1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
4 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
5 *
6 * Credits:
7 * David Woodhouse for adding multichip support
8 *
9 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
10 * rework for 2K page size chips
11 *
12 * This file contains all legacy helpers/code that should be removed
13 * at some point.
14 */
15
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/nmi.h>
19
20 #include "internals.h"
21
22 /**
23 * nand_read_byte - [DEFAULT] read one byte from the chip
24 * @chip: NAND chip object
25 *
26 * Default read function for 8bit buswidth
27 */
nand_read_byte(struct nand_chip * chip)28 static uint8_t nand_read_byte(struct nand_chip *chip)
29 {
30 return readb(chip->legacy.IO_ADDR_R);
31 }
32
33 /**
34 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
35 * @chip: NAND chip object
36 *
37 * Default read function for 16bit buswidth with endianness conversion.
38 *
39 */
nand_read_byte16(struct nand_chip * chip)40 static uint8_t nand_read_byte16(struct nand_chip *chip)
41 {
42 return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R));
43 }
44
45 /**
46 * nand_select_chip - [DEFAULT] control CE line
47 * @chip: NAND chip object
48 * @chipnr: chipnumber to select, -1 for deselect
49 *
50 * Default select function for 1 chip devices.
51 */
nand_select_chip(struct nand_chip * chip,int chipnr)52 static void nand_select_chip(struct nand_chip *chip, int chipnr)
53 {
54 switch (chipnr) {
55 case -1:
56 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
57 0 | NAND_CTRL_CHANGE);
58 break;
59 case 0:
60 break;
61
62 default:
63 BUG();
64 }
65 }
66
67 /**
68 * nand_write_byte - [DEFAULT] write single byte to chip
69 * @chip: NAND chip object
70 * @byte: value to write
71 *
72 * Default function to write a byte to I/O[7:0]
73 */
nand_write_byte(struct nand_chip * chip,uint8_t byte)74 static void nand_write_byte(struct nand_chip *chip, uint8_t byte)
75 {
76 chip->legacy.write_buf(chip, &byte, 1);
77 }
78
79 /**
80 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
81 * @chip: NAND chip object
82 * @byte: value to write
83 *
84 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
85 */
nand_write_byte16(struct nand_chip * chip,uint8_t byte)86 static void nand_write_byte16(struct nand_chip *chip, uint8_t byte)
87 {
88 uint16_t word = byte;
89
90 /*
91 * It's not entirely clear what should happen to I/O[15:8] when writing
92 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
93 *
94 * When the host supports a 16-bit bus width, only data is
95 * transferred at the 16-bit width. All address and command line
96 * transfers shall use only the lower 8-bits of the data bus. During
97 * command transfers, the host may place any value on the upper
98 * 8-bits of the data bus. During address transfers, the host shall
99 * set the upper 8-bits of the data bus to 00h.
100 *
101 * One user of the write_byte callback is nand_set_features. The
102 * four parameters are specified to be written to I/O[7:0], but this is
103 * neither an address nor a command transfer. Let's assume a 0 on the
104 * upper I/O lines is OK.
105 */
106 chip->legacy.write_buf(chip, (uint8_t *)&word, 2);
107 }
108
109 /**
110 * nand_write_buf - [DEFAULT] write buffer to chip
111 * @chip: NAND chip object
112 * @buf: data buffer
113 * @len: number of bytes to write
114 *
115 * Default write function for 8bit buswidth.
116 */
nand_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)117 static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
118 {
119 iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len);
120 }
121
122 /**
123 * nand_read_buf - [DEFAULT] read chip data into buffer
124 * @chip: NAND chip object
125 * @buf: buffer to store date
126 * @len: number of bytes to read
127 *
128 * Default read function for 8bit buswidth.
129 */
nand_read_buf(struct nand_chip * chip,uint8_t * buf,int len)130 static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
131 {
132 ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
133 }
134
135 /**
136 * nand_write_buf16 - [DEFAULT] write buffer to chip
137 * @chip: NAND chip object
138 * @buf: data buffer
139 * @len: number of bytes to write
140 *
141 * Default write function for 16bit buswidth.
142 */
nand_write_buf16(struct nand_chip * chip,const uint8_t * buf,int len)143 static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf,
144 int len)
145 {
146 u16 *p = (u16 *) buf;
147
148 iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1);
149 }
150
151 /**
152 * nand_read_buf16 - [DEFAULT] read chip data into buffer
153 * @chip: NAND chip object
154 * @buf: buffer to store date
155 * @len: number of bytes to read
156 *
157 * Default read function for 16bit buswidth.
158 */
nand_read_buf16(struct nand_chip * chip,uint8_t * buf,int len)159 static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len)
160 {
161 u16 *p = (u16 *) buf;
162
163 ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1);
164 }
165
166 /**
167 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
168 * @chip: NAND chip object
169 * @timeo: Timeout
170 *
171 * Helper function for nand_wait_ready used when needing to wait in interrupt
172 * context.
173 */
panic_nand_wait_ready(struct nand_chip * chip,unsigned long timeo)174 static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo)
175 {
176 int i;
177
178 /* Wait for the device to get ready */
179 for (i = 0; i < timeo; i++) {
180 if (chip->legacy.dev_ready(chip))
181 break;
182 touch_softlockup_watchdog();
183 mdelay(1);
184 }
185 }
186
187 /**
188 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
189 * @chip: NAND chip object
190 *
191 * Wait for the ready pin after a command, and warn if a timeout occurs.
192 */
nand_wait_ready(struct nand_chip * chip)193 void nand_wait_ready(struct nand_chip *chip)
194 {
195 unsigned long timeo = 400;
196
197 if (in_interrupt() || oops_in_progress)
198 return panic_nand_wait_ready(chip, timeo);
199
200 /* Wait until command is processed or timeout occurs */
201 timeo = jiffies + msecs_to_jiffies(timeo);
202 do {
203 if (chip->legacy.dev_ready(chip))
204 return;
205 cond_resched();
206 } while (time_before(jiffies, timeo));
207
208 if (!chip->legacy.dev_ready(chip))
209 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
210 }
211 EXPORT_SYMBOL_GPL(nand_wait_ready);
212
213 /**
214 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
215 * @chip: NAND chip object
216 * @timeo: Timeout in ms
217 *
218 * Wait for status ready (i.e. command done) or timeout.
219 */
nand_wait_status_ready(struct nand_chip * chip,unsigned long timeo)220 static void nand_wait_status_ready(struct nand_chip *chip, unsigned long timeo)
221 {
222 int ret;
223
224 timeo = jiffies + msecs_to_jiffies(timeo);
225 do {
226 u8 status;
227
228 ret = nand_read_data_op(chip, &status, sizeof(status), true);
229 if (ret)
230 return;
231
232 if (status & NAND_STATUS_READY)
233 break;
234 touch_softlockup_watchdog();
235 } while (time_before(jiffies, timeo));
236 };
237
238 /**
239 * nand_command - [DEFAULT] Send command to NAND device
240 * @chip: NAND chip object
241 * @command: the command to be sent
242 * @column: the column address for this command, -1 if none
243 * @page_addr: the page address for this command, -1 if none
244 *
245 * Send command to NAND device. This function is used for small page devices
246 * (512 Bytes per page).
247 */
nand_command(struct nand_chip * chip,unsigned int command,int column,int page_addr)248 static void nand_command(struct nand_chip *chip, unsigned int command,
249 int column, int page_addr)
250 {
251 struct mtd_info *mtd = nand_to_mtd(chip);
252 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
253
254 /* Write out the command to the device */
255 if (command == NAND_CMD_SEQIN) {
256 int readcmd;
257
258 if (column >= mtd->writesize) {
259 /* OOB area */
260 column -= mtd->writesize;
261 readcmd = NAND_CMD_READOOB;
262 } else if (column < 256) {
263 /* First 256 bytes --> READ0 */
264 readcmd = NAND_CMD_READ0;
265 } else {
266 column -= 256;
267 readcmd = NAND_CMD_READ1;
268 }
269 chip->legacy.cmd_ctrl(chip, readcmd, ctrl);
270 ctrl &= ~NAND_CTRL_CHANGE;
271 }
272 if (command != NAND_CMD_NONE)
273 chip->legacy.cmd_ctrl(chip, command, ctrl);
274
275 /* Address cycle, when necessary */
276 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
277 /* Serially input address */
278 if (column != -1) {
279 /* Adjust columns for 16 bit buswidth */
280 if (chip->options & NAND_BUSWIDTH_16 &&
281 !nand_opcode_8bits(command))
282 column >>= 1;
283 chip->legacy.cmd_ctrl(chip, column, ctrl);
284 ctrl &= ~NAND_CTRL_CHANGE;
285 }
286 if (page_addr != -1) {
287 chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
288 ctrl &= ~NAND_CTRL_CHANGE;
289 chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl);
290 if (chip->options & NAND_ROW_ADDR_3)
291 chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl);
292 }
293 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
294 NAND_NCE | NAND_CTRL_CHANGE);
295
296 /*
297 * Program and erase have their own busy handlers status and sequential
298 * in needs no delay
299 */
300 switch (command) {
301
302 case NAND_CMD_NONE:
303 case NAND_CMD_PAGEPROG:
304 case NAND_CMD_ERASE1:
305 case NAND_CMD_ERASE2:
306 case NAND_CMD_SEQIN:
307 case NAND_CMD_STATUS:
308 case NAND_CMD_READID:
309 case NAND_CMD_SET_FEATURES:
310 return;
311
312 case NAND_CMD_RESET:
313 if (chip->legacy.dev_ready)
314 break;
315 udelay(chip->legacy.chip_delay);
316 chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
317 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
318 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
319 NAND_NCE | NAND_CTRL_CHANGE);
320 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
321 nand_wait_status_ready(chip, 250);
322 return;
323
324 /* This applies to read commands */
325 case NAND_CMD_READ0:
326 /*
327 * READ0 is sometimes used to exit GET STATUS mode. When this
328 * is the case no address cycles are requested, and we can use
329 * this information to detect that we should not wait for the
330 * device to be ready.
331 */
332 if (column == -1 && page_addr == -1)
333 return;
334 /* fall through */
335
336 default:
337 /*
338 * If we don't have access to the busy pin, we apply the given
339 * command delay
340 */
341 if (!chip->legacy.dev_ready) {
342 udelay(chip->legacy.chip_delay);
343 return;
344 }
345 }
346 /*
347 * Apply this short delay always to ensure that we do wait tWB in
348 * any case on any machine.
349 */
350 ndelay(100);
351
352 nand_wait_ready(chip);
353 }
354
nand_ccs_delay(struct nand_chip * chip)355 static void nand_ccs_delay(struct nand_chip *chip)
356 {
357 /*
358 * The controller already takes care of waiting for tCCS when the RNDIN
359 * or RNDOUT command is sent, return directly.
360 */
361 if (!(chip->options & NAND_WAIT_TCCS))
362 return;
363
364 /*
365 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
366 * (which should be safe for all NANDs).
367 */
368 if (nand_has_setup_data_iface(chip))
369 ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
370 else
371 ndelay(500);
372 }
373
374 /**
375 * nand_command_lp - [DEFAULT] Send command to NAND large page device
376 * @chip: NAND chip object
377 * @command: the command to be sent
378 * @column: the column address for this command, -1 if none
379 * @page_addr: the page address for this command, -1 if none
380 *
381 * Send command to NAND device. This is the version for the new large page
382 * devices. We don't have the separate regions as we have in the small page
383 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
384 */
nand_command_lp(struct nand_chip * chip,unsigned int command,int column,int page_addr)385 static void nand_command_lp(struct nand_chip *chip, unsigned int command,
386 int column, int page_addr)
387 {
388 struct mtd_info *mtd = nand_to_mtd(chip);
389
390 /* Emulate NAND_CMD_READOOB */
391 if (command == NAND_CMD_READOOB) {
392 column += mtd->writesize;
393 command = NAND_CMD_READ0;
394 }
395
396 /* Command latch cycle */
397 if (command != NAND_CMD_NONE)
398 chip->legacy.cmd_ctrl(chip, command,
399 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
400
401 if (column != -1 || page_addr != -1) {
402 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
403
404 /* Serially input address */
405 if (column != -1) {
406 /* Adjust columns for 16 bit buswidth */
407 if (chip->options & NAND_BUSWIDTH_16 &&
408 !nand_opcode_8bits(command))
409 column >>= 1;
410 chip->legacy.cmd_ctrl(chip, column, ctrl);
411 ctrl &= ~NAND_CTRL_CHANGE;
412
413 /* Only output a single addr cycle for 8bits opcodes. */
414 if (!nand_opcode_8bits(command))
415 chip->legacy.cmd_ctrl(chip, column >> 8, ctrl);
416 }
417 if (page_addr != -1) {
418 chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
419 chip->legacy.cmd_ctrl(chip, page_addr >> 8,
420 NAND_NCE | NAND_ALE);
421 if (chip->options & NAND_ROW_ADDR_3)
422 chip->legacy.cmd_ctrl(chip, page_addr >> 16,
423 NAND_NCE | NAND_ALE);
424 }
425 }
426 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
427 NAND_NCE | NAND_CTRL_CHANGE);
428
429 /*
430 * Program and erase have their own busy handlers status, sequential
431 * in and status need no delay.
432 */
433 switch (command) {
434
435 case NAND_CMD_NONE:
436 case NAND_CMD_CACHEDPROG:
437 case NAND_CMD_PAGEPROG:
438 case NAND_CMD_ERASE1:
439 case NAND_CMD_ERASE2:
440 case NAND_CMD_SEQIN:
441 case NAND_CMD_STATUS:
442 case NAND_CMD_READID:
443 case NAND_CMD_SET_FEATURES:
444 return;
445
446 case NAND_CMD_RNDIN:
447 nand_ccs_delay(chip);
448 return;
449
450 case NAND_CMD_RESET:
451 if (chip->legacy.dev_ready)
452 break;
453 udelay(chip->legacy.chip_delay);
454 chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
455 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
456 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
457 NAND_NCE | NAND_CTRL_CHANGE);
458 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
459 nand_wait_status_ready(chip, 250);
460 return;
461
462 case NAND_CMD_RNDOUT:
463 /* No ready / busy check necessary */
464 chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART,
465 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
466 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
467 NAND_NCE | NAND_CTRL_CHANGE);
468
469 nand_ccs_delay(chip);
470 return;
471
472 case NAND_CMD_READ0:
473 /*
474 * READ0 is sometimes used to exit GET STATUS mode. When this
475 * is the case no address cycles are requested, and we can use
476 * this information to detect that READSTART should not be
477 * issued.
478 */
479 if (column == -1 && page_addr == -1)
480 return;
481
482 chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART,
483 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
484 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
485 NAND_NCE | NAND_CTRL_CHANGE);
486
487 /* fall through - This applies to read commands */
488 default:
489 /*
490 * If we don't have access to the busy pin, we apply the given
491 * command delay.
492 */
493 if (!chip->legacy.dev_ready) {
494 udelay(chip->legacy.chip_delay);
495 return;
496 }
497 }
498
499 /*
500 * Apply this short delay always to ensure that we do wait tWB in
501 * any case on any machine.
502 */
503 ndelay(100);
504
505 nand_wait_ready(chip);
506 }
507
508 /**
509 * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
510 * @chip: nand chip info structure
511 * @addr: feature address.
512 * @subfeature_param: the subfeature parameters, a four bytes array.
513 *
514 * Should be used by NAND controller drivers that do not support the SET/GET
515 * FEATURES operations.
516 */
nand_get_set_features_notsupp(struct nand_chip * chip,int addr,u8 * subfeature_param)517 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
518 u8 *subfeature_param)
519 {
520 return -ENOTSUPP;
521 }
522 EXPORT_SYMBOL(nand_get_set_features_notsupp);
523
524 /**
525 * nand_wait - [DEFAULT] wait until the command is done
526 * @chip: NAND chip structure
527 *
528 * Wait for command done. This applies to erase and program only.
529 */
nand_wait(struct nand_chip * chip)530 static int nand_wait(struct nand_chip *chip)
531 {
532
533 unsigned long timeo = 400;
534 u8 status;
535 int ret;
536
537 /*
538 * Apply this short delay always to ensure that we do wait tWB in any
539 * case on any machine.
540 */
541 ndelay(100);
542
543 ret = nand_status_op(chip, NULL);
544 if (ret)
545 return ret;
546
547 if (in_interrupt() || oops_in_progress)
548 panic_nand_wait(chip, timeo);
549 else {
550 timeo = jiffies + msecs_to_jiffies(timeo);
551 do {
552 if (chip->legacy.dev_ready) {
553 if (chip->legacy.dev_ready(chip))
554 break;
555 } else {
556 ret = nand_read_data_op(chip, &status,
557 sizeof(status), true);
558 if (ret)
559 return ret;
560
561 if (status & NAND_STATUS_READY)
562 break;
563 }
564 cond_resched();
565 } while (time_before(jiffies, timeo));
566 }
567
568 ret = nand_read_data_op(chip, &status, sizeof(status), true);
569 if (ret)
570 return ret;
571
572 /* This can happen if in case of timeout or buggy dev_ready */
573 WARN_ON(!(status & NAND_STATUS_READY));
574 return status;
575 }
576
nand_legacy_set_defaults(struct nand_chip * chip)577 void nand_legacy_set_defaults(struct nand_chip *chip)
578 {
579 unsigned int busw = chip->options & NAND_BUSWIDTH_16;
580
581 if (nand_has_exec_op(chip))
582 return;
583
584 /* check for proper chip_delay setup, set 20us if not */
585 if (!chip->legacy.chip_delay)
586 chip->legacy.chip_delay = 20;
587
588 /* check, if a user supplied command function given */
589 if (!chip->legacy.cmdfunc)
590 chip->legacy.cmdfunc = nand_command;
591
592 /* check, if a user supplied wait function given */
593 if (chip->legacy.waitfunc == NULL)
594 chip->legacy.waitfunc = nand_wait;
595
596 if (!chip->legacy.select_chip)
597 chip->legacy.select_chip = nand_select_chip;
598
599 /* If called twice, pointers that depend on busw may need to be reset */
600 if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte)
601 chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte;
602 if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf)
603 chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf;
604 if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte)
605 chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte;
606 if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf)
607 chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf;
608 }
609
nand_legacy_adjust_cmdfunc(struct nand_chip * chip)610 void nand_legacy_adjust_cmdfunc(struct nand_chip *chip)
611 {
612 struct mtd_info *mtd = nand_to_mtd(chip);
613
614 /* Do not replace user supplied command function! */
615 if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command)
616 chip->legacy.cmdfunc = nand_command_lp;
617 }
618
nand_legacy_check_hooks(struct nand_chip * chip)619 int nand_legacy_check_hooks(struct nand_chip *chip)
620 {
621 /*
622 * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is
623 * not populated.
624 */
625 if (nand_has_exec_op(chip))
626 return 0;
627
628 /*
629 * Default functions assigned for ->legacy.cmdfunc() and
630 * ->legacy.select_chip() both expect ->legacy.cmd_ctrl() to be
631 * populated.
632 */
633 if ((!chip->legacy.cmdfunc || !chip->legacy.select_chip) &&
634 !chip->legacy.cmd_ctrl) {
635 pr_err("->legacy.cmd_ctrl() should be provided\n");
636 return -EINVAL;
637 }
638
639 return 0;
640 }
641