• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36 
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55 
56 #include "nf_internals.h"
57 
58 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
59 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
60 
61 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
62 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
63 
64 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
66 
67 struct conntrack_gc_work {
68 	struct delayed_work	dwork;
69 	u32			last_bucket;
70 	bool			exiting;
71 	bool			early_drop;
72 	long			next_gc_run;
73 };
74 
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78 
79 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
80 #define GC_MAX_BUCKETS_DIV	128u
81 /* upper bound of full table scan */
82 #define GC_MAX_SCAN_JIFFIES	(16u * HZ)
83 /* desired ratio of entries found to be expired */
84 #define GC_EVICT_RATIO	50u
85 
86 static struct conntrack_gc_work conntrack_gc_work;
87 
nf_conntrack_lock(spinlock_t * lock)88 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
89 {
90 	/* 1) Acquire the lock */
91 	spin_lock(lock);
92 
93 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
94 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
95 	 */
96 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
97 		return;
98 
99 	/* fast path failed, unlock */
100 	spin_unlock(lock);
101 
102 	/* Slow path 1) get global lock */
103 	spin_lock(&nf_conntrack_locks_all_lock);
104 
105 	/* Slow path 2) get the lock we want */
106 	spin_lock(lock);
107 
108 	/* Slow path 3) release the global lock */
109 	spin_unlock(&nf_conntrack_locks_all_lock);
110 }
111 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
112 
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)113 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
114 {
115 	h1 %= CONNTRACK_LOCKS;
116 	h2 %= CONNTRACK_LOCKS;
117 	spin_unlock(&nf_conntrack_locks[h1]);
118 	if (h1 != h2)
119 		spin_unlock(&nf_conntrack_locks[h2]);
120 }
121 
122 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)123 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
124 				     unsigned int h2, unsigned int sequence)
125 {
126 	h1 %= CONNTRACK_LOCKS;
127 	h2 %= CONNTRACK_LOCKS;
128 	if (h1 <= h2) {
129 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
130 		if (h1 != h2)
131 			spin_lock_nested(&nf_conntrack_locks[h2],
132 					 SINGLE_DEPTH_NESTING);
133 	} else {
134 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
135 		spin_lock_nested(&nf_conntrack_locks[h1],
136 				 SINGLE_DEPTH_NESTING);
137 	}
138 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
139 		nf_conntrack_double_unlock(h1, h2);
140 		return true;
141 	}
142 	return false;
143 }
144 
nf_conntrack_all_lock(void)145 static void nf_conntrack_all_lock(void)
146 {
147 	int i;
148 
149 	spin_lock(&nf_conntrack_locks_all_lock);
150 
151 	nf_conntrack_locks_all = true;
152 
153 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
154 		spin_lock(&nf_conntrack_locks[i]);
155 
156 		/* This spin_unlock provides the "release" to ensure that
157 		 * nf_conntrack_locks_all==true is visible to everyone that
158 		 * acquired spin_lock(&nf_conntrack_locks[]).
159 		 */
160 		spin_unlock(&nf_conntrack_locks[i]);
161 	}
162 }
163 
nf_conntrack_all_unlock(void)164 static void nf_conntrack_all_unlock(void)
165 {
166 	/* All prior stores must be complete before we clear
167 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
168 	 * might observe the false value but not the entire
169 	 * critical section.
170 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
171 	 */
172 	smp_store_release(&nf_conntrack_locks_all, false);
173 	spin_unlock(&nf_conntrack_locks_all_lock);
174 }
175 
176 unsigned int nf_conntrack_htable_size __read_mostly;
177 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
178 
179 unsigned int nf_conntrack_max __read_mostly;
180 EXPORT_SYMBOL_GPL(nf_conntrack_max);
181 seqcount_t nf_conntrack_generation __read_mostly;
182 static unsigned int nf_conntrack_hash_rnd __read_mostly;
183 
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,const struct net * net)184 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
185 			      const struct net *net)
186 {
187 	unsigned int n;
188 	u32 seed;
189 
190 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
191 
192 	/* The direction must be ignored, so we hash everything up to the
193 	 * destination ports (which is a multiple of 4) and treat the last
194 	 * three bytes manually.
195 	 */
196 	seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
197 	n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
198 	return jhash2((u32 *)tuple, n, seed ^
199 		      (((__force __u16)tuple->dst.u.all << 16) |
200 		      tuple->dst.protonum));
201 }
202 
scale_hash(u32 hash)203 static u32 scale_hash(u32 hash)
204 {
205 	return reciprocal_scale(hash, nf_conntrack_htable_size);
206 }
207 
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int size)208 static u32 __hash_conntrack(const struct net *net,
209 			    const struct nf_conntrack_tuple *tuple,
210 			    unsigned int size)
211 {
212 	return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
213 }
214 
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple)215 static u32 hash_conntrack(const struct net *net,
216 			  const struct nf_conntrack_tuple *tuple)
217 {
218 	return scale_hash(hash_conntrack_raw(tuple, net));
219 }
220 
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)221 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
222 				  unsigned int dataoff,
223 				  struct nf_conntrack_tuple *tuple)
224 {	struct {
225 		__be16 sport;
226 		__be16 dport;
227 	} _inet_hdr, *inet_hdr;
228 
229 	/* Actually only need first 4 bytes to get ports. */
230 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
231 	if (!inet_hdr)
232 		return false;
233 
234 	tuple->src.u.udp.port = inet_hdr->sport;
235 	tuple->dst.u.udp.port = inet_hdr->dport;
236 	return true;
237 }
238 
239 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)240 nf_ct_get_tuple(const struct sk_buff *skb,
241 		unsigned int nhoff,
242 		unsigned int dataoff,
243 		u_int16_t l3num,
244 		u_int8_t protonum,
245 		struct net *net,
246 		struct nf_conntrack_tuple *tuple)
247 {
248 	unsigned int size;
249 	const __be32 *ap;
250 	__be32 _addrs[8];
251 
252 	memset(tuple, 0, sizeof(*tuple));
253 
254 	tuple->src.l3num = l3num;
255 	switch (l3num) {
256 	case NFPROTO_IPV4:
257 		nhoff += offsetof(struct iphdr, saddr);
258 		size = 2 * sizeof(__be32);
259 		break;
260 	case NFPROTO_IPV6:
261 		nhoff += offsetof(struct ipv6hdr, saddr);
262 		size = sizeof(_addrs);
263 		break;
264 	default:
265 		return true;
266 	}
267 
268 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
269 	if (!ap)
270 		return false;
271 
272 	switch (l3num) {
273 	case NFPROTO_IPV4:
274 		tuple->src.u3.ip = ap[0];
275 		tuple->dst.u3.ip = ap[1];
276 		break;
277 	case NFPROTO_IPV6:
278 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
279 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
280 		break;
281 	}
282 
283 	tuple->dst.protonum = protonum;
284 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
285 
286 	switch (protonum) {
287 #if IS_ENABLED(CONFIG_IPV6)
288 	case IPPROTO_ICMPV6:
289 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
290 #endif
291 	case IPPROTO_ICMP:
292 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
293 #ifdef CONFIG_NF_CT_PROTO_GRE
294 	case IPPROTO_GRE:
295 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
296 #endif
297 	case IPPROTO_TCP:
298 	case IPPROTO_UDP: /* fallthrough */
299 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
300 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
301 	case IPPROTO_UDPLITE:
302 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
303 #endif
304 #ifdef CONFIG_NF_CT_PROTO_SCTP
305 	case IPPROTO_SCTP:
306 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
307 #endif
308 #ifdef CONFIG_NF_CT_PROTO_DCCP
309 	case IPPROTO_DCCP:
310 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
311 #endif
312 	default:
313 		break;
314 	}
315 
316 	return true;
317 }
318 
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)319 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
320 			    u_int8_t *protonum)
321 {
322 	int dataoff = -1;
323 	const struct iphdr *iph;
324 	struct iphdr _iph;
325 
326 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
327 	if (!iph)
328 		return -1;
329 
330 	/* Conntrack defragments packets, we might still see fragments
331 	 * inside ICMP packets though.
332 	 */
333 	if (iph->frag_off & htons(IP_OFFSET))
334 		return -1;
335 
336 	dataoff = nhoff + (iph->ihl << 2);
337 	*protonum = iph->protocol;
338 
339 	/* Check bogus IP headers */
340 	if (dataoff > skb->len) {
341 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
342 			 nhoff, iph->ihl << 2, skb->len);
343 		return -1;
344 	}
345 	return dataoff;
346 }
347 
348 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)349 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
350 			    u8 *protonum)
351 {
352 	int protoff = -1;
353 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
354 	__be16 frag_off;
355 	u8 nexthdr;
356 
357 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
358 			  &nexthdr, sizeof(nexthdr)) != 0) {
359 		pr_debug("can't get nexthdr\n");
360 		return -1;
361 	}
362 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
363 	/*
364 	 * (protoff == skb->len) means the packet has not data, just
365 	 * IPv6 and possibly extensions headers, but it is tracked anyway
366 	 */
367 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
368 		pr_debug("can't find proto in pkt\n");
369 		return -1;
370 	}
371 
372 	*protonum = nexthdr;
373 	return protoff;
374 }
375 #endif
376 
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)377 static int get_l4proto(const struct sk_buff *skb,
378 		       unsigned int nhoff, u8 pf, u8 *l4num)
379 {
380 	switch (pf) {
381 	case NFPROTO_IPV4:
382 		return ipv4_get_l4proto(skb, nhoff, l4num);
383 #if IS_ENABLED(CONFIG_IPV6)
384 	case NFPROTO_IPV6:
385 		return ipv6_get_l4proto(skb, nhoff, l4num);
386 #endif
387 	default:
388 		*l4num = 0;
389 		break;
390 	}
391 	return -1;
392 }
393 
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)394 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
395 		       u_int16_t l3num,
396 		       struct net *net, struct nf_conntrack_tuple *tuple)
397 {
398 	u8 protonum;
399 	int protoff;
400 
401 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
402 	if (protoff <= 0)
403 		return false;
404 
405 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
406 }
407 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
408 
409 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)410 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
411 		   const struct nf_conntrack_tuple *orig)
412 {
413 	memset(inverse, 0, sizeof(*inverse));
414 
415 	inverse->src.l3num = orig->src.l3num;
416 
417 	switch (orig->src.l3num) {
418 	case NFPROTO_IPV4:
419 		inverse->src.u3.ip = orig->dst.u3.ip;
420 		inverse->dst.u3.ip = orig->src.u3.ip;
421 		break;
422 	case NFPROTO_IPV6:
423 		inverse->src.u3.in6 = orig->dst.u3.in6;
424 		inverse->dst.u3.in6 = orig->src.u3.in6;
425 		break;
426 	default:
427 		break;
428 	}
429 
430 	inverse->dst.dir = !orig->dst.dir;
431 
432 	inverse->dst.protonum = orig->dst.protonum;
433 
434 	switch (orig->dst.protonum) {
435 	case IPPROTO_ICMP:
436 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
437 #if IS_ENABLED(CONFIG_IPV6)
438 	case IPPROTO_ICMPV6:
439 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
440 #endif
441 	}
442 
443 	inverse->src.u.all = orig->dst.u.all;
444 	inverse->dst.u.all = orig->src.u.all;
445 	return true;
446 }
447 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
448 
449 /* Generate a almost-unique pseudo-id for a given conntrack.
450  *
451  * intentionally doesn't re-use any of the seeds used for hash
452  * table location, we assume id gets exposed to userspace.
453  *
454  * Following nf_conn items do not change throughout lifetime
455  * of the nf_conn:
456  *
457  * 1. nf_conn address
458  * 2. nf_conn->master address (normally NULL)
459  * 3. the associated net namespace
460  * 4. the original direction tuple
461  */
nf_ct_get_id(const struct nf_conn * ct)462 u32 nf_ct_get_id(const struct nf_conn *ct)
463 {
464 	static __read_mostly siphash_key_t ct_id_seed;
465 	unsigned long a, b, c, d;
466 
467 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
468 
469 	a = (unsigned long)ct;
470 	b = (unsigned long)ct->master;
471 	c = (unsigned long)nf_ct_net(ct);
472 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
473 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
474 				   &ct_id_seed);
475 #ifdef CONFIG_64BIT
476 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
477 #else
478 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
479 #endif
480 }
481 EXPORT_SYMBOL_GPL(nf_ct_get_id);
482 
483 static void
clean_from_lists(struct nf_conn * ct)484 clean_from_lists(struct nf_conn *ct)
485 {
486 	pr_debug("clean_from_lists(%p)\n", ct);
487 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
488 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
489 
490 	/* Destroy all pending expectations */
491 	nf_ct_remove_expectations(ct);
492 }
493 
494 /* must be called with local_bh_disable */
nf_ct_add_to_dying_list(struct nf_conn * ct)495 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
496 {
497 	struct ct_pcpu *pcpu;
498 
499 	/* add this conntrack to the (per cpu) dying list */
500 	ct->cpu = smp_processor_id();
501 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
502 
503 	spin_lock(&pcpu->lock);
504 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
505 			     &pcpu->dying);
506 	spin_unlock(&pcpu->lock);
507 }
508 
509 /* must be called with local_bh_disable */
nf_ct_add_to_unconfirmed_list(struct nf_conn * ct)510 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
511 {
512 	struct ct_pcpu *pcpu;
513 
514 	/* add this conntrack to the (per cpu) unconfirmed list */
515 	ct->cpu = smp_processor_id();
516 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
517 
518 	spin_lock(&pcpu->lock);
519 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
520 			     &pcpu->unconfirmed);
521 	spin_unlock(&pcpu->lock);
522 }
523 
524 /* must be called with local_bh_disable */
nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn * ct)525 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
526 {
527 	struct ct_pcpu *pcpu;
528 
529 	/* We overload first tuple to link into unconfirmed or dying list.*/
530 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
531 
532 	spin_lock(&pcpu->lock);
533 	BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
534 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
535 	spin_unlock(&pcpu->lock);
536 }
537 
538 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
539 
540 /* Released via destroy_conntrack() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)541 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
542 				 const struct nf_conntrack_zone *zone,
543 				 gfp_t flags)
544 {
545 	struct nf_conn *tmpl, *p;
546 
547 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
548 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
549 		if (!tmpl)
550 			return NULL;
551 
552 		p = tmpl;
553 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
554 		if (tmpl != p) {
555 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
556 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
557 		}
558 	} else {
559 		tmpl = kzalloc(sizeof(*tmpl), flags);
560 		if (!tmpl)
561 			return NULL;
562 	}
563 
564 	tmpl->status = IPS_TEMPLATE;
565 	write_pnet(&tmpl->ct_net, net);
566 	nf_ct_zone_add(tmpl, zone);
567 	atomic_set(&tmpl->ct_general.use, 0);
568 
569 	return tmpl;
570 }
571 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
572 
nf_ct_tmpl_free(struct nf_conn * tmpl)573 void nf_ct_tmpl_free(struct nf_conn *tmpl)
574 {
575 	nf_ct_ext_destroy(tmpl);
576 	nf_ct_ext_free(tmpl);
577 
578 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
579 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
580 	else
581 		kfree(tmpl);
582 }
583 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
584 
destroy_gre_conntrack(struct nf_conn * ct)585 static void destroy_gre_conntrack(struct nf_conn *ct)
586 {
587 #ifdef CONFIG_NF_CT_PROTO_GRE
588 	struct nf_conn *master = ct->master;
589 
590 	if (master)
591 		nf_ct_gre_keymap_destroy(master);
592 #endif
593 }
594 
595 static void
destroy_conntrack(struct nf_conntrack * nfct)596 destroy_conntrack(struct nf_conntrack *nfct)
597 {
598 	struct nf_conn *ct = (struct nf_conn *)nfct;
599 
600 	pr_debug("destroy_conntrack(%p)\n", ct);
601 	WARN_ON(atomic_read(&nfct->use) != 0);
602 
603 	if (unlikely(nf_ct_is_template(ct))) {
604 		nf_ct_tmpl_free(ct);
605 		return;
606 	}
607 
608 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
609 		destroy_gre_conntrack(ct);
610 
611 	local_bh_disable();
612 	/* Expectations will have been removed in clean_from_lists,
613 	 * except TFTP can create an expectation on the first packet,
614 	 * before connection is in the list, so we need to clean here,
615 	 * too.
616 	 */
617 	nf_ct_remove_expectations(ct);
618 
619 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
620 
621 	local_bh_enable();
622 
623 	if (ct->master)
624 		nf_ct_put(ct->master);
625 
626 	pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
627 	nf_conntrack_free(ct);
628 }
629 
nf_ct_delete_from_lists(struct nf_conn * ct)630 static void nf_ct_delete_from_lists(struct nf_conn *ct)
631 {
632 	struct net *net = nf_ct_net(ct);
633 	unsigned int hash, reply_hash;
634 	unsigned int sequence;
635 
636 	nf_ct_helper_destroy(ct);
637 
638 	local_bh_disable();
639 	do {
640 		sequence = read_seqcount_begin(&nf_conntrack_generation);
641 		hash = hash_conntrack(net,
642 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
643 		reply_hash = hash_conntrack(net,
644 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
645 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
646 
647 	clean_from_lists(ct);
648 	nf_conntrack_double_unlock(hash, reply_hash);
649 
650 	nf_ct_add_to_dying_list(ct);
651 
652 	local_bh_enable();
653 }
654 
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)655 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
656 {
657 	struct nf_conn_tstamp *tstamp;
658 
659 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
660 		return false;
661 
662 	tstamp = nf_conn_tstamp_find(ct);
663 	if (tstamp && tstamp->stop == 0)
664 		tstamp->stop = ktime_get_real_ns();
665 
666 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
667 				    portid, report) < 0) {
668 		/* destroy event was not delivered. nf_ct_put will
669 		 * be done by event cache worker on redelivery.
670 		 */
671 		nf_ct_delete_from_lists(ct);
672 		nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
673 		return false;
674 	}
675 
676 	nf_conntrack_ecache_work(nf_ct_net(ct));
677 	nf_ct_delete_from_lists(ct);
678 	nf_ct_put(ct);
679 	return true;
680 }
681 EXPORT_SYMBOL_GPL(nf_ct_delete);
682 
683 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)684 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
685 		const struct nf_conntrack_tuple *tuple,
686 		const struct nf_conntrack_zone *zone,
687 		const struct net *net)
688 {
689 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
690 
691 	/* A conntrack can be recreated with the equal tuple,
692 	 * so we need to check that the conntrack is confirmed
693 	 */
694 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
695 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
696 	       nf_ct_is_confirmed(ct) &&
697 	       net_eq(net, nf_ct_net(ct));
698 }
699 
700 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)701 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
702 {
703 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
704 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
705 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
706 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
707 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
708 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
709 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
710 }
711 
712 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)713 static void nf_ct_gc_expired(struct nf_conn *ct)
714 {
715 	if (!atomic_inc_not_zero(&ct->ct_general.use))
716 		return;
717 
718 	if (nf_ct_should_gc(ct))
719 		nf_ct_kill(ct);
720 
721 	nf_ct_put(ct);
722 }
723 
724 /*
725  * Warning :
726  * - Caller must take a reference on returned object
727  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
728  */
729 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)730 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
731 		      const struct nf_conntrack_tuple *tuple, u32 hash)
732 {
733 	struct nf_conntrack_tuple_hash *h;
734 	struct hlist_nulls_head *ct_hash;
735 	struct hlist_nulls_node *n;
736 	unsigned int bucket, hsize;
737 
738 begin:
739 	nf_conntrack_get_ht(&ct_hash, &hsize);
740 	bucket = reciprocal_scale(hash, hsize);
741 
742 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
743 		struct nf_conn *ct;
744 
745 		ct = nf_ct_tuplehash_to_ctrack(h);
746 		if (nf_ct_is_expired(ct)) {
747 			nf_ct_gc_expired(ct);
748 			continue;
749 		}
750 
751 		if (nf_ct_key_equal(h, tuple, zone, net))
752 			return h;
753 	}
754 	/*
755 	 * if the nulls value we got at the end of this lookup is
756 	 * not the expected one, we must restart lookup.
757 	 * We probably met an item that was moved to another chain.
758 	 */
759 	if (get_nulls_value(n) != bucket) {
760 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
761 		goto begin;
762 	}
763 
764 	return NULL;
765 }
766 
767 /* Find a connection corresponding to a tuple. */
768 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)769 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
770 			const struct nf_conntrack_tuple *tuple, u32 hash)
771 {
772 	struct nf_conntrack_tuple_hash *h;
773 	struct nf_conn *ct;
774 
775 	rcu_read_lock();
776 
777 	h = ____nf_conntrack_find(net, zone, tuple, hash);
778 	if (h) {
779 		/* We have a candidate that matches the tuple we're interested
780 		 * in, try to obtain a reference and re-check tuple
781 		 */
782 		ct = nf_ct_tuplehash_to_ctrack(h);
783 		if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
784 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
785 				goto found;
786 
787 			/* TYPESAFE_BY_RCU recycled the candidate */
788 			nf_ct_put(ct);
789 		}
790 
791 		h = NULL;
792 	}
793 found:
794 	rcu_read_unlock();
795 
796 	return h;
797 }
798 
799 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)800 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
801 		      const struct nf_conntrack_tuple *tuple)
802 {
803 	return __nf_conntrack_find_get(net, zone, tuple,
804 				       hash_conntrack_raw(tuple, net));
805 }
806 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
807 
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)808 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
809 				       unsigned int hash,
810 				       unsigned int reply_hash)
811 {
812 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
813 			   &nf_conntrack_hash[hash]);
814 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
815 			   &nf_conntrack_hash[reply_hash]);
816 }
817 
818 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)819 nf_conntrack_hash_check_insert(struct nf_conn *ct)
820 {
821 	const struct nf_conntrack_zone *zone;
822 	struct net *net = nf_ct_net(ct);
823 	unsigned int hash, reply_hash;
824 	struct nf_conntrack_tuple_hash *h;
825 	struct hlist_nulls_node *n;
826 	unsigned int sequence;
827 
828 	zone = nf_ct_zone(ct);
829 
830 	local_bh_disable();
831 	do {
832 		sequence = read_seqcount_begin(&nf_conntrack_generation);
833 		hash = hash_conntrack(net,
834 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
835 		reply_hash = hash_conntrack(net,
836 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
837 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
838 
839 	/* See if there's one in the list already, including reverse */
840 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
841 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
842 				    zone, net))
843 			goto out;
844 
845 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
846 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
847 				    zone, net))
848 			goto out;
849 
850 	smp_wmb();
851 	/* The caller holds a reference to this object */
852 	atomic_set(&ct->ct_general.use, 2);
853 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
854 	nf_conntrack_double_unlock(hash, reply_hash);
855 	NF_CT_STAT_INC(net, insert);
856 	local_bh_enable();
857 	return 0;
858 
859 out:
860 	nf_conntrack_double_unlock(hash, reply_hash);
861 	NF_CT_STAT_INC(net, insert_failed);
862 	local_bh_enable();
863 	return -EEXIST;
864 }
865 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
866 
nf_ct_acct_update(struct nf_conn * ct,enum ip_conntrack_info ctinfo,unsigned int len)867 static inline void nf_ct_acct_update(struct nf_conn *ct,
868 				     enum ip_conntrack_info ctinfo,
869 				     unsigned int len)
870 {
871 	struct nf_conn_acct *acct;
872 
873 	acct = nf_conn_acct_find(ct);
874 	if (acct) {
875 		struct nf_conn_counter *counter = acct->counter;
876 
877 		atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
878 		atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
879 	}
880 }
881 
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)882 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
883 			     const struct nf_conn *loser_ct)
884 {
885 	struct nf_conn_acct *acct;
886 
887 	acct = nf_conn_acct_find(loser_ct);
888 	if (acct) {
889 		struct nf_conn_counter *counter = acct->counter;
890 		unsigned int bytes;
891 
892 		/* u32 should be fine since we must have seen one packet. */
893 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
894 		nf_ct_acct_update(ct, ctinfo, bytes);
895 	}
896 }
897 
898 /* Resolve race on insertion if this protocol allows this. */
nf_ct_resolve_clash(struct net * net,struct sk_buff * skb,enum ip_conntrack_info ctinfo,struct nf_conntrack_tuple_hash * h)899 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
900 			       enum ip_conntrack_info ctinfo,
901 			       struct nf_conntrack_tuple_hash *h)
902 {
903 	/* This is the conntrack entry already in hashes that won race. */
904 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
905 	const struct nf_conntrack_l4proto *l4proto;
906 	enum ip_conntrack_info oldinfo;
907 	struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
908 
909 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
910 	if (l4proto->allow_clash &&
911 	    !nf_ct_is_dying(ct) &&
912 	    atomic_inc_not_zero(&ct->ct_general.use)) {
913 		if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
914 		    nf_ct_match(ct, loser_ct)) {
915 			nf_ct_acct_merge(ct, ctinfo, loser_ct);
916 			nf_conntrack_put(&loser_ct->ct_general);
917 			nf_ct_set(skb, ct, oldinfo);
918 			return NF_ACCEPT;
919 		}
920 		nf_ct_put(ct);
921 	}
922 	NF_CT_STAT_INC(net, drop);
923 	return NF_DROP;
924 }
925 
926 /* Confirm a connection given skb; places it in hash table */
927 int
__nf_conntrack_confirm(struct sk_buff * skb)928 __nf_conntrack_confirm(struct sk_buff *skb)
929 {
930 	const struct nf_conntrack_zone *zone;
931 	unsigned int hash, reply_hash;
932 	struct nf_conntrack_tuple_hash *h;
933 	struct nf_conn *ct;
934 	struct nf_conn_help *help;
935 	struct nf_conn_tstamp *tstamp;
936 	struct hlist_nulls_node *n;
937 	enum ip_conntrack_info ctinfo;
938 	struct net *net;
939 	unsigned int sequence;
940 	int ret = NF_DROP;
941 
942 	ct = nf_ct_get(skb, &ctinfo);
943 	net = nf_ct_net(ct);
944 
945 	/* ipt_REJECT uses nf_conntrack_attach to attach related
946 	   ICMP/TCP RST packets in other direction.  Actual packet
947 	   which created connection will be IP_CT_NEW or for an
948 	   expected connection, IP_CT_RELATED. */
949 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
950 		return NF_ACCEPT;
951 
952 	zone = nf_ct_zone(ct);
953 	local_bh_disable();
954 
955 	do {
956 		sequence = read_seqcount_begin(&nf_conntrack_generation);
957 		/* reuse the hash saved before */
958 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
959 		hash = scale_hash(hash);
960 		reply_hash = hash_conntrack(net,
961 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
962 
963 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
964 
965 	/* We're not in hash table, and we refuse to set up related
966 	 * connections for unconfirmed conns.  But packet copies and
967 	 * REJECT will give spurious warnings here.
968 	 */
969 
970 	/* Another skb with the same unconfirmed conntrack may
971 	 * win the race. This may happen for bridge(br_flood)
972 	 * or broadcast/multicast packets do skb_clone with
973 	 * unconfirmed conntrack.
974 	 */
975 	if (unlikely(nf_ct_is_confirmed(ct))) {
976 		WARN_ON_ONCE(1);
977 		nf_conntrack_double_unlock(hash, reply_hash);
978 		local_bh_enable();
979 		return NF_DROP;
980 	}
981 
982 	pr_debug("Confirming conntrack %p\n", ct);
983 	/* We have to check the DYING flag after unlink to prevent
984 	 * a race against nf_ct_get_next_corpse() possibly called from
985 	 * user context, else we insert an already 'dead' hash, blocking
986 	 * further use of that particular connection -JM.
987 	 */
988 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
989 
990 	if (unlikely(nf_ct_is_dying(ct))) {
991 		nf_ct_add_to_dying_list(ct);
992 		goto dying;
993 	}
994 
995 	/* See if there's one in the list already, including reverse:
996 	   NAT could have grabbed it without realizing, since we're
997 	   not in the hash.  If there is, we lost race. */
998 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
999 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1000 				    zone, net))
1001 			goto out;
1002 
1003 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1004 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1005 				    zone, net))
1006 			goto out;
1007 
1008 	/* Timer relative to confirmation time, not original
1009 	   setting time, otherwise we'd get timer wrap in
1010 	   weird delay cases. */
1011 	ct->timeout += nfct_time_stamp;
1012 	atomic_inc(&ct->ct_general.use);
1013 	ct->status |= IPS_CONFIRMED;
1014 
1015 	/* set conntrack timestamp, if enabled. */
1016 	tstamp = nf_conn_tstamp_find(ct);
1017 	if (tstamp)
1018 		tstamp->start = ktime_get_real_ns();
1019 
1020 	/* Since the lookup is lockless, hash insertion must be done after
1021 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1022 	 * guarantee that no other CPU can find the conntrack before the above
1023 	 * stores are visible.
1024 	 */
1025 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1026 	nf_conntrack_double_unlock(hash, reply_hash);
1027 	local_bh_enable();
1028 
1029 	help = nfct_help(ct);
1030 	if (help && help->helper)
1031 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1032 
1033 	nf_conntrack_event_cache(master_ct(ct) ?
1034 				 IPCT_RELATED : IPCT_NEW, ct);
1035 	return NF_ACCEPT;
1036 
1037 out:
1038 	nf_ct_add_to_dying_list(ct);
1039 	ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
1040 dying:
1041 	nf_conntrack_double_unlock(hash, reply_hash);
1042 	NF_CT_STAT_INC(net, insert_failed);
1043 	local_bh_enable();
1044 	return ret;
1045 }
1046 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1047 
1048 /* Returns true if a connection correspondings to the tuple (required
1049    for NAT). */
1050 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1051 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1052 			 const struct nf_conn *ignored_conntrack)
1053 {
1054 	struct net *net = nf_ct_net(ignored_conntrack);
1055 	const struct nf_conntrack_zone *zone;
1056 	struct nf_conntrack_tuple_hash *h;
1057 	struct hlist_nulls_head *ct_hash;
1058 	unsigned int hash, hsize;
1059 	struct hlist_nulls_node *n;
1060 	struct nf_conn *ct;
1061 
1062 	zone = nf_ct_zone(ignored_conntrack);
1063 
1064 	rcu_read_lock();
1065  begin:
1066 	nf_conntrack_get_ht(&ct_hash, &hsize);
1067 	hash = __hash_conntrack(net, tuple, hsize);
1068 
1069 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1070 		ct = nf_ct_tuplehash_to_ctrack(h);
1071 
1072 		if (ct == ignored_conntrack)
1073 			continue;
1074 
1075 		if (nf_ct_is_expired(ct)) {
1076 			nf_ct_gc_expired(ct);
1077 			continue;
1078 		}
1079 
1080 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1081 			/* Tuple is taken already, so caller will need to find
1082 			 * a new source port to use.
1083 			 *
1084 			 * Only exception:
1085 			 * If the *original tuples* are identical, then both
1086 			 * conntracks refer to the same flow.
1087 			 * This is a rare situation, it can occur e.g. when
1088 			 * more than one UDP packet is sent from same socket
1089 			 * in different threads.
1090 			 *
1091 			 * Let nf_ct_resolve_clash() deal with this later.
1092 			 */
1093 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1094 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1095 				continue;
1096 
1097 			NF_CT_STAT_INC_ATOMIC(net, found);
1098 			rcu_read_unlock();
1099 			return 1;
1100 		}
1101 	}
1102 
1103 	if (get_nulls_value(n) != hash) {
1104 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1105 		goto begin;
1106 	}
1107 
1108 	rcu_read_unlock();
1109 
1110 	return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1113 
1114 #define NF_CT_EVICTION_RANGE	8
1115 
1116 /* There's a small race here where we may free a just-assured
1117    connection.  Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1118 static unsigned int early_drop_list(struct net *net,
1119 				    struct hlist_nulls_head *head)
1120 {
1121 	struct nf_conntrack_tuple_hash *h;
1122 	struct hlist_nulls_node *n;
1123 	unsigned int drops = 0;
1124 	struct nf_conn *tmp;
1125 
1126 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1127 		tmp = nf_ct_tuplehash_to_ctrack(h);
1128 
1129 		if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1130 			continue;
1131 
1132 		if (nf_ct_is_expired(tmp)) {
1133 			nf_ct_gc_expired(tmp);
1134 			continue;
1135 		}
1136 
1137 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1138 		    !net_eq(nf_ct_net(tmp), net) ||
1139 		    nf_ct_is_dying(tmp))
1140 			continue;
1141 
1142 		if (!atomic_inc_not_zero(&tmp->ct_general.use))
1143 			continue;
1144 
1145 		/* kill only if still in same netns -- might have moved due to
1146 		 * SLAB_TYPESAFE_BY_RCU rules.
1147 		 *
1148 		 * We steal the timer reference.  If that fails timer has
1149 		 * already fired or someone else deleted it. Just drop ref
1150 		 * and move to next entry.
1151 		 */
1152 		if (net_eq(nf_ct_net(tmp), net) &&
1153 		    nf_ct_is_confirmed(tmp) &&
1154 		    nf_ct_delete(tmp, 0, 0))
1155 			drops++;
1156 
1157 		nf_ct_put(tmp);
1158 	}
1159 
1160 	return drops;
1161 }
1162 
early_drop(struct net * net,unsigned int hash)1163 static noinline int early_drop(struct net *net, unsigned int hash)
1164 {
1165 	unsigned int i, bucket;
1166 
1167 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1168 		struct hlist_nulls_head *ct_hash;
1169 		unsigned int hsize, drops;
1170 
1171 		rcu_read_lock();
1172 		nf_conntrack_get_ht(&ct_hash, &hsize);
1173 		if (!i)
1174 			bucket = reciprocal_scale(hash, hsize);
1175 		else
1176 			bucket = (bucket + 1) % hsize;
1177 
1178 		drops = early_drop_list(net, &ct_hash[bucket]);
1179 		rcu_read_unlock();
1180 
1181 		if (drops) {
1182 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1183 			return true;
1184 		}
1185 	}
1186 
1187 	return false;
1188 }
1189 
gc_worker_skip_ct(const struct nf_conn * ct)1190 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1191 {
1192 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1193 }
1194 
gc_worker_can_early_drop(const struct nf_conn * ct)1195 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1196 {
1197 	const struct nf_conntrack_l4proto *l4proto;
1198 
1199 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1200 		return true;
1201 
1202 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1203 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1204 		return true;
1205 
1206 	return false;
1207 }
1208 
1209 #define	DAY	(86400 * HZ)
1210 
1211 /* Set an arbitrary timeout large enough not to ever expire, this save
1212  * us a check for the IPS_OFFLOAD_BIT from the packet path via
1213  * nf_ct_is_expired().
1214  */
nf_ct_offload_timeout(struct nf_conn * ct)1215 static void nf_ct_offload_timeout(struct nf_conn *ct)
1216 {
1217 	if (nf_ct_expires(ct) < DAY / 2)
1218 		ct->timeout = nfct_time_stamp + DAY;
1219 }
1220 
gc_worker(struct work_struct * work)1221 static void gc_worker(struct work_struct *work)
1222 {
1223 	unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1224 	unsigned int i, goal, buckets = 0, expired_count = 0;
1225 	unsigned int nf_conntrack_max95 = 0;
1226 	struct conntrack_gc_work *gc_work;
1227 	unsigned int ratio, scanned = 0;
1228 	unsigned long next_run;
1229 
1230 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1231 
1232 	goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1233 	i = gc_work->last_bucket;
1234 	if (gc_work->early_drop)
1235 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1236 
1237 	do {
1238 		struct nf_conntrack_tuple_hash *h;
1239 		struct hlist_nulls_head *ct_hash;
1240 		struct hlist_nulls_node *n;
1241 		unsigned int hashsz;
1242 		struct nf_conn *tmp;
1243 
1244 		i++;
1245 		rcu_read_lock();
1246 
1247 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1248 		if (i >= hashsz)
1249 			i = 0;
1250 
1251 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1252 			struct net *net;
1253 
1254 			tmp = nf_ct_tuplehash_to_ctrack(h);
1255 
1256 			scanned++;
1257 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1258 				nf_ct_offload_timeout(tmp);
1259 				continue;
1260 			}
1261 
1262 			if (nf_ct_is_expired(tmp)) {
1263 				nf_ct_gc_expired(tmp);
1264 				expired_count++;
1265 				continue;
1266 			}
1267 
1268 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1269 				continue;
1270 
1271 			net = nf_ct_net(tmp);
1272 			if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1273 				continue;
1274 
1275 			/* need to take reference to avoid possible races */
1276 			if (!atomic_inc_not_zero(&tmp->ct_general.use))
1277 				continue;
1278 
1279 			if (gc_worker_skip_ct(tmp)) {
1280 				nf_ct_put(tmp);
1281 				continue;
1282 			}
1283 
1284 			if (gc_worker_can_early_drop(tmp))
1285 				nf_ct_kill(tmp);
1286 
1287 			nf_ct_put(tmp);
1288 		}
1289 
1290 		/* could check get_nulls_value() here and restart if ct
1291 		 * was moved to another chain.  But given gc is best-effort
1292 		 * we will just continue with next hash slot.
1293 		 */
1294 		rcu_read_unlock();
1295 		cond_resched();
1296 	} while (++buckets < goal);
1297 
1298 	if (gc_work->exiting)
1299 		return;
1300 
1301 	/*
1302 	 * Eviction will normally happen from the packet path, and not
1303 	 * from this gc worker.
1304 	 *
1305 	 * This worker is only here to reap expired entries when system went
1306 	 * idle after a busy period.
1307 	 *
1308 	 * The heuristics below are supposed to balance conflicting goals:
1309 	 *
1310 	 * 1. Minimize time until we notice a stale entry
1311 	 * 2. Maximize scan intervals to not waste cycles
1312 	 *
1313 	 * Normally, expire ratio will be close to 0.
1314 	 *
1315 	 * As soon as a sizeable fraction of the entries have expired
1316 	 * increase scan frequency.
1317 	 */
1318 	ratio = scanned ? expired_count * 100 / scanned : 0;
1319 	if (ratio > GC_EVICT_RATIO) {
1320 		gc_work->next_gc_run = min_interval;
1321 	} else {
1322 		unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1323 
1324 		BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1325 
1326 		gc_work->next_gc_run += min_interval;
1327 		if (gc_work->next_gc_run > max)
1328 			gc_work->next_gc_run = max;
1329 	}
1330 
1331 	next_run = gc_work->next_gc_run;
1332 	gc_work->last_bucket = i;
1333 	gc_work->early_drop = false;
1334 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1335 }
1336 
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1337 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1338 {
1339 	INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1340 	gc_work->next_gc_run = HZ;
1341 	gc_work->exiting = false;
1342 }
1343 
1344 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1345 __nf_conntrack_alloc(struct net *net,
1346 		     const struct nf_conntrack_zone *zone,
1347 		     const struct nf_conntrack_tuple *orig,
1348 		     const struct nf_conntrack_tuple *repl,
1349 		     gfp_t gfp, u32 hash)
1350 {
1351 	struct nf_conn *ct;
1352 
1353 	/* We don't want any race condition at early drop stage */
1354 	atomic_inc(&net->ct.count);
1355 
1356 	if (nf_conntrack_max &&
1357 	    unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1358 		if (!early_drop(net, hash)) {
1359 			if (!conntrack_gc_work.early_drop)
1360 				conntrack_gc_work.early_drop = true;
1361 			atomic_dec(&net->ct.count);
1362 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1363 			return ERR_PTR(-ENOMEM);
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * Do not use kmem_cache_zalloc(), as this cache uses
1369 	 * SLAB_TYPESAFE_BY_RCU.
1370 	 */
1371 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1372 	if (ct == NULL)
1373 		goto out;
1374 
1375 	spin_lock_init(&ct->lock);
1376 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1377 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1378 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1379 	/* save hash for reusing when confirming */
1380 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1381 	ct->status = 0;
1382 	ct->timeout = 0;
1383 	write_pnet(&ct->ct_net, net);
1384 	memset(&ct->__nfct_init_offset[0], 0,
1385 	       offsetof(struct nf_conn, proto) -
1386 	       offsetof(struct nf_conn, __nfct_init_offset[0]));
1387 
1388 	nf_ct_zone_add(ct, zone);
1389 
1390 	/* Because we use RCU lookups, we set ct_general.use to zero before
1391 	 * this is inserted in any list.
1392 	 */
1393 	atomic_set(&ct->ct_general.use, 0);
1394 	return ct;
1395 out:
1396 	atomic_dec(&net->ct.count);
1397 	return ERR_PTR(-ENOMEM);
1398 }
1399 
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1400 struct nf_conn *nf_conntrack_alloc(struct net *net,
1401 				   const struct nf_conntrack_zone *zone,
1402 				   const struct nf_conntrack_tuple *orig,
1403 				   const struct nf_conntrack_tuple *repl,
1404 				   gfp_t gfp)
1405 {
1406 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1407 }
1408 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1409 
nf_conntrack_free(struct nf_conn * ct)1410 void nf_conntrack_free(struct nf_conn *ct)
1411 {
1412 	struct net *net = nf_ct_net(ct);
1413 
1414 	/* A freed object has refcnt == 0, that's
1415 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1416 	 */
1417 	WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1418 
1419 	nf_ct_ext_destroy(ct);
1420 	nf_ct_ext_free(ct);
1421 	kmem_cache_free(nf_conntrack_cachep, ct);
1422 	smp_mb__before_atomic();
1423 	atomic_dec(&net->ct.count);
1424 }
1425 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1426 
1427 
1428 /* Allocate a new conntrack: we return -ENOMEM if classification
1429    failed due to stress.  Otherwise it really is unclassifiable. */
1430 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1431 init_conntrack(struct net *net, struct nf_conn *tmpl,
1432 	       const struct nf_conntrack_tuple *tuple,
1433 	       struct sk_buff *skb,
1434 	       unsigned int dataoff, u32 hash)
1435 {
1436 	struct nf_conn *ct;
1437 	struct nf_conn_help *help;
1438 	struct nf_conntrack_tuple repl_tuple;
1439 	struct nf_conntrack_ecache *ecache;
1440 	struct nf_conntrack_expect *exp = NULL;
1441 	const struct nf_conntrack_zone *zone;
1442 	struct nf_conn_timeout *timeout_ext;
1443 	struct nf_conntrack_zone tmp;
1444 
1445 	if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1446 		pr_debug("Can't invert tuple.\n");
1447 		return NULL;
1448 	}
1449 
1450 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1451 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1452 				  hash);
1453 	if (IS_ERR(ct))
1454 		return (struct nf_conntrack_tuple_hash *)ct;
1455 
1456 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1457 		nf_conntrack_free(ct);
1458 		return ERR_PTR(-ENOMEM);
1459 	}
1460 
1461 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1462 
1463 	if (timeout_ext)
1464 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1465 				      GFP_ATOMIC);
1466 
1467 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1468 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1469 	nf_ct_labels_ext_add(ct);
1470 
1471 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1472 	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1473 				 ecache ? ecache->expmask : 0,
1474 			     GFP_ATOMIC);
1475 
1476 	local_bh_disable();
1477 	if (net->ct.expect_count) {
1478 		spin_lock(&nf_conntrack_expect_lock);
1479 		exp = nf_ct_find_expectation(net, zone, tuple);
1480 		if (exp) {
1481 			pr_debug("expectation arrives ct=%p exp=%p\n",
1482 				 ct, exp);
1483 			/* Welcome, Mr. Bond.  We've been expecting you... */
1484 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1485 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1486 			ct->master = exp->master;
1487 			if (exp->helper) {
1488 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1489 				if (help)
1490 					rcu_assign_pointer(help->helper, exp->helper);
1491 			}
1492 
1493 #ifdef CONFIG_NF_CONNTRACK_MARK
1494 			ct->mark = exp->master->mark;
1495 #endif
1496 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1497 			ct->secmark = exp->master->secmark;
1498 #endif
1499 			NF_CT_STAT_INC(net, expect_new);
1500 		}
1501 		spin_unlock(&nf_conntrack_expect_lock);
1502 	}
1503 	if (!exp)
1504 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1505 
1506 	/* Now it is inserted into the unconfirmed list, bump refcount */
1507 	nf_conntrack_get(&ct->ct_general);
1508 	nf_ct_add_to_unconfirmed_list(ct);
1509 
1510 	local_bh_enable();
1511 
1512 	if (exp) {
1513 		if (exp->expectfn)
1514 			exp->expectfn(ct, exp);
1515 		nf_ct_expect_put(exp);
1516 	}
1517 
1518 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1519 }
1520 
1521 /* On success, returns 0, sets skb->_nfct | ctinfo */
1522 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1523 resolve_normal_ct(struct nf_conn *tmpl,
1524 		  struct sk_buff *skb,
1525 		  unsigned int dataoff,
1526 		  u_int8_t protonum,
1527 		  const struct nf_hook_state *state)
1528 {
1529 	const struct nf_conntrack_zone *zone;
1530 	struct nf_conntrack_tuple tuple;
1531 	struct nf_conntrack_tuple_hash *h;
1532 	enum ip_conntrack_info ctinfo;
1533 	struct nf_conntrack_zone tmp;
1534 	struct nf_conn *ct;
1535 	u32 hash;
1536 
1537 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1538 			     dataoff, state->pf, protonum, state->net,
1539 			     &tuple)) {
1540 		pr_debug("Can't get tuple\n");
1541 		return 0;
1542 	}
1543 
1544 	/* look for tuple match */
1545 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1546 	hash = hash_conntrack_raw(&tuple, state->net);
1547 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1548 	if (!h) {
1549 		h = init_conntrack(state->net, tmpl, &tuple,
1550 				   skb, dataoff, hash);
1551 		if (!h)
1552 			return 0;
1553 		if (IS_ERR(h))
1554 			return PTR_ERR(h);
1555 	}
1556 	ct = nf_ct_tuplehash_to_ctrack(h);
1557 
1558 	/* It exists; we have (non-exclusive) reference. */
1559 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1560 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1561 	} else {
1562 		/* Once we've had two way comms, always ESTABLISHED. */
1563 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1564 			pr_debug("normal packet for %p\n", ct);
1565 			ctinfo = IP_CT_ESTABLISHED;
1566 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1567 			pr_debug("related packet for %p\n", ct);
1568 			ctinfo = IP_CT_RELATED;
1569 		} else {
1570 			pr_debug("new packet for %p\n", ct);
1571 			ctinfo = IP_CT_NEW;
1572 		}
1573 	}
1574 	nf_ct_set(skb, ct, ctinfo);
1575 	return 0;
1576 }
1577 
1578 /*
1579  * icmp packets need special treatment to handle error messages that are
1580  * related to a connection.
1581  *
1582  * Callers need to check if skb has a conntrack assigned when this
1583  * helper returns; in such case skb belongs to an already known connection.
1584  */
1585 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1586 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1587 			 struct sk_buff *skb,
1588 			 unsigned int dataoff,
1589 			 u8 protonum,
1590 			 const struct nf_hook_state *state)
1591 {
1592 	int ret;
1593 
1594 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1595 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1596 #if IS_ENABLED(CONFIG_IPV6)
1597 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1598 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1599 #endif
1600 	else
1601 		return NF_ACCEPT;
1602 
1603 	if (ret <= 0) {
1604 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1605 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1606 	}
1607 
1608 	return ret;
1609 }
1610 
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1611 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1612 			  enum ip_conntrack_info ctinfo)
1613 {
1614 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1615 
1616 	if (!timeout)
1617 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1618 
1619 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1620 	return NF_ACCEPT;
1621 }
1622 
1623 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1624 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1625 				      struct sk_buff *skb,
1626 				      unsigned int dataoff,
1627 				      enum ip_conntrack_info ctinfo,
1628 				      const struct nf_hook_state *state)
1629 {
1630 	switch (nf_ct_protonum(ct)) {
1631 	case IPPROTO_TCP:
1632 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1633 					       ctinfo, state);
1634 	case IPPROTO_UDP:
1635 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1636 					       ctinfo, state);
1637 	case IPPROTO_ICMP:
1638 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1639 #if IS_ENABLED(CONFIG_IPV6)
1640 	case IPPROTO_ICMPV6:
1641 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1642 #endif
1643 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1644 	case IPPROTO_UDPLITE:
1645 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1646 						   ctinfo, state);
1647 #endif
1648 #ifdef CONFIG_NF_CT_PROTO_SCTP
1649 	case IPPROTO_SCTP:
1650 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1651 						ctinfo, state);
1652 #endif
1653 #ifdef CONFIG_NF_CT_PROTO_DCCP
1654 	case IPPROTO_DCCP:
1655 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1656 						ctinfo, state);
1657 #endif
1658 #ifdef CONFIG_NF_CT_PROTO_GRE
1659 	case IPPROTO_GRE:
1660 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1661 					       ctinfo, state);
1662 #endif
1663 	}
1664 
1665 	return generic_packet(ct, skb, ctinfo);
1666 }
1667 
1668 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1669 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1670 {
1671 	enum ip_conntrack_info ctinfo;
1672 	struct nf_conn *ct, *tmpl;
1673 	u_int8_t protonum;
1674 	int dataoff, ret;
1675 
1676 	tmpl = nf_ct_get(skb, &ctinfo);
1677 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1678 		/* Previously seen (loopback or untracked)?  Ignore. */
1679 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1680 		     ctinfo == IP_CT_UNTRACKED) {
1681 			NF_CT_STAT_INC_ATOMIC(state->net, ignore);
1682 			return NF_ACCEPT;
1683 		}
1684 		skb->_nfct = 0;
1685 	}
1686 
1687 	/* rcu_read_lock()ed by nf_hook_thresh */
1688 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1689 	if (dataoff <= 0) {
1690 		pr_debug("not prepared to track yet or error occurred\n");
1691 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1692 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1693 		ret = NF_ACCEPT;
1694 		goto out;
1695 	}
1696 
1697 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1698 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1699 					       protonum, state);
1700 		if (ret <= 0) {
1701 			ret = -ret;
1702 			goto out;
1703 		}
1704 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1705 		if (skb->_nfct)
1706 			goto out;
1707 	}
1708 repeat:
1709 	ret = resolve_normal_ct(tmpl, skb, dataoff,
1710 				protonum, state);
1711 	if (ret < 0) {
1712 		/* Too stressed to deal. */
1713 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
1714 		ret = NF_DROP;
1715 		goto out;
1716 	}
1717 
1718 	ct = nf_ct_get(skb, &ctinfo);
1719 	if (!ct) {
1720 		/* Not valid part of a connection */
1721 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1722 		ret = NF_ACCEPT;
1723 		goto out;
1724 	}
1725 
1726 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1727 	if (ret <= 0) {
1728 		/* Invalid: inverse of the return code tells
1729 		 * the netfilter core what to do */
1730 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
1731 		nf_conntrack_put(&ct->ct_general);
1732 		skb->_nfct = 0;
1733 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1734 		if (ret == -NF_DROP)
1735 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
1736 		/* Special case: TCP tracker reports an attempt to reopen a
1737 		 * closed/aborted connection. We have to go back and create a
1738 		 * fresh conntrack.
1739 		 */
1740 		if (ret == -NF_REPEAT)
1741 			goto repeat;
1742 		ret = -ret;
1743 		goto out;
1744 	}
1745 
1746 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1747 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1748 		nf_conntrack_event_cache(IPCT_REPLY, ct);
1749 out:
1750 	if (tmpl)
1751 		nf_ct_put(tmpl);
1752 
1753 	return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1756 
1757 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1758    implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)1759 void nf_conntrack_alter_reply(struct nf_conn *ct,
1760 			      const struct nf_conntrack_tuple *newreply)
1761 {
1762 	struct nf_conn_help *help = nfct_help(ct);
1763 
1764 	/* Should be unconfirmed, so not in hash table yet */
1765 	WARN_ON(nf_ct_is_confirmed(ct));
1766 
1767 	pr_debug("Altering reply tuple of %p to ", ct);
1768 	nf_ct_dump_tuple(newreply);
1769 
1770 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1771 	if (ct->master || (help && !hlist_empty(&help->expectations)))
1772 		return;
1773 
1774 	rcu_read_lock();
1775 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1776 	rcu_read_unlock();
1777 }
1778 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1779 
1780 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)1781 void __nf_ct_refresh_acct(struct nf_conn *ct,
1782 			  enum ip_conntrack_info ctinfo,
1783 			  const struct sk_buff *skb,
1784 			  u32 extra_jiffies,
1785 			  bool do_acct)
1786 {
1787 	/* Only update if this is not a fixed timeout */
1788 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1789 		goto acct;
1790 
1791 	/* If not in hash table, timer will not be active yet */
1792 	if (nf_ct_is_confirmed(ct))
1793 		extra_jiffies += nfct_time_stamp;
1794 
1795 	if (READ_ONCE(ct->timeout) != extra_jiffies)
1796 		WRITE_ONCE(ct->timeout, extra_jiffies);
1797 acct:
1798 	if (do_acct)
1799 		nf_ct_acct_update(ct, ctinfo, skb->len);
1800 }
1801 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1802 
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)1803 bool nf_ct_kill_acct(struct nf_conn *ct,
1804 		     enum ip_conntrack_info ctinfo,
1805 		     const struct sk_buff *skb)
1806 {
1807 	nf_ct_acct_update(ct, ctinfo, skb->len);
1808 
1809 	return nf_ct_delete(ct, 0, 0);
1810 }
1811 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1812 
1813 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1814 
1815 #include <linux/netfilter/nfnetlink.h>
1816 #include <linux/netfilter/nfnetlink_conntrack.h>
1817 #include <linux/mutex.h>
1818 
1819 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)1820 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1821 			       const struct nf_conntrack_tuple *tuple)
1822 {
1823 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1824 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1825 		goto nla_put_failure;
1826 	return 0;
1827 
1828 nla_put_failure:
1829 	return -1;
1830 }
1831 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1832 
1833 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1834 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1835 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1836 };
1837 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1838 
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t)1839 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1840 			       struct nf_conntrack_tuple *t)
1841 {
1842 	if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1843 		return -EINVAL;
1844 
1845 	t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1846 	t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1847 
1848 	return 0;
1849 }
1850 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1851 
nf_ct_port_nlattr_tuple_size(void)1852 unsigned int nf_ct_port_nlattr_tuple_size(void)
1853 {
1854 	static unsigned int size __read_mostly;
1855 
1856 	if (!size)
1857 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1858 
1859 	return size;
1860 }
1861 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1862 #endif
1863 
1864 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)1865 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1866 {
1867 	struct nf_conn *ct;
1868 	enum ip_conntrack_info ctinfo;
1869 
1870 	/* This ICMP is in reverse direction to the packet which caused it */
1871 	ct = nf_ct_get(skb, &ctinfo);
1872 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1873 		ctinfo = IP_CT_RELATED_REPLY;
1874 	else
1875 		ctinfo = IP_CT_RELATED;
1876 
1877 	/* Attach to new skbuff, and increment count */
1878 	nf_ct_set(nskb, ct, ctinfo);
1879 	nf_conntrack_get(skb_nfct(nskb));
1880 }
1881 
nf_conntrack_update(struct net * net,struct sk_buff * skb)1882 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
1883 {
1884 	struct nf_conntrack_tuple_hash *h;
1885 	struct nf_conntrack_tuple tuple;
1886 	enum ip_conntrack_info ctinfo;
1887 	struct nf_nat_hook *nat_hook;
1888 	unsigned int status;
1889 	struct nf_conn *ct;
1890 	int dataoff;
1891 	u16 l3num;
1892 	u8 l4num;
1893 
1894 	ct = nf_ct_get(skb, &ctinfo);
1895 	if (!ct || nf_ct_is_confirmed(ct))
1896 		return 0;
1897 
1898 	l3num = nf_ct_l3num(ct);
1899 
1900 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
1901 	if (dataoff <= 0)
1902 		return -1;
1903 
1904 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
1905 			     l4num, net, &tuple))
1906 		return -1;
1907 
1908 	if (ct->status & IPS_SRC_NAT) {
1909 		memcpy(tuple.src.u3.all,
1910 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
1911 		       sizeof(tuple.src.u3.all));
1912 		tuple.src.u.all =
1913 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
1914 	}
1915 
1916 	if (ct->status & IPS_DST_NAT) {
1917 		memcpy(tuple.dst.u3.all,
1918 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
1919 		       sizeof(tuple.dst.u3.all));
1920 		tuple.dst.u.all =
1921 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
1922 	}
1923 
1924 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
1925 	if (!h)
1926 		return 0;
1927 
1928 	/* Store status bits of the conntrack that is clashing to re-do NAT
1929 	 * mangling according to what it has been done already to this packet.
1930 	 */
1931 	status = ct->status;
1932 
1933 	nf_ct_put(ct);
1934 	ct = nf_ct_tuplehash_to_ctrack(h);
1935 	nf_ct_set(skb, ct, ctinfo);
1936 
1937 	nat_hook = rcu_dereference(nf_nat_hook);
1938 	if (!nat_hook)
1939 		return 0;
1940 
1941 	if (status & IPS_SRC_NAT &&
1942 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
1943 				IP_CT_DIR_ORIGINAL) == NF_DROP)
1944 		return -1;
1945 
1946 	if (status & IPS_DST_NAT &&
1947 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
1948 				IP_CT_DIR_ORIGINAL) == NF_DROP)
1949 		return -1;
1950 
1951 	return 0;
1952 }
1953 
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)1954 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
1955 				       const struct sk_buff *skb)
1956 {
1957 	const struct nf_conntrack_tuple *src_tuple;
1958 	const struct nf_conntrack_tuple_hash *hash;
1959 	struct nf_conntrack_tuple srctuple;
1960 	enum ip_conntrack_info ctinfo;
1961 	struct nf_conn *ct;
1962 
1963 	ct = nf_ct_get(skb, &ctinfo);
1964 	if (ct) {
1965 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
1966 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1967 		return true;
1968 	}
1969 
1970 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
1971 			       NFPROTO_IPV4, dev_net(skb->dev),
1972 			       &srctuple))
1973 		return false;
1974 
1975 	hash = nf_conntrack_find_get(dev_net(skb->dev),
1976 				     &nf_ct_zone_dflt,
1977 				     &srctuple);
1978 	if (!hash)
1979 		return false;
1980 
1981 	ct = nf_ct_tuplehash_to_ctrack(hash);
1982 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
1983 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1984 	nf_ct_put(ct);
1985 
1986 	return true;
1987 }
1988 
1989 /* Bring out ya dead! */
1990 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),void * data,unsigned int * bucket)1991 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1992 		void *data, unsigned int *bucket)
1993 {
1994 	struct nf_conntrack_tuple_hash *h;
1995 	struct nf_conn *ct;
1996 	struct hlist_nulls_node *n;
1997 	spinlock_t *lockp;
1998 
1999 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2000 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2001 		local_bh_disable();
2002 		nf_conntrack_lock(lockp);
2003 		if (*bucket < nf_conntrack_htable_size) {
2004 			hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2005 				if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
2006 					continue;
2007 				ct = nf_ct_tuplehash_to_ctrack(h);
2008 				if (iter(ct, data))
2009 					goto found;
2010 			}
2011 		}
2012 		spin_unlock(lockp);
2013 		local_bh_enable();
2014 		cond_resched();
2015 	}
2016 
2017 	return NULL;
2018 found:
2019 	atomic_inc(&ct->ct_general.use);
2020 	spin_unlock(lockp);
2021 	local_bh_enable();
2022 	return ct;
2023 }
2024 
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2025 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2026 				  void *data, u32 portid, int report)
2027 {
2028 	unsigned int bucket = 0, sequence;
2029 	struct nf_conn *ct;
2030 
2031 	might_sleep();
2032 
2033 	for (;;) {
2034 		sequence = read_seqcount_begin(&nf_conntrack_generation);
2035 
2036 		while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2037 			/* Time to push up daises... */
2038 
2039 			nf_ct_delete(ct, portid, report);
2040 			nf_ct_put(ct);
2041 			cond_resched();
2042 		}
2043 
2044 		if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2045 			break;
2046 		bucket = 0;
2047 	}
2048 }
2049 
2050 struct iter_data {
2051 	int (*iter)(struct nf_conn *i, void *data);
2052 	void *data;
2053 	struct net *net;
2054 };
2055 
iter_net_only(struct nf_conn * i,void * data)2056 static int iter_net_only(struct nf_conn *i, void *data)
2057 {
2058 	struct iter_data *d = data;
2059 
2060 	if (!net_eq(d->net, nf_ct_net(i)))
2061 		return 0;
2062 
2063 	return d->iter(i, d->data);
2064 }
2065 
2066 static void
__nf_ct_unconfirmed_destroy(struct net * net)2067 __nf_ct_unconfirmed_destroy(struct net *net)
2068 {
2069 	int cpu;
2070 
2071 	for_each_possible_cpu(cpu) {
2072 		struct nf_conntrack_tuple_hash *h;
2073 		struct hlist_nulls_node *n;
2074 		struct ct_pcpu *pcpu;
2075 
2076 		pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2077 
2078 		spin_lock_bh(&pcpu->lock);
2079 		hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2080 			struct nf_conn *ct;
2081 
2082 			ct = nf_ct_tuplehash_to_ctrack(h);
2083 
2084 			/* we cannot call iter() on unconfirmed list, the
2085 			 * owning cpu can reallocate ct->ext at any time.
2086 			 */
2087 			set_bit(IPS_DYING_BIT, &ct->status);
2088 		}
2089 		spin_unlock_bh(&pcpu->lock);
2090 		cond_resched();
2091 	}
2092 }
2093 
nf_ct_unconfirmed_destroy(struct net * net)2094 void nf_ct_unconfirmed_destroy(struct net *net)
2095 {
2096 	might_sleep();
2097 
2098 	if (atomic_read(&net->ct.count) > 0) {
2099 		__nf_ct_unconfirmed_destroy(net);
2100 		nf_queue_nf_hook_drop(net);
2101 		synchronize_net();
2102 	}
2103 }
2104 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2105 
nf_ct_iterate_cleanup_net(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2106 void nf_ct_iterate_cleanup_net(struct net *net,
2107 			       int (*iter)(struct nf_conn *i, void *data),
2108 			       void *data, u32 portid, int report)
2109 {
2110 	struct iter_data d;
2111 
2112 	might_sleep();
2113 
2114 	if (atomic_read(&net->ct.count) == 0)
2115 		return;
2116 
2117 	d.iter = iter;
2118 	d.data = data;
2119 	d.net = net;
2120 
2121 	nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2122 }
2123 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2124 
2125 /**
2126  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2127  * @iter: callback to invoke for each conntrack
2128  * @data: data to pass to @iter
2129  *
2130  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2131  * unconfirmed list as dying (so they will not be inserted into
2132  * main table).
2133  *
2134  * Can only be called in module exit path.
2135  */
2136 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2137 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2138 {
2139 	struct net *net;
2140 
2141 	down_read(&net_rwsem);
2142 	for_each_net(net) {
2143 		if (atomic_read(&net->ct.count) == 0)
2144 			continue;
2145 		__nf_ct_unconfirmed_destroy(net);
2146 		nf_queue_nf_hook_drop(net);
2147 	}
2148 	up_read(&net_rwsem);
2149 
2150 	/* Need to wait for netns cleanup worker to finish, if its
2151 	 * running -- it might have deleted a net namespace from
2152 	 * the global list, so our __nf_ct_unconfirmed_destroy() might
2153 	 * not have affected all namespaces.
2154 	 */
2155 	net_ns_barrier();
2156 
2157 	/* a conntrack could have been unlinked from unconfirmed list
2158 	 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2159 	 * This makes sure its inserted into conntrack table.
2160 	 */
2161 	synchronize_net();
2162 
2163 	nf_ct_iterate_cleanup(iter, data, 0, 0);
2164 }
2165 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2166 
kill_all(struct nf_conn * i,void * data)2167 static int kill_all(struct nf_conn *i, void *data)
2168 {
2169 	return net_eq(nf_ct_net(i), data);
2170 }
2171 
nf_conntrack_cleanup_start(void)2172 void nf_conntrack_cleanup_start(void)
2173 {
2174 	conntrack_gc_work.exiting = true;
2175 	RCU_INIT_POINTER(ip_ct_attach, NULL);
2176 }
2177 
nf_conntrack_cleanup_end(void)2178 void nf_conntrack_cleanup_end(void)
2179 {
2180 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2181 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2182 	kvfree(nf_conntrack_hash);
2183 
2184 	nf_conntrack_proto_fini();
2185 	nf_conntrack_seqadj_fini();
2186 	nf_conntrack_labels_fini();
2187 	nf_conntrack_helper_fini();
2188 	nf_conntrack_timeout_fini();
2189 	nf_conntrack_ecache_fini();
2190 	nf_conntrack_tstamp_fini();
2191 	nf_conntrack_acct_fini();
2192 	nf_conntrack_expect_fini();
2193 
2194 	kmem_cache_destroy(nf_conntrack_cachep);
2195 }
2196 
2197 /*
2198  * Mishearing the voices in his head, our hero wonders how he's
2199  * supposed to kill the mall.
2200  */
nf_conntrack_cleanup_net(struct net * net)2201 void nf_conntrack_cleanup_net(struct net *net)
2202 {
2203 	LIST_HEAD(single);
2204 
2205 	list_add(&net->exit_list, &single);
2206 	nf_conntrack_cleanup_net_list(&single);
2207 }
2208 
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2209 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2210 {
2211 	int busy;
2212 	struct net *net;
2213 
2214 	/*
2215 	 * This makes sure all current packets have passed through
2216 	 *  netfilter framework.  Roll on, two-stage module
2217 	 *  delete...
2218 	 */
2219 	synchronize_net();
2220 i_see_dead_people:
2221 	busy = 0;
2222 	list_for_each_entry(net, net_exit_list, exit_list) {
2223 		nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2224 		if (atomic_read(&net->ct.count) != 0)
2225 			busy = 1;
2226 	}
2227 	if (busy) {
2228 		schedule();
2229 		goto i_see_dead_people;
2230 	}
2231 
2232 	list_for_each_entry(net, net_exit_list, exit_list) {
2233 		nf_conntrack_proto_pernet_fini(net);
2234 		nf_conntrack_ecache_pernet_fini(net);
2235 		nf_conntrack_expect_pernet_fini(net);
2236 		free_percpu(net->ct.stat);
2237 		free_percpu(net->ct.pcpu_lists);
2238 	}
2239 }
2240 
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2241 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2242 {
2243 	struct hlist_nulls_head *hash;
2244 	unsigned int nr_slots, i;
2245 
2246 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2247 		return NULL;
2248 
2249 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2250 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2251 
2252 	hash = kvmalloc_array(nr_slots, sizeof(struct hlist_nulls_head),
2253 			      GFP_KERNEL | __GFP_ZERO);
2254 
2255 	if (hash && nulls)
2256 		for (i = 0; i < nr_slots; i++)
2257 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2258 
2259 	return hash;
2260 }
2261 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2262 
nf_conntrack_hash_resize(unsigned int hashsize)2263 int nf_conntrack_hash_resize(unsigned int hashsize)
2264 {
2265 	int i, bucket;
2266 	unsigned int old_size;
2267 	struct hlist_nulls_head *hash, *old_hash;
2268 	struct nf_conntrack_tuple_hash *h;
2269 	struct nf_conn *ct;
2270 
2271 	if (!hashsize)
2272 		return -EINVAL;
2273 
2274 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2275 	if (!hash)
2276 		return -ENOMEM;
2277 
2278 	old_size = nf_conntrack_htable_size;
2279 	if (old_size == hashsize) {
2280 		kvfree(hash);
2281 		return 0;
2282 	}
2283 
2284 	local_bh_disable();
2285 	nf_conntrack_all_lock();
2286 	write_seqcount_begin(&nf_conntrack_generation);
2287 
2288 	/* Lookups in the old hash might happen in parallel, which means we
2289 	 * might get false negatives during connection lookup. New connections
2290 	 * created because of a false negative won't make it into the hash
2291 	 * though since that required taking the locks.
2292 	 */
2293 
2294 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2295 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2296 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2297 					      struct nf_conntrack_tuple_hash, hnnode);
2298 			ct = nf_ct_tuplehash_to_ctrack(h);
2299 			hlist_nulls_del_rcu(&h->hnnode);
2300 			bucket = __hash_conntrack(nf_ct_net(ct),
2301 						  &h->tuple, hashsize);
2302 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2303 		}
2304 	}
2305 	old_size = nf_conntrack_htable_size;
2306 	old_hash = nf_conntrack_hash;
2307 
2308 	nf_conntrack_hash = hash;
2309 	nf_conntrack_htable_size = hashsize;
2310 
2311 	write_seqcount_end(&nf_conntrack_generation);
2312 	nf_conntrack_all_unlock();
2313 	local_bh_enable();
2314 
2315 	synchronize_net();
2316 	kvfree(old_hash);
2317 	return 0;
2318 }
2319 
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2320 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2321 {
2322 	unsigned int hashsize;
2323 	int rc;
2324 
2325 	if (current->nsproxy->net_ns != &init_net)
2326 		return -EOPNOTSUPP;
2327 
2328 	/* On boot, we can set this without any fancy locking. */
2329 	if (!nf_conntrack_hash)
2330 		return param_set_uint(val, kp);
2331 
2332 	rc = kstrtouint(val, 0, &hashsize);
2333 	if (rc)
2334 		return rc;
2335 
2336 	return nf_conntrack_hash_resize(hashsize);
2337 }
2338 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
2339 
total_extension_size(void)2340 static __always_inline unsigned int total_extension_size(void)
2341 {
2342 	/* remember to add new extensions below */
2343 	BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2344 
2345 	return sizeof(struct nf_ct_ext) +
2346 	       sizeof(struct nf_conn_help)
2347 #if IS_ENABLED(CONFIG_NF_NAT)
2348 		+ sizeof(struct nf_conn_nat)
2349 #endif
2350 		+ sizeof(struct nf_conn_seqadj)
2351 		+ sizeof(struct nf_conn_acct)
2352 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2353 		+ sizeof(struct nf_conntrack_ecache)
2354 #endif
2355 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2356 		+ sizeof(struct nf_conn_tstamp)
2357 #endif
2358 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2359 		+ sizeof(struct nf_conn_timeout)
2360 #endif
2361 #ifdef CONFIG_NF_CONNTRACK_LABELS
2362 		+ sizeof(struct nf_conn_labels)
2363 #endif
2364 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2365 		+ sizeof(struct nf_conn_synproxy)
2366 #endif
2367 	;
2368 };
2369 
nf_conntrack_init_start(void)2370 int nf_conntrack_init_start(void)
2371 {
2372 	unsigned long nr_pages = totalram_pages();
2373 	int max_factor = 8;
2374 	int ret = -ENOMEM;
2375 	int i;
2376 
2377 	/* struct nf_ct_ext uses u8 to store offsets/size */
2378 	BUILD_BUG_ON(total_extension_size() > 255u);
2379 
2380 	seqcount_init(&nf_conntrack_generation);
2381 
2382 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2383 		spin_lock_init(&nf_conntrack_locks[i]);
2384 
2385 	if (!nf_conntrack_htable_size) {
2386 		/* Idea from tcp.c: use 1/16384 of memory.
2387 		 * On i386: 32MB machine has 512 buckets.
2388 		 * >= 1GB machines have 16384 buckets.
2389 		 * >= 4GB machines have 65536 buckets.
2390 		 */
2391 		nf_conntrack_htable_size
2392 			= (((nr_pages << PAGE_SHIFT) / 16384)
2393 			   / sizeof(struct hlist_head));
2394 		if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2395 			nf_conntrack_htable_size = 65536;
2396 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2397 			nf_conntrack_htable_size = 16384;
2398 		if (nf_conntrack_htable_size < 32)
2399 			nf_conntrack_htable_size = 32;
2400 
2401 		/* Use a max. factor of four by default to get the same max as
2402 		 * with the old struct list_heads. When a table size is given
2403 		 * we use the old value of 8 to avoid reducing the max.
2404 		 * entries. */
2405 		max_factor = 4;
2406 	}
2407 
2408 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2409 	if (!nf_conntrack_hash)
2410 		return -ENOMEM;
2411 
2412 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2413 
2414 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2415 						sizeof(struct nf_conn),
2416 						NFCT_INFOMASK + 1,
2417 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2418 	if (!nf_conntrack_cachep)
2419 		goto err_cachep;
2420 
2421 	ret = nf_conntrack_expect_init();
2422 	if (ret < 0)
2423 		goto err_expect;
2424 
2425 	ret = nf_conntrack_acct_init();
2426 	if (ret < 0)
2427 		goto err_acct;
2428 
2429 	ret = nf_conntrack_tstamp_init();
2430 	if (ret < 0)
2431 		goto err_tstamp;
2432 
2433 	ret = nf_conntrack_ecache_init();
2434 	if (ret < 0)
2435 		goto err_ecache;
2436 
2437 	ret = nf_conntrack_timeout_init();
2438 	if (ret < 0)
2439 		goto err_timeout;
2440 
2441 	ret = nf_conntrack_helper_init();
2442 	if (ret < 0)
2443 		goto err_helper;
2444 
2445 	ret = nf_conntrack_labels_init();
2446 	if (ret < 0)
2447 		goto err_labels;
2448 
2449 	ret = nf_conntrack_seqadj_init();
2450 	if (ret < 0)
2451 		goto err_seqadj;
2452 
2453 	ret = nf_conntrack_proto_init();
2454 	if (ret < 0)
2455 		goto err_proto;
2456 
2457 	conntrack_gc_work_init(&conntrack_gc_work);
2458 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2459 
2460 	return 0;
2461 
2462 err_proto:
2463 	nf_conntrack_seqadj_fini();
2464 err_seqadj:
2465 	nf_conntrack_labels_fini();
2466 err_labels:
2467 	nf_conntrack_helper_fini();
2468 err_helper:
2469 	nf_conntrack_timeout_fini();
2470 err_timeout:
2471 	nf_conntrack_ecache_fini();
2472 err_ecache:
2473 	nf_conntrack_tstamp_fini();
2474 err_tstamp:
2475 	nf_conntrack_acct_fini();
2476 err_acct:
2477 	nf_conntrack_expect_fini();
2478 err_expect:
2479 	kmem_cache_destroy(nf_conntrack_cachep);
2480 err_cachep:
2481 	kvfree(nf_conntrack_hash);
2482 	return ret;
2483 }
2484 
2485 static struct nf_ct_hook nf_conntrack_hook = {
2486 	.update		= nf_conntrack_update,
2487 	.destroy	= destroy_conntrack,
2488 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2489 };
2490 
nf_conntrack_init_end(void)2491 void nf_conntrack_init_end(void)
2492 {
2493 	/* For use by REJECT target */
2494 	RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2495 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2496 }
2497 
2498 /*
2499  * We need to use special "null" values, not used in hash table
2500  */
2501 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2502 #define DYING_NULLS_VAL		((1<<30)+1)
2503 #define TEMPLATE_NULLS_VAL	((1<<30)+2)
2504 
nf_conntrack_init_net(struct net * net)2505 int nf_conntrack_init_net(struct net *net)
2506 {
2507 	int ret = -ENOMEM;
2508 	int cpu;
2509 
2510 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2511 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2512 	atomic_set(&net->ct.count, 0);
2513 
2514 	net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2515 	if (!net->ct.pcpu_lists)
2516 		goto err_stat;
2517 
2518 	for_each_possible_cpu(cpu) {
2519 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2520 
2521 		spin_lock_init(&pcpu->lock);
2522 		INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2523 		INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2524 	}
2525 
2526 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2527 	if (!net->ct.stat)
2528 		goto err_pcpu_lists;
2529 
2530 	ret = nf_conntrack_expect_pernet_init(net);
2531 	if (ret < 0)
2532 		goto err_expect;
2533 
2534 	nf_conntrack_acct_pernet_init(net);
2535 	nf_conntrack_tstamp_pernet_init(net);
2536 	nf_conntrack_ecache_pernet_init(net);
2537 	nf_conntrack_helper_pernet_init(net);
2538 	nf_conntrack_proto_pernet_init(net);
2539 
2540 	return 0;
2541 
2542 err_expect:
2543 	free_percpu(net->ct.stat);
2544 err_pcpu_lists:
2545 	free_percpu(net->ct.pcpu_lists);
2546 err_stat:
2547 	return ret;
2548 }
2549