head	free_list[MIGRATE_TYPES];
100 	unsigned long		nr_free;
101 };
102 
103 /* Used for pages not on another list */
add_to_free_area(struct page * page,struct free_area * area,int migratetype)104 static inline void add_to_free_area(struct page *page, struct free_area *area,
105 			     int migratetype)
106 {
107 	list_add(&page->lru, &area->free_list[migratetype]);
108 	area->nr_free++;
109 }
110 
111 /* Used for pages not on another list */
add_to_free_area_tail(struct page * page,struct free_area * area,int migratetype)112 static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 				  int migratetype)
114 {
115 	list_add_tail(&page->lru, &area->free_list[migratetype]);
116 	area->nr_free++;
117 }
118 
119 #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120 /* Used to preserve page allocation order entropy */
121 void add_to_free_area_random(struct page *page, struct free_area *area,
122 		int migratetype);
123 #else
add_to_free_area_random(struct page * page,struct free_area * area,int migratetype)124 static inline void add_to_free_area_random(struct page *page,
125 		struct free_area *area, int migratetype)
126 {
127 	add_to_free_area(page, area, migratetype);
128 }
129 #endif
130 
131 /* Used for pages which are on another list */
move_to_free_area(struct page * page,struct free_area * area,int migratetype)132 static inline void move_to_free_area(struct page *page, struct free_area *area,
133 			     int migratetype)
134 {
135 	list_move(&page->lru, &area->free_list[migratetype]);
136 }
137 
get_page_from_free_area(struct free_area * area,int migratetype)138 static inline struct page *get_page_from_free_area(struct free_area *area,
139 					    int migratetype)
140 {
141 	return list_first_entry_or_null(&area->free_list[migratetype],
142 					struct page, lru);
143 }
144 
del_page_from_free_area(struct page * page,struct free_area * area)145 static inline void del_page_from_free_area(struct page *page,
146 		struct free_area *area)
147 {
148 	list_del(&page->lru);
149 	__ClearPageBuddy(page);
150 	set_page_private(page, 0);
151 	area->nr_free--;
152 }
153 
free_area_empty(struct free_area * area,int migratetype)154 static inline bool free_area_empty(struct free_area *area, int migratetype)
155 {
156 	return list_empty(&area->free_list[migratetype]);
157 }
158 
159 struct pglist_data;
160 
161 /*
162  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163  * So add a wild amount of padding here to ensure that they fall into separate
164  * cachelines.  There are very few zone structures in the machine, so space
165  * consumption is not a concern here.
166  */
167 #if defined(CONFIG_SMP)
168 struct zone_padding {
169 	char x[0];
170 } ____cacheline_internodealigned_in_smp;
171 #define ZONE_PADDING(name)	struct zone_padding name;
172 #else
173 #define ZONE_PADDING(name)
174 #endif
175 
176 #ifdef CONFIG_NUMA
177 enum numa_stat_item {
178 	NUMA_HIT,		/* allocated in intended node */
179 	NUMA_MISS,		/* allocated in non intended node */
180 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
181 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
182 	NUMA_LOCAL,		/* allocation from local node */
183 	NUMA_OTHER,		/* allocation from other node */
184 	NR_VM_NUMA_STAT_ITEMS
185 };
186 #else
187 #define NR_VM_NUMA_STAT_ITEMS 0
188 #endif
189 
190 enum zone_stat_item {
191 	/* First 128 byte cacheline (assuming 64 bit words) */
192 	NR_FREE_PAGES,
193 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 	NR_ZONE_ACTIVE_ANON,
196 	NR_ZONE_INACTIVE_FILE,
197 	NR_ZONE_ACTIVE_FILE,
198 	NR_ZONE_UNEVICTABLE,
199 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
200 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
201 	NR_PAGETABLE,		/* used for pagetables */
202 	NR_KERNEL_STACK_KB,	/* measured in KiB */
203 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
204 	NR_KERNEL_SCS_BYTES,	/* measured in bytes */
205 #endif
206 	/* Second 128 byte cacheline */
207 	NR_BOUNCE,
208 #if IS_ENABLED(CONFIG_ZSMALLOC)
209 	NR_ZSPAGES,		/* allocated in zsmalloc */
210 #endif
211 	NR_FREE_CMA_PAGES,
212 	NR_VM_ZONE_STAT_ITEMS };
213 
214 enum node_stat_item {
215 	NR_LRU_BASE,
216 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
217 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
218 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
219 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
220 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
221 	NR_SLAB_RECLAIMABLE,
222 	NR_SLAB_UNRECLAIMABLE,
223 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
224 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
225 	WORKINGSET_NODES,
226 	WORKINGSET_REFAULT,
227 	WORKINGSET_ACTIVATE,
228 	WORKINGSET_RESTORE,
229 	WORKINGSET_NODERECLAIM,
230 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
231 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
232 			   only modified from process context */
233 	NR_FILE_PAGES,
234 	NR_FILE_DIRTY,
235 	NR_WRITEBACK,
236 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
237 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
238 	NR_SHMEM_THPS,
239 	NR_SHMEM_PMDMAPPED,
240 	NR_FILE_THPS,
241 	NR_FILE_PMDMAPPED,
242 	NR_ANON_THPS,
243 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
244 	NR_VMSCAN_WRITE,
245 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
246 	NR_DIRTIED,		/* page dirtyings since bootup */
247 	NR_WRITTEN,		/* page writings since bootup */
248 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
249 	NR_VM_NODE_STAT_ITEMS
250 };
251 
252 /*
253  * We do arithmetic on the LRU lists in various places in the code,
254  * so it is important to keep the active lists LRU_ACTIVE higher in
255  * the array than the corresponding inactive lists, and to keep
256  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
257  *
258  * This has to be kept in sync with the statistics in zone_stat_item
259  * above and the descriptions in vmstat_text in mm/vmstat.c
260  */
261 #define LRU_BASE 0
262 #define LRU_ACTIVE 1
263 #define LRU_FILE 2
264 
265 enum lru_list {
266 	LRU_INACTIVE_ANON = LRU_BASE,
267 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
268 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
269 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
270 	LRU_UNEVICTABLE,
271 	NR_LRU_LISTS
272 };
273 
274 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
275 
276 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
277 
is_file_lru(enum lru_list lru)278 static inline int is_file_lru(enum lru_list lru)
279 {
280 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
281 }
282 
is_active_lru(enum lru_list lru)283 static inline int is_active_lru(enum lru_list lru)
284 {
285 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
286 }
287 
288 struct zone_reclaim_stat {
289 	/*
290 	 * The pageout code in vmscan.c keeps track of how many of the
291 	 * mem/swap backed and file backed pages are referenced.
292 	 * The higher the rotated/scanned ratio, the more valuable
293 	 * that cache is.
294 	 *
295 	 * The anon LRU stats live in [0], file LRU stats in [1]
296 	 */
297 	unsigned long		recent_rotated[2];
298 	unsigned long		recent_scanned[2];
299 };
300 
301 struct lruvec {
302 	struct list_head		lists[NR_LRU_LISTS];
303 	struct zone_reclaim_stat	reclaim_stat;
304 	/* Evictions & activations on the inactive file list */
305 	atomic_long_t			inactive_age;
306 	/* Refaults at the time of last reclaim cycle */
307 	unsigned long			refaults;
308 #ifdef CONFIG_MEMCG
309 	struct pglist_data *pgdat;
310 #endif
311 };
312 
313 /* Isolate unmapped file */
314 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
315 /* Isolate for asynchronous migration */
316 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
317 /* Isolate unevictable pages */
318 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
319 
320 /* LRU Isolation modes. */
321 typedef unsigned __bitwise isolate_mode_t;
322 
323 enum zone_watermarks {
324 	WMARK_MIN,
325 	WMARK_LOW,
326 	WMARK_HIGH,
327 	NR_WMARK
328 };
329 
330 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
331 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
332 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
333 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
334 
335 struct per_cpu_pages {
336 	int count;		/* number of pages in the list */
337 	int high;		/* high watermark, emptying needed */
338 	int batch;		/* chunk size for buddy add/remove */
339 
340 	/* Lists of pages, one per migrate type stored on the pcp-lists */
341 	struct list_head lists[MIGRATE_PCPTYPES];
342 };
343 
344 struct per_cpu_pageset {
345 	struct per_cpu_pages pcp;
346 #ifdef CONFIG_NUMA
347 	s8 expire;
348 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
349 #endif
350 #ifdef CONFIG_SMP
351 	s8 stat_threshold;
352 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
353 #endif
354 };
355 
356 struct per_cpu_nodestat {
357 	s8 stat_threshold;
358 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
359 };
360 
361 #endif /* !__GENERATING_BOUNDS.H */
362 
363 enum zone_type {
364 #ifdef CONFIG_ZONE_DMA
365 	/*
366 	 * ZONE_DMA is used when there are devices that are not able
367 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
368 	 * carve out the portion of memory that is needed for these devices.
369 	 * The range is arch specific.
370 	 *
371 	 * Some examples
372 	 *
373 	 * Architecture		Limit
374 	 * ---------------------------
375 	 * parisc, ia64, sparc	<4G
376 	 * s390, powerpc	<2G
377 	 * arm			Various
378 	 * alpha		Unlimited or 0-16MB.
379 	 *
380 	 * i386, x86_64 and multiple other arches
381 	 * 			<16M.
382 	 */
383 	ZONE_DMA,
384 #endif
385 #ifdef CONFIG_ZONE_DMA32
386 	/*
387 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
388 	 * only able to do DMA to the lower 16M but also 32 bit devices that
389 	 * can only do DMA areas below 4G.
390 	 */
391 	ZONE_DMA32,
392 #endif
393 	/*
394 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
395 	 * performed on pages in ZONE_NORMAL if the DMA devices support
396 	 * transfers to all addressable memory.
397 	 */
398 	ZONE_NORMAL,
399 #ifdef CONFIG_HIGHMEM
400 	/*
401 	 * A memory area that is only addressable by the kernel through
402 	 * mapping portions into its own address space. This is for example
403 	 * used by i386 to allow the kernel to address the memory beyond
404 	 * 900MB. The kernel will set up special mappings (page
405 	 * table entries on i386) for each page that the kernel needs to
406 	 * access.
407 	 */
408 	ZONE_HIGHMEM,
409 #endif
410 	ZONE_MOVABLE,
411 #ifdef CONFIG_ZONE_DEVICE
412 	ZONE_DEVICE,
413 #endif
414 	__MAX_NR_ZONES
415 
416 };
417 
418 #ifndef __GENERATING_BOUNDS_H
419 
420 struct zone {
421 	/* Read-mostly fields */
422 
423 	/* zone watermarks, access with *_wmark_pages(zone) macros */
424 	unsigned long _watermark[NR_WMARK];
425 	unsigned long watermark_boost;
426 
427 	unsigned long nr_reserved_highatomic;
428 
429 	/*
430 	 * We don't know if the memory that we're going to allocate will be
431 	 * freeable or/and it will be released eventually, so to avoid totally
432 	 * wasting several GB of ram we must reserve some of the lower zone
433 	 * memory (otherwise we risk to run OOM on the lower zones despite
434 	 * there being tons of freeable ram on the higher zones).  This array is
435 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
436 	 * changes.
437 	 */
438 	long lowmem_reserve[MAX_NR_ZONES];
439 
440 #ifdef CONFIG_NUMA
441 	int node;
442 #endif
443 	struct pglist_data	*zone_pgdat;
444 	struct per_cpu_pageset __percpu *pageset;
445 
446 #ifndef CONFIG_SPARSEMEM
447 	/*
448 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
449 	 * In SPARSEMEM, this map is stored in struct mem_section
450 	 */
451 	unsigned long		*pageblock_flags;
452 #endif /* CONFIG_SPARSEMEM */
453 
454 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
455 	unsigned long		zone_start_pfn;
456 
457 	/*
458 	 * spanned_pages is the total pages spanned by the zone, including
459 	 * holes, which is calculated as:
460 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
461 	 *
462 	 * present_pages is physical pages existing within the zone, which
463 	 * is calculated as:
464 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
465 	 *
466 	 * managed_pages is present pages managed by the buddy system, which
467 	 * is calculated as (reserved_pages includes pages allocated by the
468 	 * bootmem allocator):
469 	 *	managed_pages = present_pages - reserved_pages;
470 	 *
471 	 * So present_pages may be used by memory hotplug or memory power
472 	 * management logic to figure out unmanaged pages by checking
473 	 * (present_pages - managed_pages). And managed_pages should be used
474 	 * by page allocator and vm scanner to calculate all kinds of watermarks
475 	 * and thresholds.
476 	 *
477 	 * Locking rules:
478 	 *
479 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
480 	 * It is a seqlock because it has to be read outside of zone->lock,
481 	 * and it is done in the main allocator path.  But, it is written
482 	 * quite infrequently.
483 	 *
484 	 * The span_seq lock is declared along with zone->lock because it is
485 	 * frequently read in proximity to zone->lock.  It's good to
486 	 * give them a chance of being in the same cacheline.
487 	 *
488 	 * Write access to present_pages at runtime should be protected by
489 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
490 	 * present_pages should get_online_mems() to get a stable value.
491 	 */
492 	atomic_long_t		managed_pages;
493 	unsigned long		spanned_pages;
494 	unsigned long		present_pages;
495 
496 	const char		*name;
497 
498 #ifdef CONFIG_MEMORY_ISOLATION
499 	/*
500 	 * Number of isolated pageblock. It is used to solve incorrect
501 	 * freepage counting problem due to racy retrieving migratetype
502 	 * of pageblock. Protected by zone->lock.
503 	 */
504 	unsigned long		nr_isolate_pageblock;
505 #endif
506 
507 #ifdef CONFIG_MEMORY_HOTPLUG
508 	/* see spanned/present_pages for more description */
509 	seqlock_t		span_seqlock;
510 #endif
511 
512 	int initialized;
513 
514 	/* Write-intensive fields used from the page allocator */
515 	ZONE_PADDING(_pad1_)
516 
517 	/* free areas of different sizes */
518 	struct free_area	free_area[MAX_ORDER];
519 
520 	/* zone flags, see below */
521 	unsigned long		flags;
522 
523 	/* Primarily protects free_area */
524 	spinlock_t		lock;
525 
526 	/* Write-intensive fields used by compaction and vmstats. */
527 	ZONE_PADDING(_pad2_)
528 
529 	/*
530 	 * When free pages are below this point, additional steps are taken
531 	 * when reading the number of free pages to avoid per-cpu counter
532 	 * drift allowing watermarks to be breached
533 	 */
534 	unsigned long percpu_drift_mark;
535 
536 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
537 	/* pfn where compaction free scanner should start */
538 	unsigned long		compact_cached_free_pfn;
539 	/* pfn where async and sync compaction migration scanner should start */
540 	unsigned long		compact_cached_migrate_pfn[2];
541 	unsigned long		compact_init_migrate_pfn;
542 	unsigned long		compact_init_free_pfn;
543 #endif
544 
545 #ifdef CONFIG_COMPACTION
546 	/*
547 	 * On compaction failure, 1<<compact_defer_shift compactions
548 	 * are skipped before trying again. The number attempted since
549 	 * last failure is tracked with compact_considered.
550 	 */
551 	unsigned int		compact_considered;
552 	unsigned int		compact_defer_shift;
553 	int			compact_order_failed;
554 #endif
555 
556 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
557 	/* Set to true when the PG_migrate_skip bits should be cleared */
558 	bool			compact_blockskip_flush;
559 #endif
560 
561 	bool			contiguous;
562 
563 	ZONE_PADDING(_pad3_)
564 	/* Zone statistics */
565 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
566 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
567 } ____cacheline_internodealigned_in_smp;
568 
569 enum pgdat_flags {
570 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
571 					 * a congested BDI
572 					 */
573 	PGDAT_DIRTY,			/* reclaim scanning has recently found
574 					 * many dirty file pages at the tail
575 					 * of the LRU.
576 					 */
577 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
578 					 * many pages under writeback
579 					 */
580 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
581 };
582 
583 enum zone_flags {
584 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
585 					 * Cleared when kswapd is woken.
586 					 */
587 };
588 
zone_managed_pages(struct zone * zone)589 static inline unsigned long zone_managed_pages(struct zone *zone)
590 {
591 	return (unsigned long)atomic_long_read(&zone->managed_pages);
592 }
593 
zone_end_pfn(const struct zone * zone)594 static inline unsigned long zone_end_pfn(const struct zone *zone)
595 {
596 	return zone->zone_start_pfn + zone->spanned_pages;
597 }
598 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)599 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
600 {
601 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
602 }
603 
zone_is_initialized(struct zone * zone)604 static inline bool zone_is_initialized(struct zone *zone)
605 {
606 	return zone->initialized;
607 }
608 
zone_is_empty(struct zone * zone)609 static inline bool zone_is_empty(struct zone *zone)
610 {
611 	return zone->spanned_pages == 0;
612 }
613 
614 /*
615  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
616  * intersection with the given zone
617  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)618 static inline bool zone_intersects(struct zone *zone,
619 		unsigned long start_pfn, unsigned long nr_pages)
620 {
621 	if (zone_is_empty(zone))
622 		return false;
623 	if (start_pfn >= zone_end_pfn(zone) ||
624 	    start_pfn + nr_pages <= zone->zone_start_pfn)
625 		return false;
626 
627 	return true;
628 }
629 
630 /*
631  * The "priority" of VM scanning is how much of the queues we will scan in one
632  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
633  * queues ("queue_length >> 12") during an aging round.
634  */
635 #define DEF_PRIORITY 12
636 
637 /* Maximum number of zones on a zonelist */
638 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
639 
640 enum {
641 	ZONELIST_FALLBACK,	/* zonelist with fallback */
642 #ifdef CONFIG_NUMA
643 	/*
644 	 * The NUMA zonelists are doubled because we need zonelists that
645 	 * restrict the allocations to a single node for __GFP_THISNODE.
646 	 */
647 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
648 #endif
649 	MAX_ZONELISTS
650 };
651 
652 /*
653  * This struct contains information about a zone in a zonelist. It is stored
654  * here to avoid dereferences into large structures and lookups of tables
655  */
656 struct zoneref {
657 	struct zone *zone;	/* Pointer to actual zone */
658 	int zone_idx;		/* zone_idx(zoneref->zone) */
659 };
660 
661 /*
662  * One allocation request operates on a zonelist. A zonelist
663  * is a list of zones, the first one is the 'goal' of the
664  * allocation, the other zones are fallback zones, in decreasing
665  * priority.
666  *
667  * To speed the reading of the zonelist, the zonerefs contain the zone index
668  * of the entry being read. Helper functions to access information given
669  * a struct zoneref are
670  *
671  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
672  * zonelist_zone_idx()	- Return the index of the zone for an entry
673  * zonelist_node_idx()	- Return the index of the node for an entry
674  */
675 struct zonelist {
676 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
677 };
678 
679 #ifndef CONFIG_DISCONTIGMEM
680 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
681 extern struct page *mem_map;
682 #endif
683 
684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
685 struct deferred_split {
686 	spinlock_t split_queue_lock;
687 	struct list_head split_queue;
688 	unsigned long split_queue_len;
689 };
690 #endif
691 
692 /*
693  * On NUMA machines, each NUMA node would have a pg_data_t to describe
694  * it's memory layout. On UMA machines there is a single pglist_data which
695  * describes the whole memory.
696  *
697  * Memory statistics and page replacement data structures are maintained on a
698  * per-zone basis.
699  */
700 struct bootmem_data;
701 typedef struct pglist_data {
702 	struct zone node_zones[MAX_NR_ZONES];
703 	struct zonelist node_zonelists[MAX_ZONELISTS];
704 	int nr_zones;
705 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
706 	struct page *node_mem_map;
707 #ifdef CONFIG_PAGE_EXTENSION
708 	struct page_ext *node_page_ext;
709 #endif
710 #endif
711 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
712 	/*
713 	 * Must be held any time you expect node_start_pfn,
714 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
715 	 *
716 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
717 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
718 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
719 	 *
720 	 * Nests above zone->lock and zone->span_seqlock
721 	 */
722 	spinlock_t node_size_lock;
723 #endif
724 	unsigned long node_start_pfn;
725 	unsigned long node_present_pages; /* total number of physical pages */
726 	unsigned long node_spanned_pages; /* total size of physical page
727 					     range, including holes */
728 	int node_id;
729 	wait_queue_head_t kswapd_wait;
730 	wait_queue_head_t pfmemalloc_wait;
731 	struct task_struct *kswapd;	/* Protected by
732 					   mem_hotplug_begin/end() */
733 	int kswapd_order;
734 	enum zone_type kswapd_classzone_idx;
735 
736 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
737 
738 #ifdef CONFIG_COMPACTION
739 	int kcompactd_max_order;
740 	enum zone_type kcompactd_classzone_idx;
741 	wait_queue_head_t kcompactd_wait;
742 	struct task_struct *kcompactd;
743 #endif
744 	/*
745 	 * This is a per-node reserve of pages that are not available
746 	 * to userspace allocations.
747 	 */
748 	unsigned long		totalreserve_pages;
749 
750 #ifdef CONFIG_NUMA
751 	/*
752 	 * zone reclaim becomes active if more unmapped pages exist.
753 	 */
754 	unsigned long		min_unmapped_pages;
755 	unsigned long		min_slab_pages;
756 #endif /* CONFIG_NUMA */
757 
758 	/* Write-intensive fields used by page reclaim */
759 	ZONE_PADDING(_pad1_)
760 	spinlock_t		lru_lock;
761 
762 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
763 	/*
764 	 * If memory initialisation on large machines is deferred then this
765 	 * is the first PFN that needs to be initialised.
766 	 */
767 	unsigned long first_deferred_pfn;
768 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
769 
770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
771 	struct deferred_split deferred_split_queue;
772 #endif
773 
774 	/* Fields commonly accessed by the page reclaim scanner */
775 	struct lruvec		lruvec;
776 
777 	unsigned long		flags;
778 
779 	ZONE_PADDING(_pad2_)
780 
781 	/* Per-node vmstats */
782 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
783 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
784 } pg_data_t;
785 
786 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
787 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
788 #ifdef CONFIG_FLAT_NODE_MEM_MAP
789 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
790 #else
791 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
792 #endif
793 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
794 
795 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
796 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
797 
node_lruvec(struct pglist_data * pgdat)798 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
799 {
800 	return &pgdat->lruvec;
801 }
802 
pgdat_end_pfn(pg_data_t * pgdat)803 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
804 {
805 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
806 }
807 
pgdat_is_empty(pg_data_t * pgdat)808 static inline bool pgdat_is_empty(pg_data_t *pgdat)
809 {
810 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
811 }
812 
813 #include <linux/memory_hotplug.h>
814 
815 void build_all_zonelists(pg_data_t *pgdat);
816 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
817 		   enum zone_type classzone_idx);
818 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
819 			 int classzone_idx, unsigned int alloc_flags,
820 			 long free_pages);
821 bool zone_watermark_ok(struct zone *z, unsigned int order,
822 		unsigned long mark, int classzone_idx,
823 		unsigned int alloc_flags);
824 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
825 		unsigned long mark, int classzone_idx);
826 enum memmap_context {
827 	MEMMAP_EARLY,
828 	MEMMAP_HOTPLUG,
829 };
830 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
831 				     unsigned long size);
832 
833 extern void lruvec_init(struct lruvec *lruvec);
834 
lruvec_pgdat(struct lruvec * lruvec)835 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
836 {
837 #ifdef CONFIG_MEMCG
838 	return lruvec->pgdat;
839 #else
840 	return container_of(lruvec, struct pglist_data, lruvec);
841 #endif
842 }
843 
844 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
845 
846 #ifdef CONFIG_HAVE_MEMORY_PRESENT
847 void memory_present(int nid, unsigned long start, unsigned long end);
848 #else
memory_present(int nid,unsigned long start,unsigned long end)849 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
850 #endif
851 
852 #if defined(CONFIG_SPARSEMEM)
853 void memblocks_present(void);
854 #else
memblocks_present(void)855 static inline void memblocks_present(void) {}
856 #endif
857 
858 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
859 int local_memory_node(int node_id);
860 #else
local_memory_node(int node_id)861 static inline int local_memory_node(int node_id) { return node_id; };
862 #endif
863 
864 /*
865  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
866  */
867 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
868 
869 /*
870  * Returns true if a zone has pages managed by the buddy allocator.
871  * All the reclaim decisions have to use this function rather than
872  * populated_zone(). If the whole zone is reserved then we can easily
873  * end up with populated_zone() && !managed_zone().
874  */
managed_zone(struct zone * zone)875 static inline bool managed_zone(struct zone *zone)
876 {
877 	return zone_managed_pages(zone);
878 }
879 
880 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)881 static inline bool populated_zone(struct zone *zone)
882 {
883 	return zone->present_pages;
884 }
885 
886 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)887 static inline int zone_to_nid(struct zone *zone)
888 {
889 	return zone->node;
890 }
891 
zone_set_nid(struct zone * zone,int nid)892 static inline void zone_set_nid(struct zone *zone, int nid)
893 {
894 	zone->node = nid;
895 }
896 #else
zone_to_nid(struct zone * zone)897 static inline int zone_to_nid(struct zone *zone)
898 {
899 	return 0;
900 }
901 
zone_set_nid(struct zone * zone,int nid)902 static inline void zone_set_nid(struct zone *zone, int nid) {}
903 #endif
904 
905 extern int movable_zone;
906 
907 #ifdef CONFIG_HIGHMEM
zone_movable_is_highmem(void)908 static inline int zone_movable_is_highmem(void)
909 {
910 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
911 	return movable_zone == ZONE_HIGHMEM;
912 #else
913 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
914 #endif
915 }
916 #endif
917 
is_highmem_idx(enum zone_type idx)918 static inline int is_highmem_idx(enum zone_type idx)
919 {
920 #ifdef CONFIG_HIGHMEM
921 	return (idx == ZONE_HIGHMEM ||
922 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
923 #else
924 	return 0;
925 #endif
926 }
927 
928 /**
929  * is_highmem - helper function to quickly check if a struct zone is a
930  *              highmem zone or not.  This is an attempt to keep references
931  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
932  * @zone - pointer to struct zone variable
933  */
is_highmem(struct zone * zone)934 static inline int is_highmem(struct zone *zone)
935 {
936 #ifdef CONFIG_HIGHMEM
937 	return is_highmem_idx(zone_idx(zone));
938 #else
939 	return 0;
940 #endif
941 }
942 
943 /* These two functions are used to setup the per zone pages min values */
944 struct ctl_table;
945 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
946 					void __user *, size_t *, loff_t *);
947 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
948 					void __user *, size_t *, loff_t *);
949 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
950 					void __user *, size_t *, loff_t *);
951 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
952 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
953 					void __user *, size_t *, loff_t *);
954 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
955 					void __user *, size_t *, loff_t *);
956 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
957 			void __user *, size_t *, loff_t *);
958 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
959 			void __user *, size_t *, loff_t *);
960 
961 extern int numa_zonelist_order_handler(struct ctl_table *, int,
962 			void __user *, size_t *, loff_t *);
963 extern char numa_zonelist_order[];
964 #define NUMA_ZONELIST_ORDER_LEN	16
965 
966 #ifndef CONFIG_NEED_MULTIPLE_NODES
967 
968 extern struct pglist_data contig_page_data;
969 #define NODE_DATA(nid)		(&contig_page_data)
970 #define NODE_MEM_MAP(nid)	mem_map
971 
972 #else /* CONFIG_NEED_MULTIPLE_NODES */
973 
974 #include <asm/mmzone.h>
975 
976 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
977 
978 extern struct pglist_data *first_online_pgdat(void);
979 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
980 extern struct zone *next_zone(struct zone *zone);
981 
982 /**
983  * for_each_online_pgdat - helper macro to iterate over all online nodes
984  * @pgdat - pointer to a pg_data_t variable
985  */
986 #define for_each_online_pgdat(pgdat)			\
987 	for (pgdat = first_online_pgdat();		\
988 	     pgdat;					\
989 	     pgdat = next_online_pgdat(pgdat))
990 /**
991  * for_each_zone - helper macro to iterate over all memory zones
992  * @zone - pointer to struct zone variable
993  *
994  * The user only needs to declare the zone variable, for_each_zone
995  * fills it in.
996  */
997 #define for_each_zone(zone)			        \
998 	for (zone = (first_online_pgdat())->node_zones; \
999 	     zone;					\
1000 	     zone = next_zone(zone))
1001 
1002 #define for_each_populated_zone(zone)		        \
1003 	for (zone = (first_online_pgdat())->node_zones; \
1004 	     zone;					\
1005 	     zone = next_zone(zone))			\
1006 		if (!populated_zone(zone))		\
1007 			; /* do nothing */		\
1008 		else
1009 
zonelist_zone(struct zoneref * zoneref)1010 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1011 {
1012 	return zoneref->zone;
1013 }
1014 
zonelist_zone_idx(struct zoneref * zoneref)1015 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1016 {
1017 	return zoneref->zone_idx;
1018 }
1019 
zonelist_node_idx(struct zoneref * zoneref)1020 static inline int zonelist_node_idx(struct zoneref *zoneref)
1021 {
1022 	return zone_to_nid(zoneref->zone);
1023 }
1024 
1025 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1026 					enum zone_type highest_zoneidx,
1027 					nodemask_t *nodes);
1028 
1029 /**
1030  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1031  * @z - The cursor used as a starting point for the search
1032  * @highest_zoneidx - The zone index of the highest zone to return
1033  * @nodes - An optional nodemask to filter the zonelist with
1034  *
1035  * This function returns the next zone at or below a given zone index that is
1036  * within the allowed nodemask using a cursor as the starting point for the
1037  * search. The zoneref returned is a cursor that represents the current zone
1038  * being examined. It should be advanced by one before calling
1039  * next_zones_zonelist again.
1040  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1041 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1042 					enum zone_type highest_zoneidx,
1043 					nodemask_t *nodes)
1044 {
1045 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1046 		return z;
1047 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1048 }
1049 
1050 /**
1051  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1052  * @zonelist - The zonelist to search for a suitable zone
1053  * @highest_zoneidx - The zone index of the highest zone to return
1054  * @nodes - An optional nodemask to filter the zonelist with
1055  * @return - Zoneref pointer for the first suitable zone found (see below)
1056  *
1057  * This function returns the first zone at or below a given zone index that is
1058  * within the allowed nodemask. The zoneref returned is a cursor that can be
1059  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1060  * one before calling.
1061  *
1062  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1063  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1064  * update due to cpuset modification.
1065  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1066 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1067 					enum zone_type highest_zoneidx,
1068 					nodemask_t *nodes)
1069 {
1070 	return next_zones_zonelist(zonelist->_zonerefs,
1071 							highest_zoneidx, nodes);
1072 }
1073 
1074 /**
1075  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1076  * @zone - The current zone in the iterator
1077  * @z - The current pointer within zonelist->zones being iterated
1078  * @zlist - The zonelist being iterated
1079  * @highidx - The zone index of the highest zone to return
1080  * @nodemask - Nodemask allowed by the allocator
1081  *
1082  * This iterator iterates though all zones at or below a given zone index and
1083  * within a given nodemask
1084  */
1085 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1086 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1087 		zone;							\
1088 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1089 			zone = zonelist_zone(z))
1090 
1091 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1092 	for (zone = z->zone;	\
1093 		zone;							\
1094 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1095 			zone = zonelist_zone(z))
1096 
1097 
1098 /**
1099  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1100  * @zone - The current zone in the iterator
1101  * @z - The current pointer within zonelist->zones being iterated
1102  * @zlist - The zonelist being iterated
1103  * @highidx - The zone index of the highest zone to return
1104  *
1105  * This iterator iterates though all zones at or below a given zone index.
1106  */
1107 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1108 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1109 
1110 #ifdef CONFIG_SPARSEMEM
1111 #include <asm/sparsemem.h>
1112 #endif
1113 
1114 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1115 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
early_pfn_to_nid(unsigned long pfn)1116 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1117 {
1118 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1119 	return 0;
1120 }
1121 #endif
1122 
1123 #ifdef CONFIG_FLATMEM
1124 #define pfn_to_nid(pfn)		(0)
1125 #endif
1126 
1127 #ifdef CONFIG_SPARSEMEM
1128 
1129 /*
1130  * SECTION_SHIFT    		#bits space required to store a section #
1131  *
1132  * PA_SECTION_SHIFT		physical address to/from section number
1133  * PFN_SECTION_SHIFT		pfn to/from section number
1134  */
1135 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1136 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1137 
1138 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1139 
1140 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1141 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1142 
1143 #define SECTION_BLOCKFLAGS_BITS \
1144 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1145 
1146 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1147 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1148 #endif
1149 
pfn_to_section_nr(unsigned long pfn)1150 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1151 {
1152 	return pfn >> PFN_SECTION_SHIFT;
1153 }
section_nr_to_pfn(unsigned long sec)1154 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1155 {
1156 	return sec << PFN_SECTION_SHIFT;
1157 }
1158 
1159 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1160 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1161 
1162 #define SUBSECTION_SHIFT 21
1163 
1164 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1165 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1166 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1167 
1168 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1169 #error Subsection size exceeds section size
1170 #else
1171 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1172 #endif
1173 
1174 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1175 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1176 
1177 struct mem_section_usage {
1178 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1179 	/* See declaration of similar field in struct zone */
1180 	unsigned long pageblock_flags[0];
1181 };
1182 
1183 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1184 
1185 struct page;
1186 struct page_ext;
1187 struct mem_section {
1188 	/*
1189 	 * This is, logically, a pointer to an array of struct
1190 	 * pages.  However, it is stored with some other magic.
1191 	 * (see sparse.c::sparse_init_one_section())
1192 	 *
1193 	 * Additionally during early boot we encode node id of
1194 	 * the location of the section here to guide allocation.
1195 	 * (see sparse.c::memory_present())
1196 	 *
1197 	 * Making it a UL at least makes someone do a cast
1198 	 * before using it wrong.
1199 	 */
1200 	unsigned long section_mem_map;
1201 
1202 	struct mem_section_usage *usage;
1203 #ifdef CONFIG_PAGE_EXTENSION
1204 	/*
1205 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1206 	 * section. (see page_ext.h about this.)
1207 	 */
1208 	struct page_ext *page_ext;
1209 	unsigned long pad;
1210 #endif
1211 	/*
1212 	 * WARNING: mem_section must be a power-of-2 in size for the
1213 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1214 	 */
1215 };
1216 
1217 #ifdef CONFIG_SPARSEMEM_EXTREME
1218 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1219 #else
1220 #define SECTIONS_PER_ROOT	1
1221 #endif
1222 
1223 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1224 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1225 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1226 
1227 #ifdef CONFIG_SPARSEMEM_EXTREME
1228 extern struct mem_section **mem_section;
1229 #else
1230 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1231 #endif
1232 
section_to_usemap(struct mem_section * ms)1233 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1234 {
1235 	return ms->usage->pageblock_flags;
1236 }
1237 
__nr_to_section(unsigned long nr)1238 static inline struct mem_section *__nr_to_section(unsigned long nr)
1239 {
1240 #ifdef CONFIG_SPARSEMEM_EXTREME
1241 	if (!mem_section)
1242 		return NULL;
1243 #endif
1244 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1245 		return NULL;
1246 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1247 }
1248 extern unsigned long __section_nr(struct mem_section *ms);
1249 extern size_t mem_section_usage_size(void);
1250 
1251 /*
1252  * We use the lower bits of the mem_map pointer to store
1253  * a little bit of information.  The pointer is calculated
1254  * as mem_map - section_nr_to_pfn(pnum).  The result is
1255  * aligned to the minimum alignment of the two values:
1256  *   1. All mem_map arrays are page-aligned.
1257  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1258  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1259  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1260  *      worst combination is powerpc with 256k pages,
1261  *      which results in PFN_SECTION_SHIFT equal 6.
1262  * To sum it up, at least 6 bits are available.
1263  */
1264 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1265 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1266 #define SECTION_IS_ONLINE	(1UL<<2)
1267 #define SECTION_IS_EARLY	(1UL<<3)
1268 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1269 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1270 #define SECTION_NID_SHIFT	3
1271 
__section_mem_map_addr(struct mem_section * section)1272 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1273 {
1274 	unsigned long map = section->section_mem_map;
1275 	map &= SECTION_MAP_MASK;
1276 	return (struct page *)map;
1277 }
1278 
present_section(struct mem_section * section)1279 static inline int present_section(struct mem_section *section)
1280 {
1281 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1282 }
1283 
present_section_nr(unsigned long nr)1284 static inline int present_section_nr(unsigned long nr)
1285 {
1286 	return present_section(__nr_to_section(nr));
1287 }
1288 
valid_section(struct mem_section * section)1289 static inline int valid_section(struct mem_section *section)
1290 {
1291 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1292 }
1293 
early_section(struct mem_section * section)1294 static inline int early_section(struct mem_section *section)
1295 {
1296 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1297 }
1298 
valid_section_nr(unsigned long nr)1299 static inline int valid_section_nr(unsigned long nr)
1300 {
1301 	return valid_section(__nr_to_section(nr));
1302 }
1303 
online_section(struct mem_section * section)1304 static inline int online_section(struct mem_section *section)
1305 {
1306 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1307 }
1308 
online_section_nr(unsigned long nr)1309 static inline int online_section_nr(unsigned long nr)
1310 {
1311 	return online_section(__nr_to_section(nr));
1312 }
1313 
1314 #ifdef CONFIG_MEMORY_HOTPLUG
1315 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1316 #ifdef CONFIG_MEMORY_HOTREMOVE
1317 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1318 #endif
1319 #endif
1320 
__pfn_to_section(unsigned long pfn)1321 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1322 {
1323 	return __nr_to_section(pfn_to_section_nr(pfn));
1324 }
1325 
1326 extern unsigned long __highest_present_section_nr;
1327 
subsection_map_index(unsigned long pfn)1328 static inline int subsection_map_index(unsigned long pfn)
1329 {
1330 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1331 }
1332 
1333 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1334 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1335 {
1336 	int idx = subsection_map_index(pfn);
1337 
1338 	return test_bit(idx, ms->usage->subsection_map);
1339 }
1340 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1341 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1342 {
1343 	return 1;
1344 }
1345 #endif
1346 
1347 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1348 static inline int pfn_valid(unsigned long pfn)
1349 {
1350 	struct mem_section *ms;
1351 
1352 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1353 		return 0;
1354 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1355 	if (!valid_section(ms))
1356 		return 0;
1357 	/*
1358 	 * Traditionally early sections always returned pfn_valid() for
1359 	 * the entire section-sized span.
1360 	 */
1361 	return early_section(ms) || pfn_section_valid(ms, pfn);
1362 }
1363 #endif
1364 
pfn_present(unsigned long pfn)1365 static inline int pfn_present(unsigned long pfn)
1366 {
1367 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1368 		return 0;
1369 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1370 }
1371 
1372 /*
1373  * These are _only_ used during initialisation, therefore they
1374  * can use __initdata ...  They could have names to indicate
1375  * this restriction.
1376  */
1377 #ifdef CONFIG_NUMA
1378 #define pfn_to_nid(pfn)							\
1379 ({									\
1380 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1381 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1382 })
1383 #else
1384 #define pfn_to_nid(pfn)		(0)
1385 #endif
1386 
1387 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1388 void sparse_init(void);
1389 #else
1390 #define sparse_init()	do {} while (0)
1391 #define sparse_index_init(_sec, _nid)  do {} while (0)
1392 #define pfn_present pfn_valid
1393 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1394 #endif /* CONFIG_SPARSEMEM */
1395 
1396 /*
1397  * During memory init memblocks map pfns to nids. The search is expensive and
1398  * this caches recent lookups. The implementation of __early_pfn_to_nid
1399  * may treat start/end as pfns or sections.
1400  */
1401 struct mminit_pfnnid_cache {
1402 	unsigned long last_start;
1403 	unsigned long last_end;
1404 	int last_nid;
1405 };
1406 
1407 #ifndef early_pfn_valid
1408 #define early_pfn_valid(pfn)	(1)
1409 #endif
1410 
1411 void memory_present(int nid, unsigned long start, unsigned long end);
1412 
1413 /*
1414  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1415  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1416  * pfn_valid_within() should be used in this case; we optimise this away
1417  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1418  */
1419 #ifdef CONFIG_HOLES_IN_ZONE
1420 #define pfn_valid_within(pfn) pfn_valid(pfn)
1421 #else
1422 #define pfn_valid_within(pfn) (1)
1423 #endif
1424 
1425 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1426 /*
1427  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1428  * associated with it or not. This means that a struct page exists for this
1429  * pfn. The caller cannot assume the page is fully initialized in general.
1430  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1431  * will ensure the struct page is fully online and initialized. Special pages
1432  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1433  *
1434  * In FLATMEM, it is expected that holes always have valid memmap as long as
1435  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1436  * that a valid section has a memmap for the entire section.
1437  *
1438  * However, an ARM, and maybe other embedded architectures in the future
1439  * free memmap backing holes to save memory on the assumption the memmap is
1440  * never used. The page_zone linkages are then broken even though pfn_valid()
1441  * returns true. A walker of the full memmap must then do this additional
1442  * check to ensure the memmap they are looking at is sane by making sure
1443  * the zone and PFN linkages are still valid. This is expensive, but walkers
1444  * of the full memmap are extremely rare.
1445  */
1446 bool memmap_valid_within(unsigned long pfn,
1447 					struct page *page, struct zone *zone);
1448 #else
memmap_valid_within(unsigned long pfn,struct page * page,struct zone * zone)1449 static inline bool memmap_valid_within(unsigned long pfn,
1450 					struct page *page, struct zone *zone)
1451 {
1452 	return true;
1453 }
1454 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1455 
1456 #endif /* !__GENERATING_BOUNDS.H */
1457 #endif /* !__ASSEMBLY__ */
1458 #endif /* _LINUX_MMZONE_H */
1459