1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 #include <linux/mm.h>
46 #include <linux/mempolicy.h>
47
48 #include <linux/compat.h>
49 #include <linux/syscalls.h>
50 #include <linux/kprobes.h>
51 #include <linux/user_namespace.h>
52 #include <linux/binfmts.h>
53
54 #include <linux/sched.h>
55 #include <linux/sched/autogroup.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/mm.h>
59 #include <linux/sched/coredump.h>
60 #include <linux/sched/task.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/rcupdate.h>
63 #include <linux/uidgid.h>
64 #include <linux/cred.h>
65
66 #include <linux/nospec.h>
67
68 #include <linux/kmsg_dump.h>
69 /* Move somewhere else to avoid recompiling? */
70 #include <generated/utsrelease.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/io.h>
74 #include <asm/unistd.h>
75
76 #include "uid16.h"
77
78 #ifndef SET_UNALIGN_CTL
79 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
80 #endif
81 #ifndef GET_UNALIGN_CTL
82 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
83 #endif
84 #ifndef SET_FPEMU_CTL
85 # define SET_FPEMU_CTL(a, b) (-EINVAL)
86 #endif
87 #ifndef GET_FPEMU_CTL
88 # define GET_FPEMU_CTL(a, b) (-EINVAL)
89 #endif
90 #ifndef SET_FPEXC_CTL
91 # define SET_FPEXC_CTL(a, b) (-EINVAL)
92 #endif
93 #ifndef GET_FPEXC_CTL
94 # define GET_FPEXC_CTL(a, b) (-EINVAL)
95 #endif
96 #ifndef GET_ENDIAN
97 # define GET_ENDIAN(a, b) (-EINVAL)
98 #endif
99 #ifndef SET_ENDIAN
100 # define SET_ENDIAN(a, b) (-EINVAL)
101 #endif
102 #ifndef GET_TSC_CTL
103 # define GET_TSC_CTL(a) (-EINVAL)
104 #endif
105 #ifndef SET_TSC_CTL
106 # define SET_TSC_CTL(a) (-EINVAL)
107 #endif
108 #ifndef GET_FP_MODE
109 # define GET_FP_MODE(a) (-EINVAL)
110 #endif
111 #ifndef SET_FP_MODE
112 # define SET_FP_MODE(a,b) (-EINVAL)
113 #endif
114 #ifndef SVE_SET_VL
115 # define SVE_SET_VL(a) (-EINVAL)
116 #endif
117 #ifndef SVE_GET_VL
118 # define SVE_GET_VL() (-EINVAL)
119 #endif
120 #ifndef PAC_RESET_KEYS
121 # define PAC_RESET_KEYS(a, b) (-EINVAL)
122 #endif
123 #ifndef SET_TAGGED_ADDR_CTRL
124 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
125 #endif
126 #ifndef GET_TAGGED_ADDR_CTRL
127 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
128 #endif
129
130 /*
131 * this is where the system-wide overflow UID and GID are defined, for
132 * architectures that now have 32-bit UID/GID but didn't in the past
133 */
134
135 int overflowuid = DEFAULT_OVERFLOWUID;
136 int overflowgid = DEFAULT_OVERFLOWGID;
137
138 EXPORT_SYMBOL(overflowuid);
139 EXPORT_SYMBOL(overflowgid);
140
141 /*
142 * the same as above, but for filesystems which can only store a 16-bit
143 * UID and GID. as such, this is needed on all architectures
144 */
145
146 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
147 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
148
149 EXPORT_SYMBOL(fs_overflowuid);
150 EXPORT_SYMBOL(fs_overflowgid);
151
152 /*
153 * Returns true if current's euid is same as p's uid or euid,
154 * or has CAP_SYS_NICE to p's user_ns.
155 *
156 * Called with rcu_read_lock, creds are safe
157 */
set_one_prio_perm(struct task_struct * p)158 static bool set_one_prio_perm(struct task_struct *p)
159 {
160 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
161
162 if (uid_eq(pcred->uid, cred->euid) ||
163 uid_eq(pcred->euid, cred->euid))
164 return true;
165 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
166 return true;
167 return false;
168 }
169
170 /*
171 * set the priority of a task
172 * - the caller must hold the RCU read lock
173 */
set_one_prio(struct task_struct * p,int niceval,int error)174 static int set_one_prio(struct task_struct *p, int niceval, int error)
175 {
176 int no_nice;
177
178 if (!set_one_prio_perm(p)) {
179 error = -EPERM;
180 goto out;
181 }
182 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
183 error = -EACCES;
184 goto out;
185 }
186 no_nice = security_task_setnice(p, niceval);
187 if (no_nice) {
188 error = no_nice;
189 goto out;
190 }
191 if (error == -ESRCH)
192 error = 0;
193 set_user_nice(p, niceval);
194 out:
195 return error;
196 }
197
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)198 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
199 {
200 struct task_struct *g, *p;
201 struct user_struct *user;
202 const struct cred *cred = current_cred();
203 int error = -EINVAL;
204 struct pid *pgrp;
205 kuid_t uid;
206
207 if (which > PRIO_USER || which < PRIO_PROCESS)
208 goto out;
209
210 /* normalize: avoid signed division (rounding problems) */
211 error = -ESRCH;
212 if (niceval < MIN_NICE)
213 niceval = MIN_NICE;
214 if (niceval > MAX_NICE)
215 niceval = MAX_NICE;
216
217 rcu_read_lock();
218 read_lock(&tasklist_lock);
219 switch (which) {
220 case PRIO_PROCESS:
221 if (who)
222 p = find_task_by_vpid(who);
223 else
224 p = current;
225 if (p)
226 error = set_one_prio(p, niceval, error);
227 break;
228 case PRIO_PGRP:
229 if (who)
230 pgrp = find_vpid(who);
231 else
232 pgrp = task_pgrp(current);
233 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
234 error = set_one_prio(p, niceval, error);
235 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
236 break;
237 case PRIO_USER:
238 uid = make_kuid(cred->user_ns, who);
239 user = cred->user;
240 if (!who)
241 uid = cred->uid;
242 else if (!uid_eq(uid, cred->uid)) {
243 user = find_user(uid);
244 if (!user)
245 goto out_unlock; /* No processes for this user */
246 }
247 do_each_thread(g, p) {
248 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
249 error = set_one_prio(p, niceval, error);
250 } while_each_thread(g, p);
251 if (!uid_eq(uid, cred->uid))
252 free_uid(user); /* For find_user() */
253 break;
254 }
255 out_unlock:
256 read_unlock(&tasklist_lock);
257 rcu_read_unlock();
258 out:
259 return error;
260 }
261
262 /*
263 * Ugh. To avoid negative return values, "getpriority()" will
264 * not return the normal nice-value, but a negated value that
265 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
266 * to stay compatible.
267 */
SYSCALL_DEFINE2(getpriority,int,which,int,who)268 SYSCALL_DEFINE2(getpriority, int, which, int, who)
269 {
270 struct task_struct *g, *p;
271 struct user_struct *user;
272 const struct cred *cred = current_cred();
273 long niceval, retval = -ESRCH;
274 struct pid *pgrp;
275 kuid_t uid;
276
277 if (which > PRIO_USER || which < PRIO_PROCESS)
278 return -EINVAL;
279
280 rcu_read_lock();
281 read_lock(&tasklist_lock);
282 switch (which) {
283 case PRIO_PROCESS:
284 if (who)
285 p = find_task_by_vpid(who);
286 else
287 p = current;
288 if (p) {
289 niceval = nice_to_rlimit(task_nice(p));
290 if (niceval > retval)
291 retval = niceval;
292 }
293 break;
294 case PRIO_PGRP:
295 if (who)
296 pgrp = find_vpid(who);
297 else
298 pgrp = task_pgrp(current);
299 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
300 niceval = nice_to_rlimit(task_nice(p));
301 if (niceval > retval)
302 retval = niceval;
303 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
304 break;
305 case PRIO_USER:
306 uid = make_kuid(cred->user_ns, who);
307 user = cred->user;
308 if (!who)
309 uid = cred->uid;
310 else if (!uid_eq(uid, cred->uid)) {
311 user = find_user(uid);
312 if (!user)
313 goto out_unlock; /* No processes for this user */
314 }
315 do_each_thread(g, p) {
316 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
317 niceval = nice_to_rlimit(task_nice(p));
318 if (niceval > retval)
319 retval = niceval;
320 }
321 } while_each_thread(g, p);
322 if (!uid_eq(uid, cred->uid))
323 free_uid(user); /* for find_user() */
324 break;
325 }
326 out_unlock:
327 read_unlock(&tasklist_lock);
328 rcu_read_unlock();
329
330 return retval;
331 }
332
333 /*
334 * Unprivileged users may change the real gid to the effective gid
335 * or vice versa. (BSD-style)
336 *
337 * If you set the real gid at all, or set the effective gid to a value not
338 * equal to the real gid, then the saved gid is set to the new effective gid.
339 *
340 * This makes it possible for a setgid program to completely drop its
341 * privileges, which is often a useful assertion to make when you are doing
342 * a security audit over a program.
343 *
344 * The general idea is that a program which uses just setregid() will be
345 * 100% compatible with BSD. A program which uses just setgid() will be
346 * 100% compatible with POSIX with saved IDs.
347 *
348 * SMP: There are not races, the GIDs are checked only by filesystem
349 * operations (as far as semantic preservation is concerned).
350 */
351 #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)352 long __sys_setregid(gid_t rgid, gid_t egid)
353 {
354 struct user_namespace *ns = current_user_ns();
355 const struct cred *old;
356 struct cred *new;
357 int retval;
358 kgid_t krgid, kegid;
359
360 krgid = make_kgid(ns, rgid);
361 kegid = make_kgid(ns, egid);
362
363 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
364 return -EINVAL;
365 if ((egid != (gid_t) -1) && !gid_valid(kegid))
366 return -EINVAL;
367
368 new = prepare_creds();
369 if (!new)
370 return -ENOMEM;
371 old = current_cred();
372
373 retval = -EPERM;
374 if (rgid != (gid_t) -1) {
375 if (gid_eq(old->gid, krgid) ||
376 gid_eq(old->egid, krgid) ||
377 ns_capable(old->user_ns, CAP_SETGID))
378 new->gid = krgid;
379 else
380 goto error;
381 }
382 if (egid != (gid_t) -1) {
383 if (gid_eq(old->gid, kegid) ||
384 gid_eq(old->egid, kegid) ||
385 gid_eq(old->sgid, kegid) ||
386 ns_capable(old->user_ns, CAP_SETGID))
387 new->egid = kegid;
388 else
389 goto error;
390 }
391
392 if (rgid != (gid_t) -1 ||
393 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
394 new->sgid = new->egid;
395 new->fsgid = new->egid;
396
397 return commit_creds(new);
398
399 error:
400 abort_creds(new);
401 return retval;
402 }
403
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)404 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
405 {
406 return __sys_setregid(rgid, egid);
407 }
408
409 /*
410 * setgid() is implemented like SysV w/ SAVED_IDS
411 *
412 * SMP: Same implicit races as above.
413 */
__sys_setgid(gid_t gid)414 long __sys_setgid(gid_t gid)
415 {
416 struct user_namespace *ns = current_user_ns();
417 const struct cred *old;
418 struct cred *new;
419 int retval;
420 kgid_t kgid;
421
422 kgid = make_kgid(ns, gid);
423 if (!gid_valid(kgid))
424 return -EINVAL;
425
426 new = prepare_creds();
427 if (!new)
428 return -ENOMEM;
429 old = current_cred();
430
431 retval = -EPERM;
432 if (ns_capable(old->user_ns, CAP_SETGID))
433 new->gid = new->egid = new->sgid = new->fsgid = kgid;
434 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
435 new->egid = new->fsgid = kgid;
436 else
437 goto error;
438
439 return commit_creds(new);
440
441 error:
442 abort_creds(new);
443 return retval;
444 }
445
SYSCALL_DEFINE1(setgid,gid_t,gid)446 SYSCALL_DEFINE1(setgid, gid_t, gid)
447 {
448 return __sys_setgid(gid);
449 }
450
451 /*
452 * change the user struct in a credentials set to match the new UID
453 */
set_user(struct cred * new)454 static int set_user(struct cred *new)
455 {
456 struct user_struct *new_user;
457
458 new_user = alloc_uid(new->uid);
459 if (!new_user)
460 return -EAGAIN;
461
462 /*
463 * We don't fail in case of NPROC limit excess here because too many
464 * poorly written programs don't check set*uid() return code, assuming
465 * it never fails if called by root. We may still enforce NPROC limit
466 * for programs doing set*uid()+execve() by harmlessly deferring the
467 * failure to the execve() stage.
468 */
469 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
470 new_user != INIT_USER)
471 current->flags |= PF_NPROC_EXCEEDED;
472 else
473 current->flags &= ~PF_NPROC_EXCEEDED;
474
475 free_uid(new->user);
476 new->user = new_user;
477 return 0;
478 }
479
480 /*
481 * Unprivileged users may change the real uid to the effective uid
482 * or vice versa. (BSD-style)
483 *
484 * If you set the real uid at all, or set the effective uid to a value not
485 * equal to the real uid, then the saved uid is set to the new effective uid.
486 *
487 * This makes it possible for a setuid program to completely drop its
488 * privileges, which is often a useful assertion to make when you are doing
489 * a security audit over a program.
490 *
491 * The general idea is that a program which uses just setreuid() will be
492 * 100% compatible with BSD. A program which uses just setuid() will be
493 * 100% compatible with POSIX with saved IDs.
494 */
__sys_setreuid(uid_t ruid,uid_t euid)495 long __sys_setreuid(uid_t ruid, uid_t euid)
496 {
497 struct user_namespace *ns = current_user_ns();
498 const struct cred *old;
499 struct cred *new;
500 int retval;
501 kuid_t kruid, keuid;
502
503 kruid = make_kuid(ns, ruid);
504 keuid = make_kuid(ns, euid);
505
506 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
507 return -EINVAL;
508 if ((euid != (uid_t) -1) && !uid_valid(keuid))
509 return -EINVAL;
510
511 new = prepare_creds();
512 if (!new)
513 return -ENOMEM;
514 old = current_cred();
515
516 retval = -EPERM;
517 if (ruid != (uid_t) -1) {
518 new->uid = kruid;
519 if (!uid_eq(old->uid, kruid) &&
520 !uid_eq(old->euid, kruid) &&
521 !ns_capable_setid(old->user_ns, CAP_SETUID))
522 goto error;
523 }
524
525 if (euid != (uid_t) -1) {
526 new->euid = keuid;
527 if (!uid_eq(old->uid, keuid) &&
528 !uid_eq(old->euid, keuid) &&
529 !uid_eq(old->suid, keuid) &&
530 !ns_capable_setid(old->user_ns, CAP_SETUID))
531 goto error;
532 }
533
534 if (!uid_eq(new->uid, old->uid)) {
535 retval = set_user(new);
536 if (retval < 0)
537 goto error;
538 }
539 if (ruid != (uid_t) -1 ||
540 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
541 new->suid = new->euid;
542 new->fsuid = new->euid;
543
544 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
545 if (retval < 0)
546 goto error;
547
548 return commit_creds(new);
549
550 error:
551 abort_creds(new);
552 return retval;
553 }
554
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)555 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
556 {
557 return __sys_setreuid(ruid, euid);
558 }
559
560 /*
561 * setuid() is implemented like SysV with SAVED_IDS
562 *
563 * Note that SAVED_ID's is deficient in that a setuid root program
564 * like sendmail, for example, cannot set its uid to be a normal
565 * user and then switch back, because if you're root, setuid() sets
566 * the saved uid too. If you don't like this, blame the bright people
567 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
568 * will allow a root program to temporarily drop privileges and be able to
569 * regain them by swapping the real and effective uid.
570 */
__sys_setuid(uid_t uid)571 long __sys_setuid(uid_t uid)
572 {
573 struct user_namespace *ns = current_user_ns();
574 const struct cred *old;
575 struct cred *new;
576 int retval;
577 kuid_t kuid;
578
579 kuid = make_kuid(ns, uid);
580 if (!uid_valid(kuid))
581 return -EINVAL;
582
583 new = prepare_creds();
584 if (!new)
585 return -ENOMEM;
586 old = current_cred();
587
588 retval = -EPERM;
589 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
590 new->suid = new->uid = kuid;
591 if (!uid_eq(kuid, old->uid)) {
592 retval = set_user(new);
593 if (retval < 0)
594 goto error;
595 }
596 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
597 goto error;
598 }
599
600 new->fsuid = new->euid = kuid;
601
602 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
603 if (retval < 0)
604 goto error;
605
606 return commit_creds(new);
607
608 error:
609 abort_creds(new);
610 return retval;
611 }
612
SYSCALL_DEFINE1(setuid,uid_t,uid)613 SYSCALL_DEFINE1(setuid, uid_t, uid)
614 {
615 return __sys_setuid(uid);
616 }
617
618
619 /*
620 * This function implements a generic ability to update ruid, euid,
621 * and suid. This allows you to implement the 4.4 compatible seteuid().
622 */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)623 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
624 {
625 struct user_namespace *ns = current_user_ns();
626 const struct cred *old;
627 struct cred *new;
628 int retval;
629 kuid_t kruid, keuid, ksuid;
630
631 kruid = make_kuid(ns, ruid);
632 keuid = make_kuid(ns, euid);
633 ksuid = make_kuid(ns, suid);
634
635 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
636 return -EINVAL;
637
638 if ((euid != (uid_t) -1) && !uid_valid(keuid))
639 return -EINVAL;
640
641 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
642 return -EINVAL;
643
644 new = prepare_creds();
645 if (!new)
646 return -ENOMEM;
647
648 old = current_cred();
649
650 retval = -EPERM;
651 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
652 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
653 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
654 goto error;
655 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
656 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
657 goto error;
658 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
659 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
660 goto error;
661 }
662
663 if (ruid != (uid_t) -1) {
664 new->uid = kruid;
665 if (!uid_eq(kruid, old->uid)) {
666 retval = set_user(new);
667 if (retval < 0)
668 goto error;
669 }
670 }
671 if (euid != (uid_t) -1)
672 new->euid = keuid;
673 if (suid != (uid_t) -1)
674 new->suid = ksuid;
675 new->fsuid = new->euid;
676
677 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
678 if (retval < 0)
679 goto error;
680
681 return commit_creds(new);
682
683 error:
684 abort_creds(new);
685 return retval;
686 }
687
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)688 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
689 {
690 return __sys_setresuid(ruid, euid, suid);
691 }
692
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)693 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
694 {
695 const struct cred *cred = current_cred();
696 int retval;
697 uid_t ruid, euid, suid;
698
699 ruid = from_kuid_munged(cred->user_ns, cred->uid);
700 euid = from_kuid_munged(cred->user_ns, cred->euid);
701 suid = from_kuid_munged(cred->user_ns, cred->suid);
702
703 retval = put_user(ruid, ruidp);
704 if (!retval) {
705 retval = put_user(euid, euidp);
706 if (!retval)
707 return put_user(suid, suidp);
708 }
709 return retval;
710 }
711
712 /*
713 * Same as above, but for rgid, egid, sgid.
714 */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)715 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
716 {
717 struct user_namespace *ns = current_user_ns();
718 const struct cred *old;
719 struct cred *new;
720 int retval;
721 kgid_t krgid, kegid, ksgid;
722
723 krgid = make_kgid(ns, rgid);
724 kegid = make_kgid(ns, egid);
725 ksgid = make_kgid(ns, sgid);
726
727 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
728 return -EINVAL;
729 if ((egid != (gid_t) -1) && !gid_valid(kegid))
730 return -EINVAL;
731 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
732 return -EINVAL;
733
734 new = prepare_creds();
735 if (!new)
736 return -ENOMEM;
737 old = current_cred();
738
739 retval = -EPERM;
740 if (!ns_capable(old->user_ns, CAP_SETGID)) {
741 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
742 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
743 goto error;
744 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
745 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
746 goto error;
747 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
748 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
749 goto error;
750 }
751
752 if (rgid != (gid_t) -1)
753 new->gid = krgid;
754 if (egid != (gid_t) -1)
755 new->egid = kegid;
756 if (sgid != (gid_t) -1)
757 new->sgid = ksgid;
758 new->fsgid = new->egid;
759
760 return commit_creds(new);
761
762 error:
763 abort_creds(new);
764 return retval;
765 }
766
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)767 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
768 {
769 return __sys_setresgid(rgid, egid, sgid);
770 }
771
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)772 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
773 {
774 const struct cred *cred = current_cred();
775 int retval;
776 gid_t rgid, egid, sgid;
777
778 rgid = from_kgid_munged(cred->user_ns, cred->gid);
779 egid = from_kgid_munged(cred->user_ns, cred->egid);
780 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
781
782 retval = put_user(rgid, rgidp);
783 if (!retval) {
784 retval = put_user(egid, egidp);
785 if (!retval)
786 retval = put_user(sgid, sgidp);
787 }
788
789 return retval;
790 }
791
792
793 /*
794 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
795 * is used for "access()" and for the NFS daemon (letting nfsd stay at
796 * whatever uid it wants to). It normally shadows "euid", except when
797 * explicitly set by setfsuid() or for access..
798 */
__sys_setfsuid(uid_t uid)799 long __sys_setfsuid(uid_t uid)
800 {
801 const struct cred *old;
802 struct cred *new;
803 uid_t old_fsuid;
804 kuid_t kuid;
805
806 old = current_cred();
807 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
808
809 kuid = make_kuid(old->user_ns, uid);
810 if (!uid_valid(kuid))
811 return old_fsuid;
812
813 new = prepare_creds();
814 if (!new)
815 return old_fsuid;
816
817 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
818 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
819 ns_capable_setid(old->user_ns, CAP_SETUID)) {
820 if (!uid_eq(kuid, old->fsuid)) {
821 new->fsuid = kuid;
822 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
823 goto change_okay;
824 }
825 }
826
827 abort_creds(new);
828 return old_fsuid;
829
830 change_okay:
831 commit_creds(new);
832 return old_fsuid;
833 }
834
SYSCALL_DEFINE1(setfsuid,uid_t,uid)835 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
836 {
837 return __sys_setfsuid(uid);
838 }
839
840 /*
841 * Samma på svenska..
842 */
__sys_setfsgid(gid_t gid)843 long __sys_setfsgid(gid_t gid)
844 {
845 const struct cred *old;
846 struct cred *new;
847 gid_t old_fsgid;
848 kgid_t kgid;
849
850 old = current_cred();
851 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
852
853 kgid = make_kgid(old->user_ns, gid);
854 if (!gid_valid(kgid))
855 return old_fsgid;
856
857 new = prepare_creds();
858 if (!new)
859 return old_fsgid;
860
861 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
862 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
863 ns_capable(old->user_ns, CAP_SETGID)) {
864 if (!gid_eq(kgid, old->fsgid)) {
865 new->fsgid = kgid;
866 goto change_okay;
867 }
868 }
869
870 abort_creds(new);
871 return old_fsgid;
872
873 change_okay:
874 commit_creds(new);
875 return old_fsgid;
876 }
877
SYSCALL_DEFINE1(setfsgid,gid_t,gid)878 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
879 {
880 return __sys_setfsgid(gid);
881 }
882 #endif /* CONFIG_MULTIUSER */
883
884 /**
885 * sys_getpid - return the thread group id of the current process
886 *
887 * Note, despite the name, this returns the tgid not the pid. The tgid and
888 * the pid are identical unless CLONE_THREAD was specified on clone() in
889 * which case the tgid is the same in all threads of the same group.
890 *
891 * This is SMP safe as current->tgid does not change.
892 */
SYSCALL_DEFINE0(getpid)893 SYSCALL_DEFINE0(getpid)
894 {
895 return task_tgid_vnr(current);
896 }
897
898 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)899 SYSCALL_DEFINE0(gettid)
900 {
901 return task_pid_vnr(current);
902 }
903
904 /*
905 * Accessing ->real_parent is not SMP-safe, it could
906 * change from under us. However, we can use a stale
907 * value of ->real_parent under rcu_read_lock(), see
908 * release_task()->call_rcu(delayed_put_task_struct).
909 */
SYSCALL_DEFINE0(getppid)910 SYSCALL_DEFINE0(getppid)
911 {
912 int pid;
913
914 rcu_read_lock();
915 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
916 rcu_read_unlock();
917
918 return pid;
919 }
920
SYSCALL_DEFINE0(getuid)921 SYSCALL_DEFINE0(getuid)
922 {
923 /* Only we change this so SMP safe */
924 return from_kuid_munged(current_user_ns(), current_uid());
925 }
926
SYSCALL_DEFINE0(geteuid)927 SYSCALL_DEFINE0(geteuid)
928 {
929 /* Only we change this so SMP safe */
930 return from_kuid_munged(current_user_ns(), current_euid());
931 }
932
SYSCALL_DEFINE0(getgid)933 SYSCALL_DEFINE0(getgid)
934 {
935 /* Only we change this so SMP safe */
936 return from_kgid_munged(current_user_ns(), current_gid());
937 }
938
SYSCALL_DEFINE0(getegid)939 SYSCALL_DEFINE0(getegid)
940 {
941 /* Only we change this so SMP safe */
942 return from_kgid_munged(current_user_ns(), current_egid());
943 }
944
do_sys_times(struct tms * tms)945 static void do_sys_times(struct tms *tms)
946 {
947 u64 tgutime, tgstime, cutime, cstime;
948
949 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
950 cutime = current->signal->cutime;
951 cstime = current->signal->cstime;
952 tms->tms_utime = nsec_to_clock_t(tgutime);
953 tms->tms_stime = nsec_to_clock_t(tgstime);
954 tms->tms_cutime = nsec_to_clock_t(cutime);
955 tms->tms_cstime = nsec_to_clock_t(cstime);
956 }
957
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)958 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
959 {
960 if (tbuf) {
961 struct tms tmp;
962
963 do_sys_times(&tmp);
964 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
965 return -EFAULT;
966 }
967 force_successful_syscall_return();
968 return (long) jiffies_64_to_clock_t(get_jiffies_64());
969 }
970
971 #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)972 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
973 {
974 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
975 }
976
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)977 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
978 {
979 if (tbuf) {
980 struct tms tms;
981 struct compat_tms tmp;
982
983 do_sys_times(&tms);
984 /* Convert our struct tms to the compat version. */
985 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
986 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
987 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
988 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
989 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
990 return -EFAULT;
991 }
992 force_successful_syscall_return();
993 return compat_jiffies_to_clock_t(jiffies);
994 }
995 #endif
996
997 /*
998 * This needs some heavy checking ...
999 * I just haven't the stomach for it. I also don't fully
1000 * understand sessions/pgrp etc. Let somebody who does explain it.
1001 *
1002 * OK, I think I have the protection semantics right.... this is really
1003 * only important on a multi-user system anyway, to make sure one user
1004 * can't send a signal to a process owned by another. -TYT, 12/12/91
1005 *
1006 * !PF_FORKNOEXEC check to conform completely to POSIX.
1007 */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1008 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1009 {
1010 struct task_struct *p;
1011 struct task_struct *group_leader = current->group_leader;
1012 struct pid *pgrp;
1013 int err;
1014
1015 if (!pid)
1016 pid = task_pid_vnr(group_leader);
1017 if (!pgid)
1018 pgid = pid;
1019 if (pgid < 0)
1020 return -EINVAL;
1021 rcu_read_lock();
1022
1023 /* From this point forward we keep holding onto the tasklist lock
1024 * so that our parent does not change from under us. -DaveM
1025 */
1026 write_lock_irq(&tasklist_lock);
1027
1028 err = -ESRCH;
1029 p = find_task_by_vpid(pid);
1030 if (!p)
1031 goto out;
1032
1033 err = -EINVAL;
1034 if (!thread_group_leader(p))
1035 goto out;
1036
1037 if (same_thread_group(p->real_parent, group_leader)) {
1038 err = -EPERM;
1039 if (task_session(p) != task_session(group_leader))
1040 goto out;
1041 err = -EACCES;
1042 if (!(p->flags & PF_FORKNOEXEC))
1043 goto out;
1044 } else {
1045 err = -ESRCH;
1046 if (p != group_leader)
1047 goto out;
1048 }
1049
1050 err = -EPERM;
1051 if (p->signal->leader)
1052 goto out;
1053
1054 pgrp = task_pid(p);
1055 if (pgid != pid) {
1056 struct task_struct *g;
1057
1058 pgrp = find_vpid(pgid);
1059 g = pid_task(pgrp, PIDTYPE_PGID);
1060 if (!g || task_session(g) != task_session(group_leader))
1061 goto out;
1062 }
1063
1064 err = security_task_setpgid(p, pgid);
1065 if (err)
1066 goto out;
1067
1068 if (task_pgrp(p) != pgrp)
1069 change_pid(p, PIDTYPE_PGID, pgrp);
1070
1071 err = 0;
1072 out:
1073 /* All paths lead to here, thus we are safe. -DaveM */
1074 write_unlock_irq(&tasklist_lock);
1075 rcu_read_unlock();
1076 return err;
1077 }
1078
do_getpgid(pid_t pid)1079 static int do_getpgid(pid_t pid)
1080 {
1081 struct task_struct *p;
1082 struct pid *grp;
1083 int retval;
1084
1085 rcu_read_lock();
1086 if (!pid)
1087 grp = task_pgrp(current);
1088 else {
1089 retval = -ESRCH;
1090 p = find_task_by_vpid(pid);
1091 if (!p)
1092 goto out;
1093 grp = task_pgrp(p);
1094 if (!grp)
1095 goto out;
1096
1097 retval = security_task_getpgid(p);
1098 if (retval)
1099 goto out;
1100 }
1101 retval = pid_vnr(grp);
1102 out:
1103 rcu_read_unlock();
1104 return retval;
1105 }
1106
SYSCALL_DEFINE1(getpgid,pid_t,pid)1107 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1108 {
1109 return do_getpgid(pid);
1110 }
1111
1112 #ifdef __ARCH_WANT_SYS_GETPGRP
1113
SYSCALL_DEFINE0(getpgrp)1114 SYSCALL_DEFINE0(getpgrp)
1115 {
1116 return do_getpgid(0);
1117 }
1118
1119 #endif
1120
SYSCALL_DEFINE1(getsid,pid_t,pid)1121 SYSCALL_DEFINE1(getsid, pid_t, pid)
1122 {
1123 struct task_struct *p;
1124 struct pid *sid;
1125 int retval;
1126
1127 rcu_read_lock();
1128 if (!pid)
1129 sid = task_session(current);
1130 else {
1131 retval = -ESRCH;
1132 p = find_task_by_vpid(pid);
1133 if (!p)
1134 goto out;
1135 sid = task_session(p);
1136 if (!sid)
1137 goto out;
1138
1139 retval = security_task_getsid(p);
1140 if (retval)
1141 goto out;
1142 }
1143 retval = pid_vnr(sid);
1144 out:
1145 rcu_read_unlock();
1146 return retval;
1147 }
1148
set_special_pids(struct pid * pid)1149 static void set_special_pids(struct pid *pid)
1150 {
1151 struct task_struct *curr = current->group_leader;
1152
1153 if (task_session(curr) != pid)
1154 change_pid(curr, PIDTYPE_SID, pid);
1155
1156 if (task_pgrp(curr) != pid)
1157 change_pid(curr, PIDTYPE_PGID, pid);
1158 }
1159
ksys_setsid(void)1160 int ksys_setsid(void)
1161 {
1162 struct task_struct *group_leader = current->group_leader;
1163 struct pid *sid = task_pid(group_leader);
1164 pid_t session = pid_vnr(sid);
1165 int err = -EPERM;
1166
1167 write_lock_irq(&tasklist_lock);
1168 /* Fail if I am already a session leader */
1169 if (group_leader->signal->leader)
1170 goto out;
1171
1172 /* Fail if a process group id already exists that equals the
1173 * proposed session id.
1174 */
1175 if (pid_task(sid, PIDTYPE_PGID))
1176 goto out;
1177
1178 group_leader->signal->leader = 1;
1179 set_special_pids(sid);
1180
1181 proc_clear_tty(group_leader);
1182
1183 err = session;
1184 out:
1185 write_unlock_irq(&tasklist_lock);
1186 if (err > 0) {
1187 proc_sid_connector(group_leader);
1188 sched_autogroup_create_attach(group_leader);
1189 }
1190 return err;
1191 }
1192
SYSCALL_DEFINE0(setsid)1193 SYSCALL_DEFINE0(setsid)
1194 {
1195 return ksys_setsid();
1196 }
1197
1198 DECLARE_RWSEM(uts_sem);
1199
1200 #ifdef COMPAT_UTS_MACHINE
1201 #define override_architecture(name) \
1202 (personality(current->personality) == PER_LINUX32 && \
1203 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1204 sizeof(COMPAT_UTS_MACHINE)))
1205 #else
1206 #define override_architecture(name) 0
1207 #endif
1208
1209 /*
1210 * Work around broken programs that cannot handle "Linux 3.0".
1211 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1212 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1213 * 2.6.60.
1214 */
override_release(char __user * release,size_t len)1215 static int override_release(char __user *release, size_t len)
1216 {
1217 int ret = 0;
1218
1219 if (current->personality & UNAME26) {
1220 const char *rest = UTS_RELEASE;
1221 char buf[65] = { 0 };
1222 int ndots = 0;
1223 unsigned v;
1224 size_t copy;
1225
1226 while (*rest) {
1227 if (*rest == '.' && ++ndots >= 3)
1228 break;
1229 if (!isdigit(*rest) && *rest != '.')
1230 break;
1231 rest++;
1232 }
1233 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1234 copy = clamp_t(size_t, len, 1, sizeof(buf));
1235 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1236 ret = copy_to_user(release, buf, copy + 1);
1237 }
1238 return ret;
1239 }
1240
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1241 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1242 {
1243 struct new_utsname tmp;
1244
1245 down_read(&uts_sem);
1246 memcpy(&tmp, utsname(), sizeof(tmp));
1247 up_read(&uts_sem);
1248 if (copy_to_user(name, &tmp, sizeof(tmp)))
1249 return -EFAULT;
1250
1251 if (override_release(name->release, sizeof(name->release)))
1252 return -EFAULT;
1253 if (override_architecture(name))
1254 return -EFAULT;
1255 return 0;
1256 }
1257
1258 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1259 /*
1260 * Old cruft
1261 */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1262 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1263 {
1264 struct old_utsname tmp;
1265
1266 if (!name)
1267 return -EFAULT;
1268
1269 down_read(&uts_sem);
1270 memcpy(&tmp, utsname(), sizeof(tmp));
1271 up_read(&uts_sem);
1272 if (copy_to_user(name, &tmp, sizeof(tmp)))
1273 return -EFAULT;
1274
1275 if (override_release(name->release, sizeof(name->release)))
1276 return -EFAULT;
1277 if (override_architecture(name))
1278 return -EFAULT;
1279 return 0;
1280 }
1281
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1282 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1283 {
1284 struct oldold_utsname tmp = {};
1285
1286 if (!name)
1287 return -EFAULT;
1288
1289 down_read(&uts_sem);
1290 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1291 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1292 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1293 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1294 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1295 up_read(&uts_sem);
1296 if (copy_to_user(name, &tmp, sizeof(tmp)))
1297 return -EFAULT;
1298
1299 if (override_architecture(name))
1300 return -EFAULT;
1301 if (override_release(name->release, sizeof(name->release)))
1302 return -EFAULT;
1303 return 0;
1304 }
1305 #endif
1306
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1307 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1308 {
1309 int errno;
1310 char tmp[__NEW_UTS_LEN];
1311
1312 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1313 return -EPERM;
1314
1315 if (len < 0 || len > __NEW_UTS_LEN)
1316 return -EINVAL;
1317 errno = -EFAULT;
1318 if (!copy_from_user(tmp, name, len)) {
1319 struct new_utsname *u;
1320
1321 down_write(&uts_sem);
1322 u = utsname();
1323 memcpy(u->nodename, tmp, len);
1324 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1325 errno = 0;
1326 uts_proc_notify(UTS_PROC_HOSTNAME);
1327 up_write(&uts_sem);
1328 }
1329 return errno;
1330 }
1331
1332 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1333
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1334 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1335 {
1336 int i;
1337 struct new_utsname *u;
1338 char tmp[__NEW_UTS_LEN + 1];
1339
1340 if (len < 0)
1341 return -EINVAL;
1342 down_read(&uts_sem);
1343 u = utsname();
1344 i = 1 + strlen(u->nodename);
1345 if (i > len)
1346 i = len;
1347 memcpy(tmp, u->nodename, i);
1348 up_read(&uts_sem);
1349 if (copy_to_user(name, tmp, i))
1350 return -EFAULT;
1351 return 0;
1352 }
1353
1354 #endif
1355
1356 /*
1357 * Only setdomainname; getdomainname can be implemented by calling
1358 * uname()
1359 */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1360 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1361 {
1362 int errno;
1363 char tmp[__NEW_UTS_LEN];
1364
1365 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1366 return -EPERM;
1367 if (len < 0 || len > __NEW_UTS_LEN)
1368 return -EINVAL;
1369
1370 errno = -EFAULT;
1371 if (!copy_from_user(tmp, name, len)) {
1372 struct new_utsname *u;
1373
1374 down_write(&uts_sem);
1375 u = utsname();
1376 memcpy(u->domainname, tmp, len);
1377 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1378 errno = 0;
1379 uts_proc_notify(UTS_PROC_DOMAINNAME);
1380 up_write(&uts_sem);
1381 }
1382 return errno;
1383 }
1384
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1385 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1386 {
1387 struct rlimit value;
1388 int ret;
1389
1390 ret = do_prlimit(current, resource, NULL, &value);
1391 if (!ret)
1392 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1393
1394 return ret;
1395 }
1396
1397 #ifdef CONFIG_COMPAT
1398
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1399 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1400 struct compat_rlimit __user *, rlim)
1401 {
1402 struct rlimit r;
1403 struct compat_rlimit r32;
1404
1405 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1406 return -EFAULT;
1407
1408 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1409 r.rlim_cur = RLIM_INFINITY;
1410 else
1411 r.rlim_cur = r32.rlim_cur;
1412 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1413 r.rlim_max = RLIM_INFINITY;
1414 else
1415 r.rlim_max = r32.rlim_max;
1416 return do_prlimit(current, resource, &r, NULL);
1417 }
1418
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1419 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1420 struct compat_rlimit __user *, rlim)
1421 {
1422 struct rlimit r;
1423 int ret;
1424
1425 ret = do_prlimit(current, resource, NULL, &r);
1426 if (!ret) {
1427 struct compat_rlimit r32;
1428 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1429 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1430 else
1431 r32.rlim_cur = r.rlim_cur;
1432 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1433 r32.rlim_max = COMPAT_RLIM_INFINITY;
1434 else
1435 r32.rlim_max = r.rlim_max;
1436
1437 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1438 return -EFAULT;
1439 }
1440 return ret;
1441 }
1442
1443 #endif
1444
1445 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1446
1447 /*
1448 * Back compatibility for getrlimit. Needed for some apps.
1449 */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1450 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1451 struct rlimit __user *, rlim)
1452 {
1453 struct rlimit x;
1454 if (resource >= RLIM_NLIMITS)
1455 return -EINVAL;
1456
1457 resource = array_index_nospec(resource, RLIM_NLIMITS);
1458 task_lock(current->group_leader);
1459 x = current->signal->rlim[resource];
1460 task_unlock(current->group_leader);
1461 if (x.rlim_cur > 0x7FFFFFFF)
1462 x.rlim_cur = 0x7FFFFFFF;
1463 if (x.rlim_max > 0x7FFFFFFF)
1464 x.rlim_max = 0x7FFFFFFF;
1465 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1466 }
1467
1468 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1469 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1470 struct compat_rlimit __user *, rlim)
1471 {
1472 struct rlimit r;
1473
1474 if (resource >= RLIM_NLIMITS)
1475 return -EINVAL;
1476
1477 resource = array_index_nospec(resource, RLIM_NLIMITS);
1478 task_lock(current->group_leader);
1479 r = current->signal->rlim[resource];
1480 task_unlock(current->group_leader);
1481 if (r.rlim_cur > 0x7FFFFFFF)
1482 r.rlim_cur = 0x7FFFFFFF;
1483 if (r.rlim_max > 0x7FFFFFFF)
1484 r.rlim_max = 0x7FFFFFFF;
1485
1486 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1487 put_user(r.rlim_max, &rlim->rlim_max))
1488 return -EFAULT;
1489 return 0;
1490 }
1491 #endif
1492
1493 #endif
1494
rlim64_is_infinity(__u64 rlim64)1495 static inline bool rlim64_is_infinity(__u64 rlim64)
1496 {
1497 #if BITS_PER_LONG < 64
1498 return rlim64 >= ULONG_MAX;
1499 #else
1500 return rlim64 == RLIM64_INFINITY;
1501 #endif
1502 }
1503
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1504 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1505 {
1506 if (rlim->rlim_cur == RLIM_INFINITY)
1507 rlim64->rlim_cur = RLIM64_INFINITY;
1508 else
1509 rlim64->rlim_cur = rlim->rlim_cur;
1510 if (rlim->rlim_max == RLIM_INFINITY)
1511 rlim64->rlim_max = RLIM64_INFINITY;
1512 else
1513 rlim64->rlim_max = rlim->rlim_max;
1514 }
1515
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1516 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1517 {
1518 if (rlim64_is_infinity(rlim64->rlim_cur))
1519 rlim->rlim_cur = RLIM_INFINITY;
1520 else
1521 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1522 if (rlim64_is_infinity(rlim64->rlim_max))
1523 rlim->rlim_max = RLIM_INFINITY;
1524 else
1525 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1526 }
1527
1528 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1529 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1530 struct rlimit *new_rlim, struct rlimit *old_rlim)
1531 {
1532 struct rlimit *rlim;
1533 int retval = 0;
1534
1535 if (resource >= RLIM_NLIMITS)
1536 return -EINVAL;
1537 if (new_rlim) {
1538 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1539 return -EINVAL;
1540 if (resource == RLIMIT_NOFILE &&
1541 new_rlim->rlim_max > sysctl_nr_open)
1542 return -EPERM;
1543 }
1544
1545 /* protect tsk->signal and tsk->sighand from disappearing */
1546 read_lock(&tasklist_lock);
1547 if (!tsk->sighand) {
1548 retval = -ESRCH;
1549 goto out;
1550 }
1551
1552 rlim = tsk->signal->rlim + resource;
1553 task_lock(tsk->group_leader);
1554 if (new_rlim) {
1555 /* Keep the capable check against init_user_ns until
1556 cgroups can contain all limits */
1557 if (new_rlim->rlim_max > rlim->rlim_max &&
1558 !capable(CAP_SYS_RESOURCE))
1559 retval = -EPERM;
1560 if (!retval)
1561 retval = security_task_setrlimit(tsk, resource, new_rlim);
1562 }
1563 if (!retval) {
1564 if (old_rlim)
1565 *old_rlim = *rlim;
1566 if (new_rlim)
1567 *rlim = *new_rlim;
1568 }
1569 task_unlock(tsk->group_leader);
1570
1571 /*
1572 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1573 * infite. In case of RLIM_INFINITY the posix CPU timer code
1574 * ignores the rlimit.
1575 */
1576 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1577 new_rlim->rlim_cur != RLIM_INFINITY &&
1578 IS_ENABLED(CONFIG_POSIX_TIMERS))
1579 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1580 out:
1581 read_unlock(&tasklist_lock);
1582 return retval;
1583 }
1584
1585 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1586 static int check_prlimit_permission(struct task_struct *task,
1587 unsigned int flags)
1588 {
1589 const struct cred *cred = current_cred(), *tcred;
1590 bool id_match;
1591
1592 if (current == task)
1593 return 0;
1594
1595 tcred = __task_cred(task);
1596 id_match = (uid_eq(cred->uid, tcred->euid) &&
1597 uid_eq(cred->uid, tcred->suid) &&
1598 uid_eq(cred->uid, tcred->uid) &&
1599 gid_eq(cred->gid, tcred->egid) &&
1600 gid_eq(cred->gid, tcred->sgid) &&
1601 gid_eq(cred->gid, tcred->gid));
1602 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1603 return -EPERM;
1604
1605 return security_task_prlimit(cred, tcred, flags);
1606 }
1607
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1608 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1609 const struct rlimit64 __user *, new_rlim,
1610 struct rlimit64 __user *, old_rlim)
1611 {
1612 struct rlimit64 old64, new64;
1613 struct rlimit old, new;
1614 struct task_struct *tsk;
1615 unsigned int checkflags = 0;
1616 int ret;
1617
1618 if (old_rlim)
1619 checkflags |= LSM_PRLIMIT_READ;
1620
1621 if (new_rlim) {
1622 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1623 return -EFAULT;
1624 rlim64_to_rlim(&new64, &new);
1625 checkflags |= LSM_PRLIMIT_WRITE;
1626 }
1627
1628 rcu_read_lock();
1629 tsk = pid ? find_task_by_vpid(pid) : current;
1630 if (!tsk) {
1631 rcu_read_unlock();
1632 return -ESRCH;
1633 }
1634 ret = check_prlimit_permission(tsk, checkflags);
1635 if (ret) {
1636 rcu_read_unlock();
1637 return ret;
1638 }
1639 get_task_struct(tsk);
1640 rcu_read_unlock();
1641
1642 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1643 old_rlim ? &old : NULL);
1644
1645 if (!ret && old_rlim) {
1646 rlim_to_rlim64(&old, &old64);
1647 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1648 ret = -EFAULT;
1649 }
1650
1651 put_task_struct(tsk);
1652 return ret;
1653 }
1654
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1655 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1656 {
1657 struct rlimit new_rlim;
1658
1659 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1660 return -EFAULT;
1661 return do_prlimit(current, resource, &new_rlim, NULL);
1662 }
1663
1664 /*
1665 * It would make sense to put struct rusage in the task_struct,
1666 * except that would make the task_struct be *really big*. After
1667 * task_struct gets moved into malloc'ed memory, it would
1668 * make sense to do this. It will make moving the rest of the information
1669 * a lot simpler! (Which we're not doing right now because we're not
1670 * measuring them yet).
1671 *
1672 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1673 * races with threads incrementing their own counters. But since word
1674 * reads are atomic, we either get new values or old values and we don't
1675 * care which for the sums. We always take the siglock to protect reading
1676 * the c* fields from p->signal from races with exit.c updating those
1677 * fields when reaping, so a sample either gets all the additions of a
1678 * given child after it's reaped, or none so this sample is before reaping.
1679 *
1680 * Locking:
1681 * We need to take the siglock for CHILDEREN, SELF and BOTH
1682 * for the cases current multithreaded, non-current single threaded
1683 * non-current multithreaded. Thread traversal is now safe with
1684 * the siglock held.
1685 * Strictly speaking, we donot need to take the siglock if we are current and
1686 * single threaded, as no one else can take our signal_struct away, no one
1687 * else can reap the children to update signal->c* counters, and no one else
1688 * can race with the signal-> fields. If we do not take any lock, the
1689 * signal-> fields could be read out of order while another thread was just
1690 * exiting. So we should place a read memory barrier when we avoid the lock.
1691 * On the writer side, write memory barrier is implied in __exit_signal
1692 * as __exit_signal releases the siglock spinlock after updating the signal->
1693 * fields. But we don't do this yet to keep things simple.
1694 *
1695 */
1696
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1697 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1698 {
1699 r->ru_nvcsw += t->nvcsw;
1700 r->ru_nivcsw += t->nivcsw;
1701 r->ru_minflt += t->min_flt;
1702 r->ru_majflt += t->maj_flt;
1703 r->ru_inblock += task_io_get_inblock(t);
1704 r->ru_oublock += task_io_get_oublock(t);
1705 }
1706
getrusage(struct task_struct * p,int who,struct rusage * r)1707 void getrusage(struct task_struct *p, int who, struct rusage *r)
1708 {
1709 struct task_struct *t;
1710 unsigned long flags;
1711 u64 tgutime, tgstime, utime, stime;
1712 unsigned long maxrss = 0;
1713
1714 memset((char *)r, 0, sizeof (*r));
1715 utime = stime = 0;
1716
1717 if (who == RUSAGE_THREAD) {
1718 task_cputime_adjusted(current, &utime, &stime);
1719 accumulate_thread_rusage(p, r);
1720 maxrss = p->signal->maxrss;
1721 goto out;
1722 }
1723
1724 if (!lock_task_sighand(p, &flags))
1725 return;
1726
1727 switch (who) {
1728 case RUSAGE_BOTH:
1729 case RUSAGE_CHILDREN:
1730 utime = p->signal->cutime;
1731 stime = p->signal->cstime;
1732 r->ru_nvcsw = p->signal->cnvcsw;
1733 r->ru_nivcsw = p->signal->cnivcsw;
1734 r->ru_minflt = p->signal->cmin_flt;
1735 r->ru_majflt = p->signal->cmaj_flt;
1736 r->ru_inblock = p->signal->cinblock;
1737 r->ru_oublock = p->signal->coublock;
1738 maxrss = p->signal->cmaxrss;
1739
1740 if (who == RUSAGE_CHILDREN)
1741 break;
1742 /* fall through */
1743
1744 case RUSAGE_SELF:
1745 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1746 utime += tgutime;
1747 stime += tgstime;
1748 r->ru_nvcsw += p->signal->nvcsw;
1749 r->ru_nivcsw += p->signal->nivcsw;
1750 r->ru_minflt += p->signal->min_flt;
1751 r->ru_majflt += p->signal->maj_flt;
1752 r->ru_inblock += p->signal->inblock;
1753 r->ru_oublock += p->signal->oublock;
1754 if (maxrss < p->signal->maxrss)
1755 maxrss = p->signal->maxrss;
1756 t = p;
1757 do {
1758 accumulate_thread_rusage(t, r);
1759 } while_each_thread(p, t);
1760 break;
1761
1762 default:
1763 BUG();
1764 }
1765 unlock_task_sighand(p, &flags);
1766
1767 out:
1768 r->ru_utime = ns_to_timeval(utime);
1769 r->ru_stime = ns_to_timeval(stime);
1770
1771 if (who != RUSAGE_CHILDREN) {
1772 struct mm_struct *mm = get_task_mm(p);
1773
1774 if (mm) {
1775 setmax_mm_hiwater_rss(&maxrss, mm);
1776 mmput(mm);
1777 }
1778 }
1779 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1780 }
1781
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1782 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1783 {
1784 struct rusage r;
1785
1786 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1787 who != RUSAGE_THREAD)
1788 return -EINVAL;
1789
1790 getrusage(current, who, &r);
1791 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1792 }
1793
1794 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1795 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1796 {
1797 struct rusage r;
1798
1799 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1800 who != RUSAGE_THREAD)
1801 return -EINVAL;
1802
1803 getrusage(current, who, &r);
1804 return put_compat_rusage(&r, ru);
1805 }
1806 #endif
1807
SYSCALL_DEFINE1(umask,int,mask)1808 SYSCALL_DEFINE1(umask, int, mask)
1809 {
1810 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1811 return mask;
1812 }
1813
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1814 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1815 {
1816 struct fd exe;
1817 struct file *old_exe, *exe_file;
1818 struct inode *inode;
1819 int err;
1820
1821 exe = fdget(fd);
1822 if (!exe.file)
1823 return -EBADF;
1824
1825 inode = file_inode(exe.file);
1826
1827 /*
1828 * Because the original mm->exe_file points to executable file, make
1829 * sure that this one is executable as well, to avoid breaking an
1830 * overall picture.
1831 */
1832 err = -EACCES;
1833 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1834 goto exit;
1835
1836 err = inode_permission(inode, MAY_EXEC);
1837 if (err)
1838 goto exit;
1839
1840 /*
1841 * Forbid mm->exe_file change if old file still mapped.
1842 */
1843 exe_file = get_mm_exe_file(mm);
1844 err = -EBUSY;
1845 if (exe_file) {
1846 struct vm_area_struct *vma;
1847
1848 down_read(&mm->mmap_sem);
1849 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1850 if (!vma->vm_file)
1851 continue;
1852 if (path_equal(&vma->vm_file->f_path,
1853 &exe_file->f_path))
1854 goto exit_err;
1855 }
1856
1857 up_read(&mm->mmap_sem);
1858 fput(exe_file);
1859 }
1860
1861 err = 0;
1862 /* set the new file, lockless */
1863 get_file(exe.file);
1864 old_exe = xchg(&mm->exe_file, exe.file);
1865 if (old_exe)
1866 fput(old_exe);
1867 exit:
1868 fdput(exe);
1869 return err;
1870 exit_err:
1871 up_read(&mm->mmap_sem);
1872 fput(exe_file);
1873 goto exit;
1874 }
1875
1876 /*
1877 * Check arithmetic relations of passed addresses.
1878 *
1879 * WARNING: we don't require any capability here so be very careful
1880 * in what is allowed for modification from userspace.
1881 */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1882 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1883 {
1884 unsigned long mmap_max_addr = TASK_SIZE;
1885 int error = -EINVAL, i;
1886
1887 static const unsigned char offsets[] = {
1888 offsetof(struct prctl_mm_map, start_code),
1889 offsetof(struct prctl_mm_map, end_code),
1890 offsetof(struct prctl_mm_map, start_data),
1891 offsetof(struct prctl_mm_map, end_data),
1892 offsetof(struct prctl_mm_map, start_brk),
1893 offsetof(struct prctl_mm_map, brk),
1894 offsetof(struct prctl_mm_map, start_stack),
1895 offsetof(struct prctl_mm_map, arg_start),
1896 offsetof(struct prctl_mm_map, arg_end),
1897 offsetof(struct prctl_mm_map, env_start),
1898 offsetof(struct prctl_mm_map, env_end),
1899 };
1900
1901 /*
1902 * Make sure the members are not somewhere outside
1903 * of allowed address space.
1904 */
1905 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1906 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1907
1908 if ((unsigned long)val >= mmap_max_addr ||
1909 (unsigned long)val < mmap_min_addr)
1910 goto out;
1911 }
1912
1913 /*
1914 * Make sure the pairs are ordered.
1915 */
1916 #define __prctl_check_order(__m1, __op, __m2) \
1917 ((unsigned long)prctl_map->__m1 __op \
1918 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1919 error = __prctl_check_order(start_code, <, end_code);
1920 error |= __prctl_check_order(start_data,<=, end_data);
1921 error |= __prctl_check_order(start_brk, <=, brk);
1922 error |= __prctl_check_order(arg_start, <=, arg_end);
1923 error |= __prctl_check_order(env_start, <=, env_end);
1924 if (error)
1925 goto out;
1926 #undef __prctl_check_order
1927
1928 error = -EINVAL;
1929
1930 /*
1931 * @brk should be after @end_data in traditional maps.
1932 */
1933 if (prctl_map->start_brk <= prctl_map->end_data ||
1934 prctl_map->brk <= prctl_map->end_data)
1935 goto out;
1936
1937 /*
1938 * Neither we should allow to override limits if they set.
1939 */
1940 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1941 prctl_map->start_brk, prctl_map->end_data,
1942 prctl_map->start_data))
1943 goto out;
1944
1945 error = 0;
1946 out:
1947 return error;
1948 }
1949
1950 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1951 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1952 {
1953 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1954 unsigned long user_auxv[AT_VECTOR_SIZE];
1955 struct mm_struct *mm = current->mm;
1956 int error;
1957
1958 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1959 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1960
1961 if (opt == PR_SET_MM_MAP_SIZE)
1962 return put_user((unsigned int)sizeof(prctl_map),
1963 (unsigned int __user *)addr);
1964
1965 if (data_size != sizeof(prctl_map))
1966 return -EINVAL;
1967
1968 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1969 return -EFAULT;
1970
1971 error = validate_prctl_map_addr(&prctl_map);
1972 if (error)
1973 return error;
1974
1975 if (prctl_map.auxv_size) {
1976 /*
1977 * Someone is trying to cheat the auxv vector.
1978 */
1979 if (!prctl_map.auxv ||
1980 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1981 return -EINVAL;
1982
1983 memset(user_auxv, 0, sizeof(user_auxv));
1984 if (copy_from_user(user_auxv,
1985 (const void __user *)prctl_map.auxv,
1986 prctl_map.auxv_size))
1987 return -EFAULT;
1988
1989 /* Last entry must be AT_NULL as specification requires */
1990 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1991 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1992 }
1993
1994 if (prctl_map.exe_fd != (u32)-1) {
1995 /*
1996 * Make sure the caller has the rights to
1997 * change /proc/pid/exe link: only local sys admin should
1998 * be allowed to.
1999 */
2000 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2001 return -EINVAL;
2002
2003 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2004 if (error)
2005 return error;
2006 }
2007
2008 /*
2009 * arg_lock protects concurent updates but we still need mmap_sem for
2010 * read to exclude races with sys_brk.
2011 */
2012 down_read(&mm->mmap_sem);
2013
2014 /*
2015 * We don't validate if these members are pointing to
2016 * real present VMAs because application may have correspond
2017 * VMAs already unmapped and kernel uses these members for statistics
2018 * output in procfs mostly, except
2019 *
2020 * - @start_brk/@brk which are used in do_brk but kernel lookups
2021 * for VMAs when updating these memvers so anything wrong written
2022 * here cause kernel to swear at userspace program but won't lead
2023 * to any problem in kernel itself
2024 */
2025
2026 spin_lock(&mm->arg_lock);
2027 mm->start_code = prctl_map.start_code;
2028 mm->end_code = prctl_map.end_code;
2029 mm->start_data = prctl_map.start_data;
2030 mm->end_data = prctl_map.end_data;
2031 mm->start_brk = prctl_map.start_brk;
2032 mm->brk = prctl_map.brk;
2033 mm->start_stack = prctl_map.start_stack;
2034 mm->arg_start = prctl_map.arg_start;
2035 mm->arg_end = prctl_map.arg_end;
2036 mm->env_start = prctl_map.env_start;
2037 mm->env_end = prctl_map.env_end;
2038 spin_unlock(&mm->arg_lock);
2039
2040 /*
2041 * Note this update of @saved_auxv is lockless thus
2042 * if someone reads this member in procfs while we're
2043 * updating -- it may get partly updated results. It's
2044 * known and acceptable trade off: we leave it as is to
2045 * not introduce additional locks here making the kernel
2046 * more complex.
2047 */
2048 if (prctl_map.auxv_size)
2049 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2050
2051 up_read(&mm->mmap_sem);
2052 return 0;
2053 }
2054 #endif /* CONFIG_CHECKPOINT_RESTORE */
2055
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2056 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2057 unsigned long len)
2058 {
2059 /*
2060 * This doesn't move the auxiliary vector itself since it's pinned to
2061 * mm_struct, but it permits filling the vector with new values. It's
2062 * up to the caller to provide sane values here, otherwise userspace
2063 * tools which use this vector might be unhappy.
2064 */
2065 unsigned long user_auxv[AT_VECTOR_SIZE];
2066
2067 if (len > sizeof(user_auxv))
2068 return -EINVAL;
2069
2070 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2071 return -EFAULT;
2072
2073 /* Make sure the last entry is always AT_NULL */
2074 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2075 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2076
2077 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2078
2079 task_lock(current);
2080 memcpy(mm->saved_auxv, user_auxv, len);
2081 task_unlock(current);
2082
2083 return 0;
2084 }
2085
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2086 static int prctl_set_mm(int opt, unsigned long addr,
2087 unsigned long arg4, unsigned long arg5)
2088 {
2089 struct mm_struct *mm = current->mm;
2090 struct prctl_mm_map prctl_map = {
2091 .auxv = NULL,
2092 .auxv_size = 0,
2093 .exe_fd = -1,
2094 };
2095 struct vm_area_struct *vma;
2096 int error;
2097
2098 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2099 opt != PR_SET_MM_MAP &&
2100 opt != PR_SET_MM_MAP_SIZE)))
2101 return -EINVAL;
2102
2103 #ifdef CONFIG_CHECKPOINT_RESTORE
2104 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2105 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2106 #endif
2107
2108 if (!capable(CAP_SYS_RESOURCE))
2109 return -EPERM;
2110
2111 if (opt == PR_SET_MM_EXE_FILE)
2112 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2113
2114 if (opt == PR_SET_MM_AUXV)
2115 return prctl_set_auxv(mm, addr, arg4);
2116
2117 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2118 return -EINVAL;
2119
2120 error = -EINVAL;
2121
2122 /*
2123 * arg_lock protects concurent updates of arg boundaries, we need
2124 * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr
2125 * validation.
2126 */
2127 down_read(&mm->mmap_sem);
2128 vma = find_vma(mm, addr);
2129
2130 spin_lock(&mm->arg_lock);
2131 prctl_map.start_code = mm->start_code;
2132 prctl_map.end_code = mm->end_code;
2133 prctl_map.start_data = mm->start_data;
2134 prctl_map.end_data = mm->end_data;
2135 prctl_map.start_brk = mm->start_brk;
2136 prctl_map.brk = mm->brk;
2137 prctl_map.start_stack = mm->start_stack;
2138 prctl_map.arg_start = mm->arg_start;
2139 prctl_map.arg_end = mm->arg_end;
2140 prctl_map.env_start = mm->env_start;
2141 prctl_map.env_end = mm->env_end;
2142
2143 switch (opt) {
2144 case PR_SET_MM_START_CODE:
2145 prctl_map.start_code = addr;
2146 break;
2147 case PR_SET_MM_END_CODE:
2148 prctl_map.end_code = addr;
2149 break;
2150 case PR_SET_MM_START_DATA:
2151 prctl_map.start_data = addr;
2152 break;
2153 case PR_SET_MM_END_DATA:
2154 prctl_map.end_data = addr;
2155 break;
2156 case PR_SET_MM_START_STACK:
2157 prctl_map.start_stack = addr;
2158 break;
2159 case PR_SET_MM_START_BRK:
2160 prctl_map.start_brk = addr;
2161 break;
2162 case PR_SET_MM_BRK:
2163 prctl_map.brk = addr;
2164 break;
2165 case PR_SET_MM_ARG_START:
2166 prctl_map.arg_start = addr;
2167 break;
2168 case PR_SET_MM_ARG_END:
2169 prctl_map.arg_end = addr;
2170 break;
2171 case PR_SET_MM_ENV_START:
2172 prctl_map.env_start = addr;
2173 break;
2174 case PR_SET_MM_ENV_END:
2175 prctl_map.env_end = addr;
2176 break;
2177 default:
2178 goto out;
2179 }
2180
2181 error = validate_prctl_map_addr(&prctl_map);
2182 if (error)
2183 goto out;
2184
2185 switch (opt) {
2186 /*
2187 * If command line arguments and environment
2188 * are placed somewhere else on stack, we can
2189 * set them up here, ARG_START/END to setup
2190 * command line argumets and ENV_START/END
2191 * for environment.
2192 */
2193 case PR_SET_MM_START_STACK:
2194 case PR_SET_MM_ARG_START:
2195 case PR_SET_MM_ARG_END:
2196 case PR_SET_MM_ENV_START:
2197 case PR_SET_MM_ENV_END:
2198 if (!vma) {
2199 error = -EFAULT;
2200 goto out;
2201 }
2202 }
2203
2204 mm->start_code = prctl_map.start_code;
2205 mm->end_code = prctl_map.end_code;
2206 mm->start_data = prctl_map.start_data;
2207 mm->end_data = prctl_map.end_data;
2208 mm->start_brk = prctl_map.start_brk;
2209 mm->brk = prctl_map.brk;
2210 mm->start_stack = prctl_map.start_stack;
2211 mm->arg_start = prctl_map.arg_start;
2212 mm->arg_end = prctl_map.arg_end;
2213 mm->env_start = prctl_map.env_start;
2214 mm->env_end = prctl_map.env_end;
2215
2216 error = 0;
2217 out:
2218 spin_unlock(&mm->arg_lock);
2219 up_read(&mm->mmap_sem);
2220 return error;
2221 }
2222
2223 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user ** tid_addr)2224 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2225 {
2226 return put_user(me->clear_child_tid, tid_addr);
2227 }
2228 #else
prctl_get_tid_address(struct task_struct * me,int __user ** tid_addr)2229 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2230 {
2231 return -EINVAL;
2232 }
2233 #endif
2234
propagate_has_child_subreaper(struct task_struct * p,void * data)2235 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2236 {
2237 /*
2238 * If task has has_child_subreaper - all its decendants
2239 * already have these flag too and new decendants will
2240 * inherit it on fork, skip them.
2241 *
2242 * If we've found child_reaper - skip descendants in
2243 * it's subtree as they will never get out pidns.
2244 */
2245 if (p->signal->has_child_subreaper ||
2246 is_child_reaper(task_pid(p)))
2247 return 0;
2248
2249 p->signal->has_child_subreaper = 1;
2250 return 1;
2251 }
2252
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2253 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2254 {
2255 return -EINVAL;
2256 }
2257
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2258 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2259 unsigned long ctrl)
2260 {
2261 return -EINVAL;
2262 }
2263
2264 #ifdef CONFIG_MMU
prctl_update_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,const char __user * name_addr)2265 static int prctl_update_vma_anon_name(struct vm_area_struct *vma,
2266 struct vm_area_struct **prev,
2267 unsigned long start, unsigned long end,
2268 const char __user *name_addr)
2269 {
2270 struct mm_struct *mm = vma->vm_mm;
2271 int error = 0;
2272 pgoff_t pgoff;
2273
2274 if (name_addr == vma_get_anon_name(vma)) {
2275 *prev = vma;
2276 goto out;
2277 }
2278
2279 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2280 *prev = vma_merge(mm, *prev, start, end, vma->vm_flags, vma->anon_vma,
2281 vma->vm_file, pgoff, vma_policy(vma),
2282 vma->vm_userfaultfd_ctx, name_addr);
2283 if (*prev) {
2284 vma = *prev;
2285 goto success;
2286 }
2287
2288 *prev = vma;
2289
2290 if (start != vma->vm_start) {
2291 error = split_vma(mm, vma, start, 1);
2292 if (error)
2293 goto out;
2294 }
2295
2296 if (end != vma->vm_end) {
2297 error = split_vma(mm, vma, end, 0);
2298 if (error)
2299 goto out;
2300 }
2301
2302 success:
2303 if (!vma->vm_file)
2304 vma->anon_name = name_addr;
2305
2306 out:
2307 if (error == -ENOMEM)
2308 error = -EAGAIN;
2309 return error;
2310 }
2311
prctl_set_vma_anon_name(unsigned long start,unsigned long end,unsigned long arg)2312 static int prctl_set_vma_anon_name(unsigned long start, unsigned long end,
2313 unsigned long arg)
2314 {
2315 unsigned long tmp;
2316 struct vm_area_struct *vma, *prev;
2317 int unmapped_error = 0;
2318 int error = -EINVAL;
2319
2320 /*
2321 * If the interval [start,end) covers some unmapped address
2322 * ranges, just ignore them, but return -ENOMEM at the end.
2323 * - this matches the handling in madvise.
2324 */
2325 vma = find_vma_prev(current->mm, start, &prev);
2326 if (vma && start > vma->vm_start)
2327 prev = vma;
2328
2329 for (;;) {
2330 /* Still start < end. */
2331 error = -ENOMEM;
2332 if (!vma)
2333 return error;
2334
2335 /* Here start < (end|vma->vm_end). */
2336 if (start < vma->vm_start) {
2337 unmapped_error = -ENOMEM;
2338 start = vma->vm_start;
2339 if (start >= end)
2340 return error;
2341 }
2342
2343 /* Here vma->vm_start <= start < (end|vma->vm_end) */
2344 tmp = vma->vm_end;
2345 if (end < tmp)
2346 tmp = end;
2347
2348 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
2349 error = prctl_update_vma_anon_name(vma, &prev, start, tmp,
2350 (const char __user *)arg);
2351 if (error)
2352 return error;
2353 start = tmp;
2354 if (prev && start < prev->vm_end)
2355 start = prev->vm_end;
2356 error = unmapped_error;
2357 if (start >= end)
2358 return error;
2359 if (prev)
2360 vma = prev->vm_next;
2361 else /* madvise_remove dropped mmap_sem */
2362 vma = find_vma(current->mm, start);
2363 }
2364 }
2365
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long len_in,unsigned long arg)2366 static int prctl_set_vma(unsigned long opt, unsigned long start,
2367 unsigned long len_in, unsigned long arg)
2368 {
2369 struct mm_struct *mm = current->mm;
2370 int error;
2371 unsigned long len;
2372 unsigned long end;
2373
2374 if (start & ~PAGE_MASK)
2375 return -EINVAL;
2376 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
2377
2378 /* Check to see whether len was rounded up from small -ve to zero */
2379 if (len_in && !len)
2380 return -EINVAL;
2381
2382 end = start + len;
2383 if (end < start)
2384 return -EINVAL;
2385
2386 if (end == start)
2387 return 0;
2388
2389 down_write(&mm->mmap_sem);
2390
2391 switch (opt) {
2392 case PR_SET_VMA_ANON_NAME:
2393 error = prctl_set_vma_anon_name(start, end, arg);
2394 break;
2395 default:
2396 error = -EINVAL;
2397 }
2398
2399 up_write(&mm->mmap_sem);
2400
2401 return error;
2402 }
2403 #else /* CONFIG_MMU */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long len_in,unsigned long arg)2404 static int prctl_set_vma(unsigned long opt, unsigned long start,
2405 unsigned long len_in, unsigned long arg)
2406 {
2407 return -EINVAL;
2408 }
2409 #endif
2410
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2411 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2412 unsigned long, arg4, unsigned long, arg5)
2413 {
2414 struct task_struct *me = current;
2415 unsigned char comm[sizeof(me->comm)];
2416 long error;
2417
2418 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2419 if (error != -ENOSYS)
2420 return error;
2421
2422 error = 0;
2423 switch (option) {
2424 case PR_SET_PDEATHSIG:
2425 if (!valid_signal(arg2)) {
2426 error = -EINVAL;
2427 break;
2428 }
2429 me->pdeath_signal = arg2;
2430 break;
2431 case PR_GET_PDEATHSIG:
2432 error = put_user(me->pdeath_signal, (int __user *)arg2);
2433 break;
2434 case PR_GET_DUMPABLE:
2435 error = get_dumpable(me->mm);
2436 break;
2437 case PR_SET_DUMPABLE:
2438 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2439 error = -EINVAL;
2440 break;
2441 }
2442 set_dumpable(me->mm, arg2);
2443 break;
2444
2445 case PR_SET_UNALIGN:
2446 error = SET_UNALIGN_CTL(me, arg2);
2447 break;
2448 case PR_GET_UNALIGN:
2449 error = GET_UNALIGN_CTL(me, arg2);
2450 break;
2451 case PR_SET_FPEMU:
2452 error = SET_FPEMU_CTL(me, arg2);
2453 break;
2454 case PR_GET_FPEMU:
2455 error = GET_FPEMU_CTL(me, arg2);
2456 break;
2457 case PR_SET_FPEXC:
2458 error = SET_FPEXC_CTL(me, arg2);
2459 break;
2460 case PR_GET_FPEXC:
2461 error = GET_FPEXC_CTL(me, arg2);
2462 break;
2463 case PR_GET_TIMING:
2464 error = PR_TIMING_STATISTICAL;
2465 break;
2466 case PR_SET_TIMING:
2467 if (arg2 != PR_TIMING_STATISTICAL)
2468 error = -EINVAL;
2469 break;
2470 case PR_SET_NAME:
2471 comm[sizeof(me->comm) - 1] = 0;
2472 if (strncpy_from_user(comm, (char __user *)arg2,
2473 sizeof(me->comm) - 1) < 0)
2474 return -EFAULT;
2475 set_task_comm(me, comm);
2476 proc_comm_connector(me);
2477 break;
2478 case PR_GET_NAME:
2479 get_task_comm(comm, me);
2480 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2481 return -EFAULT;
2482 break;
2483 case PR_GET_ENDIAN:
2484 error = GET_ENDIAN(me, arg2);
2485 break;
2486 case PR_SET_ENDIAN:
2487 error = SET_ENDIAN(me, arg2);
2488 break;
2489 case PR_GET_SECCOMP:
2490 error = prctl_get_seccomp();
2491 break;
2492 case PR_SET_SECCOMP:
2493 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2494 break;
2495 case PR_GET_TSC:
2496 error = GET_TSC_CTL(arg2);
2497 break;
2498 case PR_SET_TSC:
2499 error = SET_TSC_CTL(arg2);
2500 break;
2501 case PR_TASK_PERF_EVENTS_DISABLE:
2502 error = perf_event_task_disable();
2503 break;
2504 case PR_TASK_PERF_EVENTS_ENABLE:
2505 error = perf_event_task_enable();
2506 break;
2507 case PR_GET_TIMERSLACK:
2508 if (current->timer_slack_ns > ULONG_MAX)
2509 error = ULONG_MAX;
2510 else
2511 error = current->timer_slack_ns;
2512 break;
2513 case PR_SET_TIMERSLACK:
2514 if (arg2 <= 0)
2515 current->timer_slack_ns =
2516 current->default_timer_slack_ns;
2517 else
2518 current->timer_slack_ns = arg2;
2519 break;
2520 case PR_MCE_KILL:
2521 if (arg4 | arg5)
2522 return -EINVAL;
2523 switch (arg2) {
2524 case PR_MCE_KILL_CLEAR:
2525 if (arg3 != 0)
2526 return -EINVAL;
2527 current->flags &= ~PF_MCE_PROCESS;
2528 break;
2529 case PR_MCE_KILL_SET:
2530 current->flags |= PF_MCE_PROCESS;
2531 if (arg3 == PR_MCE_KILL_EARLY)
2532 current->flags |= PF_MCE_EARLY;
2533 else if (arg3 == PR_MCE_KILL_LATE)
2534 current->flags &= ~PF_MCE_EARLY;
2535 else if (arg3 == PR_MCE_KILL_DEFAULT)
2536 current->flags &=
2537 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2538 else
2539 return -EINVAL;
2540 break;
2541 default:
2542 return -EINVAL;
2543 }
2544 break;
2545 case PR_MCE_KILL_GET:
2546 if (arg2 | arg3 | arg4 | arg5)
2547 return -EINVAL;
2548 if (current->flags & PF_MCE_PROCESS)
2549 error = (current->flags & PF_MCE_EARLY) ?
2550 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2551 else
2552 error = PR_MCE_KILL_DEFAULT;
2553 break;
2554 case PR_SET_MM:
2555 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2556 break;
2557 case PR_GET_TID_ADDRESS:
2558 error = prctl_get_tid_address(me, (int __user **)arg2);
2559 break;
2560 case PR_SET_CHILD_SUBREAPER:
2561 me->signal->is_child_subreaper = !!arg2;
2562 if (!arg2)
2563 break;
2564
2565 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2566 break;
2567 case PR_GET_CHILD_SUBREAPER:
2568 error = put_user(me->signal->is_child_subreaper,
2569 (int __user *)arg2);
2570 break;
2571 case PR_SET_NO_NEW_PRIVS:
2572 if (arg2 != 1 || arg3 || arg4 || arg5)
2573 return -EINVAL;
2574
2575 task_set_no_new_privs(current);
2576 break;
2577 case PR_GET_NO_NEW_PRIVS:
2578 if (arg2 || arg3 || arg4 || arg5)
2579 return -EINVAL;
2580 return task_no_new_privs(current) ? 1 : 0;
2581 case PR_GET_THP_DISABLE:
2582 if (arg2 || arg3 || arg4 || arg5)
2583 return -EINVAL;
2584 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2585 break;
2586 case PR_SET_THP_DISABLE:
2587 if (arg3 || arg4 || arg5)
2588 return -EINVAL;
2589 if (down_write_killable(&me->mm->mmap_sem))
2590 return -EINTR;
2591 if (arg2)
2592 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2593 else
2594 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2595 up_write(&me->mm->mmap_sem);
2596 break;
2597 case PR_MPX_ENABLE_MANAGEMENT:
2598 case PR_MPX_DISABLE_MANAGEMENT:
2599 /* No longer implemented: */
2600 return -EINVAL;
2601 case PR_SET_FP_MODE:
2602 error = SET_FP_MODE(me, arg2);
2603 break;
2604 case PR_GET_FP_MODE:
2605 error = GET_FP_MODE(me);
2606 break;
2607 case PR_SVE_SET_VL:
2608 error = SVE_SET_VL(arg2);
2609 break;
2610 case PR_SVE_GET_VL:
2611 error = SVE_GET_VL();
2612 break;
2613 case PR_GET_SPECULATION_CTRL:
2614 if (arg3 || arg4 || arg5)
2615 return -EINVAL;
2616 error = arch_prctl_spec_ctrl_get(me, arg2);
2617 break;
2618 case PR_SET_SPECULATION_CTRL:
2619 if (arg4 || arg5)
2620 return -EINVAL;
2621 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2622 break;
2623 case PR_SET_VMA:
2624 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2625 break;
2626 case PR_PAC_RESET_KEYS:
2627 if (arg3 || arg4 || arg5)
2628 return -EINVAL;
2629 error = PAC_RESET_KEYS(me, arg2);
2630 break;
2631 case PR_SET_TAGGED_ADDR_CTRL:
2632 if (arg3 || arg4 || arg5)
2633 return -EINVAL;
2634 error = SET_TAGGED_ADDR_CTRL(arg2);
2635 break;
2636 case PR_GET_TAGGED_ADDR_CTRL:
2637 if (arg2 || arg3 || arg4 || arg5)
2638 return -EINVAL;
2639 error = GET_TAGGED_ADDR_CTRL();
2640 break;
2641 default:
2642 error = -EINVAL;
2643 break;
2644 }
2645 return error;
2646 }
2647
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2648 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2649 struct getcpu_cache __user *, unused)
2650 {
2651 int err = 0;
2652 int cpu = raw_smp_processor_id();
2653
2654 if (cpup)
2655 err |= put_user(cpu, cpup);
2656 if (nodep)
2657 err |= put_user(cpu_to_node(cpu), nodep);
2658 return err ? -EFAULT : 0;
2659 }
2660
2661 /**
2662 * do_sysinfo - fill in sysinfo struct
2663 * @info: pointer to buffer to fill
2664 */
do_sysinfo(struct sysinfo * info)2665 static int do_sysinfo(struct sysinfo *info)
2666 {
2667 unsigned long mem_total, sav_total;
2668 unsigned int mem_unit, bitcount;
2669 struct timespec64 tp;
2670
2671 memset(info, 0, sizeof(struct sysinfo));
2672
2673 ktime_get_boottime_ts64(&tp);
2674 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2675
2676 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2677
2678 info->procs = nr_threads;
2679
2680 si_meminfo(info);
2681 si_swapinfo(info);
2682
2683 /*
2684 * If the sum of all the available memory (i.e. ram + swap)
2685 * is less than can be stored in a 32 bit unsigned long then
2686 * we can be binary compatible with 2.2.x kernels. If not,
2687 * well, in that case 2.2.x was broken anyways...
2688 *
2689 * -Erik Andersen <andersee@debian.org>
2690 */
2691
2692 mem_total = info->totalram + info->totalswap;
2693 if (mem_total < info->totalram || mem_total < info->totalswap)
2694 goto out;
2695 bitcount = 0;
2696 mem_unit = info->mem_unit;
2697 while (mem_unit > 1) {
2698 bitcount++;
2699 mem_unit >>= 1;
2700 sav_total = mem_total;
2701 mem_total <<= 1;
2702 if (mem_total < sav_total)
2703 goto out;
2704 }
2705
2706 /*
2707 * If mem_total did not overflow, multiply all memory values by
2708 * info->mem_unit and set it to 1. This leaves things compatible
2709 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2710 * kernels...
2711 */
2712
2713 info->mem_unit = 1;
2714 info->totalram <<= bitcount;
2715 info->freeram <<= bitcount;
2716 info->sharedram <<= bitcount;
2717 info->bufferram <<= bitcount;
2718 info->totalswap <<= bitcount;
2719 info->freeswap <<= bitcount;
2720 info->totalhigh <<= bitcount;
2721 info->freehigh <<= bitcount;
2722
2723 out:
2724 return 0;
2725 }
2726
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2727 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2728 {
2729 struct sysinfo val;
2730
2731 do_sysinfo(&val);
2732
2733 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2734 return -EFAULT;
2735
2736 return 0;
2737 }
2738
2739 #ifdef CONFIG_COMPAT
2740 struct compat_sysinfo {
2741 s32 uptime;
2742 u32 loads[3];
2743 u32 totalram;
2744 u32 freeram;
2745 u32 sharedram;
2746 u32 bufferram;
2747 u32 totalswap;
2748 u32 freeswap;
2749 u16 procs;
2750 u16 pad;
2751 u32 totalhigh;
2752 u32 freehigh;
2753 u32 mem_unit;
2754 char _f[20-2*sizeof(u32)-sizeof(int)];
2755 };
2756
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2757 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2758 {
2759 struct sysinfo s;
2760
2761 do_sysinfo(&s);
2762
2763 /* Check to see if any memory value is too large for 32-bit and scale
2764 * down if needed
2765 */
2766 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2767 int bitcount = 0;
2768
2769 while (s.mem_unit < PAGE_SIZE) {
2770 s.mem_unit <<= 1;
2771 bitcount++;
2772 }
2773
2774 s.totalram >>= bitcount;
2775 s.freeram >>= bitcount;
2776 s.sharedram >>= bitcount;
2777 s.bufferram >>= bitcount;
2778 s.totalswap >>= bitcount;
2779 s.freeswap >>= bitcount;
2780 s.totalhigh >>= bitcount;
2781 s.freehigh >>= bitcount;
2782 }
2783
2784 if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
2785 __put_user(s.uptime, &info->uptime) ||
2786 __put_user(s.loads[0], &info->loads[0]) ||
2787 __put_user(s.loads[1], &info->loads[1]) ||
2788 __put_user(s.loads[2], &info->loads[2]) ||
2789 __put_user(s.totalram, &info->totalram) ||
2790 __put_user(s.freeram, &info->freeram) ||
2791 __put_user(s.sharedram, &info->sharedram) ||
2792 __put_user(s.bufferram, &info->bufferram) ||
2793 __put_user(s.totalswap, &info->totalswap) ||
2794 __put_user(s.freeswap, &info->freeswap) ||
2795 __put_user(s.procs, &info->procs) ||
2796 __put_user(s.totalhigh, &info->totalhigh) ||
2797 __put_user(s.freehigh, &info->freehigh) ||
2798 __put_user(s.mem_unit, &info->mem_unit))
2799 return -EFAULT;
2800
2801 return 0;
2802 }
2803 #endif /* CONFIG_COMPAT */
2804