1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22 #define pr_fmt(fmt) "OF: " fmt
23
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/string.h>
28 #include <linux/moduleparam.h>
29
30 #include "of_private.h"
31
32 /**
33 * of_property_count_elems_of_size - Count the number of elements in a property
34 *
35 * @np: device node from which the property value is to be read.
36 * @propname: name of the property to be searched.
37 * @elem_size: size of the individual element
38 *
39 * Search for a property in a device node and count the number of elements of
40 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
41 * property does not exist or its length does not match a multiple of elem_size
42 * and -ENODATA if the property does not have a value.
43 */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)44 int of_property_count_elems_of_size(const struct device_node *np,
45 const char *propname, int elem_size)
46 {
47 struct property *prop = of_find_property(np, propname, NULL);
48
49 if (!prop)
50 return -EINVAL;
51 if (!prop->value)
52 return -ENODATA;
53
54 if (prop->length % elem_size != 0) {
55 pr_err("size of %s in node %pOF is not a multiple of %d\n",
56 propname, np, elem_size);
57 return -EINVAL;
58 }
59
60 return prop->length / elem_size;
61 }
62 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
63
64 /**
65 * of_find_property_value_of_size
66 *
67 * @np: device node from which the property value is to be read.
68 * @propname: name of the property to be searched.
69 * @min: minimum allowed length of property value
70 * @max: maximum allowed length of property value (0 means unlimited)
71 * @len: if !=NULL, actual length is written to here
72 *
73 * Search for a property in a device node and valid the requested size.
74 * Returns the property value on success, -EINVAL if the property does not
75 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
76 * property data is too small or too large.
77 *
78 */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 min,u32 max,size_t * len)79 static void *of_find_property_value_of_size(const struct device_node *np,
80 const char *propname, u32 min, u32 max, size_t *len)
81 {
82 struct property *prop = of_find_property(np, propname, NULL);
83
84 if (!prop)
85 return ERR_PTR(-EINVAL);
86 if (!prop->value)
87 return ERR_PTR(-ENODATA);
88 if (prop->length < min)
89 return ERR_PTR(-EOVERFLOW);
90 if (max && prop->length > max)
91 return ERR_PTR(-EOVERFLOW);
92
93 if (len)
94 *len = prop->length;
95
96 return prop->value;
97 }
98
99 /**
100 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
101 *
102 * @np: device node from which the property value is to be read.
103 * @propname: name of the property to be searched.
104 * @index: index of the u32 in the list of values
105 * @out_value: pointer to return value, modified only if no error.
106 *
107 * Search for a property in a device node and read nth 32-bit value from
108 * it. Returns 0 on success, -EINVAL if the property does not exist,
109 * -ENODATA if property does not have a value, and -EOVERFLOW if the
110 * property data isn't large enough.
111 *
112 * The out_value is modified only if a valid u32 value can be decoded.
113 */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)114 int of_property_read_u32_index(const struct device_node *np,
115 const char *propname,
116 u32 index, u32 *out_value)
117 {
118 const u32 *val = of_find_property_value_of_size(np, propname,
119 ((index + 1) * sizeof(*out_value)),
120 0,
121 NULL);
122
123 if (IS_ERR(val))
124 return PTR_ERR(val);
125
126 *out_value = be32_to_cpup(((__be32 *)val) + index);
127 return 0;
128 }
129 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
130
131 /**
132 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
133 *
134 * @np: device node from which the property value is to be read.
135 * @propname: name of the property to be searched.
136 * @index: index of the u64 in the list of values
137 * @out_value: pointer to return value, modified only if no error.
138 *
139 * Search for a property in a device node and read nth 64-bit value from
140 * it. Returns 0 on success, -EINVAL if the property does not exist,
141 * -ENODATA if property does not have a value, and -EOVERFLOW if the
142 * property data isn't large enough.
143 *
144 * The out_value is modified only if a valid u64 value can be decoded.
145 */
of_property_read_u64_index(const struct device_node * np,const char * propname,u32 index,u64 * out_value)146 int of_property_read_u64_index(const struct device_node *np,
147 const char *propname,
148 u32 index, u64 *out_value)
149 {
150 const u64 *val = of_find_property_value_of_size(np, propname,
151 ((index + 1) * sizeof(*out_value)),
152 0, NULL);
153
154 if (IS_ERR(val))
155 return PTR_ERR(val);
156
157 *out_value = be64_to_cpup(((__be64 *)val) + index);
158 return 0;
159 }
160 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
161
162 /**
163 * of_property_read_variable_u8_array - Find and read an array of u8 from a
164 * property, with bounds on the minimum and maximum array size.
165 *
166 * @np: device node from which the property value is to be read.
167 * @propname: name of the property to be searched.
168 * @out_values: pointer to return value, modified only if return value is 0.
169 * @sz_min: minimum number of array elements to read
170 * @sz_max: maximum number of array elements to read, if zero there is no
171 * upper limit on the number of elements in the dts entry but only
172 * sz_min will be read.
173 *
174 * Search for a property in a device node and read 8-bit value(s) from
175 * it. Returns number of elements read on success, -EINVAL if the property
176 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
177 * if the property data is smaller than sz_min or longer than sz_max.
178 *
179 * dts entry of array should be like:
180 * property = /bits/ 8 <0x50 0x60 0x70>;
181 *
182 * The out_values is modified only if a valid u8 value can be decoded.
183 */
of_property_read_variable_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz_min,size_t sz_max)184 int of_property_read_variable_u8_array(const struct device_node *np,
185 const char *propname, u8 *out_values,
186 size_t sz_min, size_t sz_max)
187 {
188 size_t sz, count;
189 const u8 *val = of_find_property_value_of_size(np, propname,
190 (sz_min * sizeof(*out_values)),
191 (sz_max * sizeof(*out_values)),
192 &sz);
193
194 if (IS_ERR(val))
195 return PTR_ERR(val);
196
197 if (!sz_max)
198 sz = sz_min;
199 else
200 sz /= sizeof(*out_values);
201
202 count = sz;
203 while (count--)
204 *out_values++ = *val++;
205
206 return sz;
207 }
208 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
209
210 /**
211 * of_property_read_variable_u16_array - Find and read an array of u16 from a
212 * property, with bounds on the minimum and maximum array size.
213 *
214 * @np: device node from which the property value is to be read.
215 * @propname: name of the property to be searched.
216 * @out_values: pointer to return value, modified only if return value is 0.
217 * @sz_min: minimum number of array elements to read
218 * @sz_max: maximum number of array elements to read, if zero there is no
219 * upper limit on the number of elements in the dts entry but only
220 * sz_min will be read.
221 *
222 * Search for a property in a device node and read 16-bit value(s) from
223 * it. Returns number of elements read on success, -EINVAL if the property
224 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
225 * if the property data is smaller than sz_min or longer than sz_max.
226 *
227 * dts entry of array should be like:
228 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
229 *
230 * The out_values is modified only if a valid u16 value can be decoded.
231 */
of_property_read_variable_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz_min,size_t sz_max)232 int of_property_read_variable_u16_array(const struct device_node *np,
233 const char *propname, u16 *out_values,
234 size_t sz_min, size_t sz_max)
235 {
236 size_t sz, count;
237 const __be16 *val = of_find_property_value_of_size(np, propname,
238 (sz_min * sizeof(*out_values)),
239 (sz_max * sizeof(*out_values)),
240 &sz);
241
242 if (IS_ERR(val))
243 return PTR_ERR(val);
244
245 if (!sz_max)
246 sz = sz_min;
247 else
248 sz /= sizeof(*out_values);
249
250 count = sz;
251 while (count--)
252 *out_values++ = be16_to_cpup(val++);
253
254 return sz;
255 }
256 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
257
258 /**
259 * of_property_read_variable_u32_array - Find and read an array of 32 bit
260 * integers from a property, with bounds on the minimum and maximum array size.
261 *
262 * @np: device node from which the property value is to be read.
263 * @propname: name of the property to be searched.
264 * @out_values: pointer to return value, modified only if return value is 0.
265 * @sz_min: minimum number of array elements to read
266 * @sz_max: maximum number of array elements to read, if zero there is no
267 * upper limit on the number of elements in the dts entry but only
268 * sz_min will be read.
269 *
270 * Search for a property in a device node and read 32-bit value(s) from
271 * it. Returns number of elements read on success, -EINVAL if the property
272 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
273 * if the property data is smaller than sz_min or longer than sz_max.
274 *
275 * The out_values is modified only if a valid u32 value can be decoded.
276 */
of_property_read_variable_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz_min,size_t sz_max)277 int of_property_read_variable_u32_array(const struct device_node *np,
278 const char *propname, u32 *out_values,
279 size_t sz_min, size_t sz_max)
280 {
281 size_t sz, count;
282 const __be32 *val = of_find_property_value_of_size(np, propname,
283 (sz_min * sizeof(*out_values)),
284 (sz_max * sizeof(*out_values)),
285 &sz);
286
287 if (IS_ERR(val))
288 return PTR_ERR(val);
289
290 if (!sz_max)
291 sz = sz_min;
292 else
293 sz /= sizeof(*out_values);
294
295 count = sz;
296 while (count--)
297 *out_values++ = be32_to_cpup(val++);
298
299 return sz;
300 }
301 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
302
303 /**
304 * of_property_read_u64 - Find and read a 64 bit integer from a property
305 * @np: device node from which the property value is to be read.
306 * @propname: name of the property to be searched.
307 * @out_value: pointer to return value, modified only if return value is 0.
308 *
309 * Search for a property in a device node and read a 64-bit value from
310 * it. Returns 0 on success, -EINVAL if the property does not exist,
311 * -ENODATA if property does not have a value, and -EOVERFLOW if the
312 * property data isn't large enough.
313 *
314 * The out_value is modified only if a valid u64 value can be decoded.
315 */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)316 int of_property_read_u64(const struct device_node *np, const char *propname,
317 u64 *out_value)
318 {
319 const __be32 *val = of_find_property_value_of_size(np, propname,
320 sizeof(*out_value),
321 0,
322 NULL);
323
324 if (IS_ERR(val))
325 return PTR_ERR(val);
326
327 *out_value = of_read_number(val, 2);
328 return 0;
329 }
330 EXPORT_SYMBOL_GPL(of_property_read_u64);
331
332 /**
333 * of_property_read_variable_u64_array - Find and read an array of 64 bit
334 * integers from a property, with bounds on the minimum and maximum array size.
335 *
336 * @np: device node from which the property value is to be read.
337 * @propname: name of the property to be searched.
338 * @out_values: pointer to return value, modified only if return value is 0.
339 * @sz_min: minimum number of array elements to read
340 * @sz_max: maximum number of array elements to read, if zero there is no
341 * upper limit on the number of elements in the dts entry but only
342 * sz_min will be read.
343 *
344 * Search for a property in a device node and read 64-bit value(s) from
345 * it. Returns number of elements read on success, -EINVAL if the property
346 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
347 * if the property data is smaller than sz_min or longer than sz_max.
348 *
349 * The out_values is modified only if a valid u64 value can be decoded.
350 */
of_property_read_variable_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz_min,size_t sz_max)351 int of_property_read_variable_u64_array(const struct device_node *np,
352 const char *propname, u64 *out_values,
353 size_t sz_min, size_t sz_max)
354 {
355 size_t sz, count;
356 const __be32 *val = of_find_property_value_of_size(np, propname,
357 (sz_min * sizeof(*out_values)),
358 (sz_max * sizeof(*out_values)),
359 &sz);
360
361 if (IS_ERR(val))
362 return PTR_ERR(val);
363
364 if (!sz_max)
365 sz = sz_min;
366 else
367 sz /= sizeof(*out_values);
368
369 count = sz;
370 while (count--) {
371 *out_values++ = of_read_number(val, 2);
372 val += 2;
373 }
374
375 return sz;
376 }
377 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
378
379 /**
380 * of_property_read_string - Find and read a string from a property
381 * @np: device node from which the property value is to be read.
382 * @propname: name of the property to be searched.
383 * @out_string: pointer to null terminated return string, modified only if
384 * return value is 0.
385 *
386 * Search for a property in a device tree node and retrieve a null
387 * terminated string value (pointer to data, not a copy). Returns 0 on
388 * success, -EINVAL if the property does not exist, -ENODATA if property
389 * does not have a value, and -EILSEQ if the string is not null-terminated
390 * within the length of the property data.
391 *
392 * The out_string pointer is modified only if a valid string can be decoded.
393 */
of_property_read_string(const struct device_node * np,const char * propname,const char ** out_string)394 int of_property_read_string(const struct device_node *np, const char *propname,
395 const char **out_string)
396 {
397 const struct property *prop = of_find_property(np, propname, NULL);
398 if (!prop)
399 return -EINVAL;
400 if (!prop->value)
401 return -ENODATA;
402 if (strnlen(prop->value, prop->length) >= prop->length)
403 return -EILSEQ;
404 *out_string = prop->value;
405 return 0;
406 }
407 EXPORT_SYMBOL_GPL(of_property_read_string);
408
409 /**
410 * of_property_match_string() - Find string in a list and return index
411 * @np: pointer to node containing string list property
412 * @propname: string list property name
413 * @string: pointer to string to search for in string list
414 *
415 * This function searches a string list property and returns the index
416 * of a specific string value.
417 */
of_property_match_string(const struct device_node * np,const char * propname,const char * string)418 int of_property_match_string(const struct device_node *np, const char *propname,
419 const char *string)
420 {
421 const struct property *prop = of_find_property(np, propname, NULL);
422 size_t l;
423 int i;
424 const char *p, *end;
425
426 if (!prop)
427 return -EINVAL;
428 if (!prop->value)
429 return -ENODATA;
430
431 p = prop->value;
432 end = p + prop->length;
433
434 for (i = 0; p < end; i++, p += l) {
435 l = strnlen(p, end - p) + 1;
436 if (p + l > end)
437 return -EILSEQ;
438 pr_debug("comparing %s with %s\n", string, p);
439 if (strcmp(string, p) == 0)
440 return i; /* Found it; return index */
441 }
442 return -ENODATA;
443 }
444 EXPORT_SYMBOL_GPL(of_property_match_string);
445
446 /**
447 * of_property_read_string_helper() - Utility helper for parsing string properties
448 * @np: device node from which the property value is to be read.
449 * @propname: name of the property to be searched.
450 * @out_strs: output array of string pointers.
451 * @sz: number of array elements to read.
452 * @skip: Number of strings to skip over at beginning of list.
453 *
454 * Don't call this function directly. It is a utility helper for the
455 * of_property_read_string*() family of functions.
456 */
of_property_read_string_helper(const struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)457 int of_property_read_string_helper(const struct device_node *np,
458 const char *propname, const char **out_strs,
459 size_t sz, int skip)
460 {
461 const struct property *prop = of_find_property(np, propname, NULL);
462 int l = 0, i = 0;
463 const char *p, *end;
464
465 if (!prop)
466 return -EINVAL;
467 if (!prop->value)
468 return -ENODATA;
469 p = prop->value;
470 end = p + prop->length;
471
472 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
473 l = strnlen(p, end - p) + 1;
474 if (p + l > end)
475 return -EILSEQ;
476 if (out_strs && i >= skip)
477 *out_strs++ = p;
478 }
479 i -= skip;
480 return i <= 0 ? -ENODATA : i;
481 }
482 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
483
of_prop_next_u32(struct property * prop,const __be32 * cur,u32 * pu)484 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
485 u32 *pu)
486 {
487 const void *curv = cur;
488
489 if (!prop)
490 return NULL;
491
492 if (!cur) {
493 curv = prop->value;
494 goto out_val;
495 }
496
497 curv += sizeof(*cur);
498 if (curv >= prop->value + prop->length)
499 return NULL;
500
501 out_val:
502 *pu = be32_to_cpup(curv);
503 return curv;
504 }
505 EXPORT_SYMBOL_GPL(of_prop_next_u32);
506
of_prop_next_string(struct property * prop,const char * cur)507 const char *of_prop_next_string(struct property *prop, const char *cur)
508 {
509 const void *curv = cur;
510
511 if (!prop)
512 return NULL;
513
514 if (!cur)
515 return prop->value;
516
517 curv += strlen(cur) + 1;
518 if (curv >= prop->value + prop->length)
519 return NULL;
520
521 return curv;
522 }
523 EXPORT_SYMBOL_GPL(of_prop_next_string);
524
525 /**
526 * of_graph_parse_endpoint() - parse common endpoint node properties
527 * @node: pointer to endpoint device_node
528 * @endpoint: pointer to the OF endpoint data structure
529 *
530 * The caller should hold a reference to @node.
531 */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)532 int of_graph_parse_endpoint(const struct device_node *node,
533 struct of_endpoint *endpoint)
534 {
535 struct device_node *port_node = of_get_parent(node);
536
537 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
538 __func__, node);
539
540 memset(endpoint, 0, sizeof(*endpoint));
541
542 endpoint->local_node = node;
543 /*
544 * It doesn't matter whether the two calls below succeed.
545 * If they don't then the default value 0 is used.
546 */
547 of_property_read_u32(port_node, "reg", &endpoint->port);
548 of_property_read_u32(node, "reg", &endpoint->id);
549
550 of_node_put(port_node);
551
552 return 0;
553 }
554 EXPORT_SYMBOL(of_graph_parse_endpoint);
555
556 /**
557 * of_graph_get_port_by_id() - get the port matching a given id
558 * @parent: pointer to the parent device node
559 * @id: id of the port
560 *
561 * Return: A 'port' node pointer with refcount incremented. The caller
562 * has to use of_node_put() on it when done.
563 */
of_graph_get_port_by_id(struct device_node * parent,u32 id)564 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
565 {
566 struct device_node *node, *port;
567
568 node = of_get_child_by_name(parent, "ports");
569 if (node)
570 parent = node;
571
572 for_each_child_of_node(parent, port) {
573 u32 port_id = 0;
574
575 if (!of_node_name_eq(port, "port"))
576 continue;
577 of_property_read_u32(port, "reg", &port_id);
578 if (id == port_id)
579 break;
580 }
581
582 of_node_put(node);
583
584 return port;
585 }
586 EXPORT_SYMBOL(of_graph_get_port_by_id);
587
588 /**
589 * of_graph_get_next_endpoint() - get next endpoint node
590 * @parent: pointer to the parent device node
591 * @prev: previous endpoint node, or NULL to get first
592 *
593 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
594 * of the passed @prev node is decremented.
595 */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)596 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
597 struct device_node *prev)
598 {
599 struct device_node *endpoint;
600 struct device_node *port;
601
602 if (!parent)
603 return NULL;
604
605 /*
606 * Start by locating the port node. If no previous endpoint is specified
607 * search for the first port node, otherwise get the previous endpoint
608 * parent port node.
609 */
610 if (!prev) {
611 struct device_node *node;
612
613 node = of_get_child_by_name(parent, "ports");
614 if (node)
615 parent = node;
616
617 port = of_get_child_by_name(parent, "port");
618 of_node_put(node);
619
620 if (!port) {
621 pr_err("graph: no port node found in %pOF\n", parent);
622 return NULL;
623 }
624 } else {
625 port = of_get_parent(prev);
626 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
627 __func__, prev))
628 return NULL;
629 }
630
631 while (1) {
632 /*
633 * Now that we have a port node, get the next endpoint by
634 * getting the next child. If the previous endpoint is NULL this
635 * will return the first child.
636 */
637 endpoint = of_get_next_child(port, prev);
638 if (endpoint) {
639 of_node_put(port);
640 return endpoint;
641 }
642
643 /* No more endpoints under this port, try the next one. */
644 prev = NULL;
645
646 do {
647 port = of_get_next_child(parent, port);
648 if (!port)
649 return NULL;
650 } while (!of_node_name_eq(port, "port"));
651 }
652 }
653 EXPORT_SYMBOL(of_graph_get_next_endpoint);
654
655 /**
656 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
657 * @parent: pointer to the parent device node
658 * @port_reg: identifier (value of reg property) of the parent port node
659 * @reg: identifier (value of reg property) of the endpoint node
660 *
661 * Return: An 'endpoint' node pointer which is identified by reg and at the same
662 * is the child of a port node identified by port_reg. reg and port_reg are
663 * ignored when they are -1. Use of_node_put() on the pointer when done.
664 */
of_graph_get_endpoint_by_regs(const struct device_node * parent,int port_reg,int reg)665 struct device_node *of_graph_get_endpoint_by_regs(
666 const struct device_node *parent, int port_reg, int reg)
667 {
668 struct of_endpoint endpoint;
669 struct device_node *node = NULL;
670
671 for_each_endpoint_of_node(parent, node) {
672 of_graph_parse_endpoint(node, &endpoint);
673 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
674 ((reg == -1) || (endpoint.id == reg)))
675 return node;
676 }
677
678 return NULL;
679 }
680 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
681
682 /**
683 * of_graph_get_remote_endpoint() - get remote endpoint node
684 * @node: pointer to a local endpoint device_node
685 *
686 * Return: Remote endpoint node associated with remote endpoint node linked
687 * to @node. Use of_node_put() on it when done.
688 */
of_graph_get_remote_endpoint(const struct device_node * node)689 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
690 {
691 /* Get remote endpoint node. */
692 return of_parse_phandle(node, "remote-endpoint", 0);
693 }
694 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
695
696 /**
697 * of_graph_get_port_parent() - get port's parent node
698 * @node: pointer to a local endpoint device_node
699 *
700 * Return: device node associated with endpoint node linked
701 * to @node. Use of_node_put() on it when done.
702 */
of_graph_get_port_parent(struct device_node * node)703 struct device_node *of_graph_get_port_parent(struct device_node *node)
704 {
705 unsigned int depth;
706
707 if (!node)
708 return NULL;
709
710 /*
711 * Preserve usecount for passed in node as of_get_next_parent()
712 * will do of_node_put() on it.
713 */
714 of_node_get(node);
715
716 /* Walk 3 levels up only if there is 'ports' node. */
717 for (depth = 3; depth && node; depth--) {
718 node = of_get_next_parent(node);
719 if (depth == 2 && !of_node_name_eq(node, "ports"))
720 break;
721 }
722 return node;
723 }
724 EXPORT_SYMBOL(of_graph_get_port_parent);
725
726 /**
727 * of_graph_get_remote_port_parent() - get remote port's parent node
728 * @node: pointer to a local endpoint device_node
729 *
730 * Return: Remote device node associated with remote endpoint node linked
731 * to @node. Use of_node_put() on it when done.
732 */
of_graph_get_remote_port_parent(const struct device_node * node)733 struct device_node *of_graph_get_remote_port_parent(
734 const struct device_node *node)
735 {
736 struct device_node *np, *pp;
737
738 /* Get remote endpoint node. */
739 np = of_graph_get_remote_endpoint(node);
740
741 pp = of_graph_get_port_parent(np);
742
743 of_node_put(np);
744
745 return pp;
746 }
747 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
748
749 /**
750 * of_graph_get_remote_port() - get remote port node
751 * @node: pointer to a local endpoint device_node
752 *
753 * Return: Remote port node associated with remote endpoint node linked
754 * to @node. Use of_node_put() on it when done.
755 */
of_graph_get_remote_port(const struct device_node * node)756 struct device_node *of_graph_get_remote_port(const struct device_node *node)
757 {
758 struct device_node *np;
759
760 /* Get remote endpoint node. */
761 np = of_graph_get_remote_endpoint(node);
762 if (!np)
763 return NULL;
764 return of_get_next_parent(np);
765 }
766 EXPORT_SYMBOL(of_graph_get_remote_port);
767
of_graph_get_endpoint_count(const struct device_node * np)768 int of_graph_get_endpoint_count(const struct device_node *np)
769 {
770 struct device_node *endpoint;
771 int num = 0;
772
773 for_each_endpoint_of_node(np, endpoint)
774 num++;
775
776 return num;
777 }
778 EXPORT_SYMBOL(of_graph_get_endpoint_count);
779
780 /**
781 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
782 * @node: pointer to parent device_node containing graph port/endpoint
783 * @port: identifier (value of reg property) of the parent port node
784 * @endpoint: identifier (value of reg property) of the endpoint node
785 *
786 * Return: Remote device node associated with remote endpoint node linked
787 * to @node. Use of_node_put() on it when done.
788 */
of_graph_get_remote_node(const struct device_node * node,u32 port,u32 endpoint)789 struct device_node *of_graph_get_remote_node(const struct device_node *node,
790 u32 port, u32 endpoint)
791 {
792 struct device_node *endpoint_node, *remote;
793
794 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
795 if (!endpoint_node) {
796 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
797 port, endpoint, node);
798 return NULL;
799 }
800
801 remote = of_graph_get_remote_port_parent(endpoint_node);
802 of_node_put(endpoint_node);
803 if (!remote) {
804 pr_debug("no valid remote node\n");
805 return NULL;
806 }
807
808 if (!of_device_is_available(remote)) {
809 pr_debug("not available for remote node\n");
810 of_node_put(remote);
811 return NULL;
812 }
813
814 return remote;
815 }
816 EXPORT_SYMBOL(of_graph_get_remote_node);
817
of_fwnode_get(struct fwnode_handle * fwnode)818 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
819 {
820 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
821 }
822
of_fwnode_put(struct fwnode_handle * fwnode)823 static void of_fwnode_put(struct fwnode_handle *fwnode)
824 {
825 of_node_put(to_of_node(fwnode));
826 }
827
of_fwnode_device_is_available(const struct fwnode_handle * fwnode)828 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
829 {
830 return of_device_is_available(to_of_node(fwnode));
831 }
832
of_fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)833 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
834 const char *propname)
835 {
836 return of_property_read_bool(to_of_node(fwnode), propname);
837 }
838
of_fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)839 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
840 const char *propname,
841 unsigned int elem_size, void *val,
842 size_t nval)
843 {
844 const struct device_node *node = to_of_node(fwnode);
845
846 if (!val)
847 return of_property_count_elems_of_size(node, propname,
848 elem_size);
849
850 switch (elem_size) {
851 case sizeof(u8):
852 return of_property_read_u8_array(node, propname, val, nval);
853 case sizeof(u16):
854 return of_property_read_u16_array(node, propname, val, nval);
855 case sizeof(u32):
856 return of_property_read_u32_array(node, propname, val, nval);
857 case sizeof(u64):
858 return of_property_read_u64_array(node, propname, val, nval);
859 }
860
861 return -ENXIO;
862 }
863
864 static int
of_fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)865 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
866 const char *propname, const char **val,
867 size_t nval)
868 {
869 const struct device_node *node = to_of_node(fwnode);
870
871 return val ?
872 of_property_read_string_array(node, propname, val, nval) :
873 of_property_count_strings(node, propname);
874 }
875
876 static struct fwnode_handle *
of_fwnode_get_parent(const struct fwnode_handle * fwnode)877 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
878 {
879 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
880 }
881
882 static struct fwnode_handle *
of_fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)883 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
884 struct fwnode_handle *child)
885 {
886 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
887 to_of_node(child)));
888 }
889
890 static struct fwnode_handle *
of_fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)891 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
892 const char *childname)
893 {
894 const struct device_node *node = to_of_node(fwnode);
895 struct device_node *child;
896
897 for_each_available_child_of_node(node, child)
898 if (of_node_name_eq(child, childname))
899 return of_fwnode_handle(child);
900
901 return NULL;
902 }
903
904 static int
of_fwnode_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)905 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
906 const char *prop, const char *nargs_prop,
907 unsigned int nargs, unsigned int index,
908 struct fwnode_reference_args *args)
909 {
910 struct of_phandle_args of_args;
911 unsigned int i;
912 int ret;
913
914 if (nargs_prop)
915 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
916 nargs_prop, index, &of_args);
917 else
918 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
919 nargs, index, &of_args);
920 if (ret < 0)
921 return ret;
922 if (!args)
923 return 0;
924
925 args->nargs = of_args.args_count;
926 args->fwnode = of_fwnode_handle(of_args.np);
927
928 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
929 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
930
931 return 0;
932 }
933
934 static struct fwnode_handle *
of_fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)935 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
936 struct fwnode_handle *prev)
937 {
938 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
939 to_of_node(prev)));
940 }
941
942 static struct fwnode_handle *
of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)943 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
944 {
945 return of_fwnode_handle(
946 of_graph_get_remote_endpoint(to_of_node(fwnode)));
947 }
948
949 static struct fwnode_handle *
of_fwnode_graph_get_port_parent(struct fwnode_handle * fwnode)950 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
951 {
952 struct device_node *np;
953
954 /* Get the parent of the port */
955 np = of_get_parent(to_of_node(fwnode));
956 if (!np)
957 return NULL;
958
959 /* Is this the "ports" node? If not, it's the port parent. */
960 if (!of_node_name_eq(np, "ports"))
961 return of_fwnode_handle(np);
962
963 return of_fwnode_handle(of_get_next_parent(np));
964 }
965
of_fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)966 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
967 struct fwnode_endpoint *endpoint)
968 {
969 const struct device_node *node = to_of_node(fwnode);
970 struct device_node *port_node = of_get_parent(node);
971
972 endpoint->local_fwnode = fwnode;
973
974 of_property_read_u32(port_node, "reg", &endpoint->port);
975 of_property_read_u32(node, "reg", &endpoint->id);
976
977 of_node_put(port_node);
978
979 return 0;
980 }
981
982 static const void *
of_fwnode_device_get_match_data(const struct fwnode_handle * fwnode,const struct device * dev)983 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
984 const struct device *dev)
985 {
986 return of_device_get_match_data(dev);
987 }
988
of_is_ancestor_of(struct device_node * test_ancestor,struct device_node * child)989 static bool of_is_ancestor_of(struct device_node *test_ancestor,
990 struct device_node *child)
991 {
992 of_node_get(child);
993 while (child) {
994 if (child == test_ancestor) {
995 of_node_put(child);
996 return true;
997 }
998 child = of_get_next_parent(child);
999 }
1000 return false;
1001 }
1002
1003 /**
1004 * of_link_to_phandle - Add device link to supplier from supplier phandle
1005 * @dev: consumer device
1006 * @sup_np: phandle to supplier device tree node
1007 *
1008 * Given a phandle to a supplier device tree node (@sup_np), this function
1009 * finds the device that owns the supplier device tree node and creates a
1010 * device link from @dev consumer device to the supplier device. This function
1011 * doesn't create device links for invalid scenarios such as trying to create a
1012 * link with a parent device as the consumer of its child device. In such
1013 * cases, it returns an error.
1014 *
1015 * Returns:
1016 * - 0 if link successfully created to supplier
1017 * - -EAGAIN if linking to the supplier should be reattempted
1018 * - -EINVAL if the supplier link is invalid and should not be created
1019 * - -ENODEV if there is no device that corresponds to the supplier phandle
1020 */
of_link_to_phandle(struct device * dev,struct device_node * sup_np,u32 dl_flags)1021 static int of_link_to_phandle(struct device *dev, struct device_node *sup_np,
1022 u32 dl_flags)
1023 {
1024 struct device *sup_dev;
1025 int ret = 0;
1026 struct device_node *tmp_np = sup_np;
1027 int is_populated;
1028
1029 of_node_get(sup_np);
1030 /*
1031 * Find the device node that contains the supplier phandle. It may be
1032 * @sup_np or it may be an ancestor of @sup_np.
1033 */
1034 while (sup_np && !of_find_property(sup_np, "compatible", NULL))
1035 sup_np = of_get_next_parent(sup_np);
1036 if (!sup_np) {
1037 dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np);
1038 return -ENODEV;
1039 }
1040
1041 /*
1042 * Don't allow linking a device node as a consumer of one of its
1043 * descendant nodes. By definition, a child node can't be a functional
1044 * dependency for the parent node.
1045 */
1046 if (of_is_ancestor_of(dev->of_node, sup_np)) {
1047 dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np);
1048 of_node_put(sup_np);
1049 return -EINVAL;
1050 }
1051 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1052 is_populated = of_node_check_flag(sup_np, OF_POPULATED);
1053 of_node_put(sup_np);
1054 if (!sup_dev && is_populated) {
1055 /* Early device without struct device. */
1056 dev_dbg(dev, "Not linking to %pOFP - No struct device\n",
1057 sup_np);
1058 return -ENODEV;
1059 } else if (!sup_dev) {
1060 return -EAGAIN;
1061 }
1062 if (!device_link_add(dev, sup_dev, dl_flags))
1063 ret = -EAGAIN;
1064 put_device(sup_dev);
1065 return ret;
1066 }
1067
1068 /**
1069 * parse_prop_cells - Property parsing function for suppliers
1070 *
1071 * @np: Pointer to device tree node containing a list
1072 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1073 * @index: For properties holding a list of phandles, this is the index
1074 * into the list.
1075 * @list_name: Property name that is known to contain list of phandle(s) to
1076 * supplier(s)
1077 * @cells_name: property name that specifies phandles' arguments count
1078 *
1079 * This is a helper function to parse properties that have a known fixed name
1080 * and are a list of phandles and phandle arguments.
1081 *
1082 * Returns:
1083 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1084 * on it when done.
1085 * - NULL if no phandle found at index
1086 */
parse_prop_cells(struct device_node * np,const char * prop_name,int index,const char * list_name,const char * cells_name)1087 static struct device_node *parse_prop_cells(struct device_node *np,
1088 const char *prop_name, int index,
1089 const char *list_name,
1090 const char *cells_name)
1091 {
1092 struct of_phandle_args sup_args;
1093
1094 if (strcmp(prop_name, list_name))
1095 return NULL;
1096
1097 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1098 &sup_args))
1099 return NULL;
1100
1101 return sup_args.np;
1102 }
1103
1104 #define DEFINE_SIMPLE_PROP(fname, name, cells) \
1105 static struct device_node *parse_##fname(struct device_node *np, \
1106 const char *prop_name, int index) \
1107 { \
1108 return parse_prop_cells(np, prop_name, index, name, cells); \
1109 }
1110
strcmp_suffix(const char * str,const char * suffix)1111 static int strcmp_suffix(const char *str, const char *suffix)
1112 {
1113 unsigned int len, suffix_len;
1114
1115 len = strlen(str);
1116 suffix_len = strlen(suffix);
1117 if (len <= suffix_len)
1118 return -1;
1119 return strcmp(str + len - suffix_len, suffix);
1120 }
1121
1122 /**
1123 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1124 *
1125 * @np: Pointer to device tree node containing a list
1126 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1127 * @index: For properties holding a list of phandles, this is the index
1128 * into the list.
1129 * @suffix: Property suffix that is known to contain list of phandle(s) to
1130 * supplier(s)
1131 * @cells_name: property name that specifies phandles' arguments count
1132 *
1133 * This is a helper function to parse properties that have a known fixed suffix
1134 * and are a list of phandles and phandle arguments.
1135 *
1136 * Returns:
1137 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1138 * on it when done.
1139 * - NULL if no phandle found at index
1140 */
parse_suffix_prop_cells(struct device_node * np,const char * prop_name,int index,const char * suffix,const char * cells_name)1141 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1142 const char *prop_name, int index,
1143 const char *suffix,
1144 const char *cells_name)
1145 {
1146 struct of_phandle_args sup_args;
1147
1148 if (strcmp_suffix(prop_name, suffix))
1149 return NULL;
1150
1151 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1152 &sup_args))
1153 return NULL;
1154
1155 return sup_args.np;
1156 }
1157
1158 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1159 static struct device_node *parse_##fname(struct device_node *np, \
1160 const char *prop_name, int index) \
1161 { \
1162 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1163 }
1164
1165 /**
1166 * struct supplier_bindings - Property parsing functions for suppliers
1167 *
1168 * @parse_prop: function name
1169 * parse_prop() finds the node corresponding to a supplier phandle
1170 * @parse_prop.np: Pointer to device node holding supplier phandle property
1171 * @parse_prop.prop_name: Name of property holding a phandle value
1172 * @parse_prop.index: For properties holding a list of phandles, this is the
1173 * index into the list
1174 *
1175 * Returns:
1176 * parse_prop() return values are
1177 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1178 * on it when done.
1179 * - NULL if no phandle found at index
1180 */
1181 struct supplier_bindings {
1182 struct device_node *(*parse_prop)(struct device_node *np,
1183 const char *prop_name, int index);
1184 };
1185
1186 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1187 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1188 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1189 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1190 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1191 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1192 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1193 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1194 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1195 DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells")
1196
parse_iommu_maps(struct device_node * np,const char * prop_name,int index)1197 static struct device_node *parse_iommu_maps(struct device_node *np,
1198 const char *prop_name, int index)
1199 {
1200 if (strcmp(prop_name, "iommu-map"))
1201 return NULL;
1202
1203 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1204 }
1205
1206 static const struct supplier_bindings of_supplier_bindings[] = {
1207 { .parse_prop = parse_clocks, },
1208 { .parse_prop = parse_interconnects, },
1209 { .parse_prop = parse_iommus, },
1210 { .parse_prop = parse_iommu_maps, },
1211 { .parse_prop = parse_mboxes, },
1212 { .parse_prop = parse_io_channels, },
1213 { .parse_prop = parse_interrupt_parent, },
1214 { .parse_prop = parse_dmas, },
1215 { .parse_prop = parse_regulators, },
1216 { .parse_prop = parse_gpio, },
1217 { .parse_prop = parse_gpios, },
1218 {}
1219 };
1220
1221 /**
1222 * of_link_property - Create device links to suppliers listed in a property
1223 * @dev: Consumer device
1224 * @con_np: The consumer device tree node which contains the property
1225 * @prop_name: Name of property to be parsed
1226 *
1227 * This function checks if the property @prop_name that is present in the
1228 * @con_np device tree node is one of the known common device tree bindings
1229 * that list phandles to suppliers. If @prop_name isn't one, this function
1230 * doesn't do anything.
1231 *
1232 * If @prop_name is one, this function attempts to create device links from the
1233 * consumer device @dev to all the devices of the suppliers listed in
1234 * @prop_name.
1235 *
1236 * Any failed attempt to create a device link will NOT result in an immediate
1237 * return. of_link_property() must create links to all the available supplier
1238 * devices even when attempts to create a link to one or more suppliers fail.
1239 */
of_link_property(struct device * dev,struct device_node * con_np,const char * prop_name)1240 static int of_link_property(struct device *dev, struct device_node *con_np,
1241 const char *prop_name)
1242 {
1243 struct device_node *phandle;
1244 const struct supplier_bindings *s = of_supplier_bindings;
1245 unsigned int i = 0;
1246 bool matched = false;
1247 int ret = 0;
1248 u32 dl_flags;
1249
1250 if (dev->of_node == con_np)
1251 dl_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1252 else
1253 dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1254
1255 /* Do not stop at first failed link, link all available suppliers. */
1256 while (!matched && s->parse_prop) {
1257 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1258 matched = true;
1259 i++;
1260 if (of_link_to_phandle(dev, phandle, dl_flags)
1261 == -EAGAIN)
1262 ret = -EAGAIN;
1263 of_node_put(phandle);
1264 }
1265 s++;
1266 }
1267 return ret;
1268 }
1269
of_link_to_suppliers(struct device * dev,struct device_node * con_np)1270 static int of_link_to_suppliers(struct device *dev,
1271 struct device_node *con_np)
1272 {
1273 struct device_node *child;
1274 struct property *p;
1275 int ret = 0;
1276
1277 for_each_property_of_node(con_np, p)
1278 if (of_link_property(dev, con_np, p->name))
1279 ret = -ENODEV;
1280
1281 for_each_child_of_node(con_np, child)
1282 if (of_link_to_suppliers(dev, child) && !ret)
1283 ret = -EAGAIN;
1284
1285 return ret;
1286 }
1287
1288 static bool of_devlink = true;
1289 core_param(of_devlink, of_devlink, bool, 0);
1290
of_fwnode_add_links(const struct fwnode_handle * fwnode,struct device * dev)1291 static int of_fwnode_add_links(const struct fwnode_handle *fwnode,
1292 struct device *dev)
1293 {
1294 if (!of_devlink)
1295 return 0;
1296
1297 if (unlikely(!is_of_node(fwnode)))
1298 return 0;
1299
1300 return of_link_to_suppliers(dev, to_of_node(fwnode));
1301 }
1302
1303 const struct fwnode_operations of_fwnode_ops = {
1304 .get = of_fwnode_get,
1305 .put = of_fwnode_put,
1306 .device_is_available = of_fwnode_device_is_available,
1307 .device_get_match_data = of_fwnode_device_get_match_data,
1308 .property_present = of_fwnode_property_present,
1309 .property_read_int_array = of_fwnode_property_read_int_array,
1310 .property_read_string_array = of_fwnode_property_read_string_array,
1311 .get_parent = of_fwnode_get_parent,
1312 .get_next_child_node = of_fwnode_get_next_child_node,
1313 .get_named_child_node = of_fwnode_get_named_child_node,
1314 .get_reference_args = of_fwnode_get_reference_args,
1315 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1316 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1317 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1318 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1319 .add_links = of_fwnode_add_links,
1320 };
1321 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1322