1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2016 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 **********************************************************************/
19 #include <linux/pci.h>
20 #include <linux/netdevice.h>
21 #include <linux/vmalloc.h>
22 #include "liquidio_common.h"
23 #include "octeon_droq.h"
24 #include "octeon_iq.h"
25 #include "response_manager.h"
26 #include "octeon_device.h"
27 #include "octeon_main.h"
28 #include "octeon_network.h"
29 #include "cn66xx_device.h"
30 #include "cn23xx_pf_device.h"
31 #include "cn23xx_vf_device.h"
32
33 struct iq_post_status {
34 int status;
35 int index;
36 };
37
38 static void check_db_timeout(struct work_struct *work);
39 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no);
40
41 static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
42
IQ_INSTR_MODE_64B(struct octeon_device * oct,int iq_no)43 static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
44 {
45 struct octeon_instr_queue *iq =
46 (struct octeon_instr_queue *)oct->instr_queue[iq_no];
47 return iq->iqcmd_64B;
48 }
49
50 #define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no))
51
52 /* Define this to return the request status comaptible to old code */
53 /*#define OCTEON_USE_OLD_REQ_STATUS*/
54
55 /* Return 0 on success, 1 on failure */
octeon_init_instr_queue(struct octeon_device * oct,union oct_txpciq txpciq,u32 num_descs)56 int octeon_init_instr_queue(struct octeon_device *oct,
57 union oct_txpciq txpciq,
58 u32 num_descs)
59 {
60 struct octeon_instr_queue *iq;
61 struct octeon_iq_config *conf = NULL;
62 u32 iq_no = (u32)txpciq.s.q_no;
63 u32 q_size;
64 struct cavium_wq *db_wq;
65 int numa_node = dev_to_node(&oct->pci_dev->dev);
66
67 if (OCTEON_CN6XXX(oct))
68 conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx)));
69 else if (OCTEON_CN23XX_PF(oct))
70 conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf)));
71 else if (OCTEON_CN23XX_VF(oct))
72 conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf)));
73
74 if (!conf) {
75 dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
76 oct->chip_id);
77 return 1;
78 }
79
80 q_size = (u32)conf->instr_type * num_descs;
81
82 iq = oct->instr_queue[iq_no];
83
84 iq->oct_dev = oct;
85
86 iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma);
87 if (!iq->base_addr) {
88 dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
89 iq_no);
90 return 1;
91 }
92
93 iq->max_count = num_descs;
94
95 /* Initialize a list to holds requests that have been posted to Octeon
96 * but has yet to be fetched by octeon
97 */
98 iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
99 numa_node);
100 if (!iq->request_list)
101 iq->request_list =
102 vmalloc(array_size(num_descs,
103 sizeof(*iq->request_list)));
104 if (!iq->request_list) {
105 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
106 dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
107 iq_no);
108 return 1;
109 }
110
111 memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
112
113 dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %pad count: %d\n",
114 iq_no, iq->base_addr, &iq->base_addr_dma, iq->max_count);
115
116 iq->txpciq.u64 = txpciq.u64;
117 iq->fill_threshold = (u32)conf->db_min;
118 iq->fill_cnt = 0;
119 iq->host_write_index = 0;
120 iq->octeon_read_index = 0;
121 iq->flush_index = 0;
122 iq->last_db_time = 0;
123 iq->do_auto_flush = 1;
124 iq->db_timeout = (u32)conf->db_timeout;
125 atomic_set(&iq->instr_pending, 0);
126 iq->pkts_processed = 0;
127
128 /* Initialize the spinlock for this instruction queue */
129 spin_lock_init(&iq->lock);
130 if (iq_no == 0) {
131 iq->allow_soft_cmds = true;
132 spin_lock_init(&iq->post_lock);
133 } else {
134 iq->allow_soft_cmds = false;
135 }
136
137 spin_lock_init(&iq->iq_flush_running_lock);
138
139 oct->io_qmask.iq |= BIT_ULL(iq_no);
140
141 /* Set the 32B/64B mode for each input queue */
142 oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
143 iq->iqcmd_64B = (conf->instr_type == 64);
144
145 oct->fn_list.setup_iq_regs(oct, iq_no);
146
147 oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
148 WQ_MEM_RECLAIM,
149 0);
150 if (!oct->check_db_wq[iq_no].wq) {
151 vfree(iq->request_list);
152 iq->request_list = NULL;
153 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
154 dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
155 iq_no);
156 return 1;
157 }
158
159 db_wq = &oct->check_db_wq[iq_no];
160
161 INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
162 db_wq->wk.ctxptr = oct;
163 db_wq->wk.ctxul = iq_no;
164 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
165
166 return 0;
167 }
168
octeon_delete_instr_queue(struct octeon_device * oct,u32 iq_no)169 int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
170 {
171 u64 desc_size = 0, q_size;
172 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
173
174 cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
175 destroy_workqueue(oct->check_db_wq[iq_no].wq);
176
177 if (OCTEON_CN6XXX(oct))
178 desc_size =
179 CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx));
180 else if (OCTEON_CN23XX_PF(oct))
181 desc_size =
182 CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf));
183 else if (OCTEON_CN23XX_VF(oct))
184 desc_size =
185 CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf));
186
187 vfree(iq->request_list);
188
189 if (iq->base_addr) {
190 q_size = iq->max_count * desc_size;
191 lio_dma_free(oct, (u32)q_size, iq->base_addr,
192 iq->base_addr_dma);
193 oct->io_qmask.iq &= ~(1ULL << iq_no);
194 vfree(oct->instr_queue[iq_no]);
195 oct->instr_queue[iq_no] = NULL;
196 oct->num_iqs--;
197 return 0;
198 }
199 return 1;
200 }
201
202 /* Return 0 on success, 1 on failure */
octeon_setup_iq(struct octeon_device * oct,int ifidx,int q_index,union oct_txpciq txpciq,u32 num_descs,void * app_ctx)203 int octeon_setup_iq(struct octeon_device *oct,
204 int ifidx,
205 int q_index,
206 union oct_txpciq txpciq,
207 u32 num_descs,
208 void *app_ctx)
209 {
210 u32 iq_no = (u32)txpciq.s.q_no;
211 int numa_node = dev_to_node(&oct->pci_dev->dev);
212
213 if (oct->instr_queue[iq_no]) {
214 dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
215 iq_no);
216 oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
217 oct->instr_queue[iq_no]->app_ctx = app_ctx;
218 return 0;
219 }
220 oct->instr_queue[iq_no] =
221 vzalloc_node(sizeof(struct octeon_instr_queue), numa_node);
222 if (!oct->instr_queue[iq_no])
223 oct->instr_queue[iq_no] =
224 vzalloc(sizeof(struct octeon_instr_queue));
225 if (!oct->instr_queue[iq_no])
226 return 1;
227
228
229 oct->instr_queue[iq_no]->q_index = q_index;
230 oct->instr_queue[iq_no]->app_ctx = app_ctx;
231 oct->instr_queue[iq_no]->ifidx = ifidx;
232
233 if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
234 vfree(oct->instr_queue[iq_no]);
235 oct->instr_queue[iq_no] = NULL;
236 return 1;
237 }
238
239 oct->num_iqs++;
240 if (oct->fn_list.enable_io_queues(oct)) {
241 octeon_delete_instr_queue(oct, iq_no);
242 return 1;
243 }
244
245 return 0;
246 }
247
lio_wait_for_instr_fetch(struct octeon_device * oct)248 int lio_wait_for_instr_fetch(struct octeon_device *oct)
249 {
250 int i, retry = 1000, pending, instr_cnt = 0;
251
252 do {
253 instr_cnt = 0;
254
255 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
256 if (!(oct->io_qmask.iq & BIT_ULL(i)))
257 continue;
258 pending =
259 atomic_read(&oct->instr_queue[i]->instr_pending);
260 if (pending)
261 __check_db_timeout(oct, i);
262 instr_cnt += pending;
263 }
264
265 if (instr_cnt == 0)
266 break;
267
268 schedule_timeout_uninterruptible(1);
269
270 } while (retry-- && instr_cnt);
271
272 return instr_cnt;
273 }
274
275 static inline void
ring_doorbell(struct octeon_device * oct,struct octeon_instr_queue * iq)276 ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
277 {
278 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
279 writel(iq->fill_cnt, iq->doorbell_reg);
280 /* make sure doorbell write goes through */
281 iq->fill_cnt = 0;
282 iq->last_db_time = jiffies;
283 return;
284 }
285 }
286
287 void
octeon_ring_doorbell_locked(struct octeon_device * oct,u32 iq_no)288 octeon_ring_doorbell_locked(struct octeon_device *oct, u32 iq_no)
289 {
290 struct octeon_instr_queue *iq;
291
292 iq = oct->instr_queue[iq_no];
293 spin_lock(&iq->post_lock);
294 if (iq->fill_cnt)
295 ring_doorbell(oct, iq);
296 spin_unlock(&iq->post_lock);
297 }
298
__copy_cmd_into_iq(struct octeon_instr_queue * iq,u8 * cmd)299 static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
300 u8 *cmd)
301 {
302 u8 *iqptr, cmdsize;
303
304 cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
305 iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
306
307 memcpy(iqptr, cmd, cmdsize);
308 }
309
310 static inline struct iq_post_status
__post_command2(struct octeon_instr_queue * iq,u8 * cmd)311 __post_command2(struct octeon_instr_queue *iq, u8 *cmd)
312 {
313 struct iq_post_status st;
314
315 st.status = IQ_SEND_OK;
316
317 /* This ensures that the read index does not wrap around to the same
318 * position if queue gets full before Octeon could fetch any instr.
319 */
320 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
321 st.status = IQ_SEND_FAILED;
322 st.index = -1;
323 return st;
324 }
325
326 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
327 st.status = IQ_SEND_STOP;
328
329 __copy_cmd_into_iq(iq, cmd);
330
331 /* "index" is returned, host_write_index is modified. */
332 st.index = iq->host_write_index;
333 iq->host_write_index = incr_index(iq->host_write_index, 1,
334 iq->max_count);
335 iq->fill_cnt++;
336
337 /* Flush the command into memory. We need to be sure the data is in
338 * memory before indicating that the instruction is pending.
339 */
340 wmb();
341
342 atomic_inc(&iq->instr_pending);
343
344 return st;
345 }
346
347 int
octeon_register_reqtype_free_fn(struct octeon_device * oct,int reqtype,void (* fn)(void *))348 octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
349 void (*fn)(void *))
350 {
351 if (reqtype > REQTYPE_LAST) {
352 dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
353 __func__, reqtype);
354 return -EINVAL;
355 }
356
357 reqtype_free_fn[oct->octeon_id][reqtype] = fn;
358
359 return 0;
360 }
361
362 static inline void
__add_to_request_list(struct octeon_instr_queue * iq,int idx,void * buf,int reqtype)363 __add_to_request_list(struct octeon_instr_queue *iq,
364 int idx, void *buf, int reqtype)
365 {
366 iq->request_list[idx].buf = buf;
367 iq->request_list[idx].reqtype = reqtype;
368 }
369
370 /* Can only run in process context */
371 int
lio_process_iq_request_list(struct octeon_device * oct,struct octeon_instr_queue * iq,u32 napi_budget)372 lio_process_iq_request_list(struct octeon_device *oct,
373 struct octeon_instr_queue *iq, u32 napi_budget)
374 {
375 struct cavium_wq *cwq = &oct->dma_comp_wq;
376 int reqtype;
377 void *buf;
378 u32 old = iq->flush_index;
379 u32 inst_count = 0;
380 unsigned int pkts_compl = 0, bytes_compl = 0;
381 struct octeon_soft_command *sc;
382 unsigned long flags;
383
384 while (old != iq->octeon_read_index) {
385 reqtype = iq->request_list[old].reqtype;
386 buf = iq->request_list[old].buf;
387
388 if (reqtype == REQTYPE_NONE)
389 goto skip_this;
390
391 octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
392 &bytes_compl);
393
394 switch (reqtype) {
395 case REQTYPE_NORESP_NET:
396 case REQTYPE_NORESP_NET_SG:
397 case REQTYPE_RESP_NET_SG:
398 reqtype_free_fn[oct->octeon_id][reqtype](buf);
399 break;
400 case REQTYPE_RESP_NET:
401 case REQTYPE_SOFT_COMMAND:
402 sc = buf;
403 /* We're expecting a response from Octeon.
404 * It's up to lio_process_ordered_list() to
405 * process sc. Add sc to the ordered soft
406 * command response list because we expect
407 * a response from Octeon.
408 */
409 spin_lock_irqsave(&oct->response_list
410 [OCTEON_ORDERED_SC_LIST].lock, flags);
411 atomic_inc(&oct->response_list
412 [OCTEON_ORDERED_SC_LIST].pending_req_count);
413 list_add_tail(&sc->node, &oct->response_list
414 [OCTEON_ORDERED_SC_LIST].head);
415 spin_unlock_irqrestore(&oct->response_list
416 [OCTEON_ORDERED_SC_LIST].lock,
417 flags);
418 break;
419 default:
420 dev_err(&oct->pci_dev->dev,
421 "%s Unknown reqtype: %d buf: %p at idx %d\n",
422 __func__, reqtype, buf, old);
423 }
424
425 iq->request_list[old].buf = NULL;
426 iq->request_list[old].reqtype = 0;
427
428 skip_this:
429 inst_count++;
430 old = incr_index(old, 1, iq->max_count);
431
432 if ((napi_budget) && (inst_count >= napi_budget))
433 break;
434 }
435 if (bytes_compl)
436 octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
437 bytes_compl);
438 iq->flush_index = old;
439
440 if (atomic_read(&oct->response_list
441 [OCTEON_ORDERED_SC_LIST].pending_req_count))
442 queue_work(cwq->wq, &cwq->wk.work.work);
443
444 return inst_count;
445 }
446
447 /* Can only be called from process context */
448 int
octeon_flush_iq(struct octeon_device * oct,struct octeon_instr_queue * iq,u32 napi_budget)449 octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
450 u32 napi_budget)
451 {
452 u32 inst_processed = 0;
453 u32 tot_inst_processed = 0;
454 int tx_done = 1;
455
456 if (!spin_trylock(&iq->iq_flush_running_lock))
457 return tx_done;
458
459 spin_lock_bh(&iq->lock);
460
461 iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
462
463 do {
464 /* Process any outstanding IQ packets. */
465 if (iq->flush_index == iq->octeon_read_index)
466 break;
467
468 if (napi_budget)
469 inst_processed =
470 lio_process_iq_request_list(oct, iq,
471 napi_budget -
472 tot_inst_processed);
473 else
474 inst_processed =
475 lio_process_iq_request_list(oct, iq, 0);
476
477 if (inst_processed) {
478 iq->pkts_processed += inst_processed;
479 atomic_sub(inst_processed, &iq->instr_pending);
480 iq->stats.instr_processed += inst_processed;
481 }
482
483 tot_inst_processed += inst_processed;
484 } while (tot_inst_processed < napi_budget);
485
486 if (napi_budget && (tot_inst_processed >= napi_budget))
487 tx_done = 0;
488
489 iq->last_db_time = jiffies;
490
491 spin_unlock_bh(&iq->lock);
492
493 spin_unlock(&iq->iq_flush_running_lock);
494
495 return tx_done;
496 }
497
498 /* Process instruction queue after timeout.
499 * This routine gets called from a workqueue or when removing the module.
500 */
__check_db_timeout(struct octeon_device * oct,u64 iq_no)501 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
502 {
503 struct octeon_instr_queue *iq;
504 u64 next_time;
505
506 if (!oct)
507 return;
508
509 iq = oct->instr_queue[iq_no];
510 if (!iq)
511 return;
512
513 /* return immediately, if no work pending */
514 if (!atomic_read(&iq->instr_pending))
515 return;
516 /* If jiffies - last_db_time < db_timeout do nothing */
517 next_time = iq->last_db_time + iq->db_timeout;
518 if (!time_after(jiffies, (unsigned long)next_time))
519 return;
520 iq->last_db_time = jiffies;
521
522 /* Flush the instruction queue */
523 octeon_flush_iq(oct, iq, 0);
524
525 lio_enable_irq(NULL, iq);
526 }
527
528 /* Called by the Poll thread at regular intervals to check the instruction
529 * queue for commands to be posted and for commands that were fetched by Octeon.
530 */
check_db_timeout(struct work_struct * work)531 static void check_db_timeout(struct work_struct *work)
532 {
533 struct cavium_wk *wk = (struct cavium_wk *)work;
534 struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
535 u64 iq_no = wk->ctxul;
536 struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
537 u32 delay = 10;
538
539 __check_db_timeout(oct, iq_no);
540 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
541 }
542
543 int
octeon_send_command(struct octeon_device * oct,u32 iq_no,u32 force_db,void * cmd,void * buf,u32 datasize,u32 reqtype)544 octeon_send_command(struct octeon_device *oct, u32 iq_no,
545 u32 force_db, void *cmd, void *buf,
546 u32 datasize, u32 reqtype)
547 {
548 int xmit_stopped;
549 struct iq_post_status st;
550 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
551
552 /* Get the lock and prevent other tasks and tx interrupt handler from
553 * running.
554 */
555 if (iq->allow_soft_cmds)
556 spin_lock_bh(&iq->post_lock);
557
558 st = __post_command2(iq, cmd);
559
560 if (st.status != IQ_SEND_FAILED) {
561 xmit_stopped = octeon_report_sent_bytes_to_bql(buf, reqtype);
562 __add_to_request_list(iq, st.index, buf, reqtype);
563 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
564 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
565
566 if (iq->fill_cnt >= MAX_OCTEON_FILL_COUNT || force_db ||
567 xmit_stopped || st.status == IQ_SEND_STOP)
568 ring_doorbell(oct, iq);
569 } else {
570 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
571 }
572
573 if (iq->allow_soft_cmds)
574 spin_unlock_bh(&iq->post_lock);
575
576 /* This is only done here to expedite packets being flushed
577 * for cases where there are no IQ completion interrupts.
578 */
579
580 return st.status;
581 }
582
583 void
octeon_prepare_soft_command(struct octeon_device * oct,struct octeon_soft_command * sc,u8 opcode,u8 subcode,u32 irh_ossp,u64 ossp0,u64 ossp1)584 octeon_prepare_soft_command(struct octeon_device *oct,
585 struct octeon_soft_command *sc,
586 u8 opcode,
587 u8 subcode,
588 u32 irh_ossp,
589 u64 ossp0,
590 u64 ossp1)
591 {
592 struct octeon_config *oct_cfg;
593 struct octeon_instr_ih2 *ih2;
594 struct octeon_instr_ih3 *ih3;
595 struct octeon_instr_pki_ih3 *pki_ih3;
596 struct octeon_instr_irh *irh;
597 struct octeon_instr_rdp *rdp;
598
599 WARN_ON(opcode > 15);
600 WARN_ON(subcode > 127);
601
602 oct_cfg = octeon_get_conf(oct);
603
604 if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
605 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
606
607 ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
608
609 pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
610
611 pki_ih3->w = 1;
612 pki_ih3->raw = 1;
613 pki_ih3->utag = 1;
614 pki_ih3->uqpg =
615 oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
616 pki_ih3->utt = 1;
617 pki_ih3->tag = LIO_CONTROL;
618 pki_ih3->tagtype = ATOMIC_TAG;
619 pki_ih3->qpg =
620 oct->instr_queue[sc->iq_no]->txpciq.s.ctrl_qpg;
621
622 pki_ih3->pm = 0x7;
623 pki_ih3->sl = 8;
624
625 if (sc->datasize)
626 ih3->dlengsz = sc->datasize;
627
628 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
629 irh->opcode = opcode;
630 irh->subcode = subcode;
631
632 /* opcode/subcode specific parameters (ossp) */
633 irh->ossp = irh_ossp;
634 sc->cmd.cmd3.ossp[0] = ossp0;
635 sc->cmd.cmd3.ossp[1] = ossp1;
636
637 if (sc->rdatasize) {
638 rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
639 rdp->pcie_port = oct->pcie_port;
640 rdp->rlen = sc->rdatasize;
641
642 irh->rflag = 1;
643 /*PKI IH3*/
644 /* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
645 ih3->fsz = LIO_SOFTCMDRESP_IH3;
646 } else {
647 irh->rflag = 0;
648 /*PKI IH3*/
649 /* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
650 ih3->fsz = LIO_PCICMD_O3;
651 }
652
653 } else {
654 ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
655 ih2->tagtype = ATOMIC_TAG;
656 ih2->tag = LIO_CONTROL;
657 ih2->raw = 1;
658 ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg);
659
660 if (sc->datasize) {
661 ih2->dlengsz = sc->datasize;
662 ih2->rs = 1;
663 }
664
665 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
666 irh->opcode = opcode;
667 irh->subcode = subcode;
668
669 /* opcode/subcode specific parameters (ossp) */
670 irh->ossp = irh_ossp;
671 sc->cmd.cmd2.ossp[0] = ossp0;
672 sc->cmd.cmd2.ossp[1] = ossp1;
673
674 if (sc->rdatasize) {
675 rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
676 rdp->pcie_port = oct->pcie_port;
677 rdp->rlen = sc->rdatasize;
678
679 irh->rflag = 1;
680 /* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
681 ih2->fsz = LIO_SOFTCMDRESP_IH2;
682 } else {
683 irh->rflag = 0;
684 /* irh + ossp[0] + ossp[1] = 24 bytes */
685 ih2->fsz = LIO_PCICMD_O2;
686 }
687 }
688 }
689
octeon_send_soft_command(struct octeon_device * oct,struct octeon_soft_command * sc)690 int octeon_send_soft_command(struct octeon_device *oct,
691 struct octeon_soft_command *sc)
692 {
693 struct octeon_instr_queue *iq;
694 struct octeon_instr_ih2 *ih2;
695 struct octeon_instr_ih3 *ih3;
696 struct octeon_instr_irh *irh;
697 u32 len;
698
699 iq = oct->instr_queue[sc->iq_no];
700 if (!iq->allow_soft_cmds) {
701 dev_err(&oct->pci_dev->dev, "Soft commands are not allowed on Queue %d\n",
702 sc->iq_no);
703 INCR_INSTRQUEUE_PKT_COUNT(oct, sc->iq_no, instr_dropped, 1);
704 return IQ_SEND_FAILED;
705 }
706
707 if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
708 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
709 if (ih3->dlengsz) {
710 WARN_ON(!sc->dmadptr);
711 sc->cmd.cmd3.dptr = sc->dmadptr;
712 }
713 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
714 if (irh->rflag) {
715 WARN_ON(!sc->dmarptr);
716 WARN_ON(!sc->status_word);
717 *sc->status_word = COMPLETION_WORD_INIT;
718 sc->cmd.cmd3.rptr = sc->dmarptr;
719 }
720 len = (u32)ih3->dlengsz;
721 } else {
722 ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
723 if (ih2->dlengsz) {
724 WARN_ON(!sc->dmadptr);
725 sc->cmd.cmd2.dptr = sc->dmadptr;
726 }
727 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
728 if (irh->rflag) {
729 WARN_ON(!sc->dmarptr);
730 WARN_ON(!sc->status_word);
731 *sc->status_word = COMPLETION_WORD_INIT;
732 sc->cmd.cmd2.rptr = sc->dmarptr;
733 }
734 len = (u32)ih2->dlengsz;
735 }
736
737 sc->expiry_time = jiffies + msecs_to_jiffies(LIO_SC_MAX_TMO_MS);
738
739 return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
740 len, REQTYPE_SOFT_COMMAND));
741 }
742
octeon_setup_sc_buffer_pool(struct octeon_device * oct)743 int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
744 {
745 int i;
746 u64 dma_addr;
747 struct octeon_soft_command *sc;
748
749 INIT_LIST_HEAD(&oct->sc_buf_pool.head);
750 spin_lock_init(&oct->sc_buf_pool.lock);
751 atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
752
753 for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
754 sc = (struct octeon_soft_command *)
755 lio_dma_alloc(oct,
756 SOFT_COMMAND_BUFFER_SIZE,
757 (dma_addr_t *)&dma_addr);
758 if (!sc) {
759 octeon_free_sc_buffer_pool(oct);
760 return 1;
761 }
762
763 sc->dma_addr = dma_addr;
764 sc->size = SOFT_COMMAND_BUFFER_SIZE;
765
766 list_add_tail(&sc->node, &oct->sc_buf_pool.head);
767 }
768
769 return 0;
770 }
771
octeon_free_sc_done_list(struct octeon_device * oct)772 int octeon_free_sc_done_list(struct octeon_device *oct)
773 {
774 struct octeon_response_list *done_sc_list, *zombie_sc_list;
775 struct octeon_soft_command *sc;
776 struct list_head *tmp, *tmp2;
777 spinlock_t *sc_lists_lock; /* lock for response_list */
778
779 done_sc_list = &oct->response_list[OCTEON_DONE_SC_LIST];
780 zombie_sc_list = &oct->response_list[OCTEON_ZOMBIE_SC_LIST];
781
782 if (!atomic_read(&done_sc_list->pending_req_count))
783 return 0;
784
785 sc_lists_lock = &oct->response_list[OCTEON_ORDERED_SC_LIST].lock;
786
787 spin_lock_bh(sc_lists_lock);
788
789 list_for_each_safe(tmp, tmp2, &done_sc_list->head) {
790 sc = list_entry(tmp, struct octeon_soft_command, node);
791
792 if (READ_ONCE(sc->caller_is_done)) {
793 list_del(&sc->node);
794 atomic_dec(&done_sc_list->pending_req_count);
795
796 if (*sc->status_word == COMPLETION_WORD_INIT) {
797 /* timeout; move sc to zombie list */
798 list_add_tail(&sc->node, &zombie_sc_list->head);
799 atomic_inc(&zombie_sc_list->pending_req_count);
800 } else {
801 octeon_free_soft_command(oct, sc);
802 }
803 }
804 }
805
806 spin_unlock_bh(sc_lists_lock);
807
808 return 0;
809 }
810
octeon_free_sc_zombie_list(struct octeon_device * oct)811 int octeon_free_sc_zombie_list(struct octeon_device *oct)
812 {
813 struct octeon_response_list *zombie_sc_list;
814 struct octeon_soft_command *sc;
815 struct list_head *tmp, *tmp2;
816 spinlock_t *sc_lists_lock; /* lock for response_list */
817
818 zombie_sc_list = &oct->response_list[OCTEON_ZOMBIE_SC_LIST];
819 sc_lists_lock = &oct->response_list[OCTEON_ORDERED_SC_LIST].lock;
820
821 spin_lock_bh(sc_lists_lock);
822
823 list_for_each_safe(tmp, tmp2, &zombie_sc_list->head) {
824 list_del(tmp);
825 atomic_dec(&zombie_sc_list->pending_req_count);
826 sc = list_entry(tmp, struct octeon_soft_command, node);
827 octeon_free_soft_command(oct, sc);
828 }
829
830 spin_unlock_bh(sc_lists_lock);
831
832 return 0;
833 }
834
octeon_free_sc_buffer_pool(struct octeon_device * oct)835 int octeon_free_sc_buffer_pool(struct octeon_device *oct)
836 {
837 struct list_head *tmp, *tmp2;
838 struct octeon_soft_command *sc;
839
840 octeon_free_sc_zombie_list(oct);
841
842 spin_lock_bh(&oct->sc_buf_pool.lock);
843
844 list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
845 list_del(tmp);
846
847 sc = (struct octeon_soft_command *)tmp;
848
849 lio_dma_free(oct, sc->size, sc, sc->dma_addr);
850 }
851
852 INIT_LIST_HEAD(&oct->sc_buf_pool.head);
853
854 spin_unlock_bh(&oct->sc_buf_pool.lock);
855
856 return 0;
857 }
858
octeon_alloc_soft_command(struct octeon_device * oct,u32 datasize,u32 rdatasize,u32 ctxsize)859 struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
860 u32 datasize,
861 u32 rdatasize,
862 u32 ctxsize)
863 {
864 u64 dma_addr;
865 u32 size;
866 u32 offset = sizeof(struct octeon_soft_command);
867 struct octeon_soft_command *sc = NULL;
868 struct list_head *tmp;
869
870 if (!rdatasize)
871 rdatasize = 16;
872
873 WARN_ON((offset + datasize + rdatasize + ctxsize) >
874 SOFT_COMMAND_BUFFER_SIZE);
875
876 spin_lock_bh(&oct->sc_buf_pool.lock);
877
878 if (list_empty(&oct->sc_buf_pool.head)) {
879 spin_unlock_bh(&oct->sc_buf_pool.lock);
880 return NULL;
881 }
882
883 list_for_each(tmp, &oct->sc_buf_pool.head)
884 break;
885
886 list_del(tmp);
887
888 atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
889
890 spin_unlock_bh(&oct->sc_buf_pool.lock);
891
892 sc = (struct octeon_soft_command *)tmp;
893
894 dma_addr = sc->dma_addr;
895 size = sc->size;
896
897 memset(sc, 0, sc->size);
898
899 sc->dma_addr = dma_addr;
900 sc->size = size;
901
902 if (ctxsize) {
903 sc->ctxptr = (u8 *)sc + offset;
904 sc->ctxsize = ctxsize;
905 }
906
907 /* Start data at 128 byte boundary */
908 offset = (offset + ctxsize + 127) & 0xffffff80;
909
910 if (datasize) {
911 sc->virtdptr = (u8 *)sc + offset;
912 sc->dmadptr = dma_addr + offset;
913 sc->datasize = datasize;
914 }
915
916 /* Start rdata at 128 byte boundary */
917 offset = (offset + datasize + 127) & 0xffffff80;
918
919 if (rdatasize) {
920 WARN_ON(rdatasize < 16);
921 sc->virtrptr = (u8 *)sc + offset;
922 sc->dmarptr = dma_addr + offset;
923 sc->rdatasize = rdatasize;
924 sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
925 }
926
927 return sc;
928 }
929
octeon_free_soft_command(struct octeon_device * oct,struct octeon_soft_command * sc)930 void octeon_free_soft_command(struct octeon_device *oct,
931 struct octeon_soft_command *sc)
932 {
933 spin_lock_bh(&oct->sc_buf_pool.lock);
934
935 list_add_tail(&sc->node, &oct->sc_buf_pool.head);
936
937 atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
938
939 spin_unlock_bh(&oct->sc_buf_pool.lock);
940 }
941