1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
117 );
118
119 enum mpt3sas_perf_mode {
120 MPT_PERF_MODE_DEFAULT = -1,
121 MPT_PERF_MODE_BALANCED = 0,
122 MPT_PERF_MODE_IOPS = 1,
123 MPT_PERF_MODE_LATENCY = 2,
124 };
125
126 static int
127 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
128
129 /**
130 * mpt3sas_base_check_cmd_timeout - Function
131 * to check timeout and command termination due
132 * to Host reset.
133 *
134 * @ioc: per adapter object.
135 * @status: Status of issued command.
136 * @mpi_request:mf request pointer.
137 * @sz: size of buffer.
138 *
139 * @Returns - 1/0 Reset to be done or Not
140 */
141 u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER * ioc,u8 status,void * mpi_request,int sz)142 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
143 u8 status, void *mpi_request, int sz)
144 {
145 u8 issue_reset = 0;
146
147 if (!(status & MPT3_CMD_RESET))
148 issue_reset = 1;
149
150 ioc_err(ioc, "Command %s\n",
151 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
152 _debug_dump_mf(mpi_request, sz);
153
154 return issue_reset;
155 }
156
157 /**
158 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
159 * @val: ?
160 * @kp: ?
161 *
162 * Return: ?
163 */
164 static int
_scsih_set_fwfault_debug(const char * val,const struct kernel_param * kp)165 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
166 {
167 int ret = param_set_int(val, kp);
168 struct MPT3SAS_ADAPTER *ioc;
169
170 if (ret)
171 return ret;
172
173 /* global ioc spinlock to protect controller list on list operations */
174 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
175 spin_lock(&gioc_lock);
176 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
177 ioc->fwfault_debug = mpt3sas_fwfault_debug;
178 spin_unlock(&gioc_lock);
179 return 0;
180 }
181 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
182 param_get_int, &mpt3sas_fwfault_debug, 0644);
183
184 /**
185 * _base_readl_aero - retry readl for max three times.
186 * @addr - MPT Fusion system interface register address
187 *
188 * Retry the readl() for max three times if it gets zero value
189 * while reading the system interface register.
190 */
191 static inline u32
_base_readl_aero(const volatile void __iomem * addr)192 _base_readl_aero(const volatile void __iomem *addr)
193 {
194 u32 i = 0, ret_val;
195
196 do {
197 ret_val = readl(addr);
198 i++;
199 } while (ret_val == 0 && i < 3);
200
201 return ret_val;
202 }
203
204 static inline u32
_base_readl(const volatile void __iomem * addr)205 _base_readl(const volatile void __iomem *addr)
206 {
207 return readl(addr);
208 }
209
210 /**
211 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
212 * in BAR0 space.
213 *
214 * @ioc: per adapter object
215 * @reply: reply message frame(lower 32bit addr)
216 * @index: System request message index.
217 */
218 static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER * ioc,u32 reply,u32 index)219 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
220 u32 index)
221 {
222 /*
223 * 256 is offset within sys register.
224 * 256 offset MPI frame starts. Max MPI frame supported is 32.
225 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
226 */
227 u16 cmd_credit = ioc->facts.RequestCredit + 1;
228 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
229 MPI_FRAME_START_OFFSET +
230 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
231
232 writel(reply, reply_free_iomem);
233 }
234
235 /**
236 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
237 * to system/BAR0 region.
238 *
239 * @dst_iomem: Pointer to the destination location in BAR0 space.
240 * @src: Pointer to the Source data.
241 * @size: Size of data to be copied.
242 */
243 static void
_base_clone_mpi_to_sys_mem(void * dst_iomem,void * src,u32 size)244 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
245 {
246 int i;
247 u32 *src_virt_mem = (u32 *)src;
248
249 for (i = 0; i < size/4; i++)
250 writel((u32)src_virt_mem[i],
251 (void __iomem *)dst_iomem + (i * 4));
252 }
253
254 /**
255 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
256 *
257 * @dst_iomem: Pointer to the destination location in BAR0 space.
258 * @src: Pointer to the Source data.
259 * @size: Size of data to be copied.
260 */
261 static void
_base_clone_to_sys_mem(void __iomem * dst_iomem,void * src,u32 size)262 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
263 {
264 int i;
265 u32 *src_virt_mem = (u32 *)(src);
266
267 for (i = 0; i < size/4; i++)
268 writel((u32)src_virt_mem[i],
269 (void __iomem *)dst_iomem + (i * 4));
270 }
271
272 /**
273 * _base_get_chain - Calculates and Returns virtual chain address
274 * for the provided smid in BAR0 space.
275 *
276 * @ioc: per adapter object
277 * @smid: system request message index
278 * @sge_chain_count: Scatter gather chain count.
279 *
280 * Return: the chain address.
281 */
282 static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)283 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
284 u8 sge_chain_count)
285 {
286 void __iomem *base_chain, *chain_virt;
287 u16 cmd_credit = ioc->facts.RequestCredit + 1;
288
289 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
290 (cmd_credit * ioc->request_sz) +
291 REPLY_FREE_POOL_SIZE;
292 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
293 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
294 return chain_virt;
295 }
296
297 /**
298 * _base_get_chain_phys - Calculates and Returns physical address
299 * in BAR0 for scatter gather chains, for
300 * the provided smid.
301 *
302 * @ioc: per adapter object
303 * @smid: system request message index
304 * @sge_chain_count: Scatter gather chain count.
305 *
306 * Return: Physical chain address.
307 */
308 static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)309 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
310 u8 sge_chain_count)
311 {
312 phys_addr_t base_chain_phys, chain_phys;
313 u16 cmd_credit = ioc->facts.RequestCredit + 1;
314
315 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
316 (cmd_credit * ioc->request_sz) +
317 REPLY_FREE_POOL_SIZE;
318 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
319 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
320 return chain_phys;
321 }
322
323 /**
324 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
325 * buffer address for the provided smid.
326 * (Each smid can have 64K starts from 17024)
327 *
328 * @ioc: per adapter object
329 * @smid: system request message index
330 *
331 * Return: Pointer to buffer location in BAR0.
332 */
333
334 static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)335 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
336 {
337 u16 cmd_credit = ioc->facts.RequestCredit + 1;
338 // Added extra 1 to reach end of chain.
339 void __iomem *chain_end = _base_get_chain(ioc,
340 cmd_credit + 1,
341 ioc->facts.MaxChainDepth);
342 return chain_end + (smid * 64 * 1024);
343 }
344
345 /**
346 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
347 * Host buffer Physical address for the provided smid.
348 * (Each smid can have 64K starts from 17024)
349 *
350 * @ioc: per adapter object
351 * @smid: system request message index
352 *
353 * Return: Pointer to buffer location in BAR0.
354 */
355 static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)356 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
357 {
358 u16 cmd_credit = ioc->facts.RequestCredit + 1;
359 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
360 cmd_credit + 1,
361 ioc->facts.MaxChainDepth);
362 return chain_end_phys + (smid * 64 * 1024);
363 }
364
365 /**
366 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
367 * lookup list and Provides chain_buffer
368 * address for the matching dma address.
369 * (Each smid can have 64K starts from 17024)
370 *
371 * @ioc: per adapter object
372 * @chain_buffer_dma: Chain buffer dma address.
373 *
374 * Return: Pointer to chain buffer. Or Null on Failure.
375 */
376 static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER * ioc,dma_addr_t chain_buffer_dma)377 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
378 dma_addr_t chain_buffer_dma)
379 {
380 u16 index, j;
381 struct chain_tracker *ct;
382
383 for (index = 0; index < ioc->scsiio_depth; index++) {
384 for (j = 0; j < ioc->chains_needed_per_io; j++) {
385 ct = &ioc->chain_lookup[index].chains_per_smid[j];
386 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
387 return ct->chain_buffer;
388 }
389 }
390 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
391 return NULL;
392 }
393
394 /**
395 * _clone_sg_entries - MPI EP's scsiio and config requests
396 * are handled here. Base function for
397 * double buffering, before submitting
398 * the requests.
399 *
400 * @ioc: per adapter object.
401 * @mpi_request: mf request pointer.
402 * @smid: system request message index.
403 */
_clone_sg_entries(struct MPT3SAS_ADAPTER * ioc,void * mpi_request,u16 smid)404 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
405 void *mpi_request, u16 smid)
406 {
407 Mpi2SGESimple32_t *sgel, *sgel_next;
408 u32 sgl_flags, sge_chain_count = 0;
409 bool is_write = 0;
410 u16 i = 0;
411 void __iomem *buffer_iomem;
412 phys_addr_t buffer_iomem_phys;
413 void __iomem *buff_ptr;
414 phys_addr_t buff_ptr_phys;
415 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
416 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
417 phys_addr_t dst_addr_phys;
418 MPI2RequestHeader_t *request_hdr;
419 struct scsi_cmnd *scmd;
420 struct scatterlist *sg_scmd = NULL;
421 int is_scsiio_req = 0;
422
423 request_hdr = (MPI2RequestHeader_t *) mpi_request;
424
425 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
426 Mpi25SCSIIORequest_t *scsiio_request =
427 (Mpi25SCSIIORequest_t *)mpi_request;
428 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
429 is_scsiio_req = 1;
430 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
431 Mpi2ConfigRequest_t *config_req =
432 (Mpi2ConfigRequest_t *)mpi_request;
433 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
434 } else
435 return;
436
437 /* From smid we can get scsi_cmd, once we have sg_scmd,
438 * we just need to get sg_virt and sg_next to get virual
439 * address associated with sgel->Address.
440 */
441
442 if (is_scsiio_req) {
443 /* Get scsi_cmd using smid */
444 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
445 if (scmd == NULL) {
446 ioc_err(ioc, "scmd is NULL\n");
447 return;
448 }
449
450 /* Get sg_scmd from scmd provided */
451 sg_scmd = scsi_sglist(scmd);
452 }
453
454 /*
455 * 0 - 255 System register
456 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
457 * 4352 - 4864 Reply_free pool (512 byte is reserved
458 * considering maxCredit 32. Reply need extra
459 * room, for mCPU case kept four times of
460 * maxCredit).
461 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
462 * 128 byte size = 12288)
463 * 17152 - x Host buffer mapped with smid.
464 * (Each smid can have 64K Max IO.)
465 * BAR0+Last 1K MSIX Addr and Data
466 * Total size in use 2113664 bytes of 4MB BAR0
467 */
468
469 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
470 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
471
472 buff_ptr = buffer_iomem;
473 buff_ptr_phys = buffer_iomem_phys;
474 WARN_ON(buff_ptr_phys > U32_MAX);
475
476 if (le32_to_cpu(sgel->FlagsLength) &
477 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
478 is_write = 1;
479
480 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
481
482 sgl_flags =
483 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
484
485 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
486 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
487 /*
488 * Helper function which on passing
489 * chain_buffer_dma returns chain_buffer. Get
490 * the virtual address for sgel->Address
491 */
492 sgel_next =
493 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
494 le32_to_cpu(sgel->Address));
495 if (sgel_next == NULL)
496 return;
497 /*
498 * This is coping 128 byte chain
499 * frame (not a host buffer)
500 */
501 dst_chain_addr[sge_chain_count] =
502 _base_get_chain(ioc,
503 smid, sge_chain_count);
504 src_chain_addr[sge_chain_count] =
505 (void *) sgel_next;
506 dst_addr_phys = _base_get_chain_phys(ioc,
507 smid, sge_chain_count);
508 WARN_ON(dst_addr_phys > U32_MAX);
509 sgel->Address =
510 cpu_to_le32(lower_32_bits(dst_addr_phys));
511 sgel = sgel_next;
512 sge_chain_count++;
513 break;
514 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
515 if (is_write) {
516 if (is_scsiio_req) {
517 _base_clone_to_sys_mem(buff_ptr,
518 sg_virt(sg_scmd),
519 (le32_to_cpu(sgel->FlagsLength) &
520 0x00ffffff));
521 /*
522 * FIXME: this relies on a a zero
523 * PCI mem_offset.
524 */
525 sgel->Address =
526 cpu_to_le32((u32)buff_ptr_phys);
527 } else {
528 _base_clone_to_sys_mem(buff_ptr,
529 ioc->config_vaddr,
530 (le32_to_cpu(sgel->FlagsLength) &
531 0x00ffffff));
532 sgel->Address =
533 cpu_to_le32((u32)buff_ptr_phys);
534 }
535 }
536 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
537 0x00ffffff);
538 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
539 0x00ffffff);
540 if ((le32_to_cpu(sgel->FlagsLength) &
541 (MPI2_SGE_FLAGS_END_OF_BUFFER
542 << MPI2_SGE_FLAGS_SHIFT)))
543 goto eob_clone_chain;
544 else {
545 /*
546 * Every single element in MPT will have
547 * associated sg_next. Better to sanity that
548 * sg_next is not NULL, but it will be a bug
549 * if it is null.
550 */
551 if (is_scsiio_req) {
552 sg_scmd = sg_next(sg_scmd);
553 if (sg_scmd)
554 sgel++;
555 else
556 goto eob_clone_chain;
557 }
558 }
559 break;
560 }
561 }
562
563 eob_clone_chain:
564 for (i = 0; i < sge_chain_count; i++) {
565 if (is_scsiio_req)
566 _base_clone_to_sys_mem(dst_chain_addr[i],
567 src_chain_addr[i], ioc->request_sz);
568 }
569 }
570
571 /**
572 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
573 * @arg: input argument, used to derive ioc
574 *
575 * Return:
576 * 0 if controller is removed from pci subsystem.
577 * -1 for other case.
578 */
mpt3sas_remove_dead_ioc_func(void * arg)579 static int mpt3sas_remove_dead_ioc_func(void *arg)
580 {
581 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
582 struct pci_dev *pdev;
583
584 if (!ioc)
585 return -1;
586
587 pdev = ioc->pdev;
588 if (!pdev)
589 return -1;
590 pci_stop_and_remove_bus_device_locked(pdev);
591 return 0;
592 }
593
594 /**
595 * _base_fault_reset_work - workq handling ioc fault conditions
596 * @work: input argument, used to derive ioc
597 *
598 * Context: sleep.
599 */
600 static void
_base_fault_reset_work(struct work_struct * work)601 _base_fault_reset_work(struct work_struct *work)
602 {
603 struct MPT3SAS_ADAPTER *ioc =
604 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
605 unsigned long flags;
606 u32 doorbell;
607 int rc;
608 struct task_struct *p;
609
610
611 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
612 if (ioc->shost_recovery || ioc->pci_error_recovery)
613 goto rearm_timer;
614 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
615
616 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
617 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
618 ioc_err(ioc, "SAS host is non-operational !!!!\n");
619
620 /* It may be possible that EEH recovery can resolve some of
621 * pci bus failure issues rather removing the dead ioc function
622 * by considering controller is in a non-operational state. So
623 * here priority is given to the EEH recovery. If it doesn't
624 * not resolve this issue, mpt3sas driver will consider this
625 * controller to non-operational state and remove the dead ioc
626 * function.
627 */
628 if (ioc->non_operational_loop++ < 5) {
629 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
630 flags);
631 goto rearm_timer;
632 }
633
634 /*
635 * Call _scsih_flush_pending_cmds callback so that we flush all
636 * pending commands back to OS. This call is required to aovid
637 * deadlock at block layer. Dead IOC will fail to do diag reset,
638 * and this call is safe since dead ioc will never return any
639 * command back from HW.
640 */
641 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
642 /*
643 * Set remove_host flag early since kernel thread will
644 * take some time to execute.
645 */
646 ioc->remove_host = 1;
647 /*Remove the Dead Host */
648 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
649 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
650 if (IS_ERR(p))
651 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
652 __func__);
653 else
654 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
655 __func__);
656 return; /* don't rearm timer */
657 }
658
659 ioc->non_operational_loop = 0;
660
661 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
662 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
663 ioc_warn(ioc, "%s: hard reset: %s\n",
664 __func__, rc == 0 ? "success" : "failed");
665 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
666 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
667 mpt3sas_base_fault_info(ioc, doorbell &
668 MPI2_DOORBELL_DATA_MASK);
669 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
670 MPI2_IOC_STATE_OPERATIONAL)
671 return; /* don't rearm timer */
672 }
673
674 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
675 rearm_timer:
676 if (ioc->fault_reset_work_q)
677 queue_delayed_work(ioc->fault_reset_work_q,
678 &ioc->fault_reset_work,
679 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
680 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
681 }
682
683 /**
684 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
685 * @ioc: per adapter object
686 *
687 * Context: sleep.
688 */
689 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)690 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
691 {
692 unsigned long flags;
693
694 if (ioc->fault_reset_work_q)
695 return;
696
697 /* initialize fault polling */
698
699 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
700 snprintf(ioc->fault_reset_work_q_name,
701 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
702 ioc->driver_name, ioc->id);
703 ioc->fault_reset_work_q =
704 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
705 if (!ioc->fault_reset_work_q) {
706 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
707 return;
708 }
709 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
710 if (ioc->fault_reset_work_q)
711 queue_delayed_work(ioc->fault_reset_work_q,
712 &ioc->fault_reset_work,
713 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
714 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
715 }
716
717 /**
718 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
719 * @ioc: per adapter object
720 *
721 * Context: sleep.
722 */
723 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)724 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
725 {
726 unsigned long flags;
727 struct workqueue_struct *wq;
728
729 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
730 wq = ioc->fault_reset_work_q;
731 ioc->fault_reset_work_q = NULL;
732 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
733 if (wq) {
734 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
735 flush_workqueue(wq);
736 destroy_workqueue(wq);
737 }
738 }
739
740 /**
741 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
742 * @ioc: per adapter object
743 * @fault_code: fault code
744 */
745 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)746 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
747 {
748 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
749 }
750
751 /**
752 * mpt3sas_halt_firmware - halt's mpt controller firmware
753 * @ioc: per adapter object
754 *
755 * For debugging timeout related issues. Writing 0xCOFFEE00
756 * to the doorbell register will halt controller firmware. With
757 * the purpose to stop both driver and firmware, the enduser can
758 * obtain a ring buffer from controller UART.
759 */
760 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)761 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
762 {
763 u32 doorbell;
764
765 if (!ioc->fwfault_debug)
766 return;
767
768 dump_stack();
769
770 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
771 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
772 mpt3sas_base_fault_info(ioc , doorbell);
773 else {
774 writel(0xC0FFEE00, &ioc->chip->Doorbell);
775 ioc_err(ioc, "Firmware is halted due to command timeout\n");
776 }
777
778 if (ioc->fwfault_debug == 2)
779 for (;;)
780 ;
781 else
782 panic("panic in %s\n", __func__);
783 }
784
785 /**
786 * _base_sas_ioc_info - verbose translation of the ioc status
787 * @ioc: per adapter object
788 * @mpi_reply: reply mf payload returned from firmware
789 * @request_hdr: request mf
790 */
791 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)792 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
793 MPI2RequestHeader_t *request_hdr)
794 {
795 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
796 MPI2_IOCSTATUS_MASK;
797 char *desc = NULL;
798 u16 frame_sz;
799 char *func_str = NULL;
800
801 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
802 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
803 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
804 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
805 return;
806
807 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
808 return;
809
810 switch (ioc_status) {
811
812 /****************************************************************************
813 * Common IOCStatus values for all replies
814 ****************************************************************************/
815
816 case MPI2_IOCSTATUS_INVALID_FUNCTION:
817 desc = "invalid function";
818 break;
819 case MPI2_IOCSTATUS_BUSY:
820 desc = "busy";
821 break;
822 case MPI2_IOCSTATUS_INVALID_SGL:
823 desc = "invalid sgl";
824 break;
825 case MPI2_IOCSTATUS_INTERNAL_ERROR:
826 desc = "internal error";
827 break;
828 case MPI2_IOCSTATUS_INVALID_VPID:
829 desc = "invalid vpid";
830 break;
831 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
832 desc = "insufficient resources";
833 break;
834 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
835 desc = "insufficient power";
836 break;
837 case MPI2_IOCSTATUS_INVALID_FIELD:
838 desc = "invalid field";
839 break;
840 case MPI2_IOCSTATUS_INVALID_STATE:
841 desc = "invalid state";
842 break;
843 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
844 desc = "op state not supported";
845 break;
846
847 /****************************************************************************
848 * Config IOCStatus values
849 ****************************************************************************/
850
851 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
852 desc = "config invalid action";
853 break;
854 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
855 desc = "config invalid type";
856 break;
857 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
858 desc = "config invalid page";
859 break;
860 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
861 desc = "config invalid data";
862 break;
863 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
864 desc = "config no defaults";
865 break;
866 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
867 desc = "config cant commit";
868 break;
869
870 /****************************************************************************
871 * SCSI IO Reply
872 ****************************************************************************/
873
874 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
875 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
876 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
877 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
878 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
879 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
880 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
881 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
882 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
883 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
884 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
885 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
886 break;
887
888 /****************************************************************************
889 * For use by SCSI Initiator and SCSI Target end-to-end data protection
890 ****************************************************************************/
891
892 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
893 desc = "eedp guard error";
894 break;
895 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
896 desc = "eedp ref tag error";
897 break;
898 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
899 desc = "eedp app tag error";
900 break;
901
902 /****************************************************************************
903 * SCSI Target values
904 ****************************************************************************/
905
906 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
907 desc = "target invalid io index";
908 break;
909 case MPI2_IOCSTATUS_TARGET_ABORTED:
910 desc = "target aborted";
911 break;
912 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
913 desc = "target no conn retryable";
914 break;
915 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
916 desc = "target no connection";
917 break;
918 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
919 desc = "target xfer count mismatch";
920 break;
921 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
922 desc = "target data offset error";
923 break;
924 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
925 desc = "target too much write data";
926 break;
927 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
928 desc = "target iu too short";
929 break;
930 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
931 desc = "target ack nak timeout";
932 break;
933 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
934 desc = "target nak received";
935 break;
936
937 /****************************************************************************
938 * Serial Attached SCSI values
939 ****************************************************************************/
940
941 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
942 desc = "smp request failed";
943 break;
944 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
945 desc = "smp data overrun";
946 break;
947
948 /****************************************************************************
949 * Diagnostic Buffer Post / Diagnostic Release values
950 ****************************************************************************/
951
952 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
953 desc = "diagnostic released";
954 break;
955 default:
956 break;
957 }
958
959 if (!desc)
960 return;
961
962 switch (request_hdr->Function) {
963 case MPI2_FUNCTION_CONFIG:
964 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
965 func_str = "config_page";
966 break;
967 case MPI2_FUNCTION_SCSI_TASK_MGMT:
968 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
969 func_str = "task_mgmt";
970 break;
971 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
972 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
973 func_str = "sas_iounit_ctl";
974 break;
975 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
976 frame_sz = sizeof(Mpi2SepRequest_t);
977 func_str = "enclosure";
978 break;
979 case MPI2_FUNCTION_IOC_INIT:
980 frame_sz = sizeof(Mpi2IOCInitRequest_t);
981 func_str = "ioc_init";
982 break;
983 case MPI2_FUNCTION_PORT_ENABLE:
984 frame_sz = sizeof(Mpi2PortEnableRequest_t);
985 func_str = "port_enable";
986 break;
987 case MPI2_FUNCTION_SMP_PASSTHROUGH:
988 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
989 func_str = "smp_passthru";
990 break;
991 case MPI2_FUNCTION_NVME_ENCAPSULATED:
992 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
993 ioc->sge_size;
994 func_str = "nvme_encapsulated";
995 break;
996 default:
997 frame_sz = 32;
998 func_str = "unknown";
999 break;
1000 }
1001
1002 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1003 desc, ioc_status, request_hdr, func_str);
1004
1005 _debug_dump_mf(request_hdr, frame_sz/4);
1006 }
1007
1008 /**
1009 * _base_display_event_data - verbose translation of firmware asyn events
1010 * @ioc: per adapter object
1011 * @mpi_reply: reply mf payload returned from firmware
1012 */
1013 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)1014 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1015 Mpi2EventNotificationReply_t *mpi_reply)
1016 {
1017 char *desc = NULL;
1018 u16 event;
1019
1020 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1021 return;
1022
1023 event = le16_to_cpu(mpi_reply->Event);
1024
1025 switch (event) {
1026 case MPI2_EVENT_LOG_DATA:
1027 desc = "Log Data";
1028 break;
1029 case MPI2_EVENT_STATE_CHANGE:
1030 desc = "Status Change";
1031 break;
1032 case MPI2_EVENT_HARD_RESET_RECEIVED:
1033 desc = "Hard Reset Received";
1034 break;
1035 case MPI2_EVENT_EVENT_CHANGE:
1036 desc = "Event Change";
1037 break;
1038 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1039 desc = "Device Status Change";
1040 break;
1041 case MPI2_EVENT_IR_OPERATION_STATUS:
1042 if (!ioc->hide_ir_msg)
1043 desc = "IR Operation Status";
1044 break;
1045 case MPI2_EVENT_SAS_DISCOVERY:
1046 {
1047 Mpi2EventDataSasDiscovery_t *event_data =
1048 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1049 ioc_info(ioc, "Discovery: (%s)",
1050 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1051 "start" : "stop");
1052 if (event_data->DiscoveryStatus)
1053 pr_cont(" discovery_status(0x%08x)",
1054 le32_to_cpu(event_data->DiscoveryStatus));
1055 pr_cont("\n");
1056 return;
1057 }
1058 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1059 desc = "SAS Broadcast Primitive";
1060 break;
1061 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1062 desc = "SAS Init Device Status Change";
1063 break;
1064 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1065 desc = "SAS Init Table Overflow";
1066 break;
1067 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1068 desc = "SAS Topology Change List";
1069 break;
1070 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1071 desc = "SAS Enclosure Device Status Change";
1072 break;
1073 case MPI2_EVENT_IR_VOLUME:
1074 if (!ioc->hide_ir_msg)
1075 desc = "IR Volume";
1076 break;
1077 case MPI2_EVENT_IR_PHYSICAL_DISK:
1078 if (!ioc->hide_ir_msg)
1079 desc = "IR Physical Disk";
1080 break;
1081 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1082 if (!ioc->hide_ir_msg)
1083 desc = "IR Configuration Change List";
1084 break;
1085 case MPI2_EVENT_LOG_ENTRY_ADDED:
1086 if (!ioc->hide_ir_msg)
1087 desc = "Log Entry Added";
1088 break;
1089 case MPI2_EVENT_TEMP_THRESHOLD:
1090 desc = "Temperature Threshold";
1091 break;
1092 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1093 desc = "Cable Event";
1094 break;
1095 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1096 desc = "SAS Device Discovery Error";
1097 break;
1098 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1099 desc = "PCIE Device Status Change";
1100 break;
1101 case MPI2_EVENT_PCIE_ENUMERATION:
1102 {
1103 Mpi26EventDataPCIeEnumeration_t *event_data =
1104 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1105 ioc_info(ioc, "PCIE Enumeration: (%s)",
1106 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1107 "start" : "stop");
1108 if (event_data->EnumerationStatus)
1109 pr_cont("enumeration_status(0x%08x)",
1110 le32_to_cpu(event_data->EnumerationStatus));
1111 pr_cont("\n");
1112 return;
1113 }
1114 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1115 desc = "PCIE Topology Change List";
1116 break;
1117 }
1118
1119 if (!desc)
1120 return;
1121
1122 ioc_info(ioc, "%s\n", desc);
1123 }
1124
1125 /**
1126 * _base_sas_log_info - verbose translation of firmware log info
1127 * @ioc: per adapter object
1128 * @log_info: log info
1129 */
1130 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)1131 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1132 {
1133 union loginfo_type {
1134 u32 loginfo;
1135 struct {
1136 u32 subcode:16;
1137 u32 code:8;
1138 u32 originator:4;
1139 u32 bus_type:4;
1140 } dw;
1141 };
1142 union loginfo_type sas_loginfo;
1143 char *originator_str = NULL;
1144
1145 sas_loginfo.loginfo = log_info;
1146 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1147 return;
1148
1149 /* each nexus loss loginfo */
1150 if (log_info == 0x31170000)
1151 return;
1152
1153 /* eat the loginfos associated with task aborts */
1154 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1155 0x31140000 || log_info == 0x31130000))
1156 return;
1157
1158 switch (sas_loginfo.dw.originator) {
1159 case 0:
1160 originator_str = "IOP";
1161 break;
1162 case 1:
1163 originator_str = "PL";
1164 break;
1165 case 2:
1166 if (!ioc->hide_ir_msg)
1167 originator_str = "IR";
1168 else
1169 originator_str = "WarpDrive";
1170 break;
1171 }
1172
1173 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1174 log_info,
1175 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1176 }
1177
1178 /**
1179 * _base_display_reply_info -
1180 * @ioc: per adapter object
1181 * @smid: system request message index
1182 * @msix_index: MSIX table index supplied by the OS
1183 * @reply: reply message frame(lower 32bit addr)
1184 */
1185 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1186 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1187 u32 reply)
1188 {
1189 MPI2DefaultReply_t *mpi_reply;
1190 u16 ioc_status;
1191 u32 loginfo = 0;
1192
1193 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1194 if (unlikely(!mpi_reply)) {
1195 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1196 __FILE__, __LINE__, __func__);
1197 return;
1198 }
1199 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1200
1201 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1202 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1203 _base_sas_ioc_info(ioc , mpi_reply,
1204 mpt3sas_base_get_msg_frame(ioc, smid));
1205 }
1206
1207 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1208 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1209 _base_sas_log_info(ioc, loginfo);
1210 }
1211
1212 if (ioc_status || loginfo) {
1213 ioc_status &= MPI2_IOCSTATUS_MASK;
1214 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1215 }
1216 }
1217
1218 /**
1219 * mpt3sas_base_done - base internal command completion routine
1220 * @ioc: per adapter object
1221 * @smid: system request message index
1222 * @msix_index: MSIX table index supplied by the OS
1223 * @reply: reply message frame(lower 32bit addr)
1224 *
1225 * Return:
1226 * 1 meaning mf should be freed from _base_interrupt
1227 * 0 means the mf is freed from this function.
1228 */
1229 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1230 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1231 u32 reply)
1232 {
1233 MPI2DefaultReply_t *mpi_reply;
1234
1235 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1236 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1237 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1238
1239 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1240 return 1;
1241
1242 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1243 if (mpi_reply) {
1244 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1245 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1246 }
1247 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1248
1249 complete(&ioc->base_cmds.done);
1250 return 1;
1251 }
1252
1253 /**
1254 * _base_async_event - main callback handler for firmware asyn events
1255 * @ioc: per adapter object
1256 * @msix_index: MSIX table index supplied by the OS
1257 * @reply: reply message frame(lower 32bit addr)
1258 *
1259 * Return:
1260 * 1 meaning mf should be freed from _base_interrupt
1261 * 0 means the mf is freed from this function.
1262 */
1263 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)1264 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1265 {
1266 Mpi2EventNotificationReply_t *mpi_reply;
1267 Mpi2EventAckRequest_t *ack_request;
1268 u16 smid;
1269 struct _event_ack_list *delayed_event_ack;
1270
1271 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1272 if (!mpi_reply)
1273 return 1;
1274 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1275 return 1;
1276
1277 _base_display_event_data(ioc, mpi_reply);
1278
1279 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1280 goto out;
1281 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1282 if (!smid) {
1283 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1284 GFP_ATOMIC);
1285 if (!delayed_event_ack)
1286 goto out;
1287 INIT_LIST_HEAD(&delayed_event_ack->list);
1288 delayed_event_ack->Event = mpi_reply->Event;
1289 delayed_event_ack->EventContext = mpi_reply->EventContext;
1290 list_add_tail(&delayed_event_ack->list,
1291 &ioc->delayed_event_ack_list);
1292 dewtprintk(ioc,
1293 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1294 le16_to_cpu(mpi_reply->Event)));
1295 goto out;
1296 }
1297
1298 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1299 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1300 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1301 ack_request->Event = mpi_reply->Event;
1302 ack_request->EventContext = mpi_reply->EventContext;
1303 ack_request->VF_ID = 0; /* TODO */
1304 ack_request->VP_ID = 0;
1305 ioc->put_smid_default(ioc, smid);
1306
1307 out:
1308
1309 /* scsih callback handler */
1310 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1311
1312 /* ctl callback handler */
1313 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1314
1315 return 1;
1316 }
1317
1318 static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)1319 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1320 {
1321 struct scsi_cmnd *cmd;
1322
1323 if (WARN_ON(!smid) ||
1324 WARN_ON(smid >= ioc->hi_priority_smid))
1325 return NULL;
1326
1327 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1328 if (cmd)
1329 return scsi_cmd_priv(cmd);
1330
1331 return NULL;
1332 }
1333
1334 /**
1335 * _base_get_cb_idx - obtain the callback index
1336 * @ioc: per adapter object
1337 * @smid: system request message index
1338 *
1339 * Return: callback index.
1340 */
1341 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)1342 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1343 {
1344 int i;
1345 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1346 u8 cb_idx = 0xFF;
1347
1348 if (smid < ioc->hi_priority_smid) {
1349 struct scsiio_tracker *st;
1350
1351 if (smid < ctl_smid) {
1352 st = _get_st_from_smid(ioc, smid);
1353 if (st)
1354 cb_idx = st->cb_idx;
1355 } else if (smid == ctl_smid)
1356 cb_idx = ioc->ctl_cb_idx;
1357 } else if (smid < ioc->internal_smid) {
1358 i = smid - ioc->hi_priority_smid;
1359 cb_idx = ioc->hpr_lookup[i].cb_idx;
1360 } else if (smid <= ioc->hba_queue_depth) {
1361 i = smid - ioc->internal_smid;
1362 cb_idx = ioc->internal_lookup[i].cb_idx;
1363 }
1364 return cb_idx;
1365 }
1366
1367 /**
1368 * _base_mask_interrupts - disable interrupts
1369 * @ioc: per adapter object
1370 *
1371 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1372 */
1373 static void
_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)1374 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1375 {
1376 u32 him_register;
1377
1378 ioc->mask_interrupts = 1;
1379 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1380 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1381 writel(him_register, &ioc->chip->HostInterruptMask);
1382 ioc->base_readl(&ioc->chip->HostInterruptMask);
1383 }
1384
1385 /**
1386 * _base_unmask_interrupts - enable interrupts
1387 * @ioc: per adapter object
1388 *
1389 * Enabling only Reply Interrupts
1390 */
1391 static void
_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)1392 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1393 {
1394 u32 him_register;
1395
1396 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1397 him_register &= ~MPI2_HIM_RIM;
1398 writel(him_register, &ioc->chip->HostInterruptMask);
1399 ioc->mask_interrupts = 0;
1400 }
1401
1402 union reply_descriptor {
1403 u64 word;
1404 struct {
1405 u32 low;
1406 u32 high;
1407 } u;
1408 };
1409
base_mod64(u64 dividend,u32 divisor)1410 static u32 base_mod64(u64 dividend, u32 divisor)
1411 {
1412 u32 remainder;
1413
1414 if (!divisor)
1415 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1416 remainder = do_div(dividend, divisor);
1417 return remainder;
1418 }
1419
1420 /**
1421 * _base_process_reply_queue - Process reply descriptors from reply
1422 * descriptor post queue.
1423 * @reply_q: per IRQ's reply queue object.
1424 *
1425 * Return: number of reply descriptors processed from reply
1426 * descriptor queue.
1427 */
1428 static int
_base_process_reply_queue(struct adapter_reply_queue * reply_q)1429 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1430 {
1431 union reply_descriptor rd;
1432 u64 completed_cmds;
1433 u8 request_descript_type;
1434 u16 smid;
1435 u8 cb_idx;
1436 u32 reply;
1437 u8 msix_index = reply_q->msix_index;
1438 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1439 Mpi2ReplyDescriptorsUnion_t *rpf;
1440 u8 rc;
1441
1442 completed_cmds = 0;
1443 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1444 return completed_cmds;
1445
1446 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1447 request_descript_type = rpf->Default.ReplyFlags
1448 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1449 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1450 atomic_dec(&reply_q->busy);
1451 return completed_cmds;
1452 }
1453
1454 cb_idx = 0xFF;
1455 do {
1456 rd.word = le64_to_cpu(rpf->Words);
1457 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1458 goto out;
1459 reply = 0;
1460 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1461 if (request_descript_type ==
1462 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1463 request_descript_type ==
1464 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1465 request_descript_type ==
1466 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1467 cb_idx = _base_get_cb_idx(ioc, smid);
1468 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1469 (likely(mpt_callbacks[cb_idx] != NULL))) {
1470 rc = mpt_callbacks[cb_idx](ioc, smid,
1471 msix_index, 0);
1472 if (rc)
1473 mpt3sas_base_free_smid(ioc, smid);
1474 }
1475 } else if (request_descript_type ==
1476 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1477 reply = le32_to_cpu(
1478 rpf->AddressReply.ReplyFrameAddress);
1479 if (reply > ioc->reply_dma_max_address ||
1480 reply < ioc->reply_dma_min_address)
1481 reply = 0;
1482 if (smid) {
1483 cb_idx = _base_get_cb_idx(ioc, smid);
1484 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1485 (likely(mpt_callbacks[cb_idx] != NULL))) {
1486 rc = mpt_callbacks[cb_idx](ioc, smid,
1487 msix_index, reply);
1488 if (reply)
1489 _base_display_reply_info(ioc,
1490 smid, msix_index, reply);
1491 if (rc)
1492 mpt3sas_base_free_smid(ioc,
1493 smid);
1494 }
1495 } else {
1496 _base_async_event(ioc, msix_index, reply);
1497 }
1498
1499 /* reply free queue handling */
1500 if (reply) {
1501 ioc->reply_free_host_index =
1502 (ioc->reply_free_host_index ==
1503 (ioc->reply_free_queue_depth - 1)) ?
1504 0 : ioc->reply_free_host_index + 1;
1505 ioc->reply_free[ioc->reply_free_host_index] =
1506 cpu_to_le32(reply);
1507 if (ioc->is_mcpu_endpoint)
1508 _base_clone_reply_to_sys_mem(ioc,
1509 reply,
1510 ioc->reply_free_host_index);
1511 writel(ioc->reply_free_host_index,
1512 &ioc->chip->ReplyFreeHostIndex);
1513 }
1514 }
1515
1516 rpf->Words = cpu_to_le64(ULLONG_MAX);
1517 reply_q->reply_post_host_index =
1518 (reply_q->reply_post_host_index ==
1519 (ioc->reply_post_queue_depth - 1)) ? 0 :
1520 reply_q->reply_post_host_index + 1;
1521 request_descript_type =
1522 reply_q->reply_post_free[reply_q->reply_post_host_index].
1523 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1524 completed_cmds++;
1525 /* Update the reply post host index after continuously
1526 * processing the threshold number of Reply Descriptors.
1527 * So that FW can find enough entries to post the Reply
1528 * Descriptors in the reply descriptor post queue.
1529 */
1530 if (!base_mod64(completed_cmds, ioc->thresh_hold)) {
1531 if (ioc->combined_reply_queue) {
1532 writel(reply_q->reply_post_host_index |
1533 ((msix_index & 7) <<
1534 MPI2_RPHI_MSIX_INDEX_SHIFT),
1535 ioc->replyPostRegisterIndex[msix_index/8]);
1536 } else {
1537 writel(reply_q->reply_post_host_index |
1538 (msix_index <<
1539 MPI2_RPHI_MSIX_INDEX_SHIFT),
1540 &ioc->chip->ReplyPostHostIndex);
1541 }
1542 if (!reply_q->irq_poll_scheduled) {
1543 reply_q->irq_poll_scheduled = true;
1544 irq_poll_sched(&reply_q->irqpoll);
1545 }
1546 atomic_dec(&reply_q->busy);
1547 return completed_cmds;
1548 }
1549 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1550 goto out;
1551 if (!reply_q->reply_post_host_index)
1552 rpf = reply_q->reply_post_free;
1553 else
1554 rpf++;
1555 } while (1);
1556
1557 out:
1558
1559 if (!completed_cmds) {
1560 atomic_dec(&reply_q->busy);
1561 return completed_cmds;
1562 }
1563
1564 if (ioc->is_warpdrive) {
1565 writel(reply_q->reply_post_host_index,
1566 ioc->reply_post_host_index[msix_index]);
1567 atomic_dec(&reply_q->busy);
1568 return completed_cmds;
1569 }
1570
1571 /* Update Reply Post Host Index.
1572 * For those HBA's which support combined reply queue feature
1573 * 1. Get the correct Supplemental Reply Post Host Index Register.
1574 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1575 * Index Register address bank i.e replyPostRegisterIndex[],
1576 * 2. Then update this register with new reply host index value
1577 * in ReplyPostIndex field and the MSIxIndex field with
1578 * msix_index value reduced to a value between 0 and 7,
1579 * using a modulo 8 operation. Since each Supplemental Reply Post
1580 * Host Index Register supports 8 MSI-X vectors.
1581 *
1582 * For other HBA's just update the Reply Post Host Index register with
1583 * new reply host index value in ReplyPostIndex Field and msix_index
1584 * value in MSIxIndex field.
1585 */
1586 if (ioc->combined_reply_queue)
1587 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1588 MPI2_RPHI_MSIX_INDEX_SHIFT),
1589 ioc->replyPostRegisterIndex[msix_index/8]);
1590 else
1591 writel(reply_q->reply_post_host_index | (msix_index <<
1592 MPI2_RPHI_MSIX_INDEX_SHIFT),
1593 &ioc->chip->ReplyPostHostIndex);
1594 atomic_dec(&reply_q->busy);
1595 return completed_cmds;
1596 }
1597
1598 /**
1599 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1600 * @irq: irq number (not used)
1601 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1602 *
1603 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1604 */
1605 static irqreturn_t
_base_interrupt(int irq,void * bus_id)1606 _base_interrupt(int irq, void *bus_id)
1607 {
1608 struct adapter_reply_queue *reply_q = bus_id;
1609 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1610
1611 if (ioc->mask_interrupts)
1612 return IRQ_NONE;
1613 if (reply_q->irq_poll_scheduled)
1614 return IRQ_HANDLED;
1615 return ((_base_process_reply_queue(reply_q) > 0) ?
1616 IRQ_HANDLED : IRQ_NONE);
1617 }
1618
1619 /**
1620 * _base_irqpoll - IRQ poll callback handler
1621 * @irqpoll - irq_poll object
1622 * @budget - irq poll weight
1623 *
1624 * returns number of reply descriptors processed
1625 */
1626 static int
_base_irqpoll(struct irq_poll * irqpoll,int budget)1627 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1628 {
1629 struct adapter_reply_queue *reply_q;
1630 int num_entries = 0;
1631
1632 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1633 irqpoll);
1634 if (reply_q->irq_line_enable) {
1635 disable_irq(reply_q->os_irq);
1636 reply_q->irq_line_enable = false;
1637 }
1638 num_entries = _base_process_reply_queue(reply_q);
1639 if (num_entries < budget) {
1640 irq_poll_complete(irqpoll);
1641 reply_q->irq_poll_scheduled = false;
1642 reply_q->irq_line_enable = true;
1643 enable_irq(reply_q->os_irq);
1644 }
1645
1646 return num_entries;
1647 }
1648
1649 /**
1650 * _base_init_irqpolls - initliaze IRQ polls
1651 * @ioc: per adapter object
1652 *
1653 * returns nothing
1654 */
1655 static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER * ioc)1656 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1657 {
1658 struct adapter_reply_queue *reply_q, *next;
1659
1660 if (list_empty(&ioc->reply_queue_list))
1661 return;
1662
1663 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1664 irq_poll_init(&reply_q->irqpoll,
1665 ioc->hba_queue_depth/4, _base_irqpoll);
1666 reply_q->irq_poll_scheduled = false;
1667 reply_q->irq_line_enable = true;
1668 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1669 reply_q->msix_index);
1670 }
1671 }
1672
1673 /**
1674 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1675 * @ioc: per adapter object
1676 *
1677 * Return: Whether or not MSI/X is enabled.
1678 */
1679 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1680 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1681 {
1682 return (ioc->facts.IOCCapabilities &
1683 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1684 }
1685
1686 /**
1687 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1688 * @ioc: per adapter object
1689 * Context: non ISR conext
1690 *
1691 * Called when a Task Management request has completed.
1692 */
1693 void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER * ioc)1694 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1695 {
1696 struct adapter_reply_queue *reply_q;
1697
1698 /* If MSIX capability is turned off
1699 * then multi-queues are not enabled
1700 */
1701 if (!_base_is_controller_msix_enabled(ioc))
1702 return;
1703
1704 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1705 if (ioc->shost_recovery || ioc->remove_host ||
1706 ioc->pci_error_recovery)
1707 return;
1708 /* TMs are on msix_index == 0 */
1709 if (reply_q->msix_index == 0)
1710 continue;
1711 if (reply_q->irq_poll_scheduled) {
1712 /* Calling irq_poll_disable will wait for any pending
1713 * callbacks to have completed.
1714 */
1715 irq_poll_disable(&reply_q->irqpoll);
1716 irq_poll_enable(&reply_q->irqpoll);
1717 reply_q->irq_poll_scheduled = false;
1718 reply_q->irq_line_enable = true;
1719 enable_irq(reply_q->os_irq);
1720 continue;
1721 }
1722 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1723 }
1724 }
1725
1726 /**
1727 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1728 * @cb_idx: callback index
1729 */
1730 void
mpt3sas_base_release_callback_handler(u8 cb_idx)1731 mpt3sas_base_release_callback_handler(u8 cb_idx)
1732 {
1733 mpt_callbacks[cb_idx] = NULL;
1734 }
1735
1736 /**
1737 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1738 * @cb_func: callback function
1739 *
1740 * Return: Index of @cb_func.
1741 */
1742 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)1743 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1744 {
1745 u8 cb_idx;
1746
1747 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1748 if (mpt_callbacks[cb_idx] == NULL)
1749 break;
1750
1751 mpt_callbacks[cb_idx] = cb_func;
1752 return cb_idx;
1753 }
1754
1755 /**
1756 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1757 */
1758 void
mpt3sas_base_initialize_callback_handler(void)1759 mpt3sas_base_initialize_callback_handler(void)
1760 {
1761 u8 cb_idx;
1762
1763 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1764 mpt3sas_base_release_callback_handler(cb_idx);
1765 }
1766
1767
1768 /**
1769 * _base_build_zero_len_sge - build zero length sg entry
1770 * @ioc: per adapter object
1771 * @paddr: virtual address for SGE
1772 *
1773 * Create a zero length scatter gather entry to insure the IOCs hardware has
1774 * something to use if the target device goes brain dead and tries
1775 * to send data even when none is asked for.
1776 */
1777 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)1778 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1779 {
1780 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1781 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1782 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1783 MPI2_SGE_FLAGS_SHIFT);
1784 ioc->base_add_sg_single(paddr, flags_length, -1);
1785 }
1786
1787 /**
1788 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1789 * @paddr: virtual address for SGE
1790 * @flags_length: SGE flags and data transfer length
1791 * @dma_addr: Physical address
1792 */
1793 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)1794 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1795 {
1796 Mpi2SGESimple32_t *sgel = paddr;
1797
1798 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1799 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1800 sgel->FlagsLength = cpu_to_le32(flags_length);
1801 sgel->Address = cpu_to_le32(dma_addr);
1802 }
1803
1804
1805 /**
1806 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1807 * @paddr: virtual address for SGE
1808 * @flags_length: SGE flags and data transfer length
1809 * @dma_addr: Physical address
1810 */
1811 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)1812 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1813 {
1814 Mpi2SGESimple64_t *sgel = paddr;
1815
1816 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1817 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1818 sgel->FlagsLength = cpu_to_le32(flags_length);
1819 sgel->Address = cpu_to_le64(dma_addr);
1820 }
1821
1822 /**
1823 * _base_get_chain_buffer_tracker - obtain chain tracker
1824 * @ioc: per adapter object
1825 * @scmd: SCSI commands of the IO request
1826 *
1827 * Return: chain tracker from chain_lookup table using key as
1828 * smid and smid's chain_offset.
1829 */
1830 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)1831 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1832 struct scsi_cmnd *scmd)
1833 {
1834 struct chain_tracker *chain_req;
1835 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1836 u16 smid = st->smid;
1837 u8 chain_offset =
1838 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1839
1840 if (chain_offset == ioc->chains_needed_per_io)
1841 return NULL;
1842
1843 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1844 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1845 return chain_req;
1846 }
1847
1848
1849 /**
1850 * _base_build_sg - build generic sg
1851 * @ioc: per adapter object
1852 * @psge: virtual address for SGE
1853 * @data_out_dma: physical address for WRITES
1854 * @data_out_sz: data xfer size for WRITES
1855 * @data_in_dma: physical address for READS
1856 * @data_in_sz: data xfer size for READS
1857 */
1858 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)1859 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1860 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1861 size_t data_in_sz)
1862 {
1863 u32 sgl_flags;
1864
1865 if (!data_out_sz && !data_in_sz) {
1866 _base_build_zero_len_sge(ioc, psge);
1867 return;
1868 }
1869
1870 if (data_out_sz && data_in_sz) {
1871 /* WRITE sgel first */
1872 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1873 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1874 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1875 ioc->base_add_sg_single(psge, sgl_flags |
1876 data_out_sz, data_out_dma);
1877
1878 /* incr sgel */
1879 psge += ioc->sge_size;
1880
1881 /* READ sgel last */
1882 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1883 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1884 MPI2_SGE_FLAGS_END_OF_LIST);
1885 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1886 ioc->base_add_sg_single(psge, sgl_flags |
1887 data_in_sz, data_in_dma);
1888 } else if (data_out_sz) /* WRITE */ {
1889 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1890 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1891 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1892 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1893 ioc->base_add_sg_single(psge, sgl_flags |
1894 data_out_sz, data_out_dma);
1895 } else if (data_in_sz) /* READ */ {
1896 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1897 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1898 MPI2_SGE_FLAGS_END_OF_LIST);
1899 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1900 ioc->base_add_sg_single(psge, sgl_flags |
1901 data_in_sz, data_in_dma);
1902 }
1903 }
1904
1905 /* IEEE format sgls */
1906
1907 /**
1908 * _base_build_nvme_prp - This function is called for NVMe end devices to build
1909 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1910 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
1911 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
1912 * used to describe a larger data buffer. If the data buffer is too large to
1913 * describe using the two PRP entriess inside the NVMe message, then PRP1
1914 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1915 * list located elsewhere in memory to describe the remaining data memory
1916 * segments. The PRP list will be contiguous.
1917 *
1918 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
1919 * consists of a list of PRP entries to describe a number of noncontigous
1920 * physical memory segments as a single memory buffer, just as a SGL does. Note
1921 * however, that this function is only used by the IOCTL call, so the memory
1922 * given will be guaranteed to be contiguous. There is no need to translate
1923 * non-contiguous SGL into a PRP in this case. All PRPs will describe
1924 * contiguous space that is one page size each.
1925 *
1926 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
1927 * a PRP list pointer or a PRP element, depending upon the command. PRP2
1928 * contains the second PRP element if the memory being described fits within 2
1929 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1930 *
1931 * A PRP list pointer contains the address of a PRP list, structured as a linear
1932 * array of PRP entries. Each PRP entry in this list describes a segment of
1933 * physical memory.
1934 *
1935 * Each 64-bit PRP entry comprises an address and an offset field. The address
1936 * always points at the beginning of a 4KB physical memory page, and the offset
1937 * describes where within that 4KB page the memory segment begins. Only the
1938 * first element in a PRP list may contain a non-zero offest, implying that all
1939 * memory segments following the first begin at the start of a 4KB page.
1940 *
1941 * Each PRP element normally describes 4KB of physical memory, with exceptions
1942 * for the first and last elements in the list. If the memory being described
1943 * by the list begins at a non-zero offset within the first 4KB page, then the
1944 * first PRP element will contain a non-zero offset indicating where the region
1945 * begins within the 4KB page. The last memory segment may end before the end
1946 * of the 4KB segment, depending upon the overall size of the memory being
1947 * described by the PRP list.
1948 *
1949 * Since PRP entries lack any indication of size, the overall data buffer length
1950 * is used to determine where the end of the data memory buffer is located, and
1951 * how many PRP entries are required to describe it.
1952 *
1953 * @ioc: per adapter object
1954 * @smid: system request message index for getting asscociated SGL
1955 * @nvme_encap_request: the NVMe request msg frame pointer
1956 * @data_out_dma: physical address for WRITES
1957 * @data_out_sz: data xfer size for WRITES
1958 * @data_in_dma: physical address for READS
1959 * @data_in_sz: data xfer size for READS
1960 */
1961 static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER * ioc,u16 smid,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)1962 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1963 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1964 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1965 size_t data_in_sz)
1966 {
1967 int prp_size = NVME_PRP_SIZE;
1968 __le64 *prp_entry, *prp1_entry, *prp2_entry;
1969 __le64 *prp_page;
1970 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
1971 u32 offset, entry_len;
1972 u32 page_mask_result, page_mask;
1973 size_t length;
1974 struct mpt3sas_nvme_cmd *nvme_cmd =
1975 (void *)nvme_encap_request->NVMe_Command;
1976
1977 /*
1978 * Not all commands require a data transfer. If no data, just return
1979 * without constructing any PRP.
1980 */
1981 if (!data_in_sz && !data_out_sz)
1982 return;
1983 prp1_entry = &nvme_cmd->prp1;
1984 prp2_entry = &nvme_cmd->prp2;
1985 prp_entry = prp1_entry;
1986 /*
1987 * For the PRP entries, use the specially allocated buffer of
1988 * contiguous memory.
1989 */
1990 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1991 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1992
1993 /*
1994 * Check if we are within 1 entry of a page boundary we don't
1995 * want our first entry to be a PRP List entry.
1996 */
1997 page_mask = ioc->page_size - 1;
1998 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1999 if (!page_mask_result) {
2000 /* Bump up to next page boundary. */
2001 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2002 prp_page_dma = prp_page_dma + prp_size;
2003 }
2004
2005 /*
2006 * Set PRP physical pointer, which initially points to the current PRP
2007 * DMA memory page.
2008 */
2009 prp_entry_dma = prp_page_dma;
2010
2011 /* Get physical address and length of the data buffer. */
2012 if (data_in_sz) {
2013 dma_addr = data_in_dma;
2014 length = data_in_sz;
2015 } else {
2016 dma_addr = data_out_dma;
2017 length = data_out_sz;
2018 }
2019
2020 /* Loop while the length is not zero. */
2021 while (length) {
2022 /*
2023 * Check if we need to put a list pointer here if we are at
2024 * page boundary - prp_size (8 bytes).
2025 */
2026 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2027 if (!page_mask_result) {
2028 /*
2029 * This is the last entry in a PRP List, so we need to
2030 * put a PRP list pointer here. What this does is:
2031 * - bump the current memory pointer to the next
2032 * address, which will be the next full page.
2033 * - set the PRP Entry to point to that page. This
2034 * is now the PRP List pointer.
2035 * - bump the PRP Entry pointer the start of the
2036 * next page. Since all of this PRP memory is
2037 * contiguous, no need to get a new page - it's
2038 * just the next address.
2039 */
2040 prp_entry_dma++;
2041 *prp_entry = cpu_to_le64(prp_entry_dma);
2042 prp_entry++;
2043 }
2044
2045 /* Need to handle if entry will be part of a page. */
2046 offset = dma_addr & page_mask;
2047 entry_len = ioc->page_size - offset;
2048
2049 if (prp_entry == prp1_entry) {
2050 /*
2051 * Must fill in the first PRP pointer (PRP1) before
2052 * moving on.
2053 */
2054 *prp1_entry = cpu_to_le64(dma_addr);
2055
2056 /*
2057 * Now point to the second PRP entry within the
2058 * command (PRP2).
2059 */
2060 prp_entry = prp2_entry;
2061 } else if (prp_entry == prp2_entry) {
2062 /*
2063 * Should the PRP2 entry be a PRP List pointer or just
2064 * a regular PRP pointer? If there is more than one
2065 * more page of data, must use a PRP List pointer.
2066 */
2067 if (length > ioc->page_size) {
2068 /*
2069 * PRP2 will contain a PRP List pointer because
2070 * more PRP's are needed with this command. The
2071 * list will start at the beginning of the
2072 * contiguous buffer.
2073 */
2074 *prp2_entry = cpu_to_le64(prp_entry_dma);
2075
2076 /*
2077 * The next PRP Entry will be the start of the
2078 * first PRP List.
2079 */
2080 prp_entry = prp_page;
2081 } else {
2082 /*
2083 * After this, the PRP Entries are complete.
2084 * This command uses 2 PRP's and no PRP list.
2085 */
2086 *prp2_entry = cpu_to_le64(dma_addr);
2087 }
2088 } else {
2089 /*
2090 * Put entry in list and bump the addresses.
2091 *
2092 * After PRP1 and PRP2 are filled in, this will fill in
2093 * all remaining PRP entries in a PRP List, one per
2094 * each time through the loop.
2095 */
2096 *prp_entry = cpu_to_le64(dma_addr);
2097 prp_entry++;
2098 prp_entry_dma++;
2099 }
2100
2101 /*
2102 * Bump the phys address of the command's data buffer by the
2103 * entry_len.
2104 */
2105 dma_addr += entry_len;
2106
2107 /* Decrement length accounting for last partial page. */
2108 if (entry_len > length)
2109 length = 0;
2110 else
2111 length -= entry_len;
2112 }
2113 }
2114
2115 /**
2116 * base_make_prp_nvme -
2117 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2118 *
2119 * @ioc: per adapter object
2120 * @scmd: SCSI command from the mid-layer
2121 * @mpi_request: mpi request
2122 * @smid: msg Index
2123 * @sge_count: scatter gather element count.
2124 *
2125 * Return: true: PRPs are built
2126 * false: IEEE SGLs needs to be built
2127 */
2128 static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,Mpi25SCSIIORequest_t * mpi_request,u16 smid,int sge_count)2129 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2130 struct scsi_cmnd *scmd,
2131 Mpi25SCSIIORequest_t *mpi_request,
2132 u16 smid, int sge_count)
2133 {
2134 int sge_len, num_prp_in_chain = 0;
2135 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2136 __le64 *curr_buff;
2137 dma_addr_t msg_dma, sge_addr, offset;
2138 u32 page_mask, page_mask_result;
2139 struct scatterlist *sg_scmd;
2140 u32 first_prp_len;
2141 int data_len = scsi_bufflen(scmd);
2142 u32 nvme_pg_size;
2143
2144 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2145 /*
2146 * Nvme has a very convoluted prp format. One prp is required
2147 * for each page or partial page. Driver need to split up OS sg_list
2148 * entries if it is longer than one page or cross a page
2149 * boundary. Driver also have to insert a PRP list pointer entry as
2150 * the last entry in each physical page of the PRP list.
2151 *
2152 * NOTE: The first PRP "entry" is actually placed in the first
2153 * SGL entry in the main message as IEEE 64 format. The 2nd
2154 * entry in the main message is the chain element, and the rest
2155 * of the PRP entries are built in the contiguous pcie buffer.
2156 */
2157 page_mask = nvme_pg_size - 1;
2158
2159 /*
2160 * Native SGL is needed.
2161 * Put a chain element in main message frame that points to the first
2162 * chain buffer.
2163 *
2164 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2165 * a native SGL.
2166 */
2167
2168 /* Set main message chain element pointer */
2169 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2170 /*
2171 * For NVMe the chain element needs to be the 2nd SG entry in the main
2172 * message.
2173 */
2174 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2175 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2176
2177 /*
2178 * For the PRP entries, use the specially allocated buffer of
2179 * contiguous memory. Normal chain buffers can't be used
2180 * because each chain buffer would need to be the size of an OS
2181 * page (4k).
2182 */
2183 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2184 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2185
2186 main_chain_element->Address = cpu_to_le64(msg_dma);
2187 main_chain_element->NextChainOffset = 0;
2188 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2189 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2190 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2191
2192 /* Build first prp, sge need not to be page aligned*/
2193 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2194 sg_scmd = scsi_sglist(scmd);
2195 sge_addr = sg_dma_address(sg_scmd);
2196 sge_len = sg_dma_len(sg_scmd);
2197
2198 offset = sge_addr & page_mask;
2199 first_prp_len = nvme_pg_size - offset;
2200
2201 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2202 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2203
2204 data_len -= first_prp_len;
2205
2206 if (sge_len > first_prp_len) {
2207 sge_addr += first_prp_len;
2208 sge_len -= first_prp_len;
2209 } else if (data_len && (sge_len == first_prp_len)) {
2210 sg_scmd = sg_next(sg_scmd);
2211 sge_addr = sg_dma_address(sg_scmd);
2212 sge_len = sg_dma_len(sg_scmd);
2213 }
2214
2215 for (;;) {
2216 offset = sge_addr & page_mask;
2217
2218 /* Put PRP pointer due to page boundary*/
2219 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2220 if (unlikely(!page_mask_result)) {
2221 scmd_printk(KERN_NOTICE,
2222 scmd, "page boundary curr_buff: 0x%p\n",
2223 curr_buff);
2224 msg_dma += 8;
2225 *curr_buff = cpu_to_le64(msg_dma);
2226 curr_buff++;
2227 num_prp_in_chain++;
2228 }
2229
2230 *curr_buff = cpu_to_le64(sge_addr);
2231 curr_buff++;
2232 msg_dma += 8;
2233 num_prp_in_chain++;
2234
2235 sge_addr += nvme_pg_size;
2236 sge_len -= nvme_pg_size;
2237 data_len -= nvme_pg_size;
2238
2239 if (data_len <= 0)
2240 break;
2241
2242 if (sge_len > 0)
2243 continue;
2244
2245 sg_scmd = sg_next(sg_scmd);
2246 sge_addr = sg_dma_address(sg_scmd);
2247 sge_len = sg_dma_len(sg_scmd);
2248 }
2249
2250 main_chain_element->Length =
2251 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2252 return;
2253 }
2254
2255 static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER * ioc,struct _pcie_device * pcie_device,struct scsi_cmnd * scmd,int sge_count)2256 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2257 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2258 {
2259 u32 data_length = 0;
2260 bool build_prp = true;
2261
2262 data_length = scsi_bufflen(scmd);
2263 if (pcie_device &&
2264 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2265 build_prp = false;
2266 return build_prp;
2267 }
2268
2269 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2270 * we built IEEE SGL
2271 */
2272 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2273 build_prp = false;
2274
2275 return build_prp;
2276 }
2277
2278 /**
2279 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2280 * determine if the driver needs to build a native SGL. If so, that native
2281 * SGL is built in the special contiguous buffers allocated especially for
2282 * PCIe SGL creation. If the driver will not build a native SGL, return
2283 * TRUE and a normal IEEE SGL will be built. Currently this routine
2284 * supports NVMe.
2285 * @ioc: per adapter object
2286 * @mpi_request: mf request pointer
2287 * @smid: system request message index
2288 * @scmd: scsi command
2289 * @pcie_device: points to the PCIe device's info
2290 *
2291 * Return: 0 if native SGL was built, 1 if no SGL was built
2292 */
2293 static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER * ioc,Mpi25SCSIIORequest_t * mpi_request,u16 smid,struct scsi_cmnd * scmd,struct _pcie_device * pcie_device)2294 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2295 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2296 struct _pcie_device *pcie_device)
2297 {
2298 int sges_left;
2299
2300 /* Get the SG list pointer and info. */
2301 sges_left = scsi_dma_map(scmd);
2302 if (sges_left < 0) {
2303 sdev_printk(KERN_ERR, scmd->device,
2304 "scsi_dma_map failed: request for %d bytes!\n",
2305 scsi_bufflen(scmd));
2306 return 1;
2307 }
2308
2309 /* Check if we need to build a native SG list. */
2310 if (base_is_prp_possible(ioc, pcie_device,
2311 scmd, sges_left) == 0) {
2312 /* We built a native SG list, just return. */
2313 goto out;
2314 }
2315
2316 /*
2317 * Build native NVMe PRP.
2318 */
2319 base_make_prp_nvme(ioc, scmd, mpi_request,
2320 smid, sges_left);
2321
2322 return 0;
2323 out:
2324 scsi_dma_unmap(scmd);
2325 return 1;
2326 }
2327
2328 /**
2329 * _base_add_sg_single_ieee - add sg element for IEEE format
2330 * @paddr: virtual address for SGE
2331 * @flags: SGE flags
2332 * @chain_offset: number of 128 byte elements from start of segment
2333 * @length: data transfer length
2334 * @dma_addr: Physical address
2335 */
2336 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)2337 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2338 dma_addr_t dma_addr)
2339 {
2340 Mpi25IeeeSgeChain64_t *sgel = paddr;
2341
2342 sgel->Flags = flags;
2343 sgel->NextChainOffset = chain_offset;
2344 sgel->Length = cpu_to_le32(length);
2345 sgel->Address = cpu_to_le64(dma_addr);
2346 }
2347
2348 /**
2349 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2350 * @ioc: per adapter object
2351 * @paddr: virtual address for SGE
2352 *
2353 * Create a zero length scatter gather entry to insure the IOCs hardware has
2354 * something to use if the target device goes brain dead and tries
2355 * to send data even when none is asked for.
2356 */
2357 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)2358 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2359 {
2360 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2361 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2362 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2363
2364 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2365 }
2366
2367 /**
2368 * _base_build_sg_scmd - main sg creation routine
2369 * pcie_device is unused here!
2370 * @ioc: per adapter object
2371 * @scmd: scsi command
2372 * @smid: system request message index
2373 * @unused: unused pcie_device pointer
2374 * Context: none.
2375 *
2376 * The main routine that builds scatter gather table from a given
2377 * scsi request sent via the .queuecommand main handler.
2378 *
2379 * Return: 0 success, anything else error
2380 */
2381 static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * unused)2382 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2383 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2384 {
2385 Mpi2SCSIIORequest_t *mpi_request;
2386 dma_addr_t chain_dma;
2387 struct scatterlist *sg_scmd;
2388 void *sg_local, *chain;
2389 u32 chain_offset;
2390 u32 chain_length;
2391 u32 chain_flags;
2392 int sges_left;
2393 u32 sges_in_segment;
2394 u32 sgl_flags;
2395 u32 sgl_flags_last_element;
2396 u32 sgl_flags_end_buffer;
2397 struct chain_tracker *chain_req;
2398
2399 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2400
2401 /* init scatter gather flags */
2402 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2403 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2404 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2405 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2406 << MPI2_SGE_FLAGS_SHIFT;
2407 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2408 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2409 << MPI2_SGE_FLAGS_SHIFT;
2410 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2411
2412 sg_scmd = scsi_sglist(scmd);
2413 sges_left = scsi_dma_map(scmd);
2414 if (sges_left < 0) {
2415 sdev_printk(KERN_ERR, scmd->device,
2416 "scsi_dma_map failed: request for %d bytes!\n",
2417 scsi_bufflen(scmd));
2418 return -ENOMEM;
2419 }
2420
2421 sg_local = &mpi_request->SGL;
2422 sges_in_segment = ioc->max_sges_in_main_message;
2423 if (sges_left <= sges_in_segment)
2424 goto fill_in_last_segment;
2425
2426 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2427 (sges_in_segment * ioc->sge_size))/4;
2428
2429 /* fill in main message segment when there is a chain following */
2430 while (sges_in_segment) {
2431 if (sges_in_segment == 1)
2432 ioc->base_add_sg_single(sg_local,
2433 sgl_flags_last_element | sg_dma_len(sg_scmd),
2434 sg_dma_address(sg_scmd));
2435 else
2436 ioc->base_add_sg_single(sg_local, sgl_flags |
2437 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2438 sg_scmd = sg_next(sg_scmd);
2439 sg_local += ioc->sge_size;
2440 sges_left--;
2441 sges_in_segment--;
2442 }
2443
2444 /* initializing the chain flags and pointers */
2445 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2446 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2447 if (!chain_req)
2448 return -1;
2449 chain = chain_req->chain_buffer;
2450 chain_dma = chain_req->chain_buffer_dma;
2451 do {
2452 sges_in_segment = (sges_left <=
2453 ioc->max_sges_in_chain_message) ? sges_left :
2454 ioc->max_sges_in_chain_message;
2455 chain_offset = (sges_left == sges_in_segment) ?
2456 0 : (sges_in_segment * ioc->sge_size)/4;
2457 chain_length = sges_in_segment * ioc->sge_size;
2458 if (chain_offset) {
2459 chain_offset = chain_offset <<
2460 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2461 chain_length += ioc->sge_size;
2462 }
2463 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2464 chain_length, chain_dma);
2465 sg_local = chain;
2466 if (!chain_offset)
2467 goto fill_in_last_segment;
2468
2469 /* fill in chain segments */
2470 while (sges_in_segment) {
2471 if (sges_in_segment == 1)
2472 ioc->base_add_sg_single(sg_local,
2473 sgl_flags_last_element |
2474 sg_dma_len(sg_scmd),
2475 sg_dma_address(sg_scmd));
2476 else
2477 ioc->base_add_sg_single(sg_local, sgl_flags |
2478 sg_dma_len(sg_scmd),
2479 sg_dma_address(sg_scmd));
2480 sg_scmd = sg_next(sg_scmd);
2481 sg_local += ioc->sge_size;
2482 sges_left--;
2483 sges_in_segment--;
2484 }
2485
2486 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2487 if (!chain_req)
2488 return -1;
2489 chain = chain_req->chain_buffer;
2490 chain_dma = chain_req->chain_buffer_dma;
2491 } while (1);
2492
2493
2494 fill_in_last_segment:
2495
2496 /* fill the last segment */
2497 while (sges_left) {
2498 if (sges_left == 1)
2499 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2500 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2501 else
2502 ioc->base_add_sg_single(sg_local, sgl_flags |
2503 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2504 sg_scmd = sg_next(sg_scmd);
2505 sg_local += ioc->sge_size;
2506 sges_left--;
2507 }
2508
2509 return 0;
2510 }
2511
2512 /**
2513 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2514 * @ioc: per adapter object
2515 * @scmd: scsi command
2516 * @smid: system request message index
2517 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2518 * constructed on need.
2519 * Context: none.
2520 *
2521 * The main routine that builds scatter gather table from a given
2522 * scsi request sent via the .queuecommand main handler.
2523 *
2524 * Return: 0 success, anything else error
2525 */
2526 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * pcie_device)2527 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2528 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2529 {
2530 Mpi25SCSIIORequest_t *mpi_request;
2531 dma_addr_t chain_dma;
2532 struct scatterlist *sg_scmd;
2533 void *sg_local, *chain;
2534 u32 chain_offset;
2535 u32 chain_length;
2536 int sges_left;
2537 u32 sges_in_segment;
2538 u8 simple_sgl_flags;
2539 u8 simple_sgl_flags_last;
2540 u8 chain_sgl_flags;
2541 struct chain_tracker *chain_req;
2542
2543 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2544
2545 /* init scatter gather flags */
2546 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2547 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2548 simple_sgl_flags_last = simple_sgl_flags |
2549 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2550 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2551 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2552
2553 /* Check if we need to build a native SG list. */
2554 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2555 smid, scmd, pcie_device) == 0)) {
2556 /* We built a native SG list, just return. */
2557 return 0;
2558 }
2559
2560 sg_scmd = scsi_sglist(scmd);
2561 sges_left = scsi_dma_map(scmd);
2562 if (sges_left < 0) {
2563 sdev_printk(KERN_ERR, scmd->device,
2564 "scsi_dma_map failed: request for %d bytes!\n",
2565 scsi_bufflen(scmd));
2566 return -ENOMEM;
2567 }
2568
2569 sg_local = &mpi_request->SGL;
2570 sges_in_segment = (ioc->request_sz -
2571 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2572 if (sges_left <= sges_in_segment)
2573 goto fill_in_last_segment;
2574
2575 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2576 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2577
2578 /* fill in main message segment when there is a chain following */
2579 while (sges_in_segment > 1) {
2580 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2581 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2582 sg_scmd = sg_next(sg_scmd);
2583 sg_local += ioc->sge_size_ieee;
2584 sges_left--;
2585 sges_in_segment--;
2586 }
2587
2588 /* initializing the pointers */
2589 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2590 if (!chain_req)
2591 return -1;
2592 chain = chain_req->chain_buffer;
2593 chain_dma = chain_req->chain_buffer_dma;
2594 do {
2595 sges_in_segment = (sges_left <=
2596 ioc->max_sges_in_chain_message) ? sges_left :
2597 ioc->max_sges_in_chain_message;
2598 chain_offset = (sges_left == sges_in_segment) ?
2599 0 : sges_in_segment;
2600 chain_length = sges_in_segment * ioc->sge_size_ieee;
2601 if (chain_offset)
2602 chain_length += ioc->sge_size_ieee;
2603 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2604 chain_offset, chain_length, chain_dma);
2605
2606 sg_local = chain;
2607 if (!chain_offset)
2608 goto fill_in_last_segment;
2609
2610 /* fill in chain segments */
2611 while (sges_in_segment) {
2612 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2613 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2614 sg_scmd = sg_next(sg_scmd);
2615 sg_local += ioc->sge_size_ieee;
2616 sges_left--;
2617 sges_in_segment--;
2618 }
2619
2620 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2621 if (!chain_req)
2622 return -1;
2623 chain = chain_req->chain_buffer;
2624 chain_dma = chain_req->chain_buffer_dma;
2625 } while (1);
2626
2627
2628 fill_in_last_segment:
2629
2630 /* fill the last segment */
2631 while (sges_left > 0) {
2632 if (sges_left == 1)
2633 _base_add_sg_single_ieee(sg_local,
2634 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2635 sg_dma_address(sg_scmd));
2636 else
2637 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2638 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2639 sg_scmd = sg_next(sg_scmd);
2640 sg_local += ioc->sge_size_ieee;
2641 sges_left--;
2642 }
2643
2644 return 0;
2645 }
2646
2647 /**
2648 * _base_build_sg_ieee - build generic sg for IEEE format
2649 * @ioc: per adapter object
2650 * @psge: virtual address for SGE
2651 * @data_out_dma: physical address for WRITES
2652 * @data_out_sz: data xfer size for WRITES
2653 * @data_in_dma: physical address for READS
2654 * @data_in_sz: data xfer size for READS
2655 */
2656 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2657 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2658 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2659 size_t data_in_sz)
2660 {
2661 u8 sgl_flags;
2662
2663 if (!data_out_sz && !data_in_sz) {
2664 _base_build_zero_len_sge_ieee(ioc, psge);
2665 return;
2666 }
2667
2668 if (data_out_sz && data_in_sz) {
2669 /* WRITE sgel first */
2670 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2671 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2672 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2673 data_out_dma);
2674
2675 /* incr sgel */
2676 psge += ioc->sge_size_ieee;
2677
2678 /* READ sgel last */
2679 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2680 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2681 data_in_dma);
2682 } else if (data_out_sz) /* WRITE */ {
2683 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2684 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2685 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2686 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2687 data_out_dma);
2688 } else if (data_in_sz) /* READ */ {
2689 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2690 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2691 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2692 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2693 data_in_dma);
2694 }
2695 }
2696
2697 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2698
2699 /**
2700 * _base_config_dma_addressing - set dma addressing
2701 * @ioc: per adapter object
2702 * @pdev: PCI device struct
2703 *
2704 * Return: 0 for success, non-zero for failure.
2705 */
2706 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)2707 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2708 {
2709 u64 required_mask, coherent_mask;
2710 struct sysinfo s;
2711 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2712 int dma_mask = (ioc->hba_mpi_version_belonged > MPI2_VERSION) ? 63 : 64;
2713
2714 if (ioc->is_mcpu_endpoint)
2715 goto try_32bit;
2716
2717 required_mask = dma_get_required_mask(&pdev->dev);
2718 if (sizeof(dma_addr_t) == 4 || required_mask == 32)
2719 goto try_32bit;
2720
2721 if (ioc->dma_mask)
2722 coherent_mask = DMA_BIT_MASK(dma_mask);
2723 else
2724 coherent_mask = DMA_BIT_MASK(32);
2725
2726 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2727 dma_set_coherent_mask(&pdev->dev, coherent_mask))
2728 goto try_32bit;
2729
2730 ioc->base_add_sg_single = &_base_add_sg_single_64;
2731 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2732 ioc->dma_mask = dma_mask;
2733 goto out;
2734
2735 try_32bit:
2736 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2737 return -ENODEV;
2738
2739 ioc->base_add_sg_single = &_base_add_sg_single_32;
2740 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2741 ioc->dma_mask = 32;
2742 out:
2743 si_meminfo(&s);
2744 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2745 ioc->dma_mask, convert_to_kb(s.totalram));
2746
2747 return 0;
2748 }
2749
2750 static int
_base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)2751 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2752 struct pci_dev *pdev)
2753 {
2754 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(ioc->dma_mask))) {
2755 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2756 return -ENODEV;
2757 }
2758 return 0;
2759 }
2760
2761 /**
2762 * _base_check_enable_msix - checks MSIX capabable.
2763 * @ioc: per adapter object
2764 *
2765 * Check to see if card is capable of MSIX, and set number
2766 * of available msix vectors
2767 */
2768 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)2769 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2770 {
2771 int base;
2772 u16 message_control;
2773
2774 /* Check whether controller SAS2008 B0 controller,
2775 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2776 */
2777 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2778 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2779 return -EINVAL;
2780 }
2781
2782 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2783 if (!base) {
2784 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2785 return -EINVAL;
2786 }
2787
2788 /* get msix vector count */
2789 /* NUMA_IO not supported for older controllers */
2790 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2791 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2792 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2793 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2794 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2795 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2796 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2797 ioc->msix_vector_count = 1;
2798 else {
2799 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2800 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2801 }
2802 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2803 ioc->msix_vector_count));
2804 return 0;
2805 }
2806
2807 /**
2808 * _base_free_irq - free irq
2809 * @ioc: per adapter object
2810 *
2811 * Freeing respective reply_queue from the list.
2812 */
2813 static void
_base_free_irq(struct MPT3SAS_ADAPTER * ioc)2814 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2815 {
2816 struct adapter_reply_queue *reply_q, *next;
2817
2818 if (list_empty(&ioc->reply_queue_list))
2819 return;
2820
2821 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2822 list_del(&reply_q->list);
2823 if (ioc->smp_affinity_enable)
2824 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2825 reply_q->msix_index), NULL);
2826 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2827 reply_q);
2828 kfree(reply_q);
2829 }
2830 }
2831
2832 /**
2833 * _base_request_irq - request irq
2834 * @ioc: per adapter object
2835 * @index: msix index into vector table
2836 *
2837 * Inserting respective reply_queue into the list.
2838 */
2839 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index)2840 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2841 {
2842 struct pci_dev *pdev = ioc->pdev;
2843 struct adapter_reply_queue *reply_q;
2844 int r;
2845
2846 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2847 if (!reply_q) {
2848 ioc_err(ioc, "unable to allocate memory %zu!\n",
2849 sizeof(struct adapter_reply_queue));
2850 return -ENOMEM;
2851 }
2852 reply_q->ioc = ioc;
2853 reply_q->msix_index = index;
2854
2855 atomic_set(&reply_q->busy, 0);
2856 if (ioc->msix_enable)
2857 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2858 ioc->driver_name, ioc->id, index);
2859 else
2860 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2861 ioc->driver_name, ioc->id);
2862 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2863 IRQF_SHARED, reply_q->name, reply_q);
2864 if (r) {
2865 pr_err("%s: unable to allocate interrupt %d!\n",
2866 reply_q->name, pci_irq_vector(pdev, index));
2867 kfree(reply_q);
2868 return -EBUSY;
2869 }
2870
2871 INIT_LIST_HEAD(&reply_q->list);
2872 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2873 return 0;
2874 }
2875
2876 /**
2877 * _base_assign_reply_queues - assigning msix index for each cpu
2878 * @ioc: per adapter object
2879 *
2880 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2881 *
2882 * It would nice if we could call irq_set_affinity, however it is not
2883 * an exported symbol
2884 */
2885 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)2886 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2887 {
2888 unsigned int cpu, nr_cpus, nr_msix, index = 0;
2889 struct adapter_reply_queue *reply_q;
2890 int local_numa_node;
2891
2892 if (!_base_is_controller_msix_enabled(ioc))
2893 return;
2894
2895 if (ioc->msix_load_balance)
2896 return;
2897
2898 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2899
2900 nr_cpus = num_online_cpus();
2901 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2902 ioc->facts.MaxMSIxVectors);
2903 if (!nr_msix)
2904 return;
2905
2906 if (ioc->smp_affinity_enable) {
2907
2908 /*
2909 * set irq affinity to local numa node for those irqs
2910 * corresponding to high iops queues.
2911 */
2912 if (ioc->high_iops_queues) {
2913 local_numa_node = dev_to_node(&ioc->pdev->dev);
2914 for (index = 0; index < ioc->high_iops_queues;
2915 index++) {
2916 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2917 index), cpumask_of_node(local_numa_node));
2918 }
2919 }
2920
2921 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2922 const cpumask_t *mask;
2923
2924 if (reply_q->msix_index < ioc->high_iops_queues)
2925 continue;
2926
2927 mask = pci_irq_get_affinity(ioc->pdev,
2928 reply_q->msix_index);
2929 if (!mask) {
2930 ioc_warn(ioc, "no affinity for msi %x\n",
2931 reply_q->msix_index);
2932 goto fall_back;
2933 }
2934
2935 for_each_cpu_and(cpu, mask, cpu_online_mask) {
2936 if (cpu >= ioc->cpu_msix_table_sz)
2937 break;
2938 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2939 }
2940 }
2941 return;
2942 }
2943
2944 fall_back:
2945 cpu = cpumask_first(cpu_online_mask);
2946 nr_msix -= ioc->high_iops_queues;
2947 index = 0;
2948
2949 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2950 unsigned int i, group = nr_cpus / nr_msix;
2951
2952 if (reply_q->msix_index < ioc->high_iops_queues)
2953 continue;
2954
2955 if (cpu >= nr_cpus)
2956 break;
2957
2958 if (index < nr_cpus % nr_msix)
2959 group++;
2960
2961 for (i = 0 ; i < group ; i++) {
2962 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2963 cpu = cpumask_next(cpu, cpu_online_mask);
2964 }
2965 index++;
2966 }
2967 }
2968
2969 /**
2970 * _base_check_and_enable_high_iops_queues - enable high iops mode
2971 * @ ioc - per adapter object
2972 * @ hba_msix_vector_count - msix vectors supported by HBA
2973 *
2974 * Enable high iops queues only if
2975 * - HBA is a SEA/AERO controller and
2976 * - MSI-Xs vector supported by the HBA is 128 and
2977 * - total CPU count in the system >=16 and
2978 * - loaded driver with default max_msix_vectors module parameter and
2979 * - system booted in non kdump mode
2980 *
2981 * returns nothing.
2982 */
2983 static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER * ioc,int hba_msix_vector_count)2984 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
2985 int hba_msix_vector_count)
2986 {
2987 u16 lnksta, speed;
2988
2989 if (perf_mode == MPT_PERF_MODE_IOPS ||
2990 perf_mode == MPT_PERF_MODE_LATENCY) {
2991 ioc->high_iops_queues = 0;
2992 return;
2993 }
2994
2995 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
2996
2997 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
2998 speed = lnksta & PCI_EXP_LNKSTA_CLS;
2999
3000 if (speed < 0x4) {
3001 ioc->high_iops_queues = 0;
3002 return;
3003 }
3004 }
3005
3006 if (!reset_devices && ioc->is_aero_ioc &&
3007 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3008 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3009 max_msix_vectors == -1)
3010 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3011 else
3012 ioc->high_iops_queues = 0;
3013 }
3014
3015 /**
3016 * _base_disable_msix - disables msix
3017 * @ioc: per adapter object
3018 *
3019 */
3020 static void
_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)3021 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3022 {
3023 if (!ioc->msix_enable)
3024 return;
3025 pci_free_irq_vectors(ioc->pdev);
3026 ioc->msix_enable = 0;
3027 }
3028
3029 /**
3030 * _base_alloc_irq_vectors - allocate msix vectors
3031 * @ioc: per adapter object
3032 *
3033 */
3034 static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER * ioc)3035 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3036 {
3037 int i, irq_flags = PCI_IRQ_MSIX;
3038 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3039 struct irq_affinity *descp = &desc;
3040
3041 if (ioc->smp_affinity_enable)
3042 irq_flags |= PCI_IRQ_AFFINITY;
3043 else
3044 descp = NULL;
3045
3046 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3047 ioc->msix_vector_count);
3048
3049 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3050 ioc->high_iops_queues,
3051 ioc->msix_vector_count, irq_flags, descp);
3052
3053 return i;
3054 }
3055
3056 /**
3057 * _base_enable_msix - enables msix, failback to io_apic
3058 * @ioc: per adapter object
3059 *
3060 */
3061 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)3062 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3063 {
3064 int r;
3065 int i, local_max_msix_vectors;
3066 u8 try_msix = 0;
3067
3068 ioc->msix_load_balance = false;
3069
3070 if (msix_disable == -1 || msix_disable == 0)
3071 try_msix = 1;
3072
3073 if (!try_msix)
3074 goto try_ioapic;
3075
3076 if (_base_check_enable_msix(ioc) != 0)
3077 goto try_ioapic;
3078
3079 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3080 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3081 ioc->cpu_count, max_msix_vectors);
3082 if (ioc->is_aero_ioc)
3083 _base_check_and_enable_high_iops_queues(ioc,
3084 ioc->msix_vector_count);
3085 ioc->reply_queue_count =
3086 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3087 ioc->msix_vector_count);
3088
3089 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3090 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3091 else
3092 local_max_msix_vectors = max_msix_vectors;
3093
3094 if (local_max_msix_vectors > 0)
3095 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3096 ioc->reply_queue_count);
3097 else if (local_max_msix_vectors == 0)
3098 goto try_ioapic;
3099
3100 /*
3101 * Enable msix_load_balance only if combined reply queue mode is
3102 * disabled on SAS3 & above generation HBA devices.
3103 */
3104 if (!ioc->combined_reply_queue &&
3105 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3106 ioc->msix_load_balance = true;
3107 }
3108
3109 /*
3110 * smp affinity setting is not need when msix load balance
3111 * is enabled.
3112 */
3113 if (ioc->msix_load_balance)
3114 ioc->smp_affinity_enable = 0;
3115
3116 r = _base_alloc_irq_vectors(ioc);
3117 if (r < 0) {
3118 dfailprintk(ioc,
3119 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n",
3120 r));
3121 goto try_ioapic;
3122 }
3123
3124 ioc->msix_enable = 1;
3125 ioc->reply_queue_count = r;
3126 for (i = 0; i < ioc->reply_queue_count; i++) {
3127 r = _base_request_irq(ioc, i);
3128 if (r) {
3129 _base_free_irq(ioc);
3130 _base_disable_msix(ioc);
3131 goto try_ioapic;
3132 }
3133 }
3134
3135 ioc_info(ioc, "High IOPs queues : %s\n",
3136 ioc->high_iops_queues ? "enabled" : "disabled");
3137
3138 return 0;
3139
3140 /* failback to io_apic interrupt routing */
3141 try_ioapic:
3142 ioc->high_iops_queues = 0;
3143 ioc_info(ioc, "High IOPs queues : disabled\n");
3144 ioc->reply_queue_count = 1;
3145 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3146 if (r < 0) {
3147 dfailprintk(ioc,
3148 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3149 r));
3150 } else
3151 r = _base_request_irq(ioc, 0);
3152
3153 return r;
3154 }
3155
3156 /**
3157 * mpt3sas_base_unmap_resources - free controller resources
3158 * @ioc: per adapter object
3159 */
3160 static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER * ioc)3161 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3162 {
3163 struct pci_dev *pdev = ioc->pdev;
3164
3165 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3166
3167 _base_free_irq(ioc);
3168 _base_disable_msix(ioc);
3169
3170 kfree(ioc->replyPostRegisterIndex);
3171 ioc->replyPostRegisterIndex = NULL;
3172
3173
3174 if (ioc->chip_phys) {
3175 iounmap(ioc->chip);
3176 ioc->chip_phys = 0;
3177 }
3178
3179 if (pci_is_enabled(pdev)) {
3180 pci_release_selected_regions(ioc->pdev, ioc->bars);
3181 pci_disable_pcie_error_reporting(pdev);
3182 pci_disable_device(pdev);
3183 }
3184 }
3185
3186 static int
3187 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3188
3189 /**
3190 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3191 * and if it is in fault state then issue diag reset.
3192 * @ioc: per adapter object
3193 *
3194 * Returns: 0 for success, non-zero for failure.
3195 */
3196 static int
_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER * ioc)3197 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3198 {
3199 u32 ioc_state;
3200 int rc = -EFAULT;
3201
3202 dinitprintk(ioc, pr_info("%s\n", __func__));
3203 if (ioc->pci_error_recovery)
3204 return 0;
3205 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3206 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3207
3208 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3209 mpt3sas_base_fault_info(ioc, ioc_state &
3210 MPI2_DOORBELL_DATA_MASK);
3211 rc = _base_diag_reset(ioc);
3212 }
3213
3214 return rc;
3215 }
3216
3217 /**
3218 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3219 * @ioc: per adapter object
3220 *
3221 * Return: 0 for success, non-zero for failure.
3222 */
3223 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)3224 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3225 {
3226 struct pci_dev *pdev = ioc->pdev;
3227 u32 memap_sz;
3228 u32 pio_sz;
3229 int i, r = 0, rc;
3230 u64 pio_chip = 0;
3231 phys_addr_t chip_phys = 0;
3232 struct adapter_reply_queue *reply_q;
3233
3234 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3235
3236 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3237 if (pci_enable_device_mem(pdev)) {
3238 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3239 ioc->bars = 0;
3240 return -ENODEV;
3241 }
3242
3243
3244 if (pci_request_selected_regions(pdev, ioc->bars,
3245 ioc->driver_name)) {
3246 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3247 ioc->bars = 0;
3248 r = -ENODEV;
3249 goto out_fail;
3250 }
3251
3252 /* AER (Advanced Error Reporting) hooks */
3253 pci_enable_pcie_error_reporting(pdev);
3254
3255 pci_set_master(pdev);
3256
3257
3258 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3259 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3260 r = -ENODEV;
3261 goto out_fail;
3262 }
3263
3264 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3265 (!memap_sz || !pio_sz); i++) {
3266 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3267 if (pio_sz)
3268 continue;
3269 pio_chip = (u64)pci_resource_start(pdev, i);
3270 pio_sz = pci_resource_len(pdev, i);
3271 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3272 if (memap_sz)
3273 continue;
3274 ioc->chip_phys = pci_resource_start(pdev, i);
3275 chip_phys = ioc->chip_phys;
3276 memap_sz = pci_resource_len(pdev, i);
3277 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3278 }
3279 }
3280
3281 if (ioc->chip == NULL) {
3282 ioc_err(ioc, "unable to map adapter memory! or resource not found\n");
3283 r = -EINVAL;
3284 goto out_fail;
3285 }
3286
3287 _base_mask_interrupts(ioc);
3288
3289 r = _base_get_ioc_facts(ioc);
3290 if (r) {
3291 rc = _base_check_for_fault_and_issue_reset(ioc);
3292 if (rc || (_base_get_ioc_facts(ioc)))
3293 goto out_fail;
3294 }
3295
3296 if (!ioc->rdpq_array_enable_assigned) {
3297 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3298 ioc->rdpq_array_enable_assigned = 1;
3299 }
3300
3301 r = _base_enable_msix(ioc);
3302 if (r)
3303 goto out_fail;
3304
3305 if (!ioc->is_driver_loading)
3306 _base_init_irqpolls(ioc);
3307 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3308 * revision HBAs and also only when reply queue count is greater than 8
3309 */
3310 if (ioc->combined_reply_queue) {
3311 /* Determine the Supplemental Reply Post Host Index Registers
3312 * Addresse. Supplemental Reply Post Host Index Registers
3313 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3314 * each register is at offset bytes of
3315 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3316 */
3317 ioc->replyPostRegisterIndex = kcalloc(
3318 ioc->combined_reply_index_count,
3319 sizeof(resource_size_t *), GFP_KERNEL);
3320 if (!ioc->replyPostRegisterIndex) {
3321 dfailprintk(ioc,
3322 ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n"));
3323 r = -ENOMEM;
3324 goto out_fail;
3325 }
3326
3327 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3328 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3329 ((u8 __force *)&ioc->chip->Doorbell +
3330 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3331 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3332 }
3333 }
3334
3335 if (ioc->is_warpdrive) {
3336 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3337 &ioc->chip->ReplyPostHostIndex;
3338
3339 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3340 ioc->reply_post_host_index[i] =
3341 (resource_size_t __iomem *)
3342 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3343 * 4)));
3344 }
3345
3346 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3347 pr_info("%s: %s enabled: IRQ %d\n",
3348 reply_q->name,
3349 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3350 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3351
3352 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3353 &chip_phys, ioc->chip, memap_sz);
3354 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3355 (unsigned long long)pio_chip, pio_sz);
3356
3357 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3358 pci_save_state(pdev);
3359 return 0;
3360
3361 out_fail:
3362 mpt3sas_base_unmap_resources(ioc);
3363 return r;
3364 }
3365
3366 /**
3367 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3368 * @ioc: per adapter object
3369 * @smid: system request message index(smid zero is invalid)
3370 *
3371 * Return: virt pointer to message frame.
3372 */
3373 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)3374 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3375 {
3376 return (void *)(ioc->request + (smid * ioc->request_sz));
3377 }
3378
3379 /**
3380 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3381 * @ioc: per adapter object
3382 * @smid: system request message index
3383 *
3384 * Return: virt pointer to sense buffer.
3385 */
3386 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)3387 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3388 {
3389 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3390 }
3391
3392 /**
3393 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3394 * @ioc: per adapter object
3395 * @smid: system request message index
3396 *
3397 * Return: phys pointer to the low 32bit address of the sense buffer.
3398 */
3399 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3400 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3401 {
3402 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3403 SCSI_SENSE_BUFFERSIZE));
3404 }
3405
3406 /**
3407 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3408 * @ioc: per adapter object
3409 * @smid: system request message index
3410 *
3411 * Return: virt pointer to a PCIe SGL.
3412 */
3413 void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER * ioc,u16 smid)3414 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3415 {
3416 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3417 }
3418
3419 /**
3420 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3421 * @ioc: per adapter object
3422 * @smid: system request message index
3423 *
3424 * Return: phys pointer to the address of the PCIe buffer.
3425 */
3426 dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3427 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3428 {
3429 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3430 }
3431
3432 /**
3433 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3434 * @ioc: per adapter object
3435 * @phys_addr: lower 32 physical addr of the reply
3436 *
3437 * Converts 32bit lower physical addr into a virt address.
3438 */
3439 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)3440 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3441 {
3442 if (!phys_addr)
3443 return NULL;
3444 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3445 }
3446
3447 /**
3448 * _base_get_msix_index - get the msix index
3449 * @ioc: per adapter object
3450 * @scmd: scsi_cmnd object
3451 *
3452 * returns msix index of general reply queues,
3453 * i.e. reply queue on which IO request's reply
3454 * should be posted by the HBA firmware.
3455 */
3456 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3457 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3458 struct scsi_cmnd *scmd)
3459 {
3460 /* Enables reply_queue load balancing */
3461 if (ioc->msix_load_balance)
3462 return ioc->reply_queue_count ?
3463 base_mod64(atomic64_add_return(1,
3464 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3465
3466 return ioc->cpu_msix_table[raw_smp_processor_id()];
3467 }
3468
3469 /**
3470 * _base_get_high_iops_msix_index - get the msix index of
3471 * high iops queues
3472 * @ioc: per adapter object
3473 * @scmd: scsi_cmnd object
3474 *
3475 * Returns: msix index of high iops reply queues.
3476 * i.e. high iops reply queue on which IO request's
3477 * reply should be posted by the HBA firmware.
3478 */
3479 static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3480 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3481 struct scsi_cmnd *scmd)
3482 {
3483 /**
3484 * Round robin the IO interrupts among the high iops
3485 * reply queues in terms of batch count 16 when outstanding
3486 * IOs on the target device is >=8.
3487 */
3488 if (atomic_read(&scmd->device->device_busy) >
3489 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3490 return base_mod64((
3491 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3492 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3493 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3494
3495 return _base_get_msix_index(ioc, scmd);
3496 }
3497
3498 /**
3499 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3500 * @ioc: per adapter object
3501 * @cb_idx: callback index
3502 *
3503 * Return: smid (zero is invalid)
3504 */
3505 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3506 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3507 {
3508 unsigned long flags;
3509 struct request_tracker *request;
3510 u16 smid;
3511
3512 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3513 if (list_empty(&ioc->internal_free_list)) {
3514 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3515 ioc_err(ioc, "%s: smid not available\n", __func__);
3516 return 0;
3517 }
3518
3519 request = list_entry(ioc->internal_free_list.next,
3520 struct request_tracker, tracker_list);
3521 request->cb_idx = cb_idx;
3522 smid = request->smid;
3523 list_del(&request->tracker_list);
3524 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3525 return smid;
3526 }
3527
3528 /**
3529 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3530 * @ioc: per adapter object
3531 * @cb_idx: callback index
3532 * @scmd: pointer to scsi command object
3533 *
3534 * Return: smid (zero is invalid)
3535 */
3536 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)3537 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3538 struct scsi_cmnd *scmd)
3539 {
3540 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3541 unsigned int tag = scmd->request->tag;
3542 u16 smid;
3543
3544 smid = tag + 1;
3545 request->cb_idx = cb_idx;
3546 request->smid = smid;
3547 request->scmd = scmd;
3548 INIT_LIST_HEAD(&request->chain_list);
3549 return smid;
3550 }
3551
3552 /**
3553 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3554 * @ioc: per adapter object
3555 * @cb_idx: callback index
3556 *
3557 * Return: smid (zero is invalid)
3558 */
3559 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3560 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3561 {
3562 unsigned long flags;
3563 struct request_tracker *request;
3564 u16 smid;
3565
3566 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3567 if (list_empty(&ioc->hpr_free_list)) {
3568 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3569 return 0;
3570 }
3571
3572 request = list_entry(ioc->hpr_free_list.next,
3573 struct request_tracker, tracker_list);
3574 request->cb_idx = cb_idx;
3575 smid = request->smid;
3576 list_del(&request->tracker_list);
3577 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3578 return smid;
3579 }
3580
3581 static void
_base_recovery_check(struct MPT3SAS_ADAPTER * ioc)3582 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3583 {
3584 /*
3585 * See _wait_for_commands_to_complete() call with regards to this code.
3586 */
3587 if (ioc->shost_recovery && ioc->pending_io_count) {
3588 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3589 if (ioc->pending_io_count == 0)
3590 wake_up(&ioc->reset_wq);
3591 }
3592 }
3593
mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER * ioc,struct scsiio_tracker * st)3594 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3595 struct scsiio_tracker *st)
3596 {
3597 if (WARN_ON(st->smid == 0))
3598 return;
3599 st->cb_idx = 0xFF;
3600 st->direct_io = 0;
3601 st->scmd = NULL;
3602 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3603 st->smid = 0;
3604 }
3605
3606 /**
3607 * mpt3sas_base_free_smid - put smid back on free_list
3608 * @ioc: per adapter object
3609 * @smid: system request message index
3610 */
3611 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)3612 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3613 {
3614 unsigned long flags;
3615 int i;
3616
3617 if (smid < ioc->hi_priority_smid) {
3618 struct scsiio_tracker *st;
3619 void *request;
3620
3621 st = _get_st_from_smid(ioc, smid);
3622 if (!st) {
3623 _base_recovery_check(ioc);
3624 return;
3625 }
3626
3627 /* Clear MPI request frame */
3628 request = mpt3sas_base_get_msg_frame(ioc, smid);
3629 memset(request, 0, ioc->request_sz);
3630
3631 mpt3sas_base_clear_st(ioc, st);
3632 _base_recovery_check(ioc);
3633 return;
3634 }
3635
3636 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3637 if (smid < ioc->internal_smid) {
3638 /* hi-priority */
3639 i = smid - ioc->hi_priority_smid;
3640 ioc->hpr_lookup[i].cb_idx = 0xFF;
3641 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3642 } else if (smid <= ioc->hba_queue_depth) {
3643 /* internal queue */
3644 i = smid - ioc->internal_smid;
3645 ioc->internal_lookup[i].cb_idx = 0xFF;
3646 list_add(&ioc->internal_lookup[i].tracker_list,
3647 &ioc->internal_free_list);
3648 }
3649 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3650 }
3651
3652 /**
3653 * _base_mpi_ep_writeq - 32 bit write to MMIO
3654 * @b: data payload
3655 * @addr: address in MMIO space
3656 * @writeq_lock: spin lock
3657 *
3658 * This special handling for MPI EP to take care of 32 bit
3659 * environment where its not quarenteed to send the entire word
3660 * in one transfer.
3661 */
3662 static inline void
_base_mpi_ep_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3663 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3664 spinlock_t *writeq_lock)
3665 {
3666 unsigned long flags;
3667
3668 spin_lock_irqsave(writeq_lock, flags);
3669 __raw_writel((u32)(b), addr);
3670 __raw_writel((u32)(b >> 32), (addr + 4));
3671 spin_unlock_irqrestore(writeq_lock, flags);
3672 }
3673
3674 /**
3675 * _base_writeq - 64 bit write to MMIO
3676 * @b: data payload
3677 * @addr: address in MMIO space
3678 * @writeq_lock: spin lock
3679 *
3680 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3681 * care of 32 bit environment where its not quarenteed to send the entire word
3682 * in one transfer.
3683 */
3684 #if defined(writeq) && defined(CONFIG_64BIT)
3685 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3686 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3687 {
3688 wmb();
3689 __raw_writeq(b, addr);
3690 barrier();
3691 }
3692 #else
3693 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3694 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3695 {
3696 _base_mpi_ep_writeq(b, addr, writeq_lock);
3697 }
3698 #endif
3699
3700 /**
3701 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3702 * variable of scsi tracker
3703 * @ioc: per adapter object
3704 * @smid: system request message index
3705 *
3706 * returns msix index.
3707 */
3708 static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER * ioc,u16 smid)3709 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3710 {
3711 struct scsiio_tracker *st = NULL;
3712
3713 if (smid < ioc->hi_priority_smid)
3714 st = _get_st_from_smid(ioc, smid);
3715
3716 if (st == NULL)
3717 return _base_get_msix_index(ioc, NULL);
3718
3719 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3720 return st->msix_io;
3721 }
3722
3723 /**
3724 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3725 * @ioc: per adapter object
3726 * @smid: system request message index
3727 * @handle: device handle
3728 */
3729 static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3730 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3731 u16 smid, u16 handle)
3732 {
3733 Mpi2RequestDescriptorUnion_t descriptor;
3734 u64 *request = (u64 *)&descriptor;
3735 void *mpi_req_iomem;
3736 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3737
3738 _clone_sg_entries(ioc, (void *) mfp, smid);
3739 mpi_req_iomem = (void __force *)ioc->chip +
3740 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3741 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3742 ioc->request_sz);
3743 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3744 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3745 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3746 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3747 descriptor.SCSIIO.LMID = 0;
3748 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3749 &ioc->scsi_lookup_lock);
3750 }
3751
3752 /**
3753 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3754 * @ioc: per adapter object
3755 * @smid: system request message index
3756 * @handle: device handle
3757 */
3758 static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3759 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3760 {
3761 Mpi2RequestDescriptorUnion_t descriptor;
3762 u64 *request = (u64 *)&descriptor;
3763
3764
3765 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3766 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3767 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3768 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3769 descriptor.SCSIIO.LMID = 0;
3770 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3771 &ioc->scsi_lookup_lock);
3772 }
3773
3774 /**
3775 * _base_put_smid_fast_path - send fast path request to firmware
3776 * @ioc: per adapter object
3777 * @smid: system request message index
3778 * @handle: device handle
3779 */
3780 static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3781 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3782 u16 handle)
3783 {
3784 Mpi2RequestDescriptorUnion_t descriptor;
3785 u64 *request = (u64 *)&descriptor;
3786
3787 descriptor.SCSIIO.RequestFlags =
3788 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3789 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3790 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3791 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3792 descriptor.SCSIIO.LMID = 0;
3793 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3794 &ioc->scsi_lookup_lock);
3795 }
3796
3797 /**
3798 * _base_put_smid_hi_priority - send Task Management request to firmware
3799 * @ioc: per adapter object
3800 * @smid: system request message index
3801 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3802 */
3803 static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)3804 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3805 u16 msix_task)
3806 {
3807 Mpi2RequestDescriptorUnion_t descriptor;
3808 void *mpi_req_iomem;
3809 u64 *request;
3810
3811 if (ioc->is_mcpu_endpoint) {
3812 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3813
3814 /* TBD 256 is offset within sys register. */
3815 mpi_req_iomem = (void __force *)ioc->chip
3816 + MPI_FRAME_START_OFFSET
3817 + (smid * ioc->request_sz);
3818 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3819 ioc->request_sz);
3820 }
3821
3822 request = (u64 *)&descriptor;
3823
3824 descriptor.HighPriority.RequestFlags =
3825 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3826 descriptor.HighPriority.MSIxIndex = msix_task;
3827 descriptor.HighPriority.SMID = cpu_to_le16(smid);
3828 descriptor.HighPriority.LMID = 0;
3829 descriptor.HighPriority.Reserved1 = 0;
3830 if (ioc->is_mcpu_endpoint)
3831 _base_mpi_ep_writeq(*request,
3832 &ioc->chip->RequestDescriptorPostLow,
3833 &ioc->scsi_lookup_lock);
3834 else
3835 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3836 &ioc->scsi_lookup_lock);
3837 }
3838
3839 /**
3840 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3841 * firmware
3842 * @ioc: per adapter object
3843 * @smid: system request message index
3844 */
3845 void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER * ioc,u16 smid)3846 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3847 {
3848 Mpi2RequestDescriptorUnion_t descriptor;
3849 u64 *request = (u64 *)&descriptor;
3850
3851 descriptor.Default.RequestFlags =
3852 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3853 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3854 descriptor.Default.SMID = cpu_to_le16(smid);
3855 descriptor.Default.LMID = 0;
3856 descriptor.Default.DescriptorTypeDependent = 0;
3857 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3858 &ioc->scsi_lookup_lock);
3859 }
3860
3861 /**
3862 * _base_put_smid_default - Default, primarily used for config pages
3863 * @ioc: per adapter object
3864 * @smid: system request message index
3865 */
3866 static void
_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)3867 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3868 {
3869 Mpi2RequestDescriptorUnion_t descriptor;
3870 void *mpi_req_iomem;
3871 u64 *request;
3872
3873 if (ioc->is_mcpu_endpoint) {
3874 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3875
3876 _clone_sg_entries(ioc, (void *) mfp, smid);
3877 /* TBD 256 is offset within sys register */
3878 mpi_req_iomem = (void __force *)ioc->chip +
3879 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3880 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3881 ioc->request_sz);
3882 }
3883 request = (u64 *)&descriptor;
3884 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3885 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3886 descriptor.Default.SMID = cpu_to_le16(smid);
3887 descriptor.Default.LMID = 0;
3888 descriptor.Default.DescriptorTypeDependent = 0;
3889 if (ioc->is_mcpu_endpoint)
3890 _base_mpi_ep_writeq(*request,
3891 &ioc->chip->RequestDescriptorPostLow,
3892 &ioc->scsi_lookup_lock);
3893 else
3894 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3895 &ioc->scsi_lookup_lock);
3896 }
3897
3898 /**
3899 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
3900 * Atomic Request Descriptor
3901 * @ioc: per adapter object
3902 * @smid: system request message index
3903 * @handle: device handle, unused in this function, for function type match
3904 *
3905 * Return nothing.
3906 */
3907 static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3908 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3909 u16 handle)
3910 {
3911 Mpi26AtomicRequestDescriptor_t descriptor;
3912 u32 *request = (u32 *)&descriptor;
3913
3914 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3915 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3916 descriptor.SMID = cpu_to_le16(smid);
3917
3918 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3919 }
3920
3921 /**
3922 * _base_put_smid_fast_path_atomic - send fast path request to firmware
3923 * using Atomic Request Descriptor
3924 * @ioc: per adapter object
3925 * @smid: system request message index
3926 * @handle: device handle, unused in this function, for function type match
3927 * Return nothing
3928 */
3929 static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3930 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3931 u16 handle)
3932 {
3933 Mpi26AtomicRequestDescriptor_t descriptor;
3934 u32 *request = (u32 *)&descriptor;
3935
3936 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3937 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3938 descriptor.SMID = cpu_to_le16(smid);
3939
3940 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3941 }
3942
3943 /**
3944 * _base_put_smid_hi_priority_atomic - send Task Management request to
3945 * firmware using Atomic Request Descriptor
3946 * @ioc: per adapter object
3947 * @smid: system request message index
3948 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
3949 *
3950 * Return nothing.
3951 */
3952 static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)3953 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3954 u16 msix_task)
3955 {
3956 Mpi26AtomicRequestDescriptor_t descriptor;
3957 u32 *request = (u32 *)&descriptor;
3958
3959 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3960 descriptor.MSIxIndex = msix_task;
3961 descriptor.SMID = cpu_to_le16(smid);
3962
3963 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3964 }
3965
3966 /**
3967 * _base_put_smid_default - Default, primarily used for config pages
3968 * use Atomic Request Descriptor
3969 * @ioc: per adapter object
3970 * @smid: system request message index
3971 *
3972 * Return nothing.
3973 */
3974 static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid)3975 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3976 {
3977 Mpi26AtomicRequestDescriptor_t descriptor;
3978 u32 *request = (u32 *)&descriptor;
3979
3980 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3981 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3982 descriptor.SMID = cpu_to_le16(smid);
3983
3984 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3985 }
3986
3987 /**
3988 * _base_display_OEMs_branding - Display branding string
3989 * @ioc: per adapter object
3990 */
3991 static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER * ioc)3992 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3993 {
3994 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3995 return;
3996
3997 switch (ioc->pdev->subsystem_vendor) {
3998 case PCI_VENDOR_ID_INTEL:
3999 switch (ioc->pdev->device) {
4000 case MPI2_MFGPAGE_DEVID_SAS2008:
4001 switch (ioc->pdev->subsystem_device) {
4002 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4003 ioc_info(ioc, "%s\n",
4004 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4005 break;
4006 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4007 ioc_info(ioc, "%s\n",
4008 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4009 break;
4010 case MPT2SAS_INTEL_SSD910_SSDID:
4011 ioc_info(ioc, "%s\n",
4012 MPT2SAS_INTEL_SSD910_BRANDING);
4013 break;
4014 default:
4015 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4016 ioc->pdev->subsystem_device);
4017 break;
4018 }
4019 break;
4020 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4021 switch (ioc->pdev->subsystem_device) {
4022 case MPT2SAS_INTEL_RS25GB008_SSDID:
4023 ioc_info(ioc, "%s\n",
4024 MPT2SAS_INTEL_RS25GB008_BRANDING);
4025 break;
4026 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4027 ioc_info(ioc, "%s\n",
4028 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4029 break;
4030 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4031 ioc_info(ioc, "%s\n",
4032 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4033 break;
4034 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4035 ioc_info(ioc, "%s\n",
4036 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4037 break;
4038 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4039 ioc_info(ioc, "%s\n",
4040 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4041 break;
4042 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4043 ioc_info(ioc, "%s\n",
4044 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4045 break;
4046 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4047 ioc_info(ioc, "%s\n",
4048 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4049 break;
4050 default:
4051 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4052 ioc->pdev->subsystem_device);
4053 break;
4054 }
4055 break;
4056 case MPI25_MFGPAGE_DEVID_SAS3008:
4057 switch (ioc->pdev->subsystem_device) {
4058 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4059 ioc_info(ioc, "%s\n",
4060 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4061 break;
4062
4063 case MPT3SAS_INTEL_RS3GC008_SSDID:
4064 ioc_info(ioc, "%s\n",
4065 MPT3SAS_INTEL_RS3GC008_BRANDING);
4066 break;
4067 case MPT3SAS_INTEL_RS3FC044_SSDID:
4068 ioc_info(ioc, "%s\n",
4069 MPT3SAS_INTEL_RS3FC044_BRANDING);
4070 break;
4071 case MPT3SAS_INTEL_RS3UC080_SSDID:
4072 ioc_info(ioc, "%s\n",
4073 MPT3SAS_INTEL_RS3UC080_BRANDING);
4074 break;
4075 default:
4076 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4077 ioc->pdev->subsystem_device);
4078 break;
4079 }
4080 break;
4081 default:
4082 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4083 ioc->pdev->subsystem_device);
4084 break;
4085 }
4086 break;
4087 case PCI_VENDOR_ID_DELL:
4088 switch (ioc->pdev->device) {
4089 case MPI2_MFGPAGE_DEVID_SAS2008:
4090 switch (ioc->pdev->subsystem_device) {
4091 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4092 ioc_info(ioc, "%s\n",
4093 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4094 break;
4095 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4096 ioc_info(ioc, "%s\n",
4097 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4098 break;
4099 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4100 ioc_info(ioc, "%s\n",
4101 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4102 break;
4103 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4104 ioc_info(ioc, "%s\n",
4105 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4106 break;
4107 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4108 ioc_info(ioc, "%s\n",
4109 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4110 break;
4111 case MPT2SAS_DELL_PERC_H200_SSDID:
4112 ioc_info(ioc, "%s\n",
4113 MPT2SAS_DELL_PERC_H200_BRANDING);
4114 break;
4115 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4116 ioc_info(ioc, "%s\n",
4117 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4118 break;
4119 default:
4120 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4121 ioc->pdev->subsystem_device);
4122 break;
4123 }
4124 break;
4125 case MPI25_MFGPAGE_DEVID_SAS3008:
4126 switch (ioc->pdev->subsystem_device) {
4127 case MPT3SAS_DELL_12G_HBA_SSDID:
4128 ioc_info(ioc, "%s\n",
4129 MPT3SAS_DELL_12G_HBA_BRANDING);
4130 break;
4131 default:
4132 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4133 ioc->pdev->subsystem_device);
4134 break;
4135 }
4136 break;
4137 default:
4138 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4139 ioc->pdev->subsystem_device);
4140 break;
4141 }
4142 break;
4143 case PCI_VENDOR_ID_CISCO:
4144 switch (ioc->pdev->device) {
4145 case MPI25_MFGPAGE_DEVID_SAS3008:
4146 switch (ioc->pdev->subsystem_device) {
4147 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4148 ioc_info(ioc, "%s\n",
4149 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4150 break;
4151 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4152 ioc_info(ioc, "%s\n",
4153 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4154 break;
4155 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4156 ioc_info(ioc, "%s\n",
4157 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4158 break;
4159 default:
4160 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4161 ioc->pdev->subsystem_device);
4162 break;
4163 }
4164 break;
4165 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4166 switch (ioc->pdev->subsystem_device) {
4167 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4168 ioc_info(ioc, "%s\n",
4169 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4170 break;
4171 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4172 ioc_info(ioc, "%s\n",
4173 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4174 break;
4175 default:
4176 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4177 ioc->pdev->subsystem_device);
4178 break;
4179 }
4180 break;
4181 default:
4182 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4183 ioc->pdev->subsystem_device);
4184 break;
4185 }
4186 break;
4187 case MPT2SAS_HP_3PAR_SSVID:
4188 switch (ioc->pdev->device) {
4189 case MPI2_MFGPAGE_DEVID_SAS2004:
4190 switch (ioc->pdev->subsystem_device) {
4191 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4192 ioc_info(ioc, "%s\n",
4193 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4194 break;
4195 default:
4196 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4197 ioc->pdev->subsystem_device);
4198 break;
4199 }
4200 break;
4201 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4202 switch (ioc->pdev->subsystem_device) {
4203 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4204 ioc_info(ioc, "%s\n",
4205 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4206 break;
4207 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4208 ioc_info(ioc, "%s\n",
4209 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4210 break;
4211 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4212 ioc_info(ioc, "%s\n",
4213 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4214 break;
4215 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4216 ioc_info(ioc, "%s\n",
4217 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4218 break;
4219 default:
4220 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4221 ioc->pdev->subsystem_device);
4222 break;
4223 }
4224 break;
4225 default:
4226 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4227 ioc->pdev->subsystem_device);
4228 break;
4229 }
4230 default:
4231 break;
4232 }
4233 }
4234
4235 /**
4236 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4237 * version from FW Image Header.
4238 * @ioc: per adapter object
4239 *
4240 * Return: 0 for success, non-zero for failure.
4241 */
4242 static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER * ioc)4243 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4244 {
4245 Mpi2FWImageHeader_t *FWImgHdr;
4246 Mpi25FWUploadRequest_t *mpi_request;
4247 Mpi2FWUploadReply_t mpi_reply;
4248 int r = 0;
4249 void *fwpkg_data = NULL;
4250 dma_addr_t fwpkg_data_dma;
4251 u16 smid, ioc_status;
4252 size_t data_length;
4253
4254 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4255
4256 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4257 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4258 return -EAGAIN;
4259 }
4260
4261 data_length = sizeof(Mpi2FWImageHeader_t);
4262 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4263 &fwpkg_data_dma, GFP_KERNEL);
4264 if (!fwpkg_data) {
4265 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4266 __FILE__, __LINE__, __func__);
4267 return -ENOMEM;
4268 }
4269
4270 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4271 if (!smid) {
4272 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4273 r = -EAGAIN;
4274 goto out;
4275 }
4276
4277 ioc->base_cmds.status = MPT3_CMD_PENDING;
4278 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4279 ioc->base_cmds.smid = smid;
4280 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4281 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4282 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4283 mpi_request->ImageSize = cpu_to_le32(data_length);
4284 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4285 data_length);
4286 init_completion(&ioc->base_cmds.done);
4287 ioc->put_smid_default(ioc, smid);
4288 /* Wait for 15 seconds */
4289 wait_for_completion_timeout(&ioc->base_cmds.done,
4290 FW_IMG_HDR_READ_TIMEOUT*HZ);
4291 ioc_info(ioc, "%s: complete\n", __func__);
4292 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4293 ioc_err(ioc, "%s: timeout\n", __func__);
4294 _debug_dump_mf(mpi_request,
4295 sizeof(Mpi25FWUploadRequest_t)/4);
4296 r = -ETIME;
4297 } else {
4298 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4299 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4300 memcpy(&mpi_reply, ioc->base_cmds.reply,
4301 sizeof(Mpi2FWUploadReply_t));
4302 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4303 MPI2_IOCSTATUS_MASK;
4304 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4305 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4306 if (FWImgHdr->PackageVersion.Word) {
4307 ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n",
4308 FWImgHdr->PackageVersion.Struct.Major,
4309 FWImgHdr->PackageVersion.Struct.Minor,
4310 FWImgHdr->PackageVersion.Struct.Unit,
4311 FWImgHdr->PackageVersion.Struct.Dev);
4312 }
4313 } else {
4314 _debug_dump_mf(&mpi_reply,
4315 sizeof(Mpi2FWUploadReply_t)/4);
4316 }
4317 }
4318 }
4319 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4320 out:
4321 if (fwpkg_data)
4322 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4323 fwpkg_data_dma);
4324 return r;
4325 }
4326
4327 /**
4328 * _base_display_ioc_capabilities - Disply IOC's capabilities.
4329 * @ioc: per adapter object
4330 */
4331 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)4332 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4333 {
4334 int i = 0;
4335 char desc[16];
4336 u32 iounit_pg1_flags;
4337 u32 bios_version;
4338
4339 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4340 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4341 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4342 desc,
4343 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4344 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4345 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4346 ioc->facts.FWVersion.Word & 0x000000FF,
4347 ioc->pdev->revision,
4348 (bios_version & 0xFF000000) >> 24,
4349 (bios_version & 0x00FF0000) >> 16,
4350 (bios_version & 0x0000FF00) >> 8,
4351 bios_version & 0x000000FF);
4352
4353 _base_display_OEMs_branding(ioc);
4354
4355 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4356 pr_info("%sNVMe", i ? "," : "");
4357 i++;
4358 }
4359
4360 ioc_info(ioc, "Protocol=(");
4361
4362 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4363 pr_cont("Initiator");
4364 i++;
4365 }
4366
4367 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4368 pr_cont("%sTarget", i ? "," : "");
4369 i++;
4370 }
4371
4372 i = 0;
4373 pr_cont("), Capabilities=(");
4374
4375 if (!ioc->hide_ir_msg) {
4376 if (ioc->facts.IOCCapabilities &
4377 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4378 pr_cont("Raid");
4379 i++;
4380 }
4381 }
4382
4383 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4384 pr_cont("%sTLR", i ? "," : "");
4385 i++;
4386 }
4387
4388 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4389 pr_cont("%sMulticast", i ? "," : "");
4390 i++;
4391 }
4392
4393 if (ioc->facts.IOCCapabilities &
4394 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4395 pr_cont("%sBIDI Target", i ? "," : "");
4396 i++;
4397 }
4398
4399 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4400 pr_cont("%sEEDP", i ? "," : "");
4401 i++;
4402 }
4403
4404 if (ioc->facts.IOCCapabilities &
4405 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4406 pr_cont("%sSnapshot Buffer", i ? "," : "");
4407 i++;
4408 }
4409
4410 if (ioc->facts.IOCCapabilities &
4411 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4412 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4413 i++;
4414 }
4415
4416 if (ioc->facts.IOCCapabilities &
4417 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4418 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4419 i++;
4420 }
4421
4422 if (ioc->facts.IOCCapabilities &
4423 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4424 pr_cont("%sTask Set Full", i ? "," : "");
4425 i++;
4426 }
4427
4428 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4429 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4430 pr_cont("%sNCQ", i ? "," : "");
4431 i++;
4432 }
4433
4434 pr_cont(")\n");
4435 }
4436
4437 /**
4438 * mpt3sas_base_update_missing_delay - change the missing delay timers
4439 * @ioc: per adapter object
4440 * @device_missing_delay: amount of time till device is reported missing
4441 * @io_missing_delay: interval IO is returned when there is a missing device
4442 *
4443 * Passed on the command line, this function will modify the device missing
4444 * delay, as well as the io missing delay. This should be called at driver
4445 * load time.
4446 */
4447 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)4448 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4449 u16 device_missing_delay, u8 io_missing_delay)
4450 {
4451 u16 dmd, dmd_new, dmd_orignal;
4452 u8 io_missing_delay_original;
4453 u16 sz;
4454 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4455 Mpi2ConfigReply_t mpi_reply;
4456 u8 num_phys = 0;
4457 u16 ioc_status;
4458
4459 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4460 if (!num_phys)
4461 return;
4462
4463 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4464 sizeof(Mpi2SasIOUnit1PhyData_t));
4465 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4466 if (!sas_iounit_pg1) {
4467 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4468 __FILE__, __LINE__, __func__);
4469 goto out;
4470 }
4471 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4472 sas_iounit_pg1, sz))) {
4473 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4474 __FILE__, __LINE__, __func__);
4475 goto out;
4476 }
4477 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4478 MPI2_IOCSTATUS_MASK;
4479 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4480 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4481 __FILE__, __LINE__, __func__);
4482 goto out;
4483 }
4484
4485 /* device missing delay */
4486 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4487 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4488 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4489 else
4490 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4491 dmd_orignal = dmd;
4492 if (device_missing_delay > 0x7F) {
4493 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4494 device_missing_delay;
4495 dmd = dmd / 16;
4496 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4497 } else
4498 dmd = device_missing_delay;
4499 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4500
4501 /* io missing delay */
4502 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4503 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4504
4505 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4506 sz)) {
4507 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4508 dmd_new = (dmd &
4509 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4510 else
4511 dmd_new =
4512 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4513 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4514 dmd_orignal, dmd_new);
4515 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4516 io_missing_delay_original,
4517 io_missing_delay);
4518 ioc->device_missing_delay = dmd_new;
4519 ioc->io_missing_delay = io_missing_delay;
4520 }
4521
4522 out:
4523 kfree(sas_iounit_pg1);
4524 }
4525
4526 /**
4527 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4528 * according to performance mode.
4529 * @ioc : per adapter object
4530 *
4531 * Return nothing.
4532 */
4533 static void
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER * ioc)4534 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4535 {
4536 Mpi2IOCPage1_t ioc_pg1;
4537 Mpi2ConfigReply_t mpi_reply;
4538
4539 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4540 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4541
4542 switch (perf_mode) {
4543 case MPT_PERF_MODE_DEFAULT:
4544 case MPT_PERF_MODE_BALANCED:
4545 if (ioc->high_iops_queues) {
4546 ioc_info(ioc,
4547 "Enable interrupt coalescing only for first\t"
4548 "%d reply queues\n",
4549 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4550 /*
4551 * If 31st bit is zero then interrupt coalescing is
4552 * enabled for all reply descriptor post queues.
4553 * If 31st bit is set to one then user can
4554 * enable/disable interrupt coalescing on per reply
4555 * descriptor post queue group(8) basis. So to enable
4556 * interrupt coalescing only on first reply descriptor
4557 * post queue group 31st bit and zero th bit is enabled.
4558 */
4559 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4560 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4561 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4562 ioc_info(ioc, "performance mode: balanced\n");
4563 return;
4564 }
4565 /* Fall through */
4566 case MPT_PERF_MODE_LATENCY:
4567 /*
4568 * Enable interrupt coalescing on all reply queues
4569 * with timeout value 0xA
4570 */
4571 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4572 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4573 ioc_pg1.ProductSpecific = 0;
4574 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4575 ioc_info(ioc, "performance mode: latency\n");
4576 break;
4577 case MPT_PERF_MODE_IOPS:
4578 /*
4579 * Enable interrupt coalescing on all reply queues.
4580 */
4581 ioc_info(ioc,
4582 "performance mode: iops with coalescing timeout: 0x%x\n",
4583 le32_to_cpu(ioc_pg1.CoalescingTimeout));
4584 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4585 ioc_pg1.ProductSpecific = 0;
4586 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4587 break;
4588 }
4589 }
4590
4591 /**
4592 * _base_static_config_pages - static start of day config pages
4593 * @ioc: per adapter object
4594 */
4595 static void
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)4596 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4597 {
4598 Mpi2ConfigReply_t mpi_reply;
4599 u32 iounit_pg1_flags;
4600
4601 ioc->nvme_abort_timeout = 30;
4602 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4603 if (ioc->ir_firmware)
4604 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4605 &ioc->manu_pg10);
4606
4607 /*
4608 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4609 * flag unset in NVDATA.
4610 */
4611 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4612 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4613 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4614 ioc->name);
4615 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4616 ioc->manu_pg11.EEDPTagMode |= 0x1;
4617 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4618 &ioc->manu_pg11);
4619 }
4620 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4621 ioc->tm_custom_handling = 1;
4622 else {
4623 ioc->tm_custom_handling = 0;
4624 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4625 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4626 else if (ioc->manu_pg11.NVMeAbortTO >
4627 NVME_TASK_ABORT_MAX_TIMEOUT)
4628 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4629 else
4630 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4631 }
4632
4633 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4634 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4635 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4636 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4637 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4638 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4639 _base_display_ioc_capabilities(ioc);
4640
4641 /*
4642 * Enable task_set_full handling in iounit_pg1 when the
4643 * facts capabilities indicate that its supported.
4644 */
4645 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4646 if ((ioc->facts.IOCCapabilities &
4647 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4648 iounit_pg1_flags &=
4649 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4650 else
4651 iounit_pg1_flags |=
4652 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4653 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4654 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4655
4656 if (ioc->iounit_pg8.NumSensors)
4657 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4658 if (ioc->is_aero_ioc)
4659 _base_update_ioc_page1_inlinewith_perf_mode(ioc);
4660 }
4661
4662 /**
4663 * mpt3sas_free_enclosure_list - release memory
4664 * @ioc: per adapter object
4665 *
4666 * Free memory allocated during encloure add.
4667 */
4668 void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER * ioc)4669 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4670 {
4671 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4672
4673 /* Free enclosure list */
4674 list_for_each_entry_safe(enclosure_dev,
4675 enclosure_dev_next, &ioc->enclosure_list, list) {
4676 list_del(&enclosure_dev->list);
4677 kfree(enclosure_dev);
4678 }
4679 }
4680
4681 /**
4682 * _base_release_memory_pools - release memory
4683 * @ioc: per adapter object
4684 *
4685 * Free memory allocated from _base_allocate_memory_pools.
4686 */
4687 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)4688 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4689 {
4690 int i = 0;
4691 int j = 0;
4692 struct chain_tracker *ct;
4693 struct reply_post_struct *rps;
4694
4695 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4696
4697 if (ioc->request) {
4698 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4699 ioc->request, ioc->request_dma);
4700 dexitprintk(ioc,
4701 ioc_info(ioc, "request_pool(0x%p): free\n",
4702 ioc->request));
4703 ioc->request = NULL;
4704 }
4705
4706 if (ioc->sense) {
4707 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4708 dma_pool_destroy(ioc->sense_dma_pool);
4709 dexitprintk(ioc,
4710 ioc_info(ioc, "sense_pool(0x%p): free\n",
4711 ioc->sense));
4712 ioc->sense = NULL;
4713 }
4714
4715 if (ioc->reply) {
4716 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4717 dma_pool_destroy(ioc->reply_dma_pool);
4718 dexitprintk(ioc,
4719 ioc_info(ioc, "reply_pool(0x%p): free\n",
4720 ioc->reply));
4721 ioc->reply = NULL;
4722 }
4723
4724 if (ioc->reply_free) {
4725 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4726 ioc->reply_free_dma);
4727 dma_pool_destroy(ioc->reply_free_dma_pool);
4728 dexitprintk(ioc,
4729 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4730 ioc->reply_free));
4731 ioc->reply_free = NULL;
4732 }
4733
4734 if (ioc->reply_post) {
4735 do {
4736 rps = &ioc->reply_post[i];
4737 if (rps->reply_post_free) {
4738 dma_pool_free(
4739 ioc->reply_post_free_dma_pool,
4740 rps->reply_post_free,
4741 rps->reply_post_free_dma);
4742 dexitprintk(ioc,
4743 ioc_info(ioc, "reply_post_free_pool(0x%p): free\n",
4744 rps->reply_post_free));
4745 rps->reply_post_free = NULL;
4746 }
4747 } while (ioc->rdpq_array_enable &&
4748 (++i < ioc->reply_queue_count));
4749 if (ioc->reply_post_free_array &&
4750 ioc->rdpq_array_enable) {
4751 dma_pool_free(ioc->reply_post_free_array_dma_pool,
4752 ioc->reply_post_free_array,
4753 ioc->reply_post_free_array_dma);
4754 ioc->reply_post_free_array = NULL;
4755 }
4756 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4757 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4758 kfree(ioc->reply_post);
4759 }
4760
4761 if (ioc->pcie_sgl_dma_pool) {
4762 for (i = 0; i < ioc->scsiio_depth; i++) {
4763 dma_pool_free(ioc->pcie_sgl_dma_pool,
4764 ioc->pcie_sg_lookup[i].pcie_sgl,
4765 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4766 }
4767 if (ioc->pcie_sgl_dma_pool)
4768 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4769 }
4770
4771 if (ioc->config_page) {
4772 dexitprintk(ioc,
4773 ioc_info(ioc, "config_page(0x%p): free\n",
4774 ioc->config_page));
4775 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4776 ioc->config_page, ioc->config_page_dma);
4777 }
4778
4779 kfree(ioc->hpr_lookup);
4780 kfree(ioc->internal_lookup);
4781 if (ioc->chain_lookup) {
4782 for (i = 0; i < ioc->scsiio_depth; i++) {
4783 for (j = ioc->chains_per_prp_buffer;
4784 j < ioc->chains_needed_per_io; j++) {
4785 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4786 if (ct && ct->chain_buffer)
4787 dma_pool_free(ioc->chain_dma_pool,
4788 ct->chain_buffer,
4789 ct->chain_buffer_dma);
4790 }
4791 kfree(ioc->chain_lookup[i].chains_per_smid);
4792 }
4793 dma_pool_destroy(ioc->chain_dma_pool);
4794 kfree(ioc->chain_lookup);
4795 ioc->chain_lookup = NULL;
4796 }
4797 }
4798
4799 /**
4800 * is_MSB_are_same - checks whether all reply queues in a set are
4801 * having same upper 32bits in their base memory address.
4802 * @reply_pool_start_address: Base address of a reply queue set
4803 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4804 *
4805 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4806 * memory address, else 0.
4807 */
4808
4809 static int
is_MSB_are_same(long reply_pool_start_address,u32 pool_sz)4810 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4811 {
4812 long reply_pool_end_address;
4813
4814 reply_pool_end_address = reply_pool_start_address + pool_sz;
4815
4816 if (upper_32_bits(reply_pool_start_address) ==
4817 upper_32_bits(reply_pool_end_address))
4818 return 1;
4819 else
4820 return 0;
4821 }
4822
4823 /**
4824 * _base_allocate_memory_pools - allocate start of day memory pools
4825 * @ioc: per adapter object
4826 *
4827 * Return: 0 success, anything else error.
4828 */
4829 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc)4830 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4831 {
4832 struct mpt3sas_facts *facts;
4833 u16 max_sge_elements;
4834 u16 chains_needed_per_io;
4835 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4836 u32 retry_sz;
4837 u16 max_request_credit, nvme_blocks_needed;
4838 unsigned short sg_tablesize;
4839 u16 sge_size;
4840 int i, j;
4841 struct chain_tracker *ct;
4842
4843 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4844
4845
4846 retry_sz = 0;
4847 facts = &ioc->facts;
4848
4849 /* command line tunables for max sgl entries */
4850 if (max_sgl_entries != -1)
4851 sg_tablesize = max_sgl_entries;
4852 else {
4853 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4854 sg_tablesize = MPT2SAS_SG_DEPTH;
4855 else
4856 sg_tablesize = MPT3SAS_SG_DEPTH;
4857 }
4858
4859 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4860 if (reset_devices)
4861 sg_tablesize = min_t(unsigned short, sg_tablesize,
4862 MPT_KDUMP_MIN_PHYS_SEGMENTS);
4863
4864 if (ioc->is_mcpu_endpoint)
4865 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4866 else {
4867 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4868 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4869 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4870 sg_tablesize = min_t(unsigned short, sg_tablesize,
4871 SG_MAX_SEGMENTS);
4872 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
4873 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4874 }
4875 ioc->shost->sg_tablesize = sg_tablesize;
4876 }
4877
4878 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4879 (facts->RequestCredit / 4));
4880 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4881 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4882 INTERNAL_SCSIIO_CMDS_COUNT)) {
4883 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
4884 facts->RequestCredit);
4885 return -ENOMEM;
4886 }
4887 ioc->internal_depth = 10;
4888 }
4889
4890 ioc->hi_priority_depth = ioc->internal_depth - (5);
4891 /* command line tunables for max controller queue depth */
4892 if (max_queue_depth != -1 && max_queue_depth != 0) {
4893 max_request_credit = min_t(u16, max_queue_depth +
4894 ioc->internal_depth, facts->RequestCredit);
4895 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4896 max_request_credit = MAX_HBA_QUEUE_DEPTH;
4897 } else if (reset_devices)
4898 max_request_credit = min_t(u16, facts->RequestCredit,
4899 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4900 else
4901 max_request_credit = min_t(u16, facts->RequestCredit,
4902 MAX_HBA_QUEUE_DEPTH);
4903
4904 /* Firmware maintains additional facts->HighPriorityCredit number of
4905 * credits for HiPriprity Request messages, so hba queue depth will be
4906 * sum of max_request_credit and high priority queue depth.
4907 */
4908 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4909
4910 /* request frame size */
4911 ioc->request_sz = facts->IOCRequestFrameSize * 4;
4912
4913 /* reply frame size */
4914 ioc->reply_sz = facts->ReplyFrameSize * 4;
4915
4916 /* chain segment size */
4917 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4918 if (facts->IOCMaxChainSegmentSize)
4919 ioc->chain_segment_sz =
4920 facts->IOCMaxChainSegmentSize *
4921 MAX_CHAIN_ELEMT_SZ;
4922 else
4923 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4924 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4925 MAX_CHAIN_ELEMT_SZ;
4926 } else
4927 ioc->chain_segment_sz = ioc->request_sz;
4928
4929 /* calculate the max scatter element size */
4930 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4931
4932 retry_allocation:
4933 total_sz = 0;
4934 /* calculate number of sg elements left over in the 1st frame */
4935 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4936 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4937 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4938
4939 /* now do the same for a chain buffer */
4940 max_sge_elements = ioc->chain_segment_sz - sge_size;
4941 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4942
4943 /*
4944 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4945 */
4946 chains_needed_per_io = ((ioc->shost->sg_tablesize -
4947 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4948 + 1;
4949 if (chains_needed_per_io > facts->MaxChainDepth) {
4950 chains_needed_per_io = facts->MaxChainDepth;
4951 ioc->shost->sg_tablesize = min_t(u16,
4952 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4953 * chains_needed_per_io), ioc->shost->sg_tablesize);
4954 }
4955 ioc->chains_needed_per_io = chains_needed_per_io;
4956
4957 /* reply free queue sizing - taking into account for 64 FW events */
4958 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4959
4960 /* mCPU manage single counters for simplicity */
4961 if (ioc->is_mcpu_endpoint)
4962 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4963 else {
4964 /* calculate reply descriptor post queue depth */
4965 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4966 ioc->reply_free_queue_depth + 1;
4967 /* align the reply post queue on the next 16 count boundary */
4968 if (ioc->reply_post_queue_depth % 16)
4969 ioc->reply_post_queue_depth += 16 -
4970 (ioc->reply_post_queue_depth % 16);
4971 }
4972
4973 if (ioc->reply_post_queue_depth >
4974 facts->MaxReplyDescriptorPostQueueDepth) {
4975 ioc->reply_post_queue_depth =
4976 facts->MaxReplyDescriptorPostQueueDepth -
4977 (facts->MaxReplyDescriptorPostQueueDepth % 16);
4978 ioc->hba_queue_depth =
4979 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4980 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4981 }
4982
4983 dinitprintk(ioc,
4984 ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n",
4985 ioc->max_sges_in_main_message,
4986 ioc->max_sges_in_chain_message,
4987 ioc->shost->sg_tablesize,
4988 ioc->chains_needed_per_io));
4989
4990 /* reply post queue, 16 byte align */
4991 reply_post_free_sz = ioc->reply_post_queue_depth *
4992 sizeof(Mpi2DefaultReplyDescriptor_t);
4993
4994 sz = reply_post_free_sz;
4995 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4996 sz *= ioc->reply_queue_count;
4997
4998 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4999 (ioc->reply_queue_count):1,
5000 sizeof(struct reply_post_struct), GFP_KERNEL);
5001
5002 if (!ioc->reply_post) {
5003 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n");
5004 goto out;
5005 }
5006 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
5007 &ioc->pdev->dev, sz, 16, 0);
5008 if (!ioc->reply_post_free_dma_pool) {
5009 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n");
5010 goto out;
5011 }
5012 i = 0;
5013 do {
5014 ioc->reply_post[i].reply_post_free =
5015 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5016 GFP_KERNEL,
5017 &ioc->reply_post[i].reply_post_free_dma);
5018 if (!ioc->reply_post[i].reply_post_free) {
5019 ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n");
5020 goto out;
5021 }
5022 dinitprintk(ioc,
5023 ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5024 ioc->reply_post[i].reply_post_free,
5025 ioc->reply_post_queue_depth,
5026 8, sz / 1024));
5027 dinitprintk(ioc,
5028 ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n",
5029 (u64)ioc->reply_post[i].reply_post_free_dma));
5030 total_sz += sz;
5031 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
5032
5033 if (ioc->dma_mask > 32) {
5034 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
5035 ioc_warn(ioc, "no suitable consistent DMA mask for %s\n",
5036 pci_name(ioc->pdev));
5037 goto out;
5038 }
5039 }
5040
5041 ioc->scsiio_depth = ioc->hba_queue_depth -
5042 ioc->hi_priority_depth - ioc->internal_depth;
5043
5044 /* set the scsi host can_queue depth
5045 * with some internal commands that could be outstanding
5046 */
5047 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5048 dinitprintk(ioc,
5049 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5050 ioc->shost->can_queue));
5051
5052
5053 /* contiguous pool for request and chains, 16 byte align, one extra "
5054 * "frame for smid=0
5055 */
5056 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5057 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5058
5059 /* hi-priority queue */
5060 sz += (ioc->hi_priority_depth * ioc->request_sz);
5061
5062 /* internal queue */
5063 sz += (ioc->internal_depth * ioc->request_sz);
5064
5065 ioc->request_dma_sz = sz;
5066 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5067 &ioc->request_dma, GFP_KERNEL);
5068 if (!ioc->request) {
5069 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5070 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5071 ioc->request_sz, sz / 1024);
5072 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5073 goto out;
5074 retry_sz = 64;
5075 ioc->hba_queue_depth -= retry_sz;
5076 _base_release_memory_pools(ioc);
5077 goto retry_allocation;
5078 }
5079 memset(ioc->request, 0, sz);
5080
5081 if (retry_sz)
5082 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5083 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5084 ioc->request_sz, sz / 1024);
5085
5086 /* hi-priority queue */
5087 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5088 ioc->request_sz);
5089 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5090 ioc->request_sz);
5091
5092 /* internal queue */
5093 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5094 ioc->request_sz);
5095 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5096 ioc->request_sz);
5097
5098 dinitprintk(ioc,
5099 ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5100 ioc->request, ioc->hba_queue_depth,
5101 ioc->request_sz,
5102 (ioc->hba_queue_depth * ioc->request_sz) / 1024));
5103
5104 dinitprintk(ioc,
5105 ioc_info(ioc, "request pool: dma(0x%llx)\n",
5106 (unsigned long long)ioc->request_dma));
5107 total_sz += sz;
5108
5109 dinitprintk(ioc,
5110 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5111 ioc->request, ioc->scsiio_depth));
5112
5113 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5114 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5115 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5116 if (!ioc->chain_lookup) {
5117 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5118 goto out;
5119 }
5120
5121 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5122 for (i = 0; i < ioc->scsiio_depth; i++) {
5123 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5124 if (!ioc->chain_lookup[i].chains_per_smid) {
5125 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5126 goto out;
5127 }
5128 }
5129
5130 /* initialize hi-priority queue smid's */
5131 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5132 sizeof(struct request_tracker), GFP_KERNEL);
5133 if (!ioc->hpr_lookup) {
5134 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5135 goto out;
5136 }
5137 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5138 dinitprintk(ioc,
5139 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5140 ioc->hi_priority,
5141 ioc->hi_priority_depth, ioc->hi_priority_smid));
5142
5143 /* initialize internal queue smid's */
5144 ioc->internal_lookup = kcalloc(ioc->internal_depth,
5145 sizeof(struct request_tracker), GFP_KERNEL);
5146 if (!ioc->internal_lookup) {
5147 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5148 goto out;
5149 }
5150 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5151 dinitprintk(ioc,
5152 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5153 ioc->internal,
5154 ioc->internal_depth, ioc->internal_smid));
5155 /*
5156 * The number of NVMe page sized blocks needed is:
5157 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5158 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5159 * that is placed in the main message frame. 8 is the size of each PRP
5160 * entry or PRP list pointer entry. 8 is subtracted from page_size
5161 * because of the PRP list pointer entry at the end of a page, so this
5162 * is not counted as a PRP entry. The 1 added page is a round up.
5163 *
5164 * To avoid allocation failures due to the amount of memory that could
5165 * be required for NVMe PRP's, only each set of NVMe blocks will be
5166 * contiguous, so a new set is allocated for each possible I/O.
5167 */
5168 ioc->chains_per_prp_buffer = 0;
5169 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5170 nvme_blocks_needed =
5171 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5172 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5173 nvme_blocks_needed++;
5174
5175 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5176 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5177 if (!ioc->pcie_sg_lookup) {
5178 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5179 goto out;
5180 }
5181 sz = nvme_blocks_needed * ioc->page_size;
5182 ioc->pcie_sgl_dma_pool =
5183 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5184 if (!ioc->pcie_sgl_dma_pool) {
5185 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5186 goto out;
5187 }
5188
5189 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5190 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5191 ioc->chains_needed_per_io);
5192
5193 for (i = 0; i < ioc->scsiio_depth; i++) {
5194 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5195 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5196 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5197 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5198 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5199 goto out;
5200 }
5201 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5202 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5203 ct->chain_buffer =
5204 ioc->pcie_sg_lookup[i].pcie_sgl +
5205 (j * ioc->chain_segment_sz);
5206 ct->chain_buffer_dma =
5207 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5208 (j * ioc->chain_segment_sz);
5209 }
5210 }
5211
5212 dinitprintk(ioc,
5213 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5214 ioc->scsiio_depth, sz,
5215 (sz * ioc->scsiio_depth) / 1024));
5216 dinitprintk(ioc,
5217 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5218 ioc->chains_per_prp_buffer));
5219 total_sz += sz * ioc->scsiio_depth;
5220 }
5221
5222 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5223 ioc->chain_segment_sz, 16, 0);
5224 if (!ioc->chain_dma_pool) {
5225 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5226 goto out;
5227 }
5228 for (i = 0; i < ioc->scsiio_depth; i++) {
5229 for (j = ioc->chains_per_prp_buffer;
5230 j < ioc->chains_needed_per_io; j++) {
5231 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5232 ct->chain_buffer = dma_pool_alloc(
5233 ioc->chain_dma_pool, GFP_KERNEL,
5234 &ct->chain_buffer_dma);
5235 if (!ct->chain_buffer) {
5236 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5237 goto out;
5238 }
5239 }
5240 total_sz += ioc->chain_segment_sz;
5241 }
5242
5243 dinitprintk(ioc,
5244 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5245 ioc->chain_depth, ioc->chain_segment_sz,
5246 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5247
5248 /* sense buffers, 4 byte align */
5249 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5250 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5251 4, 0);
5252 if (!ioc->sense_dma_pool) {
5253 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5254 goto out;
5255 }
5256 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5257 &ioc->sense_dma);
5258 if (!ioc->sense) {
5259 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5260 goto out;
5261 }
5262 /* sense buffer requires to be in same 4 gb region.
5263 * Below function will check the same.
5264 * In case of failure, new pci pool will be created with updated
5265 * alignment. Older allocation and pool will be destroyed.
5266 * Alignment will be used such a way that next allocation if
5267 * success, will always meet same 4gb region requirement.
5268 * Actual requirement is not alignment, but we need start and end of
5269 * DMA address must have same upper 32 bit address.
5270 */
5271 if (!is_MSB_are_same((long)ioc->sense, sz)) {
5272 //Release Sense pool & Reallocate
5273 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5274 dma_pool_destroy(ioc->sense_dma_pool);
5275 ioc->sense = NULL;
5276
5277 ioc->sense_dma_pool =
5278 dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5279 roundup_pow_of_two(sz), 0);
5280 if (!ioc->sense_dma_pool) {
5281 ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5282 goto out;
5283 }
5284 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5285 &ioc->sense_dma);
5286 if (!ioc->sense) {
5287 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5288 goto out;
5289 }
5290 }
5291 dinitprintk(ioc,
5292 ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5293 ioc->sense, ioc->scsiio_depth,
5294 SCSI_SENSE_BUFFERSIZE, sz / 1024));
5295 dinitprintk(ioc,
5296 ioc_info(ioc, "sense_dma(0x%llx)\n",
5297 (unsigned long long)ioc->sense_dma));
5298 total_sz += sz;
5299
5300 /* reply pool, 4 byte align */
5301 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5302 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5303 4, 0);
5304 if (!ioc->reply_dma_pool) {
5305 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5306 goto out;
5307 }
5308 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5309 &ioc->reply_dma);
5310 if (!ioc->reply) {
5311 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5312 goto out;
5313 }
5314 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5315 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5316 dinitprintk(ioc,
5317 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5318 ioc->reply, ioc->reply_free_queue_depth,
5319 ioc->reply_sz, sz / 1024));
5320 dinitprintk(ioc,
5321 ioc_info(ioc, "reply_dma(0x%llx)\n",
5322 (unsigned long long)ioc->reply_dma));
5323 total_sz += sz;
5324
5325 /* reply free queue, 16 byte align */
5326 sz = ioc->reply_free_queue_depth * 4;
5327 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5328 &ioc->pdev->dev, sz, 16, 0);
5329 if (!ioc->reply_free_dma_pool) {
5330 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5331 goto out;
5332 }
5333 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5334 &ioc->reply_free_dma);
5335 if (!ioc->reply_free) {
5336 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5337 goto out;
5338 }
5339 dinitprintk(ioc,
5340 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5341 ioc->reply_free, ioc->reply_free_queue_depth,
5342 4, sz / 1024));
5343 dinitprintk(ioc,
5344 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5345 (unsigned long long)ioc->reply_free_dma));
5346 total_sz += sz;
5347
5348 if (ioc->rdpq_array_enable) {
5349 reply_post_free_array_sz = ioc->reply_queue_count *
5350 sizeof(Mpi2IOCInitRDPQArrayEntry);
5351 ioc->reply_post_free_array_dma_pool =
5352 dma_pool_create("reply_post_free_array pool",
5353 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5354 if (!ioc->reply_post_free_array_dma_pool) {
5355 dinitprintk(ioc,
5356 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5357 goto out;
5358 }
5359 ioc->reply_post_free_array =
5360 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5361 GFP_KERNEL, &ioc->reply_post_free_array_dma);
5362 if (!ioc->reply_post_free_array) {
5363 dinitprintk(ioc,
5364 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5365 goto out;
5366 }
5367 }
5368 ioc->config_page_sz = 512;
5369 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5370 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5371 if (!ioc->config_page) {
5372 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5373 goto out;
5374 }
5375 dinitprintk(ioc,
5376 ioc_info(ioc, "config page(0x%p): size(%d)\n",
5377 ioc->config_page, ioc->config_page_sz));
5378 dinitprintk(ioc,
5379 ioc_info(ioc, "config_page_dma(0x%llx)\n",
5380 (unsigned long long)ioc->config_page_dma));
5381 total_sz += ioc->config_page_sz;
5382
5383 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5384 total_sz / 1024);
5385 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5386 ioc->shost->can_queue, facts->RequestCredit);
5387 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5388 ioc->shost->sg_tablesize);
5389 return 0;
5390
5391 out:
5392 return -ENOMEM;
5393 }
5394
5395 /**
5396 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5397 * @ioc: Pointer to MPT_ADAPTER structure
5398 * @cooked: Request raw or cooked IOC state
5399 *
5400 * Return: all IOC Doorbell register bits if cooked==0, else just the
5401 * Doorbell bits in MPI_IOC_STATE_MASK.
5402 */
5403 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)5404 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5405 {
5406 u32 s, sc;
5407
5408 s = ioc->base_readl(&ioc->chip->Doorbell);
5409 sc = s & MPI2_IOC_STATE_MASK;
5410 return cooked ? sc : s;
5411 }
5412
5413 /**
5414 * _base_wait_on_iocstate - waiting on a particular ioc state
5415 * @ioc: ?
5416 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5417 * @timeout: timeout in second
5418 *
5419 * Return: 0 for success, non-zero for failure.
5420 */
5421 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout)5422 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5423 {
5424 u32 count, cntdn;
5425 u32 current_state;
5426
5427 count = 0;
5428 cntdn = 1000 * timeout;
5429 do {
5430 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5431 if (current_state == ioc_state)
5432 return 0;
5433 if (count && current_state == MPI2_IOC_STATE_FAULT)
5434 break;
5435
5436 usleep_range(1000, 1500);
5437 count++;
5438 } while (--cntdn);
5439
5440 return current_state;
5441 }
5442
5443 /**
5444 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5445 * a write to the doorbell)
5446 * @ioc: per adapter object
5447 *
5448 * Return: 0 for success, non-zero for failure.
5449 *
5450 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5451 */
5452
5453 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)5454 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5455 {
5456 u32 cntdn, count;
5457 u32 int_status;
5458
5459 count = 0;
5460 cntdn = 1000 * timeout;
5461 do {
5462 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5463 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5464 dhsprintk(ioc,
5465 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5466 __func__, count, timeout));
5467 return 0;
5468 }
5469
5470 usleep_range(1000, 1500);
5471 count++;
5472 } while (--cntdn);
5473
5474 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5475 __func__, count, int_status);
5476 return -EFAULT;
5477 }
5478
5479 static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)5480 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5481 {
5482 u32 cntdn, count;
5483 u32 int_status;
5484
5485 count = 0;
5486 cntdn = 2000 * timeout;
5487 do {
5488 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5489 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5490 dhsprintk(ioc,
5491 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5492 __func__, count, timeout));
5493 return 0;
5494 }
5495
5496 udelay(500);
5497 count++;
5498 } while (--cntdn);
5499
5500 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5501 __func__, count, int_status);
5502 return -EFAULT;
5503
5504 }
5505
5506 /**
5507 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5508 * @ioc: per adapter object
5509 * @timeout: timeout in second
5510 *
5511 * Return: 0 for success, non-zero for failure.
5512 *
5513 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5514 * doorbell.
5515 */
5516 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout)5517 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5518 {
5519 u32 cntdn, count;
5520 u32 int_status;
5521 u32 doorbell;
5522
5523 count = 0;
5524 cntdn = 1000 * timeout;
5525 do {
5526 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5527 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5528 dhsprintk(ioc,
5529 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5530 __func__, count, timeout));
5531 return 0;
5532 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5533 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5534 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5535 MPI2_IOC_STATE_FAULT) {
5536 mpt3sas_base_fault_info(ioc , doorbell);
5537 return -EFAULT;
5538 }
5539 } else if (int_status == 0xFFFFFFFF)
5540 goto out;
5541
5542 usleep_range(1000, 1500);
5543 count++;
5544 } while (--cntdn);
5545
5546 out:
5547 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5548 __func__, count, int_status);
5549 return -EFAULT;
5550 }
5551
5552 /**
5553 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5554 * @ioc: per adapter object
5555 * @timeout: timeout in second
5556 *
5557 * Return: 0 for success, non-zero for failure.
5558 */
5559 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout)5560 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5561 {
5562 u32 cntdn, count;
5563 u32 doorbell_reg;
5564
5565 count = 0;
5566 cntdn = 1000 * timeout;
5567 do {
5568 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5569 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5570 dhsprintk(ioc,
5571 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5572 __func__, count, timeout));
5573 return 0;
5574 }
5575
5576 usleep_range(1000, 1500);
5577 count++;
5578 } while (--cntdn);
5579
5580 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5581 __func__, count, doorbell_reg);
5582 return -EFAULT;
5583 }
5584
5585 /**
5586 * _base_send_ioc_reset - send doorbell reset
5587 * @ioc: per adapter object
5588 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5589 * @timeout: timeout in second
5590 *
5591 * Return: 0 for success, non-zero for failure.
5592 */
5593 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout)5594 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5595 {
5596 u32 ioc_state;
5597 int r = 0;
5598
5599 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5600 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5601 return -EFAULT;
5602 }
5603
5604 if (!(ioc->facts.IOCCapabilities &
5605 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5606 return -EFAULT;
5607
5608 ioc_info(ioc, "sending message unit reset !!\n");
5609
5610 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5611 &ioc->chip->Doorbell);
5612 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5613 r = -EFAULT;
5614 goto out;
5615 }
5616 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5617 if (ioc_state) {
5618 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5619 __func__, ioc_state);
5620 r = -EFAULT;
5621 goto out;
5622 }
5623 out:
5624 ioc_info(ioc, "message unit reset: %s\n",
5625 r == 0 ? "SUCCESS" : "FAILED");
5626 return r;
5627 }
5628
5629 /**
5630 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5631 * @ioc: per adapter object
5632 * @wait_count: timeout in seconds
5633 *
5634 * Return: Waits up to timeout seconds for the IOC to
5635 * become operational. Returns 0 if IOC is present
5636 * and operational; otherwise returns -EFAULT.
5637 */
5638
5639 int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER * ioc,int timeout)5640 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5641 {
5642 int wait_state_count = 0;
5643 u32 ioc_state;
5644
5645 do {
5646 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5647 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5648 break;
5649 ssleep(1);
5650 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5651 __func__, ++wait_state_count);
5652 } while (--timeout);
5653 if (!timeout) {
5654 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5655 return -EFAULT;
5656 }
5657 if (wait_state_count)
5658 ioc_info(ioc, "ioc is operational\n");
5659 return 0;
5660 }
5661
5662 /**
5663 * _base_handshake_req_reply_wait - send request thru doorbell interface
5664 * @ioc: per adapter object
5665 * @request_bytes: request length
5666 * @request: pointer having request payload
5667 * @reply_bytes: reply length
5668 * @reply: pointer to reply payload
5669 * @timeout: timeout in second
5670 *
5671 * Return: 0 for success, non-zero for failure.
5672 */
5673 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout)5674 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5675 u32 *request, int reply_bytes, u16 *reply, int timeout)
5676 {
5677 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5678 int i;
5679 u8 failed;
5680 __le32 *mfp;
5681
5682 /* make sure doorbell is not in use */
5683 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5684 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5685 return -EFAULT;
5686 }
5687
5688 /* clear pending doorbell interrupts from previous state changes */
5689 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5690 MPI2_HIS_IOC2SYS_DB_STATUS)
5691 writel(0, &ioc->chip->HostInterruptStatus);
5692
5693 /* send message to ioc */
5694 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5695 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5696 &ioc->chip->Doorbell);
5697
5698 if ((_base_spin_on_doorbell_int(ioc, 5))) {
5699 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5700 __LINE__);
5701 return -EFAULT;
5702 }
5703 writel(0, &ioc->chip->HostInterruptStatus);
5704
5705 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5706 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5707 __LINE__);
5708 return -EFAULT;
5709 }
5710
5711 /* send message 32-bits at a time */
5712 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5713 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5714 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5715 failed = 1;
5716 }
5717
5718 if (failed) {
5719 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5720 __LINE__);
5721 return -EFAULT;
5722 }
5723
5724 /* now wait for the reply */
5725 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5726 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5727 __LINE__);
5728 return -EFAULT;
5729 }
5730
5731 /* read the first two 16-bits, it gives the total length of the reply */
5732 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5733 & MPI2_DOORBELL_DATA_MASK);
5734 writel(0, &ioc->chip->HostInterruptStatus);
5735 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5736 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5737 __LINE__);
5738 return -EFAULT;
5739 }
5740 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5741 & MPI2_DOORBELL_DATA_MASK);
5742 writel(0, &ioc->chip->HostInterruptStatus);
5743
5744 for (i = 2; i < default_reply->MsgLength * 2; i++) {
5745 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5746 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5747 __LINE__);
5748 return -EFAULT;
5749 }
5750 if (i >= reply_bytes/2) /* overflow case */
5751 ioc->base_readl(&ioc->chip->Doorbell);
5752 else
5753 reply[i] = le16_to_cpu(
5754 ioc->base_readl(&ioc->chip->Doorbell)
5755 & MPI2_DOORBELL_DATA_MASK);
5756 writel(0, &ioc->chip->HostInterruptStatus);
5757 }
5758
5759 _base_wait_for_doorbell_int(ioc, 5);
5760 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5761 dhsprintk(ioc,
5762 ioc_info(ioc, "doorbell is in use (line=%d)\n",
5763 __LINE__));
5764 }
5765 writel(0, &ioc->chip->HostInterruptStatus);
5766
5767 if (ioc->logging_level & MPT_DEBUG_INIT) {
5768 mfp = (__le32 *)reply;
5769 pr_info("\toffset:data\n");
5770 for (i = 0; i < reply_bytes/4; i++)
5771 pr_info("\t[0x%02x]:%08x\n", i*4,
5772 le32_to_cpu(mfp[i]));
5773 }
5774 return 0;
5775 }
5776
5777 /**
5778 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5779 * @ioc: per adapter object
5780 * @mpi_reply: the reply payload from FW
5781 * @mpi_request: the request payload sent to FW
5782 *
5783 * The SAS IO Unit Control Request message allows the host to perform low-level
5784 * operations, such as resets on the PHYs of the IO Unit, also allows the host
5785 * to obtain the IOC assigned device handles for a device if it has other
5786 * identifying information about the device, in addition allows the host to
5787 * remove IOC resources associated with the device.
5788 *
5789 * Return: 0 for success, non-zero for failure.
5790 */
5791 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)5792 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5793 Mpi2SasIoUnitControlReply_t *mpi_reply,
5794 Mpi2SasIoUnitControlRequest_t *mpi_request)
5795 {
5796 u16 smid;
5797 u8 issue_reset = 0;
5798 int rc;
5799 void *request;
5800
5801 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5802
5803 mutex_lock(&ioc->base_cmds.mutex);
5804
5805 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5806 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5807 rc = -EAGAIN;
5808 goto out;
5809 }
5810
5811 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
5812 if (rc)
5813 goto out;
5814
5815 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5816 if (!smid) {
5817 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5818 rc = -EAGAIN;
5819 goto out;
5820 }
5821
5822 rc = 0;
5823 ioc->base_cmds.status = MPT3_CMD_PENDING;
5824 request = mpt3sas_base_get_msg_frame(ioc, smid);
5825 ioc->base_cmds.smid = smid;
5826 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5827 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5828 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5829 ioc->ioc_link_reset_in_progress = 1;
5830 init_completion(&ioc->base_cmds.done);
5831 ioc->put_smid_default(ioc, smid);
5832 wait_for_completion_timeout(&ioc->base_cmds.done,
5833 msecs_to_jiffies(10000));
5834 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5835 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5836 ioc->ioc_link_reset_in_progress)
5837 ioc->ioc_link_reset_in_progress = 0;
5838 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5839 issue_reset =
5840 mpt3sas_base_check_cmd_timeout(ioc,
5841 ioc->base_cmds.status, mpi_request,
5842 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5843 goto issue_host_reset;
5844 }
5845 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5846 memcpy(mpi_reply, ioc->base_cmds.reply,
5847 sizeof(Mpi2SasIoUnitControlReply_t));
5848 else
5849 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5850 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5851 goto out;
5852
5853 issue_host_reset:
5854 if (issue_reset)
5855 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5856 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5857 rc = -EFAULT;
5858 out:
5859 mutex_unlock(&ioc->base_cmds.mutex);
5860 return rc;
5861 }
5862
5863 /**
5864 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5865 * @ioc: per adapter object
5866 * @mpi_reply: the reply payload from FW
5867 * @mpi_request: the request payload sent to FW
5868 *
5869 * The SCSI Enclosure Processor request message causes the IOC to
5870 * communicate with SES devices to control LED status signals.
5871 *
5872 * Return: 0 for success, non-zero for failure.
5873 */
5874 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)5875 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5876 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5877 {
5878 u16 smid;
5879 u8 issue_reset = 0;
5880 int rc;
5881 void *request;
5882
5883 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5884
5885 mutex_lock(&ioc->base_cmds.mutex);
5886
5887 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5888 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5889 rc = -EAGAIN;
5890 goto out;
5891 }
5892
5893 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
5894 if (rc)
5895 goto out;
5896
5897 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5898 if (!smid) {
5899 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5900 rc = -EAGAIN;
5901 goto out;
5902 }
5903
5904 rc = 0;
5905 ioc->base_cmds.status = MPT3_CMD_PENDING;
5906 request = mpt3sas_base_get_msg_frame(ioc, smid);
5907 ioc->base_cmds.smid = smid;
5908 memset(request, 0, ioc->request_sz);
5909 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5910 init_completion(&ioc->base_cmds.done);
5911 ioc->put_smid_default(ioc, smid);
5912 wait_for_completion_timeout(&ioc->base_cmds.done,
5913 msecs_to_jiffies(10000));
5914 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5915 issue_reset =
5916 mpt3sas_base_check_cmd_timeout(ioc,
5917 ioc->base_cmds.status, mpi_request,
5918 sizeof(Mpi2SepRequest_t)/4);
5919 goto issue_host_reset;
5920 }
5921 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5922 memcpy(mpi_reply, ioc->base_cmds.reply,
5923 sizeof(Mpi2SepReply_t));
5924 else
5925 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5926 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5927 goto out;
5928
5929 issue_host_reset:
5930 if (issue_reset)
5931 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5932 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5933 rc = -EFAULT;
5934 out:
5935 mutex_unlock(&ioc->base_cmds.mutex);
5936 return rc;
5937 }
5938
5939 /**
5940 * _base_get_port_facts - obtain port facts reply and save in ioc
5941 * @ioc: per adapter object
5942 * @port: ?
5943 *
5944 * Return: 0 for success, non-zero for failure.
5945 */
5946 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port)5947 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5948 {
5949 Mpi2PortFactsRequest_t mpi_request;
5950 Mpi2PortFactsReply_t mpi_reply;
5951 struct mpt3sas_port_facts *pfacts;
5952 int mpi_reply_sz, mpi_request_sz, r;
5953
5954 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5955
5956 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5957 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5958 memset(&mpi_request, 0, mpi_request_sz);
5959 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5960 mpi_request.PortNumber = port;
5961 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5962 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5963
5964 if (r != 0) {
5965 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
5966 return r;
5967 }
5968
5969 pfacts = &ioc->pfacts[port];
5970 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5971 pfacts->PortNumber = mpi_reply.PortNumber;
5972 pfacts->VP_ID = mpi_reply.VP_ID;
5973 pfacts->VF_ID = mpi_reply.VF_ID;
5974 pfacts->MaxPostedCmdBuffers =
5975 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5976
5977 return 0;
5978 }
5979
5980 /**
5981 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5982 * @ioc: per adapter object
5983 * @timeout:
5984 *
5985 * Return: 0 for success, non-zero for failure.
5986 */
5987 static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER * ioc,int timeout)5988 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5989 {
5990 u32 ioc_state;
5991 int rc;
5992
5993 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5994
5995 if (ioc->pci_error_recovery) {
5996 dfailprintk(ioc,
5997 ioc_info(ioc, "%s: host in pci error recovery\n",
5998 __func__));
5999 return -EFAULT;
6000 }
6001
6002 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6003 dhsprintk(ioc,
6004 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6005 __func__, ioc_state));
6006
6007 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6008 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6009 return 0;
6010
6011 if (ioc_state & MPI2_DOORBELL_USED) {
6012 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6013 goto issue_diag_reset;
6014 }
6015
6016 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6017 mpt3sas_base_fault_info(ioc, ioc_state &
6018 MPI2_DOORBELL_DATA_MASK);
6019 goto issue_diag_reset;
6020 }
6021
6022 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6023 if (ioc_state) {
6024 dfailprintk(ioc,
6025 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6026 __func__, ioc_state));
6027 return -EFAULT;
6028 }
6029
6030 issue_diag_reset:
6031 rc = _base_diag_reset(ioc);
6032 return rc;
6033 }
6034
6035 /**
6036 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6037 * @ioc: per adapter object
6038 *
6039 * Return: 0 for success, non-zero for failure.
6040 */
6041 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc)6042 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6043 {
6044 Mpi2IOCFactsRequest_t mpi_request;
6045 Mpi2IOCFactsReply_t mpi_reply;
6046 struct mpt3sas_facts *facts;
6047 int mpi_reply_sz, mpi_request_sz, r;
6048
6049 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6050
6051 r = _base_wait_for_iocstate(ioc, 10);
6052 if (r) {
6053 dfailprintk(ioc,
6054 ioc_info(ioc, "%s: failed getting to correct state\n",
6055 __func__));
6056 return r;
6057 }
6058 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6059 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6060 memset(&mpi_request, 0, mpi_request_sz);
6061 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6062 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6063 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6064
6065 if (r != 0) {
6066 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6067 return r;
6068 }
6069
6070 facts = &ioc->facts;
6071 memset(facts, 0, sizeof(struct mpt3sas_facts));
6072 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6073 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6074 facts->VP_ID = mpi_reply.VP_ID;
6075 facts->VF_ID = mpi_reply.VF_ID;
6076 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6077 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6078 facts->WhoInit = mpi_reply.WhoInit;
6079 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6080 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6081 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6082 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6083 ioc->combined_reply_queue = 0;
6084 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6085 facts->MaxReplyDescriptorPostQueueDepth =
6086 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6087 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6088 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6089 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6090 ioc->ir_firmware = 1;
6091 if ((facts->IOCCapabilities &
6092 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6093 ioc->rdpq_array_capable = 1;
6094 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6095 && ioc->is_aero_ioc)
6096 ioc->atomic_desc_capable = 1;
6097 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6098 facts->IOCRequestFrameSize =
6099 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6100 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6101 facts->IOCMaxChainSegmentSize =
6102 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6103 }
6104 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6105 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6106 ioc->shost->max_id = -1;
6107 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6108 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6109 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6110 facts->HighPriorityCredit =
6111 le16_to_cpu(mpi_reply.HighPriorityCredit);
6112 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6113 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6114 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6115
6116 /*
6117 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6118 */
6119 ioc->page_size = 1 << facts->CurrentHostPageSize;
6120 if (ioc->page_size == 1) {
6121 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6122 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6123 }
6124 dinitprintk(ioc,
6125 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6126 facts->CurrentHostPageSize));
6127
6128 dinitprintk(ioc,
6129 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6130 facts->RequestCredit, facts->MaxChainDepth));
6131 dinitprintk(ioc,
6132 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6133 facts->IOCRequestFrameSize * 4,
6134 facts->ReplyFrameSize * 4));
6135 return 0;
6136 }
6137
6138 /**
6139 * _base_send_ioc_init - send ioc_init to firmware
6140 * @ioc: per adapter object
6141 *
6142 * Return: 0 for success, non-zero for failure.
6143 */
6144 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc)6145 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6146 {
6147 Mpi2IOCInitRequest_t mpi_request;
6148 Mpi2IOCInitReply_t mpi_reply;
6149 int i, r = 0;
6150 ktime_t current_time;
6151 u16 ioc_status;
6152 u32 reply_post_free_array_sz = 0;
6153
6154 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6155
6156 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6157 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6158 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6159 mpi_request.VF_ID = 0; /* TODO */
6160 mpi_request.VP_ID = 0;
6161 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6162 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6163 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6164
6165 if (_base_is_controller_msix_enabled(ioc))
6166 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6167 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6168 mpi_request.ReplyDescriptorPostQueueDepth =
6169 cpu_to_le16(ioc->reply_post_queue_depth);
6170 mpi_request.ReplyFreeQueueDepth =
6171 cpu_to_le16(ioc->reply_free_queue_depth);
6172
6173 mpi_request.SenseBufferAddressHigh =
6174 cpu_to_le32((u64)ioc->sense_dma >> 32);
6175 mpi_request.SystemReplyAddressHigh =
6176 cpu_to_le32((u64)ioc->reply_dma >> 32);
6177 mpi_request.SystemRequestFrameBaseAddress =
6178 cpu_to_le64((u64)ioc->request_dma);
6179 mpi_request.ReplyFreeQueueAddress =
6180 cpu_to_le64((u64)ioc->reply_free_dma);
6181
6182 if (ioc->rdpq_array_enable) {
6183 reply_post_free_array_sz = ioc->reply_queue_count *
6184 sizeof(Mpi2IOCInitRDPQArrayEntry);
6185 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6186 for (i = 0; i < ioc->reply_queue_count; i++)
6187 ioc->reply_post_free_array[i].RDPQBaseAddress =
6188 cpu_to_le64(
6189 (u64)ioc->reply_post[i].reply_post_free_dma);
6190 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6191 mpi_request.ReplyDescriptorPostQueueAddress =
6192 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6193 } else {
6194 mpi_request.ReplyDescriptorPostQueueAddress =
6195 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6196 }
6197
6198 /* This time stamp specifies number of milliseconds
6199 * since epoch ~ midnight January 1, 1970.
6200 */
6201 current_time = ktime_get_real();
6202 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6203
6204 if (ioc->logging_level & MPT_DEBUG_INIT) {
6205 __le32 *mfp;
6206 int i;
6207
6208 mfp = (__le32 *)&mpi_request;
6209 pr_info("\toffset:data\n");
6210 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6211 pr_info("\t[0x%02x]:%08x\n", i*4,
6212 le32_to_cpu(mfp[i]));
6213 }
6214
6215 r = _base_handshake_req_reply_wait(ioc,
6216 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6217 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
6218
6219 if (r != 0) {
6220 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6221 return r;
6222 }
6223
6224 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6225 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6226 mpi_reply.IOCLogInfo) {
6227 ioc_err(ioc, "%s: failed\n", __func__);
6228 r = -EIO;
6229 }
6230
6231 return r;
6232 }
6233
6234 /**
6235 * mpt3sas_port_enable_done - command completion routine for port enable
6236 * @ioc: per adapter object
6237 * @smid: system request message index
6238 * @msix_index: MSIX table index supplied by the OS
6239 * @reply: reply message frame(lower 32bit addr)
6240 *
6241 * Return: 1 meaning mf should be freed from _base_interrupt
6242 * 0 means the mf is freed from this function.
6243 */
6244 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)6245 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6246 u32 reply)
6247 {
6248 MPI2DefaultReply_t *mpi_reply;
6249 u16 ioc_status;
6250
6251 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6252 return 1;
6253
6254 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6255 if (!mpi_reply)
6256 return 1;
6257
6258 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6259 return 1;
6260
6261 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6262 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6263 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6264 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6265 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6266 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6267 ioc->port_enable_failed = 1;
6268
6269 if (ioc->is_driver_loading) {
6270 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6271 mpt3sas_port_enable_complete(ioc);
6272 return 1;
6273 } else {
6274 ioc->start_scan_failed = ioc_status;
6275 ioc->start_scan = 0;
6276 return 1;
6277 }
6278 }
6279 complete(&ioc->port_enable_cmds.done);
6280 return 1;
6281 }
6282
6283 /**
6284 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6285 * @ioc: per adapter object
6286 *
6287 * Return: 0 for success, non-zero for failure.
6288 */
6289 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc)6290 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6291 {
6292 Mpi2PortEnableRequest_t *mpi_request;
6293 Mpi2PortEnableReply_t *mpi_reply;
6294 int r = 0;
6295 u16 smid;
6296 u16 ioc_status;
6297
6298 ioc_info(ioc, "sending port enable !!\n");
6299
6300 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6301 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6302 return -EAGAIN;
6303 }
6304
6305 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6306 if (!smid) {
6307 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6308 return -EAGAIN;
6309 }
6310
6311 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6312 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6313 ioc->port_enable_cmds.smid = smid;
6314 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6315 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6316
6317 init_completion(&ioc->port_enable_cmds.done);
6318 ioc->put_smid_default(ioc, smid);
6319 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6320 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6321 ioc_err(ioc, "%s: timeout\n", __func__);
6322 _debug_dump_mf(mpi_request,
6323 sizeof(Mpi2PortEnableRequest_t)/4);
6324 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6325 r = -EFAULT;
6326 else
6327 r = -ETIME;
6328 goto out;
6329 }
6330
6331 mpi_reply = ioc->port_enable_cmds.reply;
6332 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6333 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6334 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6335 __func__, ioc_status);
6336 r = -EFAULT;
6337 goto out;
6338 }
6339
6340 out:
6341 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6342 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6343 return r;
6344 }
6345
6346 /**
6347 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6348 * @ioc: per adapter object
6349 *
6350 * Return: 0 for success, non-zero for failure.
6351 */
6352 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)6353 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6354 {
6355 Mpi2PortEnableRequest_t *mpi_request;
6356 u16 smid;
6357
6358 ioc_info(ioc, "sending port enable !!\n");
6359
6360 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6361 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6362 return -EAGAIN;
6363 }
6364
6365 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6366 if (!smid) {
6367 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6368 return -EAGAIN;
6369 }
6370
6371 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6372 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6373 ioc->port_enable_cmds.smid = smid;
6374 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6375 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6376
6377 ioc->put_smid_default(ioc, smid);
6378 return 0;
6379 }
6380
6381 /**
6382 * _base_determine_wait_on_discovery - desposition
6383 * @ioc: per adapter object
6384 *
6385 * Decide whether to wait on discovery to complete. Used to either
6386 * locate boot device, or report volumes ahead of physical devices.
6387 *
6388 * Return: 1 for wait, 0 for don't wait.
6389 */
6390 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)6391 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6392 {
6393 /* We wait for discovery to complete if IR firmware is loaded.
6394 * The sas topology events arrive before PD events, so we need time to
6395 * turn on the bit in ioc->pd_handles to indicate PD
6396 * Also, it maybe required to report Volumes ahead of physical
6397 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6398 */
6399 if (ioc->ir_firmware)
6400 return 1;
6401
6402 /* if no Bios, then we don't need to wait */
6403 if (!ioc->bios_pg3.BiosVersion)
6404 return 0;
6405
6406 /* Bios is present, then we drop down here.
6407 *
6408 * If there any entries in the Bios Page 2, then we wait
6409 * for discovery to complete.
6410 */
6411
6412 /* Current Boot Device */
6413 if ((ioc->bios_pg2.CurrentBootDeviceForm &
6414 MPI2_BIOSPAGE2_FORM_MASK) ==
6415 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6416 /* Request Boot Device */
6417 (ioc->bios_pg2.ReqBootDeviceForm &
6418 MPI2_BIOSPAGE2_FORM_MASK) ==
6419 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6420 /* Alternate Request Boot Device */
6421 (ioc->bios_pg2.ReqAltBootDeviceForm &
6422 MPI2_BIOSPAGE2_FORM_MASK) ==
6423 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6424 return 0;
6425
6426 return 1;
6427 }
6428
6429 /**
6430 * _base_unmask_events - turn on notification for this event
6431 * @ioc: per adapter object
6432 * @event: firmware event
6433 *
6434 * The mask is stored in ioc->event_masks.
6435 */
6436 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)6437 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6438 {
6439 u32 desired_event;
6440
6441 if (event >= 128)
6442 return;
6443
6444 desired_event = (1 << (event % 32));
6445
6446 if (event < 32)
6447 ioc->event_masks[0] &= ~desired_event;
6448 else if (event < 64)
6449 ioc->event_masks[1] &= ~desired_event;
6450 else if (event < 96)
6451 ioc->event_masks[2] &= ~desired_event;
6452 else if (event < 128)
6453 ioc->event_masks[3] &= ~desired_event;
6454 }
6455
6456 /**
6457 * _base_event_notification - send event notification
6458 * @ioc: per adapter object
6459 *
6460 * Return: 0 for success, non-zero for failure.
6461 */
6462 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc)6463 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6464 {
6465 Mpi2EventNotificationRequest_t *mpi_request;
6466 u16 smid;
6467 int r = 0;
6468 int i;
6469
6470 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6471
6472 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6473 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6474 return -EAGAIN;
6475 }
6476
6477 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6478 if (!smid) {
6479 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6480 return -EAGAIN;
6481 }
6482 ioc->base_cmds.status = MPT3_CMD_PENDING;
6483 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6484 ioc->base_cmds.smid = smid;
6485 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6486 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6487 mpi_request->VF_ID = 0; /* TODO */
6488 mpi_request->VP_ID = 0;
6489 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6490 mpi_request->EventMasks[i] =
6491 cpu_to_le32(ioc->event_masks[i]);
6492 init_completion(&ioc->base_cmds.done);
6493 ioc->put_smid_default(ioc, smid);
6494 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6495 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6496 ioc_err(ioc, "%s: timeout\n", __func__);
6497 _debug_dump_mf(mpi_request,
6498 sizeof(Mpi2EventNotificationRequest_t)/4);
6499 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6500 r = -EFAULT;
6501 else
6502 r = -ETIME;
6503 } else
6504 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6505 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6506 return r;
6507 }
6508
6509 /**
6510 * mpt3sas_base_validate_event_type - validating event types
6511 * @ioc: per adapter object
6512 * @event_type: firmware event
6513 *
6514 * This will turn on firmware event notification when application
6515 * ask for that event. We don't mask events that are already enabled.
6516 */
6517 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)6518 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6519 {
6520 int i, j;
6521 u32 event_mask, desired_event;
6522 u8 send_update_to_fw;
6523
6524 for (i = 0, send_update_to_fw = 0; i <
6525 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6526 event_mask = ~event_type[i];
6527 desired_event = 1;
6528 for (j = 0; j < 32; j++) {
6529 if (!(event_mask & desired_event) &&
6530 (ioc->event_masks[i] & desired_event)) {
6531 ioc->event_masks[i] &= ~desired_event;
6532 send_update_to_fw = 1;
6533 }
6534 desired_event = (desired_event << 1);
6535 }
6536 }
6537
6538 if (!send_update_to_fw)
6539 return;
6540
6541 mutex_lock(&ioc->base_cmds.mutex);
6542 _base_event_notification(ioc);
6543 mutex_unlock(&ioc->base_cmds.mutex);
6544 }
6545
6546 /**
6547 * _base_diag_reset - the "big hammer" start of day reset
6548 * @ioc: per adapter object
6549 *
6550 * Return: 0 for success, non-zero for failure.
6551 */
6552 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc)6553 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6554 {
6555 u32 host_diagnostic;
6556 u32 ioc_state;
6557 u32 count;
6558 u32 hcb_size;
6559
6560 ioc_info(ioc, "sending diag reset !!\n");
6561
6562 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6563
6564 count = 0;
6565 do {
6566 /* Write magic sequence to WriteSequence register
6567 * Loop until in diagnostic mode
6568 */
6569 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6570 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6571 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6572 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6573 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6574 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6575 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6576 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6577
6578 /* wait 100 msec */
6579 msleep(100);
6580
6581 if (count++ > 20)
6582 goto out;
6583
6584 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6585 drsprintk(ioc,
6586 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6587 count, host_diagnostic));
6588
6589 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6590
6591 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6592
6593 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6594 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6595 &ioc->chip->HostDiagnostic);
6596
6597 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6598 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6599
6600 /* Approximately 300 second max wait */
6601 for (count = 0; count < (300000000 /
6602 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6603
6604 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6605
6606 if (host_diagnostic == 0xFFFFFFFF)
6607 goto out;
6608 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6609 break;
6610
6611 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6612 }
6613
6614 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6615
6616 drsprintk(ioc,
6617 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6618 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6619 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6620 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6621
6622 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6623 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6624 &ioc->chip->HCBSize);
6625 }
6626
6627 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6628 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6629 &ioc->chip->HostDiagnostic);
6630
6631 drsprintk(ioc,
6632 ioc_info(ioc, "disable writes to the diagnostic register\n"));
6633 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6634
6635 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6636 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6637 if (ioc_state) {
6638 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6639 __func__, ioc_state);
6640 goto out;
6641 }
6642
6643 ioc_info(ioc, "diag reset: SUCCESS\n");
6644 return 0;
6645
6646 out:
6647 ioc_err(ioc, "diag reset: FAILED\n");
6648 return -EFAULT;
6649 }
6650
6651 /**
6652 * _base_make_ioc_ready - put controller in READY state
6653 * @ioc: per adapter object
6654 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6655 *
6656 * Return: 0 for success, non-zero for failure.
6657 */
6658 static int
_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)6659 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6660 {
6661 u32 ioc_state;
6662 int rc;
6663 int count;
6664
6665 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6666
6667 if (ioc->pci_error_recovery)
6668 return 0;
6669
6670 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6671 dhsprintk(ioc,
6672 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6673 __func__, ioc_state));
6674
6675 /* if in RESET state, it should move to READY state shortly */
6676 count = 0;
6677 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6678 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6679 MPI2_IOC_STATE_READY) {
6680 if (count++ == 10) {
6681 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6682 __func__, ioc_state);
6683 return -EFAULT;
6684 }
6685 ssleep(1);
6686 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6687 }
6688 }
6689
6690 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6691 return 0;
6692
6693 if (ioc_state & MPI2_DOORBELL_USED) {
6694 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6695 goto issue_diag_reset;
6696 }
6697
6698 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6699 mpt3sas_base_fault_info(ioc, ioc_state &
6700 MPI2_DOORBELL_DATA_MASK);
6701 goto issue_diag_reset;
6702 }
6703
6704 if (type == FORCE_BIG_HAMMER)
6705 goto issue_diag_reset;
6706
6707 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6708 if (!(_base_send_ioc_reset(ioc,
6709 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6710 return 0;
6711 }
6712
6713 issue_diag_reset:
6714 rc = _base_diag_reset(ioc);
6715 return rc;
6716 }
6717
6718 /**
6719 * _base_make_ioc_operational - put controller in OPERATIONAL state
6720 * @ioc: per adapter object
6721 *
6722 * Return: 0 for success, non-zero for failure.
6723 */
6724 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc)6725 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6726 {
6727 int r, i, index, rc;
6728 unsigned long flags;
6729 u32 reply_address;
6730 u16 smid;
6731 struct _tr_list *delayed_tr, *delayed_tr_next;
6732 struct _sc_list *delayed_sc, *delayed_sc_next;
6733 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6734 u8 hide_flag;
6735 struct adapter_reply_queue *reply_q;
6736 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6737
6738 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6739
6740 /* clean the delayed target reset list */
6741 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6742 &ioc->delayed_tr_list, list) {
6743 list_del(&delayed_tr->list);
6744 kfree(delayed_tr);
6745 }
6746
6747
6748 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6749 &ioc->delayed_tr_volume_list, list) {
6750 list_del(&delayed_tr->list);
6751 kfree(delayed_tr);
6752 }
6753
6754 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6755 &ioc->delayed_sc_list, list) {
6756 list_del(&delayed_sc->list);
6757 kfree(delayed_sc);
6758 }
6759
6760 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6761 &ioc->delayed_event_ack_list, list) {
6762 list_del(&delayed_event_ack->list);
6763 kfree(delayed_event_ack);
6764 }
6765
6766 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6767
6768 /* hi-priority queue */
6769 INIT_LIST_HEAD(&ioc->hpr_free_list);
6770 smid = ioc->hi_priority_smid;
6771 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6772 ioc->hpr_lookup[i].cb_idx = 0xFF;
6773 ioc->hpr_lookup[i].smid = smid;
6774 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6775 &ioc->hpr_free_list);
6776 }
6777
6778 /* internal queue */
6779 INIT_LIST_HEAD(&ioc->internal_free_list);
6780 smid = ioc->internal_smid;
6781 for (i = 0; i < ioc->internal_depth; i++, smid++) {
6782 ioc->internal_lookup[i].cb_idx = 0xFF;
6783 ioc->internal_lookup[i].smid = smid;
6784 list_add_tail(&ioc->internal_lookup[i].tracker_list,
6785 &ioc->internal_free_list);
6786 }
6787
6788 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6789
6790 /* initialize Reply Free Queue */
6791 for (i = 0, reply_address = (u32)ioc->reply_dma ;
6792 i < ioc->reply_free_queue_depth ; i++, reply_address +=
6793 ioc->reply_sz) {
6794 ioc->reply_free[i] = cpu_to_le32(reply_address);
6795 if (ioc->is_mcpu_endpoint)
6796 _base_clone_reply_to_sys_mem(ioc,
6797 reply_address, i);
6798 }
6799
6800 /* initialize reply queues */
6801 if (ioc->is_driver_loading)
6802 _base_assign_reply_queues(ioc);
6803
6804 /* initialize Reply Post Free Queue */
6805 index = 0;
6806 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6807 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6808 /*
6809 * If RDPQ is enabled, switch to the next allocation.
6810 * Otherwise advance within the contiguous region.
6811 */
6812 if (ioc->rdpq_array_enable) {
6813 reply_q->reply_post_free =
6814 ioc->reply_post[index++].reply_post_free;
6815 } else {
6816 reply_q->reply_post_free = reply_post_free_contig;
6817 reply_post_free_contig += ioc->reply_post_queue_depth;
6818 }
6819
6820 reply_q->reply_post_host_index = 0;
6821 for (i = 0; i < ioc->reply_post_queue_depth; i++)
6822 reply_q->reply_post_free[i].Words =
6823 cpu_to_le64(ULLONG_MAX);
6824 if (!_base_is_controller_msix_enabled(ioc))
6825 goto skip_init_reply_post_free_queue;
6826 }
6827 skip_init_reply_post_free_queue:
6828
6829 r = _base_send_ioc_init(ioc);
6830 if (r) {
6831 /*
6832 * No need to check IOC state for fault state & issue
6833 * diag reset during host reset. This check is need
6834 * only during driver load time.
6835 */
6836 if (!ioc->is_driver_loading)
6837 return r;
6838
6839 rc = _base_check_for_fault_and_issue_reset(ioc);
6840 if (rc || (_base_send_ioc_init(ioc)))
6841 return r;
6842 }
6843
6844 /* initialize reply free host index */
6845 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6846 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6847
6848 /* initialize reply post host index */
6849 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6850 if (ioc->combined_reply_queue)
6851 writel((reply_q->msix_index & 7)<<
6852 MPI2_RPHI_MSIX_INDEX_SHIFT,
6853 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6854 else
6855 writel(reply_q->msix_index <<
6856 MPI2_RPHI_MSIX_INDEX_SHIFT,
6857 &ioc->chip->ReplyPostHostIndex);
6858
6859 if (!_base_is_controller_msix_enabled(ioc))
6860 goto skip_init_reply_post_host_index;
6861 }
6862
6863 skip_init_reply_post_host_index:
6864
6865 _base_unmask_interrupts(ioc);
6866
6867 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6868 r = _base_display_fwpkg_version(ioc);
6869 if (r)
6870 return r;
6871 }
6872
6873 _base_static_config_pages(ioc);
6874 r = _base_event_notification(ioc);
6875 if (r)
6876 return r;
6877
6878 if (ioc->is_driver_loading) {
6879
6880 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6881 == 0x80) {
6882 hide_flag = (u8) (
6883 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6884 MFG_PAGE10_HIDE_SSDS_MASK);
6885 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6886 ioc->mfg_pg10_hide_flag = hide_flag;
6887 }
6888
6889 ioc->wait_for_discovery_to_complete =
6890 _base_determine_wait_on_discovery(ioc);
6891
6892 return r; /* scan_start and scan_finished support */
6893 }
6894
6895 r = _base_send_port_enable(ioc);
6896 if (r)
6897 return r;
6898
6899 return r;
6900 }
6901
6902 /**
6903 * mpt3sas_base_free_resources - free resources controller resources
6904 * @ioc: per adapter object
6905 */
6906 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)6907 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6908 {
6909 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6910
6911 /* synchronizing freeing resource with pci_access_mutex lock */
6912 mutex_lock(&ioc->pci_access_mutex);
6913 if (ioc->chip_phys && ioc->chip) {
6914 _base_mask_interrupts(ioc);
6915 ioc->shost_recovery = 1;
6916 _base_make_ioc_ready(ioc, SOFT_RESET);
6917 ioc->shost_recovery = 0;
6918 }
6919
6920 mpt3sas_base_unmap_resources(ioc);
6921 mutex_unlock(&ioc->pci_access_mutex);
6922 return;
6923 }
6924
6925 /**
6926 * mpt3sas_base_attach - attach controller instance
6927 * @ioc: per adapter object
6928 *
6929 * Return: 0 for success, non-zero for failure.
6930 */
6931 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)6932 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6933 {
6934 int r, i, rc;
6935 int cpu_id, last_cpu_id = 0;
6936
6937 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6938
6939 /* setup cpu_msix_table */
6940 ioc->cpu_count = num_online_cpus();
6941 for_each_online_cpu(cpu_id)
6942 last_cpu_id = cpu_id;
6943 ioc->cpu_msix_table_sz = last_cpu_id + 1;
6944 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6945 ioc->reply_queue_count = 1;
6946 if (!ioc->cpu_msix_table) {
6947 dfailprintk(ioc,
6948 ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n"));
6949 r = -ENOMEM;
6950 goto out_free_resources;
6951 }
6952
6953 if (ioc->is_warpdrive) {
6954 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6955 sizeof(resource_size_t *), GFP_KERNEL);
6956 if (!ioc->reply_post_host_index) {
6957 dfailprintk(ioc,
6958 ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n"));
6959 r = -ENOMEM;
6960 goto out_free_resources;
6961 }
6962 }
6963
6964 ioc->smp_affinity_enable = smp_affinity_enable;
6965
6966 ioc->rdpq_array_enable_assigned = 0;
6967 ioc->dma_mask = 0;
6968 if (ioc->is_aero_ioc)
6969 ioc->base_readl = &_base_readl_aero;
6970 else
6971 ioc->base_readl = &_base_readl;
6972 r = mpt3sas_base_map_resources(ioc);
6973 if (r)
6974 goto out_free_resources;
6975
6976 pci_set_drvdata(ioc->pdev, ioc->shost);
6977 r = _base_get_ioc_facts(ioc);
6978 if (r) {
6979 rc = _base_check_for_fault_and_issue_reset(ioc);
6980 if (rc || (_base_get_ioc_facts(ioc)))
6981 goto out_free_resources;
6982 }
6983
6984 switch (ioc->hba_mpi_version_belonged) {
6985 case MPI2_VERSION:
6986 ioc->build_sg_scmd = &_base_build_sg_scmd;
6987 ioc->build_sg = &_base_build_sg;
6988 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6989 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
6990 break;
6991 case MPI25_VERSION:
6992 case MPI26_VERSION:
6993 /*
6994 * In SAS3.0,
6995 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6996 * Target Status - all require the IEEE formated scatter gather
6997 * elements.
6998 */
6999 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7000 ioc->build_sg = &_base_build_sg_ieee;
7001 ioc->build_nvme_prp = &_base_build_nvme_prp;
7002 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7003 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7004 if (ioc->high_iops_queues)
7005 ioc->get_msix_index_for_smlio =
7006 &_base_get_high_iops_msix_index;
7007 else
7008 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7009 break;
7010 }
7011 if (ioc->atomic_desc_capable) {
7012 ioc->put_smid_default = &_base_put_smid_default_atomic;
7013 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7014 ioc->put_smid_fast_path =
7015 &_base_put_smid_fast_path_atomic;
7016 ioc->put_smid_hi_priority =
7017 &_base_put_smid_hi_priority_atomic;
7018 } else {
7019 ioc->put_smid_default = &_base_put_smid_default;
7020 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7021 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7022 if (ioc->is_mcpu_endpoint)
7023 ioc->put_smid_scsi_io =
7024 &_base_put_smid_mpi_ep_scsi_io;
7025 else
7026 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7027 }
7028 /*
7029 * These function pointers for other requests that don't
7030 * the require IEEE scatter gather elements.
7031 *
7032 * For example Configuration Pages and SAS IOUNIT Control don't.
7033 */
7034 ioc->build_sg_mpi = &_base_build_sg;
7035 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7036
7037 r = _base_make_ioc_ready(ioc, SOFT_RESET);
7038 if (r)
7039 goto out_free_resources;
7040
7041 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7042 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7043 if (!ioc->pfacts) {
7044 r = -ENOMEM;
7045 goto out_free_resources;
7046 }
7047
7048 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7049 r = _base_get_port_facts(ioc, i);
7050 if (r) {
7051 rc = _base_check_for_fault_and_issue_reset(ioc);
7052 if (rc || (_base_get_port_facts(ioc, i)))
7053 goto out_free_resources;
7054 }
7055 }
7056
7057 r = _base_allocate_memory_pools(ioc);
7058 if (r)
7059 goto out_free_resources;
7060
7061 if (irqpoll_weight > 0)
7062 ioc->thresh_hold = irqpoll_weight;
7063 else
7064 ioc->thresh_hold = ioc->hba_queue_depth/4;
7065
7066 _base_init_irqpolls(ioc);
7067 init_waitqueue_head(&ioc->reset_wq);
7068
7069 /* allocate memory pd handle bitmask list */
7070 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7071 if (ioc->facts.MaxDevHandle % 8)
7072 ioc->pd_handles_sz++;
7073 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7074 GFP_KERNEL);
7075 if (!ioc->pd_handles) {
7076 r = -ENOMEM;
7077 goto out_free_resources;
7078 }
7079 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7080 GFP_KERNEL);
7081 if (!ioc->blocking_handles) {
7082 r = -ENOMEM;
7083 goto out_free_resources;
7084 }
7085
7086 /* allocate memory for pending OS device add list */
7087 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7088 if (ioc->facts.MaxDevHandle % 8)
7089 ioc->pend_os_device_add_sz++;
7090 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7091 GFP_KERNEL);
7092 if (!ioc->pend_os_device_add)
7093 goto out_free_resources;
7094
7095 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7096 ioc->device_remove_in_progress =
7097 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7098 if (!ioc->device_remove_in_progress)
7099 goto out_free_resources;
7100
7101 ioc->fwfault_debug = mpt3sas_fwfault_debug;
7102
7103 /* base internal command bits */
7104 mutex_init(&ioc->base_cmds.mutex);
7105 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7106 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7107
7108 /* port_enable command bits */
7109 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7110 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7111
7112 /* transport internal command bits */
7113 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7114 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7115 mutex_init(&ioc->transport_cmds.mutex);
7116
7117 /* scsih internal command bits */
7118 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7119 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7120 mutex_init(&ioc->scsih_cmds.mutex);
7121
7122 /* task management internal command bits */
7123 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7124 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7125 mutex_init(&ioc->tm_cmds.mutex);
7126
7127 /* config page internal command bits */
7128 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7129 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7130 mutex_init(&ioc->config_cmds.mutex);
7131
7132 /* ctl module internal command bits */
7133 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7134 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7135 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7136 mutex_init(&ioc->ctl_cmds.mutex);
7137
7138 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7139 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7140 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7141 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7142 r = -ENOMEM;
7143 goto out_free_resources;
7144 }
7145
7146 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7147 ioc->event_masks[i] = -1;
7148
7149 /* here we enable the events we care about */
7150 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7151 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7152 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7153 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7154 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7155 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7156 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7157 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7158 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7159 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7160 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7161 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7162 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7163 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7164 if (ioc->is_gen35_ioc) {
7165 _base_unmask_events(ioc,
7166 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7167 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7168 _base_unmask_events(ioc,
7169 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7170 }
7171 }
7172 r = _base_make_ioc_operational(ioc);
7173 if (r)
7174 goto out_free_resources;
7175
7176 /*
7177 * Copy current copy of IOCFacts in prev_fw_facts
7178 * and it will be used during online firmware upgrade.
7179 */
7180 memcpy(&ioc->prev_fw_facts, &ioc->facts,
7181 sizeof(struct mpt3sas_facts));
7182
7183 ioc->non_operational_loop = 0;
7184 ioc->got_task_abort_from_ioctl = 0;
7185 return 0;
7186
7187 out_free_resources:
7188
7189 ioc->remove_host = 1;
7190
7191 mpt3sas_base_free_resources(ioc);
7192 _base_release_memory_pools(ioc);
7193 pci_set_drvdata(ioc->pdev, NULL);
7194 kfree(ioc->cpu_msix_table);
7195 if (ioc->is_warpdrive)
7196 kfree(ioc->reply_post_host_index);
7197 kfree(ioc->pd_handles);
7198 kfree(ioc->blocking_handles);
7199 kfree(ioc->device_remove_in_progress);
7200 kfree(ioc->pend_os_device_add);
7201 kfree(ioc->tm_cmds.reply);
7202 kfree(ioc->transport_cmds.reply);
7203 kfree(ioc->scsih_cmds.reply);
7204 kfree(ioc->config_cmds.reply);
7205 kfree(ioc->base_cmds.reply);
7206 kfree(ioc->port_enable_cmds.reply);
7207 kfree(ioc->ctl_cmds.reply);
7208 kfree(ioc->ctl_cmds.sense);
7209 kfree(ioc->pfacts);
7210 ioc->ctl_cmds.reply = NULL;
7211 ioc->base_cmds.reply = NULL;
7212 ioc->tm_cmds.reply = NULL;
7213 ioc->scsih_cmds.reply = NULL;
7214 ioc->transport_cmds.reply = NULL;
7215 ioc->config_cmds.reply = NULL;
7216 ioc->pfacts = NULL;
7217 return r;
7218 }
7219
7220
7221 /**
7222 * mpt3sas_base_detach - remove controller instance
7223 * @ioc: per adapter object
7224 */
7225 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)7226 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7227 {
7228 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7229
7230 mpt3sas_base_stop_watchdog(ioc);
7231 mpt3sas_base_free_resources(ioc);
7232 _base_release_memory_pools(ioc);
7233 mpt3sas_free_enclosure_list(ioc);
7234 pci_set_drvdata(ioc->pdev, NULL);
7235 kfree(ioc->cpu_msix_table);
7236 if (ioc->is_warpdrive)
7237 kfree(ioc->reply_post_host_index);
7238 kfree(ioc->pd_handles);
7239 kfree(ioc->blocking_handles);
7240 kfree(ioc->device_remove_in_progress);
7241 kfree(ioc->pend_os_device_add);
7242 kfree(ioc->pfacts);
7243 kfree(ioc->ctl_cmds.reply);
7244 kfree(ioc->ctl_cmds.sense);
7245 kfree(ioc->base_cmds.reply);
7246 kfree(ioc->port_enable_cmds.reply);
7247 kfree(ioc->tm_cmds.reply);
7248 kfree(ioc->transport_cmds.reply);
7249 kfree(ioc->scsih_cmds.reply);
7250 kfree(ioc->config_cmds.reply);
7251 }
7252
7253 /**
7254 * _base_pre_reset_handler - pre reset handler
7255 * @ioc: per adapter object
7256 */
_base_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)7257 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7258 {
7259 mpt3sas_scsih_pre_reset_handler(ioc);
7260 mpt3sas_ctl_pre_reset_handler(ioc);
7261 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7262 }
7263
7264 /**
7265 * _base_after_reset_handler - after reset handler
7266 * @ioc: per adapter object
7267 */
_base_after_reset_handler(struct MPT3SAS_ADAPTER * ioc)7268 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7269 {
7270 mpt3sas_scsih_after_reset_handler(ioc);
7271 mpt3sas_ctl_after_reset_handler(ioc);
7272 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__));
7273 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7274 ioc->transport_cmds.status |= MPT3_CMD_RESET;
7275 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7276 complete(&ioc->transport_cmds.done);
7277 }
7278 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7279 ioc->base_cmds.status |= MPT3_CMD_RESET;
7280 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7281 complete(&ioc->base_cmds.done);
7282 }
7283 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7284 ioc->port_enable_failed = 1;
7285 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7286 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7287 if (ioc->is_driver_loading) {
7288 ioc->start_scan_failed =
7289 MPI2_IOCSTATUS_INTERNAL_ERROR;
7290 ioc->start_scan = 0;
7291 ioc->port_enable_cmds.status =
7292 MPT3_CMD_NOT_USED;
7293 } else {
7294 complete(&ioc->port_enable_cmds.done);
7295 }
7296 }
7297 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7298 ioc->config_cmds.status |= MPT3_CMD_RESET;
7299 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7300 ioc->config_cmds.smid = USHRT_MAX;
7301 complete(&ioc->config_cmds.done);
7302 }
7303 }
7304
7305 /**
7306 * _base_reset_done_handler - reset done handler
7307 * @ioc: per adapter object
7308 */
_base_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)7309 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7310 {
7311 mpt3sas_scsih_reset_done_handler(ioc);
7312 mpt3sas_ctl_reset_done_handler(ioc);
7313 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7314 }
7315
7316 /**
7317 * mpt3sas_wait_for_commands_to_complete - reset controller
7318 * @ioc: Pointer to MPT_ADAPTER structure
7319 *
7320 * This function is waiting 10s for all pending commands to complete
7321 * prior to putting controller in reset.
7322 */
7323 void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc)7324 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7325 {
7326 u32 ioc_state;
7327
7328 ioc->pending_io_count = 0;
7329
7330 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7331 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7332 return;
7333
7334 /* pending command count */
7335 ioc->pending_io_count = scsi_host_busy(ioc->shost);
7336
7337 if (!ioc->pending_io_count)
7338 return;
7339
7340 /* wait for pending commands to complete */
7341 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7342 }
7343
7344 /**
7345 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7346 * attributes during online firmware upgrade and update the corresponding
7347 * IOC variables accordingly.
7348 *
7349 * @ioc: Pointer to MPT_ADAPTER structure
7350 */
7351 static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER * ioc)7352 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7353 {
7354 u16 pd_handles_sz;
7355 void *pd_handles = NULL, *blocking_handles = NULL;
7356 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7357 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7358
7359 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7360 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7361 if (ioc->facts.MaxDevHandle % 8)
7362 pd_handles_sz++;
7363
7364 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7365 GFP_KERNEL);
7366 if (!pd_handles) {
7367 ioc_info(ioc,
7368 "Unable to allocate the memory for pd_handles of sz: %d\n",
7369 pd_handles_sz);
7370 return -ENOMEM;
7371 }
7372 memset(pd_handles + ioc->pd_handles_sz, 0,
7373 (pd_handles_sz - ioc->pd_handles_sz));
7374 ioc->pd_handles = pd_handles;
7375
7376 blocking_handles = krealloc(ioc->blocking_handles,
7377 pd_handles_sz, GFP_KERNEL);
7378 if (!blocking_handles) {
7379 ioc_info(ioc,
7380 "Unable to allocate the memory for "
7381 "blocking_handles of sz: %d\n",
7382 pd_handles_sz);
7383 return -ENOMEM;
7384 }
7385 memset(blocking_handles + ioc->pd_handles_sz, 0,
7386 (pd_handles_sz - ioc->pd_handles_sz));
7387 ioc->blocking_handles = blocking_handles;
7388 ioc->pd_handles_sz = pd_handles_sz;
7389
7390 pend_os_device_add = krealloc(ioc->pend_os_device_add,
7391 pd_handles_sz, GFP_KERNEL);
7392 if (!pend_os_device_add) {
7393 ioc_info(ioc,
7394 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7395 pd_handles_sz);
7396 return -ENOMEM;
7397 }
7398 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7399 (pd_handles_sz - ioc->pend_os_device_add_sz));
7400 ioc->pend_os_device_add = pend_os_device_add;
7401 ioc->pend_os_device_add_sz = pd_handles_sz;
7402
7403 device_remove_in_progress = krealloc(
7404 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7405 if (!device_remove_in_progress) {
7406 ioc_info(ioc,
7407 "Unable to allocate the memory for "
7408 "device_remove_in_progress of sz: %d\n "
7409 , pd_handles_sz);
7410 return -ENOMEM;
7411 }
7412 memset(device_remove_in_progress +
7413 ioc->device_remove_in_progress_sz, 0,
7414 (pd_handles_sz - ioc->device_remove_in_progress_sz));
7415 ioc->device_remove_in_progress = device_remove_in_progress;
7416 ioc->device_remove_in_progress_sz = pd_handles_sz;
7417 }
7418
7419 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7420 return 0;
7421 }
7422
7423 /**
7424 * mpt3sas_base_hard_reset_handler - reset controller
7425 * @ioc: Pointer to MPT_ADAPTER structure
7426 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7427 *
7428 * Return: 0 for success, non-zero for failure.
7429 */
7430 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)7431 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7432 enum reset_type type)
7433 {
7434 int r;
7435 unsigned long flags;
7436 u32 ioc_state;
7437 u8 is_fault = 0, is_trigger = 0;
7438
7439 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7440
7441 if (ioc->pci_error_recovery) {
7442 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7443 r = 0;
7444 goto out_unlocked;
7445 }
7446
7447 if (mpt3sas_fwfault_debug)
7448 mpt3sas_halt_firmware(ioc);
7449
7450 /* wait for an active reset in progress to complete */
7451 mutex_lock(&ioc->reset_in_progress_mutex);
7452
7453 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7454 ioc->shost_recovery = 1;
7455 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7456
7457 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7458 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7459 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7460 MPT3_DIAG_BUFFER_IS_RELEASED))) {
7461 is_trigger = 1;
7462 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7463 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
7464 is_fault = 1;
7465 }
7466 _base_pre_reset_handler(ioc);
7467 mpt3sas_wait_for_commands_to_complete(ioc);
7468 _base_mask_interrupts(ioc);
7469 r = _base_make_ioc_ready(ioc, type);
7470 if (r)
7471 goto out;
7472 _base_after_reset_handler(ioc);
7473
7474 /* If this hard reset is called while port enable is active, then
7475 * there is no reason to call make_ioc_operational
7476 */
7477 if (ioc->is_driver_loading && ioc->port_enable_failed) {
7478 ioc->remove_host = 1;
7479 r = -EFAULT;
7480 goto out;
7481 }
7482 r = _base_get_ioc_facts(ioc);
7483 if (r)
7484 goto out;
7485
7486 r = _base_check_ioc_facts_changes(ioc);
7487 if (r) {
7488 ioc_info(ioc,
7489 "Some of the parameters got changed in this new firmware"
7490 " image and it requires system reboot\n");
7491 goto out;
7492 }
7493 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7494 panic("%s: Issue occurred with flashing controller firmware."
7495 "Please reboot the system and ensure that the correct"
7496 " firmware version is running\n", ioc->name);
7497
7498 r = _base_make_ioc_operational(ioc);
7499 if (!r)
7500 _base_reset_done_handler(ioc);
7501
7502 out:
7503 dtmprintk(ioc,
7504 ioc_info(ioc, "%s: %s\n",
7505 __func__, r == 0 ? "SUCCESS" : "FAILED"));
7506
7507 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7508 ioc->shost_recovery = 0;
7509 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7510 ioc->ioc_reset_count++;
7511 mutex_unlock(&ioc->reset_in_progress_mutex);
7512
7513 out_unlocked:
7514 if ((r == 0) && is_trigger) {
7515 if (is_fault)
7516 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7517 else
7518 mpt3sas_trigger_master(ioc,
7519 MASTER_TRIGGER_ADAPTER_RESET);
7520 }
7521 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7522 return r;
7523 }
7524