1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/locking/mutex.c
4 *
5 * Mutexes: blocking mutual exclusion locks
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 *
11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12 * David Howells for suggestions and improvements.
13 *
14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15 * from the -rt tree, where it was originally implemented for rtmutexes
16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17 * and Sven Dietrich.
18 *
19 * Also see Documentation/locking/mutex-design.rst.
20 */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 #else
36 # include "mutex.h"
37 #endif
38
39 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)40 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
41 {
42 atomic_long_set(&lock->owner, 0);
43 spin_lock_init(&lock->wait_lock);
44 INIT_LIST_HEAD(&lock->wait_list);
45 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
46 osq_lock_init(&lock->osq);
47 #endif
48
49 debug_mutex_init(lock, name, key);
50 }
51 EXPORT_SYMBOL(__mutex_init);
52
53 /*
54 * @owner: contains: 'struct task_struct *' to the current lock owner,
55 * NULL means not owned. Since task_struct pointers are aligned at
56 * at least L1_CACHE_BYTES, we have low bits to store extra state.
57 *
58 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
59 * Bit1 indicates unlock needs to hand the lock to the top-waiter
60 * Bit2 indicates handoff has been done and we're waiting for pickup.
61 */
62 #define MUTEX_FLAG_WAITERS 0x01
63 #define MUTEX_FLAG_HANDOFF 0x02
64 #define MUTEX_FLAG_PICKUP 0x04
65
66 #define MUTEX_FLAGS 0x07
67
68 /*
69 * Internal helper function; C doesn't allow us to hide it :/
70 *
71 * DO NOT USE (outside of mutex code).
72 */
__mutex_owner(struct mutex * lock)73 static inline struct task_struct *__mutex_owner(struct mutex *lock)
74 {
75 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
76 }
77
__owner_task(unsigned long owner)78 static inline struct task_struct *__owner_task(unsigned long owner)
79 {
80 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
81 }
82
mutex_is_locked(struct mutex * lock)83 bool mutex_is_locked(struct mutex *lock)
84 {
85 return __mutex_owner(lock) != NULL;
86 }
87 EXPORT_SYMBOL(mutex_is_locked);
88
89 __must_check enum mutex_trylock_recursive_enum
mutex_trylock_recursive(struct mutex * lock)90 mutex_trylock_recursive(struct mutex *lock)
91 {
92 if (unlikely(__mutex_owner(lock) == current))
93 return MUTEX_TRYLOCK_RECURSIVE;
94
95 return mutex_trylock(lock);
96 }
97 EXPORT_SYMBOL(mutex_trylock_recursive);
98
__owner_flags(unsigned long owner)99 static inline unsigned long __owner_flags(unsigned long owner)
100 {
101 return owner & MUTEX_FLAGS;
102 }
103
104 /*
105 * Trylock variant that retuns the owning task on failure.
106 */
__mutex_trylock_or_owner(struct mutex * lock)107 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
108 {
109 unsigned long owner, curr = (unsigned long)current;
110
111 owner = atomic_long_read(&lock->owner);
112 for (;;) { /* must loop, can race against a flag */
113 unsigned long old, flags = __owner_flags(owner);
114 unsigned long task = owner & ~MUTEX_FLAGS;
115
116 if (task) {
117 if (likely(task != curr))
118 break;
119
120 if (likely(!(flags & MUTEX_FLAG_PICKUP)))
121 break;
122
123 flags &= ~MUTEX_FLAG_PICKUP;
124 } else {
125 #ifdef CONFIG_DEBUG_MUTEXES
126 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
127 #endif
128 }
129
130 /*
131 * We set the HANDOFF bit, we must make sure it doesn't live
132 * past the point where we acquire it. This would be possible
133 * if we (accidentally) set the bit on an unlocked mutex.
134 */
135 flags &= ~MUTEX_FLAG_HANDOFF;
136
137 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
138 if (old == owner)
139 return NULL;
140
141 owner = old;
142 }
143
144 return __owner_task(owner);
145 }
146
147 /*
148 * Actual trylock that will work on any unlocked state.
149 */
__mutex_trylock(struct mutex * lock)150 static inline bool __mutex_trylock(struct mutex *lock)
151 {
152 return !__mutex_trylock_or_owner(lock);
153 }
154
155 #ifndef CONFIG_DEBUG_LOCK_ALLOC
156 /*
157 * Lockdep annotations are contained to the slow paths for simplicity.
158 * There is nothing that would stop spreading the lockdep annotations outwards
159 * except more code.
160 */
161
162 /*
163 * Optimistic trylock that only works in the uncontended case. Make sure to
164 * follow with a __mutex_trylock() before failing.
165 */
__mutex_trylock_fast(struct mutex * lock)166 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
167 {
168 unsigned long curr = (unsigned long)current;
169 unsigned long zero = 0UL;
170
171 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
172 return true;
173
174 return false;
175 }
176
__mutex_unlock_fast(struct mutex * lock)177 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
178 {
179 unsigned long curr = (unsigned long)current;
180
181 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
182 return true;
183
184 return false;
185 }
186 #endif
187
__mutex_set_flag(struct mutex * lock,unsigned long flag)188 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
189 {
190 atomic_long_or(flag, &lock->owner);
191 }
192
__mutex_clear_flag(struct mutex * lock,unsigned long flag)193 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
194 {
195 atomic_long_andnot(flag, &lock->owner);
196 }
197
__mutex_waiter_is_first(struct mutex * lock,struct mutex_waiter * waiter)198 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
199 {
200 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
201 }
202
203 /*
204 * Add @waiter to a given location in the lock wait_list and set the
205 * FLAG_WAITERS flag if it's the first waiter.
206 */
207 static void __sched
__mutex_add_waiter(struct mutex * lock,struct mutex_waiter * waiter,struct list_head * list)208 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
209 struct list_head *list)
210 {
211 debug_mutex_add_waiter(lock, waiter, current);
212
213 list_add_tail(&waiter->list, list);
214 if (__mutex_waiter_is_first(lock, waiter))
215 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
216 }
217
218 /*
219 * Give up ownership to a specific task, when @task = NULL, this is equivalent
220 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
221 * WAITERS. Provides RELEASE semantics like a regular unlock, the
222 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
223 */
__mutex_handoff(struct mutex * lock,struct task_struct * task)224 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
225 {
226 unsigned long owner = atomic_long_read(&lock->owner);
227
228 for (;;) {
229 unsigned long old, new;
230
231 #ifdef CONFIG_DEBUG_MUTEXES
232 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
233 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
234 #endif
235
236 new = (owner & MUTEX_FLAG_WAITERS);
237 new |= (unsigned long)task;
238 if (task)
239 new |= MUTEX_FLAG_PICKUP;
240
241 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
242 if (old == owner)
243 break;
244
245 owner = old;
246 }
247 }
248
249 #ifndef CONFIG_DEBUG_LOCK_ALLOC
250 /*
251 * We split the mutex lock/unlock logic into separate fastpath and
252 * slowpath functions, to reduce the register pressure on the fastpath.
253 * We also put the fastpath first in the kernel image, to make sure the
254 * branch is predicted by the CPU as default-untaken.
255 */
256 static void __sched __mutex_lock_slowpath(struct mutex *lock);
257
258 /**
259 * mutex_lock - acquire the mutex
260 * @lock: the mutex to be acquired
261 *
262 * Lock the mutex exclusively for this task. If the mutex is not
263 * available right now, it will sleep until it can get it.
264 *
265 * The mutex must later on be released by the same task that
266 * acquired it. Recursive locking is not allowed. The task
267 * may not exit without first unlocking the mutex. Also, kernel
268 * memory where the mutex resides must not be freed with
269 * the mutex still locked. The mutex must first be initialized
270 * (or statically defined) before it can be locked. memset()-ing
271 * the mutex to 0 is not allowed.
272 *
273 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
274 * checks that will enforce the restrictions and will also do
275 * deadlock debugging)
276 *
277 * This function is similar to (but not equivalent to) down().
278 */
mutex_lock(struct mutex * lock)279 void __sched mutex_lock(struct mutex *lock)
280 {
281 might_sleep();
282
283 if (!__mutex_trylock_fast(lock))
284 __mutex_lock_slowpath(lock);
285 }
286 EXPORT_SYMBOL(mutex_lock);
287 #endif
288
289 /*
290 * Wait-Die:
291 * The newer transactions are killed when:
292 * It (the new transaction) makes a request for a lock being held
293 * by an older transaction.
294 *
295 * Wound-Wait:
296 * The newer transactions are wounded when:
297 * An older transaction makes a request for a lock being held by
298 * the newer transaction.
299 */
300
301 /*
302 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
303 * it.
304 */
305 static __always_inline void
ww_mutex_lock_acquired(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)306 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
307 {
308 #ifdef CONFIG_DEBUG_MUTEXES
309 /*
310 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
311 * but released with a normal mutex_unlock in this call.
312 *
313 * This should never happen, always use ww_mutex_unlock.
314 */
315 DEBUG_LOCKS_WARN_ON(ww->ctx);
316
317 /*
318 * Not quite done after calling ww_acquire_done() ?
319 */
320 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
321
322 if (ww_ctx->contending_lock) {
323 /*
324 * After -EDEADLK you tried to
325 * acquire a different ww_mutex? Bad!
326 */
327 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
328
329 /*
330 * You called ww_mutex_lock after receiving -EDEADLK,
331 * but 'forgot' to unlock everything else first?
332 */
333 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
334 ww_ctx->contending_lock = NULL;
335 }
336
337 /*
338 * Naughty, using a different class will lead to undefined behavior!
339 */
340 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
341 #endif
342 ww_ctx->acquired++;
343 ww->ctx = ww_ctx;
344 }
345
346 /*
347 * Determine if context @a is 'after' context @b. IOW, @a is a younger
348 * transaction than @b and depending on algorithm either needs to wait for
349 * @b or die.
350 */
351 static inline bool __sched
__ww_ctx_stamp_after(struct ww_acquire_ctx * a,struct ww_acquire_ctx * b)352 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
353 {
354
355 return (signed long)(a->stamp - b->stamp) > 0;
356 }
357
358 /*
359 * Wait-Die; wake a younger waiter context (when locks held) such that it can
360 * die.
361 *
362 * Among waiters with context, only the first one can have other locks acquired
363 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
364 * __ww_mutex_check_kill() wake any but the earliest context.
365 */
366 static bool __sched
__ww_mutex_die(struct mutex * lock,struct mutex_waiter * waiter,struct ww_acquire_ctx * ww_ctx)367 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
368 struct ww_acquire_ctx *ww_ctx)
369 {
370 if (!ww_ctx->is_wait_die)
371 return false;
372
373 if (waiter->ww_ctx->acquired > 0 &&
374 __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
375 debug_mutex_wake_waiter(lock, waiter);
376 wake_up_process(waiter->task);
377 }
378
379 return true;
380 }
381
382 /*
383 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
384 *
385 * Wound the lock holder if there are waiters with older transactions than
386 * the lock holders. Even if multiple waiters may wound the lock holder,
387 * it's sufficient that only one does.
388 */
__ww_mutex_wound(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct ww_acquire_ctx * hold_ctx)389 static bool __ww_mutex_wound(struct mutex *lock,
390 struct ww_acquire_ctx *ww_ctx,
391 struct ww_acquire_ctx *hold_ctx)
392 {
393 struct task_struct *owner = __mutex_owner(lock);
394
395 lockdep_assert_held(&lock->wait_lock);
396
397 /*
398 * Possible through __ww_mutex_add_waiter() when we race with
399 * ww_mutex_set_context_fastpath(). In that case we'll get here again
400 * through __ww_mutex_check_waiters().
401 */
402 if (!hold_ctx)
403 return false;
404
405 /*
406 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
407 * it cannot go away because we'll have FLAG_WAITERS set and hold
408 * wait_lock.
409 */
410 if (!owner)
411 return false;
412
413 if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
414 hold_ctx->wounded = 1;
415
416 /*
417 * wake_up_process() paired with set_current_state()
418 * inserts sufficient barriers to make sure @owner either sees
419 * it's wounded in __ww_mutex_check_kill() or has a
420 * wakeup pending to re-read the wounded state.
421 */
422 if (owner != current)
423 wake_up_process(owner);
424
425 return true;
426 }
427
428 return false;
429 }
430
431 /*
432 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
433 * behind us on the wait-list, check if they need to die, or wound us.
434 *
435 * See __ww_mutex_add_waiter() for the list-order construction; basically the
436 * list is ordered by stamp, smallest (oldest) first.
437 *
438 * This relies on never mixing wait-die/wound-wait on the same wait-list;
439 * which is currently ensured by that being a ww_class property.
440 *
441 * The current task must not be on the wait list.
442 */
443 static void __sched
__ww_mutex_check_waiters(struct mutex * lock,struct ww_acquire_ctx * ww_ctx)444 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
445 {
446 struct mutex_waiter *cur;
447
448 lockdep_assert_held(&lock->wait_lock);
449
450 list_for_each_entry(cur, &lock->wait_list, list) {
451 if (!cur->ww_ctx)
452 continue;
453
454 if (__ww_mutex_die(lock, cur, ww_ctx) ||
455 __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
456 break;
457 }
458 }
459
460 /*
461 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
462 * and wake up any waiters so they can recheck.
463 */
464 static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)465 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
466 {
467 ww_mutex_lock_acquired(lock, ctx);
468
469 /*
470 * The lock->ctx update should be visible on all cores before
471 * the WAITERS check is done, otherwise contended waiters might be
472 * missed. The contended waiters will either see ww_ctx == NULL
473 * and keep spinning, or it will acquire wait_lock, add itself
474 * to waiter list and sleep.
475 */
476 smp_mb(); /* See comments above and below. */
477
478 /*
479 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS
480 * MB MB
481 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx
482 *
483 * The memory barrier above pairs with the memory barrier in
484 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
485 * and/or !empty list.
486 */
487 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
488 return;
489
490 /*
491 * Uh oh, we raced in fastpath, check if any of the waiters need to
492 * die or wound us.
493 */
494 spin_lock(&lock->base.wait_lock);
495 __ww_mutex_check_waiters(&lock->base, ctx);
496 spin_unlock(&lock->base.wait_lock);
497 }
498
499 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
500
501 static inline
ww_mutex_spin_on_owner(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)502 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
503 struct mutex_waiter *waiter)
504 {
505 struct ww_mutex *ww;
506
507 ww = container_of(lock, struct ww_mutex, base);
508
509 /*
510 * If ww->ctx is set the contents are undefined, only
511 * by acquiring wait_lock there is a guarantee that
512 * they are not invalid when reading.
513 *
514 * As such, when deadlock detection needs to be
515 * performed the optimistic spinning cannot be done.
516 *
517 * Check this in every inner iteration because we may
518 * be racing against another thread's ww_mutex_lock.
519 */
520 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
521 return false;
522
523 /*
524 * If we aren't on the wait list yet, cancel the spin
525 * if there are waiters. We want to avoid stealing the
526 * lock from a waiter with an earlier stamp, since the
527 * other thread may already own a lock that we also
528 * need.
529 */
530 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
531 return false;
532
533 /*
534 * Similarly, stop spinning if we are no longer the
535 * first waiter.
536 */
537 if (waiter && !__mutex_waiter_is_first(lock, waiter))
538 return false;
539
540 return true;
541 }
542
543 /*
544 * Look out! "owner" is an entirely speculative pointer access and not
545 * reliable.
546 *
547 * "noinline" so that this function shows up on perf profiles.
548 */
549 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)550 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
551 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
552 {
553 bool ret = true;
554
555 rcu_read_lock();
556 while (__mutex_owner(lock) == owner) {
557 /*
558 * Ensure we emit the owner->on_cpu, dereference _after_
559 * checking lock->owner still matches owner. If that fails,
560 * owner might point to freed memory. If it still matches,
561 * the rcu_read_lock() ensures the memory stays valid.
562 */
563 barrier();
564
565 /*
566 * Use vcpu_is_preempted to detect lock holder preemption issue.
567 */
568 if (!owner->on_cpu || need_resched() ||
569 vcpu_is_preempted(task_cpu(owner))) {
570 ret = false;
571 break;
572 }
573
574 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
575 ret = false;
576 break;
577 }
578
579 cpu_relax();
580 }
581 rcu_read_unlock();
582
583 return ret;
584 }
585
586 /*
587 * Initial check for entering the mutex spinning loop
588 */
mutex_can_spin_on_owner(struct mutex * lock)589 static inline int mutex_can_spin_on_owner(struct mutex *lock)
590 {
591 struct task_struct *owner;
592 int retval = 1;
593
594 if (need_resched())
595 return 0;
596
597 rcu_read_lock();
598 owner = __mutex_owner(lock);
599
600 /*
601 * As lock holder preemption issue, we both skip spinning if task is not
602 * on cpu or its cpu is preempted
603 */
604 if (owner)
605 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
606 rcu_read_unlock();
607
608 /*
609 * If lock->owner is not set, the mutex has been released. Return true
610 * such that we'll trylock in the spin path, which is a faster option
611 * than the blocking slow path.
612 */
613 return retval;
614 }
615
616 /*
617 * Optimistic spinning.
618 *
619 * We try to spin for acquisition when we find that the lock owner
620 * is currently running on a (different) CPU and while we don't
621 * need to reschedule. The rationale is that if the lock owner is
622 * running, it is likely to release the lock soon.
623 *
624 * The mutex spinners are queued up using MCS lock so that only one
625 * spinner can compete for the mutex. However, if mutex spinning isn't
626 * going to happen, there is no point in going through the lock/unlock
627 * overhead.
628 *
629 * Returns true when the lock was taken, otherwise false, indicating
630 * that we need to jump to the slowpath and sleep.
631 *
632 * The waiter flag is set to true if the spinner is a waiter in the wait
633 * queue. The waiter-spinner will spin on the lock directly and concurrently
634 * with the spinner at the head of the OSQ, if present, until the owner is
635 * changed to itself.
636 */
637 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx,struct mutex_waiter * waiter)638 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
639 const bool use_ww_ctx, struct mutex_waiter *waiter)
640 {
641 if (!waiter) {
642 /*
643 * The purpose of the mutex_can_spin_on_owner() function is
644 * to eliminate the overhead of osq_lock() and osq_unlock()
645 * in case spinning isn't possible. As a waiter-spinner
646 * is not going to take OSQ lock anyway, there is no need
647 * to call mutex_can_spin_on_owner().
648 */
649 if (!mutex_can_spin_on_owner(lock))
650 goto fail;
651
652 /*
653 * In order to avoid a stampede of mutex spinners trying to
654 * acquire the mutex all at once, the spinners need to take a
655 * MCS (queued) lock first before spinning on the owner field.
656 */
657 if (!osq_lock(&lock->osq))
658 goto fail;
659 }
660
661 for (;;) {
662 struct task_struct *owner;
663
664 /* Try to acquire the mutex... */
665 owner = __mutex_trylock_or_owner(lock);
666 if (!owner)
667 break;
668
669 /*
670 * There's an owner, wait for it to either
671 * release the lock or go to sleep.
672 */
673 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
674 goto fail_unlock;
675
676 /*
677 * The cpu_relax() call is a compiler barrier which forces
678 * everything in this loop to be re-loaded. We don't need
679 * memory barriers as we'll eventually observe the right
680 * values at the cost of a few extra spins.
681 */
682 cpu_relax();
683 }
684
685 if (!waiter)
686 osq_unlock(&lock->osq);
687
688 return true;
689
690
691 fail_unlock:
692 if (!waiter)
693 osq_unlock(&lock->osq);
694
695 fail:
696 /*
697 * If we fell out of the spin path because of need_resched(),
698 * reschedule now, before we try-lock the mutex. This avoids getting
699 * scheduled out right after we obtained the mutex.
700 */
701 if (need_resched()) {
702 /*
703 * We _should_ have TASK_RUNNING here, but just in case
704 * we do not, make it so, otherwise we might get stuck.
705 */
706 __set_current_state(TASK_RUNNING);
707 schedule_preempt_disabled();
708 }
709
710 return false;
711 }
712 #else
713 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx,struct mutex_waiter * waiter)714 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
715 const bool use_ww_ctx, struct mutex_waiter *waiter)
716 {
717 return false;
718 }
719 #endif
720
721 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
722
723 /**
724 * mutex_unlock - release the mutex
725 * @lock: the mutex to be released
726 *
727 * Unlock a mutex that has been locked by this task previously.
728 *
729 * This function must not be used in interrupt context. Unlocking
730 * of a not locked mutex is not allowed.
731 *
732 * This function is similar to (but not equivalent to) up().
733 */
mutex_unlock(struct mutex * lock)734 void __sched mutex_unlock(struct mutex *lock)
735 {
736 #ifndef CONFIG_DEBUG_LOCK_ALLOC
737 if (__mutex_unlock_fast(lock))
738 return;
739 #endif
740 __mutex_unlock_slowpath(lock, _RET_IP_);
741 }
742 EXPORT_SYMBOL(mutex_unlock);
743
744 /**
745 * ww_mutex_unlock - release the w/w mutex
746 * @lock: the mutex to be released
747 *
748 * Unlock a mutex that has been locked by this task previously with any of the
749 * ww_mutex_lock* functions (with or without an acquire context). It is
750 * forbidden to release the locks after releasing the acquire context.
751 *
752 * This function must not be used in interrupt context. Unlocking
753 * of a unlocked mutex is not allowed.
754 */
ww_mutex_unlock(struct ww_mutex * lock)755 void __sched ww_mutex_unlock(struct ww_mutex *lock)
756 {
757 /*
758 * The unlocking fastpath is the 0->1 transition from 'locked'
759 * into 'unlocked' state:
760 */
761 if (lock->ctx) {
762 #ifdef CONFIG_DEBUG_MUTEXES
763 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
764 #endif
765 if (lock->ctx->acquired > 0)
766 lock->ctx->acquired--;
767 lock->ctx = NULL;
768 }
769
770 mutex_unlock(&lock->base);
771 }
772 EXPORT_SYMBOL(ww_mutex_unlock);
773
774
775 static __always_inline int __sched
__ww_mutex_kill(struct mutex * lock,struct ww_acquire_ctx * ww_ctx)776 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
777 {
778 if (ww_ctx->acquired > 0) {
779 #ifdef CONFIG_DEBUG_MUTEXES
780 struct ww_mutex *ww;
781
782 ww = container_of(lock, struct ww_mutex, base);
783 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
784 ww_ctx->contending_lock = ww;
785 #endif
786 return -EDEADLK;
787 }
788
789 return 0;
790 }
791
792
793 /*
794 * Check the wound condition for the current lock acquire.
795 *
796 * Wound-Wait: If we're wounded, kill ourself.
797 *
798 * Wait-Die: If we're trying to acquire a lock already held by an older
799 * context, kill ourselves.
800 *
801 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
802 * look at waiters before us in the wait-list.
803 */
804 static inline int __sched
__ww_mutex_check_kill(struct mutex * lock,struct mutex_waiter * waiter,struct ww_acquire_ctx * ctx)805 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
806 struct ww_acquire_ctx *ctx)
807 {
808 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
809 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
810 struct mutex_waiter *cur;
811
812 if (ctx->acquired == 0)
813 return 0;
814
815 if (!ctx->is_wait_die) {
816 if (ctx->wounded)
817 return __ww_mutex_kill(lock, ctx);
818
819 return 0;
820 }
821
822 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
823 return __ww_mutex_kill(lock, ctx);
824
825 /*
826 * If there is a waiter in front of us that has a context, then its
827 * stamp is earlier than ours and we must kill ourself.
828 */
829 cur = waiter;
830 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
831 if (!cur->ww_ctx)
832 continue;
833
834 return __ww_mutex_kill(lock, ctx);
835 }
836
837 return 0;
838 }
839
840 /*
841 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
842 * first. Such that older contexts are preferred to acquire the lock over
843 * younger contexts.
844 *
845 * Waiters without context are interspersed in FIFO order.
846 *
847 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
848 * older contexts already waiting) to avoid unnecessary waiting and for
849 * Wound-Wait ensure we wound the owning context when it is younger.
850 */
851 static inline int __sched
__ww_mutex_add_waiter(struct mutex_waiter * waiter,struct mutex * lock,struct ww_acquire_ctx * ww_ctx)852 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
853 struct mutex *lock,
854 struct ww_acquire_ctx *ww_ctx)
855 {
856 struct mutex_waiter *cur;
857 struct list_head *pos;
858 bool is_wait_die;
859
860 if (!ww_ctx) {
861 __mutex_add_waiter(lock, waiter, &lock->wait_list);
862 return 0;
863 }
864
865 is_wait_die = ww_ctx->is_wait_die;
866
867 /*
868 * Add the waiter before the first waiter with a higher stamp.
869 * Waiters without a context are skipped to avoid starving
870 * them. Wait-Die waiters may die here. Wound-Wait waiters
871 * never die here, but they are sorted in stamp order and
872 * may wound the lock holder.
873 */
874 pos = &lock->wait_list;
875 list_for_each_entry_reverse(cur, &lock->wait_list, list) {
876 if (!cur->ww_ctx)
877 continue;
878
879 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
880 /*
881 * Wait-Die: if we find an older context waiting, there
882 * is no point in queueing behind it, as we'd have to
883 * die the moment it would acquire the lock.
884 */
885 if (is_wait_die) {
886 int ret = __ww_mutex_kill(lock, ww_ctx);
887
888 if (ret)
889 return ret;
890 }
891
892 break;
893 }
894
895 pos = &cur->list;
896
897 /* Wait-Die: ensure younger waiters die. */
898 __ww_mutex_die(lock, cur, ww_ctx);
899 }
900
901 __mutex_add_waiter(lock, waiter, pos);
902
903 /*
904 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
905 * wound that such that we might proceed.
906 */
907 if (!is_wait_die) {
908 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
909
910 /*
911 * See ww_mutex_set_context_fastpath(). Orders setting
912 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
913 * such that either we or the fastpath will wound @ww->ctx.
914 */
915 smp_mb();
916 __ww_mutex_wound(lock, ww_ctx, ww->ctx);
917 }
918
919 return 0;
920 }
921
922 /*
923 * Lock a mutex (possibly interruptible), slowpath:
924 */
925 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)926 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
927 struct lockdep_map *nest_lock, unsigned long ip,
928 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
929 {
930 struct mutex_waiter waiter;
931 bool first = false;
932 struct ww_mutex *ww;
933 int ret;
934
935 might_sleep();
936
937 #ifdef CONFIG_DEBUG_MUTEXES
938 DEBUG_LOCKS_WARN_ON(lock->magic != lock);
939 #endif
940
941 ww = container_of(lock, struct ww_mutex, base);
942 if (use_ww_ctx && ww_ctx) {
943 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
944 return -EALREADY;
945
946 /*
947 * Reset the wounded flag after a kill. No other process can
948 * race and wound us here since they can't have a valid owner
949 * pointer if we don't have any locks held.
950 */
951 if (ww_ctx->acquired == 0)
952 ww_ctx->wounded = 0;
953 }
954
955 preempt_disable();
956 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
957
958 if (__mutex_trylock(lock) ||
959 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
960 /* got the lock, yay! */
961 lock_acquired(&lock->dep_map, ip);
962 if (use_ww_ctx && ww_ctx)
963 ww_mutex_set_context_fastpath(ww, ww_ctx);
964 preempt_enable();
965 return 0;
966 }
967
968 spin_lock(&lock->wait_lock);
969 /*
970 * After waiting to acquire the wait_lock, try again.
971 */
972 if (__mutex_trylock(lock)) {
973 if (use_ww_ctx && ww_ctx)
974 __ww_mutex_check_waiters(lock, ww_ctx);
975
976 goto skip_wait;
977 }
978
979 debug_mutex_lock_common(lock, &waiter);
980
981 lock_contended(&lock->dep_map, ip);
982
983 if (!use_ww_ctx) {
984 /* add waiting tasks to the end of the waitqueue (FIFO): */
985 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
986
987
988 #ifdef CONFIG_DEBUG_MUTEXES
989 waiter.ww_ctx = MUTEX_POISON_WW_CTX;
990 #endif
991 } else {
992 /*
993 * Add in stamp order, waking up waiters that must kill
994 * themselves.
995 */
996 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
997 if (ret)
998 goto err_early_kill;
999
1000 waiter.ww_ctx = ww_ctx;
1001 }
1002
1003 waiter.task = current;
1004
1005 set_current_state(state);
1006 for (;;) {
1007 /*
1008 * Once we hold wait_lock, we're serialized against
1009 * mutex_unlock() handing the lock off to us, do a trylock
1010 * before testing the error conditions to make sure we pick up
1011 * the handoff.
1012 */
1013 if (__mutex_trylock(lock))
1014 goto acquired;
1015
1016 /*
1017 * Check for signals and kill conditions while holding
1018 * wait_lock. This ensures the lock cancellation is ordered
1019 * against mutex_unlock() and wake-ups do not go missing.
1020 */
1021 if (signal_pending_state(state, current)) {
1022 ret = -EINTR;
1023 goto err;
1024 }
1025
1026 if (use_ww_ctx && ww_ctx) {
1027 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1028 if (ret)
1029 goto err;
1030 }
1031
1032 spin_unlock(&lock->wait_lock);
1033 schedule_preempt_disabled();
1034
1035 /*
1036 * ww_mutex needs to always recheck its position since its waiter
1037 * list is not FIFO ordered.
1038 */
1039 if ((use_ww_ctx && ww_ctx) || !first) {
1040 first = __mutex_waiter_is_first(lock, &waiter);
1041 if (first)
1042 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1043 }
1044
1045 set_current_state(state);
1046 /*
1047 * Here we order against unlock; we must either see it change
1048 * state back to RUNNING and fall through the next schedule(),
1049 * or we must see its unlock and acquire.
1050 */
1051 if (__mutex_trylock(lock) ||
1052 (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
1053 break;
1054
1055 spin_lock(&lock->wait_lock);
1056 }
1057 spin_lock(&lock->wait_lock);
1058 acquired:
1059 __set_current_state(TASK_RUNNING);
1060
1061 if (use_ww_ctx && ww_ctx) {
1062 /*
1063 * Wound-Wait; we stole the lock (!first_waiter), check the
1064 * waiters as anyone might want to wound us.
1065 */
1066 if (!ww_ctx->is_wait_die &&
1067 !__mutex_waiter_is_first(lock, &waiter))
1068 __ww_mutex_check_waiters(lock, ww_ctx);
1069 }
1070
1071 mutex_remove_waiter(lock, &waiter, current);
1072 if (likely(list_empty(&lock->wait_list)))
1073 __mutex_clear_flag(lock, MUTEX_FLAGS);
1074
1075 debug_mutex_free_waiter(&waiter);
1076
1077 skip_wait:
1078 /* got the lock - cleanup and rejoice! */
1079 lock_acquired(&lock->dep_map, ip);
1080
1081 if (use_ww_ctx && ww_ctx)
1082 ww_mutex_lock_acquired(ww, ww_ctx);
1083
1084 spin_unlock(&lock->wait_lock);
1085 preempt_enable();
1086 return 0;
1087
1088 err:
1089 __set_current_state(TASK_RUNNING);
1090 mutex_remove_waiter(lock, &waiter, current);
1091 err_early_kill:
1092 spin_unlock(&lock->wait_lock);
1093 debug_mutex_free_waiter(&waiter);
1094 mutex_release(&lock->dep_map, 1, ip);
1095 preempt_enable();
1096 return ret;
1097 }
1098
1099 static int __sched
__mutex_lock(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)1100 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1101 struct lockdep_map *nest_lock, unsigned long ip)
1102 {
1103 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1104 }
1105
1106 static int __sched
__ww_mutex_lock(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx)1107 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1108 struct lockdep_map *nest_lock, unsigned long ip,
1109 struct ww_acquire_ctx *ww_ctx)
1110 {
1111 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1112 }
1113
1114 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1115 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)1116 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1117 {
1118 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1119 }
1120
1121 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1122
1123 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)1124 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1125 {
1126 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1127 }
1128 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1129
1130 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)1131 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1132 {
1133 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1134 }
1135 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1136
1137 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)1138 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1139 {
1140 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1141 }
1142 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1143
1144 void __sched
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)1145 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1146 {
1147 int token;
1148
1149 might_sleep();
1150
1151 token = io_schedule_prepare();
1152 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1153 subclass, NULL, _RET_IP_, NULL, 0);
1154 io_schedule_finish(token);
1155 }
1156 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1157
1158 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1159 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1160 {
1161 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1162 unsigned tmp;
1163
1164 if (ctx->deadlock_inject_countdown-- == 0) {
1165 tmp = ctx->deadlock_inject_interval;
1166 if (tmp > UINT_MAX/4)
1167 tmp = UINT_MAX;
1168 else
1169 tmp = tmp*2 + tmp + tmp/2;
1170
1171 ctx->deadlock_inject_interval = tmp;
1172 ctx->deadlock_inject_countdown = tmp;
1173 ctx->contending_lock = lock;
1174
1175 ww_mutex_unlock(lock);
1176
1177 return -EDEADLK;
1178 }
1179 #endif
1180
1181 return 0;
1182 }
1183
1184 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1185 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1186 {
1187 int ret;
1188
1189 might_sleep();
1190 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1191 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1192 ctx);
1193 if (!ret && ctx && ctx->acquired > 1)
1194 return ww_mutex_deadlock_injection(lock, ctx);
1195
1196 return ret;
1197 }
1198 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1199
1200 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1201 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1202 {
1203 int ret;
1204
1205 might_sleep();
1206 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1207 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1208 ctx);
1209
1210 if (!ret && ctx && ctx->acquired > 1)
1211 return ww_mutex_deadlock_injection(lock, ctx);
1212
1213 return ret;
1214 }
1215 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1216
1217 #endif
1218
1219 /*
1220 * Release the lock, slowpath:
1221 */
__mutex_unlock_slowpath(struct mutex * lock,unsigned long ip)1222 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1223 {
1224 struct task_struct *next = NULL;
1225 DEFINE_WAKE_Q(wake_q);
1226 unsigned long owner;
1227
1228 mutex_release(&lock->dep_map, 1, ip);
1229
1230 /*
1231 * Release the lock before (potentially) taking the spinlock such that
1232 * other contenders can get on with things ASAP.
1233 *
1234 * Except when HANDOFF, in that case we must not clear the owner field,
1235 * but instead set it to the top waiter.
1236 */
1237 owner = atomic_long_read(&lock->owner);
1238 for (;;) {
1239 unsigned long old;
1240
1241 #ifdef CONFIG_DEBUG_MUTEXES
1242 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1243 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1244 #endif
1245
1246 if (owner & MUTEX_FLAG_HANDOFF)
1247 break;
1248
1249 old = atomic_long_cmpxchg_release(&lock->owner, owner,
1250 __owner_flags(owner));
1251 if (old == owner) {
1252 if (owner & MUTEX_FLAG_WAITERS)
1253 break;
1254
1255 return;
1256 }
1257
1258 owner = old;
1259 }
1260
1261 spin_lock(&lock->wait_lock);
1262 debug_mutex_unlock(lock);
1263 if (!list_empty(&lock->wait_list)) {
1264 /* get the first entry from the wait-list: */
1265 struct mutex_waiter *waiter =
1266 list_first_entry(&lock->wait_list,
1267 struct mutex_waiter, list);
1268
1269 next = waiter->task;
1270
1271 debug_mutex_wake_waiter(lock, waiter);
1272 wake_q_add(&wake_q, next);
1273 }
1274
1275 if (owner & MUTEX_FLAG_HANDOFF)
1276 __mutex_handoff(lock, next);
1277
1278 spin_unlock(&lock->wait_lock);
1279
1280 wake_up_q(&wake_q);
1281 }
1282
1283 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1284 /*
1285 * Here come the less common (and hence less performance-critical) APIs:
1286 * mutex_lock_interruptible() and mutex_trylock().
1287 */
1288 static noinline int __sched
1289 __mutex_lock_killable_slowpath(struct mutex *lock);
1290
1291 static noinline int __sched
1292 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1293
1294 /**
1295 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1296 * @lock: The mutex to be acquired.
1297 *
1298 * Lock the mutex like mutex_lock(). If a signal is delivered while the
1299 * process is sleeping, this function will return without acquiring the
1300 * mutex.
1301 *
1302 * Context: Process context.
1303 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1304 * signal arrived.
1305 */
mutex_lock_interruptible(struct mutex * lock)1306 int __sched mutex_lock_interruptible(struct mutex *lock)
1307 {
1308 might_sleep();
1309
1310 if (__mutex_trylock_fast(lock))
1311 return 0;
1312
1313 return __mutex_lock_interruptible_slowpath(lock);
1314 }
1315
1316 EXPORT_SYMBOL(mutex_lock_interruptible);
1317
1318 /**
1319 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1320 * @lock: The mutex to be acquired.
1321 *
1322 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
1323 * the current process is delivered while the process is sleeping, this
1324 * function will return without acquiring the mutex.
1325 *
1326 * Context: Process context.
1327 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1328 * fatal signal arrived.
1329 */
mutex_lock_killable(struct mutex * lock)1330 int __sched mutex_lock_killable(struct mutex *lock)
1331 {
1332 might_sleep();
1333
1334 if (__mutex_trylock_fast(lock))
1335 return 0;
1336
1337 return __mutex_lock_killable_slowpath(lock);
1338 }
1339 EXPORT_SYMBOL(mutex_lock_killable);
1340
1341 /**
1342 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1343 * @lock: The mutex to be acquired.
1344 *
1345 * Lock the mutex like mutex_lock(). While the task is waiting for this
1346 * mutex, it will be accounted as being in the IO wait state by the
1347 * scheduler.
1348 *
1349 * Context: Process context.
1350 */
mutex_lock_io(struct mutex * lock)1351 void __sched mutex_lock_io(struct mutex *lock)
1352 {
1353 int token;
1354
1355 token = io_schedule_prepare();
1356 mutex_lock(lock);
1357 io_schedule_finish(token);
1358 }
1359 EXPORT_SYMBOL_GPL(mutex_lock_io);
1360
1361 static noinline void __sched
__mutex_lock_slowpath(struct mutex * lock)1362 __mutex_lock_slowpath(struct mutex *lock)
1363 {
1364 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1365 }
1366
1367 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)1368 __mutex_lock_killable_slowpath(struct mutex *lock)
1369 {
1370 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1371 }
1372
1373 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)1374 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1375 {
1376 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1377 }
1378
1379 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1380 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1381 {
1382 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1383 _RET_IP_, ctx);
1384 }
1385
1386 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1387 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1388 struct ww_acquire_ctx *ctx)
1389 {
1390 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1391 _RET_IP_, ctx);
1392 }
1393
1394 #endif
1395
1396 /**
1397 * mutex_trylock - try to acquire the mutex, without waiting
1398 * @lock: the mutex to be acquired
1399 *
1400 * Try to acquire the mutex atomically. Returns 1 if the mutex
1401 * has been acquired successfully, and 0 on contention.
1402 *
1403 * NOTE: this function follows the spin_trylock() convention, so
1404 * it is negated from the down_trylock() return values! Be careful
1405 * about this when converting semaphore users to mutexes.
1406 *
1407 * This function must not be used in interrupt context. The
1408 * mutex must be released by the same task that acquired it.
1409 */
mutex_trylock(struct mutex * lock)1410 int __sched mutex_trylock(struct mutex *lock)
1411 {
1412 bool locked;
1413
1414 #ifdef CONFIG_DEBUG_MUTEXES
1415 DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1416 #endif
1417
1418 locked = __mutex_trylock(lock);
1419 if (locked)
1420 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1421
1422 return locked;
1423 }
1424 EXPORT_SYMBOL(mutex_trylock);
1425
1426 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1427 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1428 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1429 {
1430 might_sleep();
1431
1432 if (__mutex_trylock_fast(&lock->base)) {
1433 if (ctx)
1434 ww_mutex_set_context_fastpath(lock, ctx);
1435 return 0;
1436 }
1437
1438 return __ww_mutex_lock_slowpath(lock, ctx);
1439 }
1440 EXPORT_SYMBOL(ww_mutex_lock);
1441
1442 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1443 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1444 {
1445 might_sleep();
1446
1447 if (__mutex_trylock_fast(&lock->base)) {
1448 if (ctx)
1449 ww_mutex_set_context_fastpath(lock, ctx);
1450 return 0;
1451 }
1452
1453 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1454 }
1455 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1456
1457 #endif
1458
1459 /**
1460 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1461 * @cnt: the atomic which we are to dec
1462 * @lock: the mutex to return holding if we dec to 0
1463 *
1464 * return true and hold lock if we dec to 0, return false otherwise
1465 */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)1466 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1467 {
1468 /* dec if we can't possibly hit 0 */
1469 if (atomic_add_unless(cnt, -1, 1))
1470 return 0;
1471 /* we might hit 0, so take the lock */
1472 mutex_lock(lock);
1473 if (!atomic_dec_and_test(cnt)) {
1474 /* when we actually did the dec, we didn't hit 0 */
1475 mutex_unlock(lock);
1476 return 0;
1477 }
1478 /* we hit 0, and we hold the lock */
1479 return 1;
1480 }
1481 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1482