• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_IA64_PROCESSOR_H
3 #define _ASM_IA64_PROCESSOR_H
4 
5 /*
6  * Copyright (C) 1998-2004 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
10  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
11  *
12  * 11/24/98	S.Eranian	added ia64_set_iva()
13  * 12/03/99	D. Mosberger	implement thread_saved_pc() via kernel unwind API
14  * 06/16/00	A. Mallick	added csd/ssd/tssd for ia32 support
15  */
16 
17 
18 #include <asm/intrinsics.h>
19 #include <asm/kregs.h>
20 #include <asm/ptrace.h>
21 #include <asm/ustack.h>
22 
23 #define IA64_NUM_PHYS_STACK_REG	96
24 #define IA64_NUM_DBG_REGS	8
25 
26 #define DEFAULT_MAP_BASE	__IA64_UL_CONST(0x2000000000000000)
27 #define DEFAULT_TASK_SIZE	__IA64_UL_CONST(0xa000000000000000)
28 
29 /*
30  * TASK_SIZE really is a mis-named.  It really is the maximum user
31  * space address (plus one).  On IA-64, there are five regions of 2TB
32  * each (assuming 8KB page size), for a total of 8TB of user virtual
33  * address space.
34  */
35 #define TASK_SIZE       	DEFAULT_TASK_SIZE
36 
37 /*
38  * This decides where the kernel will search for a free chunk of vm
39  * space during mmap's.
40  */
41 #define TASK_UNMAPPED_BASE	(current->thread.map_base)
42 
43 #define IA64_THREAD_FPH_VALID	(__IA64_UL(1) << 0)	/* floating-point high state valid? */
44 #define IA64_THREAD_DBG_VALID	(__IA64_UL(1) << 1)	/* debug registers valid? */
45 #define IA64_THREAD_PM_VALID	(__IA64_UL(1) << 2)	/* performance registers valid? */
46 #define IA64_THREAD_UAC_NOPRINT	(__IA64_UL(1) << 3)	/* don't log unaligned accesses */
47 #define IA64_THREAD_UAC_SIGBUS	(__IA64_UL(1) << 4)	/* generate SIGBUS on unaligned acc. */
48 #define IA64_THREAD_MIGRATION	(__IA64_UL(1) << 5)	/* require migration
49 							   sync at ctx sw */
50 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6)	/* don't log any fpswa faults */
51 #define IA64_THREAD_FPEMU_SIGFPE  (__IA64_UL(1) << 7)	/* send a SIGFPE for fpswa faults */
52 
53 #define IA64_THREAD_UAC_SHIFT	3
54 #define IA64_THREAD_UAC_MASK	(IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
55 #define IA64_THREAD_FPEMU_SHIFT	6
56 #define IA64_THREAD_FPEMU_MASK	(IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
57 
58 
59 /*
60  * This shift should be large enough to be able to represent 1000000000/itc_freq with good
61  * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
62  * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
63  */
64 #define IA64_NSEC_PER_CYC_SHIFT	30
65 
66 #ifndef __ASSEMBLY__
67 
68 #include <linux/cache.h>
69 #include <linux/compiler.h>
70 #include <linux/threads.h>
71 #include <linux/types.h>
72 #include <linux/bitops.h>
73 
74 #include <asm/fpu.h>
75 #include <asm/page.h>
76 #include <asm/percpu.h>
77 #include <asm/rse.h>
78 #include <asm/unwind.h>
79 #include <linux/atomic.h>
80 #ifdef CONFIG_NUMA
81 #include <asm/nodedata.h>
82 #endif
83 
84 /* like above but expressed as bitfields for more efficient access: */
85 struct ia64_psr {
86 	__u64 reserved0 : 1;
87 	__u64 be : 1;
88 	__u64 up : 1;
89 	__u64 ac : 1;
90 	__u64 mfl : 1;
91 	__u64 mfh : 1;
92 	__u64 reserved1 : 7;
93 	__u64 ic : 1;
94 	__u64 i : 1;
95 	__u64 pk : 1;
96 	__u64 reserved2 : 1;
97 	__u64 dt : 1;
98 	__u64 dfl : 1;
99 	__u64 dfh : 1;
100 	__u64 sp : 1;
101 	__u64 pp : 1;
102 	__u64 di : 1;
103 	__u64 si : 1;
104 	__u64 db : 1;
105 	__u64 lp : 1;
106 	__u64 tb : 1;
107 	__u64 rt : 1;
108 	__u64 reserved3 : 4;
109 	__u64 cpl : 2;
110 	__u64 is : 1;
111 	__u64 mc : 1;
112 	__u64 it : 1;
113 	__u64 id : 1;
114 	__u64 da : 1;
115 	__u64 dd : 1;
116 	__u64 ss : 1;
117 	__u64 ri : 2;
118 	__u64 ed : 1;
119 	__u64 bn : 1;
120 	__u64 reserved4 : 19;
121 };
122 
123 union ia64_isr {
124 	__u64  val;
125 	struct {
126 		__u64 code : 16;
127 		__u64 vector : 8;
128 		__u64 reserved1 : 8;
129 		__u64 x : 1;
130 		__u64 w : 1;
131 		__u64 r : 1;
132 		__u64 na : 1;
133 		__u64 sp : 1;
134 		__u64 rs : 1;
135 		__u64 ir : 1;
136 		__u64 ni : 1;
137 		__u64 so : 1;
138 		__u64 ei : 2;
139 		__u64 ed : 1;
140 		__u64 reserved2 : 20;
141 	};
142 };
143 
144 union ia64_lid {
145 	__u64 val;
146 	struct {
147 		__u64  rv  : 16;
148 		__u64  eid : 8;
149 		__u64  id  : 8;
150 		__u64  ig  : 32;
151 	};
152 };
153 
154 union ia64_tpr {
155 	__u64 val;
156 	struct {
157 		__u64 ig0 : 4;
158 		__u64 mic : 4;
159 		__u64 rsv : 8;
160 		__u64 mmi : 1;
161 		__u64 ig1 : 47;
162 	};
163 };
164 
165 union ia64_itir {
166 	__u64 val;
167 	struct {
168 		__u64 rv3  :  2; /* 0-1 */
169 		__u64 ps   :  6; /* 2-7 */
170 		__u64 key  : 24; /* 8-31 */
171 		__u64 rv4  : 32; /* 32-63 */
172 	};
173 };
174 
175 union  ia64_rr {
176 	__u64 val;
177 	struct {
178 		__u64  ve	:  1;  /* enable hw walker */
179 		__u64  reserved0:  1;  /* reserved */
180 		__u64  ps	:  6;  /* log page size */
181 		__u64  rid	: 24;  /* region id */
182 		__u64  reserved1: 32;  /* reserved */
183 	};
184 };
185 
186 /*
187  * CPU type, hardware bug flags, and per-CPU state.  Frequently used
188  * state comes earlier:
189  */
190 struct cpuinfo_ia64 {
191 	unsigned int softirq_pending;
192 	unsigned long itm_delta;	/* # of clock cycles between clock ticks */
193 	unsigned long itm_next;		/* interval timer mask value to use for next clock tick */
194 	unsigned long nsec_per_cyc;	/* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
195 	unsigned long unimpl_va_mask;	/* mask of unimplemented virtual address bits (from PAL) */
196 	unsigned long unimpl_pa_mask;	/* mask of unimplemented physical address bits (from PAL) */
197 	unsigned long itc_freq;		/* frequency of ITC counter */
198 	unsigned long proc_freq;	/* frequency of processor */
199 	unsigned long cyc_per_usec;	/* itc_freq/1000000 */
200 	unsigned long ptce_base;
201 	unsigned int ptce_count[2];
202 	unsigned int ptce_stride[2];
203 	struct task_struct *ksoftirqd;	/* kernel softirq daemon for this CPU */
204 
205 #ifdef CONFIG_SMP
206 	unsigned long loops_per_jiffy;
207 	int cpu;
208 	unsigned int socket_id;	/* physical processor socket id */
209 	unsigned short core_id;	/* core id */
210 	unsigned short thread_id; /* thread id */
211 	unsigned short num_log;	/* Total number of logical processors on
212 				 * this socket that were successfully booted */
213 	unsigned char cores_per_socket;	/* Cores per processor socket */
214 	unsigned char threads_per_core;	/* Threads per core */
215 #endif
216 
217 	/* CPUID-derived information: */
218 	unsigned long ppn;
219 	unsigned long features;
220 	unsigned char number;
221 	unsigned char revision;
222 	unsigned char model;
223 	unsigned char family;
224 	unsigned char archrev;
225 	char vendor[16];
226 	char *model_name;
227 
228 #ifdef CONFIG_NUMA
229 	struct ia64_node_data *node_data;
230 #endif
231 };
232 
233 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
234 
235 /*
236  * The "local" data variable.  It refers to the per-CPU data of the currently executing
237  * CPU, much like "current" points to the per-task data of the currently executing task.
238  * Do not use the address of local_cpu_data, since it will be different from
239  * cpu_data(smp_processor_id())!
240  */
241 #define local_cpu_data		(&__ia64_per_cpu_var(ia64_cpu_info))
242 #define cpu_data(cpu)		(&per_cpu(ia64_cpu_info, cpu))
243 
244 extern void print_cpu_info (struct cpuinfo_ia64 *);
245 
246 typedef struct {
247 	unsigned long seg;
248 } mm_segment_t;
249 
250 #define SET_UNALIGN_CTL(task,value)								\
251 ({												\
252 	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK)			\
253 				| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK));	\
254 	0;											\
255 })
256 #define GET_UNALIGN_CTL(task,addr)								\
257 ({												\
258 	put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT,	\
259 		 (int __user *) (addr));							\
260 })
261 
262 #define SET_FPEMU_CTL(task,value)								\
263 ({												\
264 	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK)		\
265 			  | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK));	\
266 	0;											\
267 })
268 #define GET_FPEMU_CTL(task,addr)								\
269 ({												\
270 	put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT,	\
271 		 (int __user *) (addr));							\
272 })
273 
274 struct thread_struct {
275 	__u32 flags;			/* various thread flags (see IA64_THREAD_*) */
276 	/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
277 	__u8 on_ustack;			/* executing on user-stacks? */
278 	__u8 pad[3];
279 	__u64 ksp;			/* kernel stack pointer */
280 	__u64 map_base;			/* base address for get_unmapped_area() */
281 	__u64 rbs_bot;			/* the base address for the RBS */
282 	int last_fph_cpu;		/* CPU that may hold the contents of f32-f127 */
283 
284 #ifdef CONFIG_PERFMON
285 	void *pfm_context;		     /* pointer to detailed PMU context */
286 	unsigned long pfm_needs_checking;    /* when >0, pending perfmon work on kernel exit */
287 # define INIT_THREAD_PM		.pfm_context =		NULL,     \
288 				.pfm_needs_checking =	0UL,
289 #else
290 # define INIT_THREAD_PM
291 #endif
292 	unsigned long dbr[IA64_NUM_DBG_REGS];
293 	unsigned long ibr[IA64_NUM_DBG_REGS];
294 	struct ia64_fpreg fph[96];	/* saved/loaded on demand */
295 };
296 
297 #define INIT_THREAD {						\
298 	.flags =	0,					\
299 	.on_ustack =	0,					\
300 	.ksp =		0,					\
301 	.map_base =	DEFAULT_MAP_BASE,			\
302 	.rbs_bot =	STACK_TOP - DEFAULT_USER_STACK_SIZE,	\
303 	.last_fph_cpu =  -1,					\
304 	INIT_THREAD_PM						\
305 	.dbr =		{0, },					\
306 	.ibr =		{0, },					\
307 	.fph =		{{{{0}}}, }				\
308 }
309 
310 #define start_thread(regs,new_ip,new_sp) do {							\
311 	regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL))		\
312 			 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS));		\
313 	regs->cr_iip = new_ip;									\
314 	regs->ar_rsc = 0xf;		/* eager mode, privilege level 3 */			\
315 	regs->ar_rnat = 0;									\
316 	regs->ar_bspstore = current->thread.rbs_bot;						\
317 	regs->ar_fpsr = FPSR_DEFAULT;								\
318 	regs->loadrs = 0;									\
319 	regs->r8 = get_dumpable(current->mm);	/* set "don't zap registers" flag */		\
320 	regs->r12 = new_sp - 16;	/* allocate 16 byte scratch area */			\
321 	if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) {	\
322 		/*										\
323 		 * Zap scratch regs to avoid leaking bits between processes with different	\
324 		 * uid/privileges.								\
325 		 */										\
326 		regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0;					\
327 		regs->r1 = 0; regs->r9  = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0;	\
328 	}											\
329 } while (0)
330 
331 /* Forward declarations, a strange C thing... */
332 struct mm_struct;
333 struct task_struct;
334 
335 /*
336  * Free all resources held by a thread. This is called after the
337  * parent of DEAD_TASK has collected the exit status of the task via
338  * wait().
339  */
340 #define release_thread(dead_task)
341 
342 /* Get wait channel for task P.  */
343 extern unsigned long get_wchan (struct task_struct *p);
344 
345 /* Return instruction pointer of blocked task TSK.  */
346 #define KSTK_EIP(tsk)					\
347   ({							\
348 	struct pt_regs *_regs = task_pt_regs(tsk);	\
349 	_regs->cr_iip + ia64_psr(_regs)->ri;		\
350   })
351 
352 /* Return stack pointer of blocked task TSK.  */
353 #define KSTK_ESP(tsk)  ((tsk)->thread.ksp)
354 
355 extern void ia64_getreg_unknown_kr (void);
356 extern void ia64_setreg_unknown_kr (void);
357 
358 #define ia64_get_kr(regnum)					\
359 ({								\
360 	unsigned long r = 0;					\
361 								\
362 	switch (regnum) {					\
363 	    case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break;	\
364 	    case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break;	\
365 	    case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break;	\
366 	    case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break;	\
367 	    case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break;	\
368 	    case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break;	\
369 	    case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break;	\
370 	    case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break;	\
371 	    default: ia64_getreg_unknown_kr(); break;		\
372 	}							\
373 	r;							\
374 })
375 
376 #define ia64_set_kr(regnum, r) 					\
377 ({								\
378 	switch (regnum) {					\
379 	    case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break;	\
380 	    case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break;	\
381 	    case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break;	\
382 	    case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break;	\
383 	    case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break;	\
384 	    case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break;	\
385 	    case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break;	\
386 	    case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break;	\
387 	    default: ia64_setreg_unknown_kr(); break;		\
388 	}							\
389 })
390 
391 /*
392  * The following three macros can't be inline functions because we don't have struct
393  * task_struct at this point.
394  */
395 
396 /*
397  * Return TRUE if task T owns the fph partition of the CPU we're running on.
398  * Must be called from code that has preemption disabled.
399  */
400 #define ia64_is_local_fpu_owner(t)								\
401 ({												\
402 	struct task_struct *__ia64_islfo_task = (t);						\
403 	(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id()				\
404 	 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER));	\
405 })
406 
407 /*
408  * Mark task T as owning the fph partition of the CPU we're running on.
409  * Must be called from code that has preemption disabled.
410  */
411 #define ia64_set_local_fpu_owner(t) do {						\
412 	struct task_struct *__ia64_slfo_task = (t);					\
413 	__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id();			\
414 	ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task);		\
415 } while (0)
416 
417 /* Mark the fph partition of task T as being invalid on all CPUs.  */
418 #define ia64_drop_fpu(t)	((t)->thread.last_fph_cpu = -1)
419 
420 extern void __ia64_init_fpu (void);
421 extern void __ia64_save_fpu (struct ia64_fpreg *fph);
422 extern void __ia64_load_fpu (struct ia64_fpreg *fph);
423 extern void ia64_save_debug_regs (unsigned long *save_area);
424 extern void ia64_load_debug_regs (unsigned long *save_area);
425 
426 #define ia64_fph_enable()	do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
427 #define ia64_fph_disable()	do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
428 
429 /* load fp 0.0 into fph */
430 static inline void
ia64_init_fpu(void)431 ia64_init_fpu (void) {
432 	ia64_fph_enable();
433 	__ia64_init_fpu();
434 	ia64_fph_disable();
435 }
436 
437 /* save f32-f127 at FPH */
438 static inline void
ia64_save_fpu(struct ia64_fpreg * fph)439 ia64_save_fpu (struct ia64_fpreg *fph) {
440 	ia64_fph_enable();
441 	__ia64_save_fpu(fph);
442 	ia64_fph_disable();
443 }
444 
445 /* load f32-f127 from FPH */
446 static inline void
ia64_load_fpu(struct ia64_fpreg * fph)447 ia64_load_fpu (struct ia64_fpreg *fph) {
448 	ia64_fph_enable();
449 	__ia64_load_fpu(fph);
450 	ia64_fph_disable();
451 }
452 
453 static inline __u64
ia64_clear_ic(void)454 ia64_clear_ic (void)
455 {
456 	__u64 psr;
457 	psr = ia64_getreg(_IA64_REG_PSR);
458 	ia64_stop();
459 	ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
460 	ia64_srlz_i();
461 	return psr;
462 }
463 
464 /*
465  * Restore the psr.
466  */
467 static inline void
ia64_set_psr(__u64 psr)468 ia64_set_psr (__u64 psr)
469 {
470 	ia64_stop();
471 	ia64_setreg(_IA64_REG_PSR_L, psr);
472 	ia64_srlz_i();
473 }
474 
475 /*
476  * Insert a translation into an instruction and/or data translation
477  * register.
478  */
479 static inline void
ia64_itr(__u64 target_mask,__u64 tr_num,__u64 vmaddr,__u64 pte,__u64 log_page_size)480 ia64_itr (__u64 target_mask, __u64 tr_num,
481 	  __u64 vmaddr, __u64 pte,
482 	  __u64 log_page_size)
483 {
484 	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
485 	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
486 	ia64_stop();
487 	if (target_mask & 0x1)
488 		ia64_itri(tr_num, pte);
489 	if (target_mask & 0x2)
490 		ia64_itrd(tr_num, pte);
491 }
492 
493 /*
494  * Insert a translation into the instruction and/or data translation
495  * cache.
496  */
497 static inline void
ia64_itc(__u64 target_mask,__u64 vmaddr,__u64 pte,__u64 log_page_size)498 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
499 	  __u64 log_page_size)
500 {
501 	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
502 	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
503 	ia64_stop();
504 	/* as per EAS2.6, itc must be the last instruction in an instruction group */
505 	if (target_mask & 0x1)
506 		ia64_itci(pte);
507 	if (target_mask & 0x2)
508 		ia64_itcd(pte);
509 }
510 
511 /*
512  * Purge a range of addresses from instruction and/or data translation
513  * register(s).
514  */
515 static inline void
ia64_ptr(__u64 target_mask,__u64 vmaddr,__u64 log_size)516 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
517 {
518 	if (target_mask & 0x1)
519 		ia64_ptri(vmaddr, (log_size << 2));
520 	if (target_mask & 0x2)
521 		ia64_ptrd(vmaddr, (log_size << 2));
522 }
523 
524 /* Set the interrupt vector address.  The address must be suitably aligned (32KB).  */
525 static inline void
ia64_set_iva(void * ivt_addr)526 ia64_set_iva (void *ivt_addr)
527 {
528 	ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
529 	ia64_srlz_i();
530 }
531 
532 /* Set the page table address and control bits.  */
533 static inline void
ia64_set_pta(__u64 pta)534 ia64_set_pta (__u64 pta)
535 {
536 	/* Note: srlz.i implies srlz.d */
537 	ia64_setreg(_IA64_REG_CR_PTA, pta);
538 	ia64_srlz_i();
539 }
540 
541 static inline void
ia64_eoi(void)542 ia64_eoi (void)
543 {
544 	ia64_setreg(_IA64_REG_CR_EOI, 0);
545 	ia64_srlz_d();
546 }
547 
548 #define cpu_relax()	ia64_hint(ia64_hint_pause)
549 
550 static inline int
ia64_get_irr(unsigned int vector)551 ia64_get_irr(unsigned int vector)
552 {
553 	unsigned int reg = vector / 64;
554 	unsigned int bit = vector % 64;
555 	u64 irr;
556 
557 	switch (reg) {
558 	case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
559 	case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
560 	case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
561 	case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
562 	}
563 
564 	return test_bit(bit, &irr);
565 }
566 
567 static inline void
ia64_set_lrr0(unsigned long val)568 ia64_set_lrr0 (unsigned long val)
569 {
570 	ia64_setreg(_IA64_REG_CR_LRR0, val);
571 	ia64_srlz_d();
572 }
573 
574 static inline void
ia64_set_lrr1(unsigned long val)575 ia64_set_lrr1 (unsigned long val)
576 {
577 	ia64_setreg(_IA64_REG_CR_LRR1, val);
578 	ia64_srlz_d();
579 }
580 
581 
582 /*
583  * Given the address to which a spill occurred, return the unat bit
584  * number that corresponds to this address.
585  */
586 static inline __u64
ia64_unat_pos(void * spill_addr)587 ia64_unat_pos (void *spill_addr)
588 {
589 	return ((__u64) spill_addr >> 3) & 0x3f;
590 }
591 
592 /*
593  * Set the NaT bit of an integer register which was spilled at address
594  * SPILL_ADDR.  UNAT is the mask to be updated.
595  */
596 static inline void
ia64_set_unat(__u64 * unat,void * spill_addr,unsigned long nat)597 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
598 {
599 	__u64 bit = ia64_unat_pos(spill_addr);
600 	__u64 mask = 1UL << bit;
601 
602 	*unat = (*unat & ~mask) | (nat << bit);
603 }
604 
605 static inline __u64
ia64_get_ivr(void)606 ia64_get_ivr (void)
607 {
608 	__u64 r;
609 	ia64_srlz_d();
610 	r = ia64_getreg(_IA64_REG_CR_IVR);
611 	ia64_srlz_d();
612 	return r;
613 }
614 
615 static inline void
ia64_set_dbr(__u64 regnum,__u64 value)616 ia64_set_dbr (__u64 regnum, __u64 value)
617 {
618 	__ia64_set_dbr(regnum, value);
619 #ifdef CONFIG_ITANIUM
620 	ia64_srlz_d();
621 #endif
622 }
623 
624 static inline __u64
ia64_get_dbr(__u64 regnum)625 ia64_get_dbr (__u64 regnum)
626 {
627 	__u64 retval;
628 
629 	retval = __ia64_get_dbr(regnum);
630 #ifdef CONFIG_ITANIUM
631 	ia64_srlz_d();
632 #endif
633 	return retval;
634 }
635 
636 static inline __u64
ia64_rotr(__u64 w,__u64 n)637 ia64_rotr (__u64 w, __u64 n)
638 {
639 	return (w >> n) | (w << (64 - n));
640 }
641 
642 #define ia64_rotl(w,n)	ia64_rotr((w), (64) - (n))
643 
644 /*
645  * Take a mapped kernel address and return the equivalent address
646  * in the region 7 identity mapped virtual area.
647  */
648 static inline void *
ia64_imva(void * addr)649 ia64_imva (void *addr)
650 {
651 	void *result;
652 	result = (void *) ia64_tpa(addr);
653 	return __va(result);
654 }
655 
656 #define ARCH_HAS_PREFETCH
657 #define ARCH_HAS_PREFETCHW
658 #define ARCH_HAS_SPINLOCK_PREFETCH
659 #define PREFETCH_STRIDE			L1_CACHE_BYTES
660 
661 static inline void
prefetch(const void * x)662 prefetch (const void *x)
663 {
664 	 ia64_lfetch(ia64_lfhint_none, x);
665 }
666 
667 static inline void
prefetchw(const void * x)668 prefetchw (const void *x)
669 {
670 	ia64_lfetch_excl(ia64_lfhint_none, x);
671 }
672 
673 #define spin_lock_prefetch(x)	prefetchw(x)
674 
675 extern unsigned long boot_option_idle_override;
676 
677 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
678 			 IDLE_NOMWAIT, IDLE_POLL};
679 
680 void default_idle(void);
681 
682 #endif /* !__ASSEMBLY__ */
683 
684 #endif /* _ASM_IA64_PROCESSOR_H */
685