• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Handle caching attributes in page tables (PAT)
4  *
5  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6  *          Suresh B Siddha <suresh.b.siddha@intel.com>
7  *
8  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9  */
10 
11 #include <linux/seq_file.h>
12 #include <linux/memblock.h>
13 #include <linux/debugfs.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/pfn_t.h>
17 #include <linux/slab.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/rbtree.h>
21 
22 #include <asm/cacheflush.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/x86_init.h>
26 #include <asm/pgtable.h>
27 #include <asm/fcntl.h>
28 #include <asm/e820/api.h>
29 #include <asm/mtrr.h>
30 #include <asm/page.h>
31 #include <asm/msr.h>
32 #include <asm/pat.h>
33 #include <asm/io.h>
34 
35 #include "pat_internal.h"
36 #include "mm_internal.h"
37 
38 #undef pr_fmt
39 #define pr_fmt(fmt) "" fmt
40 
41 static bool __read_mostly boot_cpu_done;
42 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
43 static bool __read_mostly pat_initialized;
44 static bool __read_mostly init_cm_done;
45 
pat_disable(const char * reason)46 void pat_disable(const char *reason)
47 {
48 	if (pat_disabled)
49 		return;
50 
51 	if (boot_cpu_done) {
52 		WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
53 		return;
54 	}
55 
56 	pat_disabled = true;
57 	pr_info("x86/PAT: %s\n", reason);
58 }
59 
nopat(char * str)60 static int __init nopat(char *str)
61 {
62 	pat_disable("PAT support disabled.");
63 	return 0;
64 }
65 early_param("nopat", nopat);
66 
pat_enabled(void)67 bool pat_enabled(void)
68 {
69 	return pat_initialized;
70 }
71 EXPORT_SYMBOL_GPL(pat_enabled);
72 
73 int pat_debug_enable;
74 
pat_debug_setup(char * str)75 static int __init pat_debug_setup(char *str)
76 {
77 	pat_debug_enable = 1;
78 	return 0;
79 }
80 __setup("debugpat", pat_debug_setup);
81 
82 #ifdef CONFIG_X86_PAT
83 /*
84  * X86 PAT uses page flags arch_1 and uncached together to keep track of
85  * memory type of pages that have backing page struct.
86  *
87  * X86 PAT supports 4 different memory types:
88  *  - _PAGE_CACHE_MODE_WB
89  *  - _PAGE_CACHE_MODE_WC
90  *  - _PAGE_CACHE_MODE_UC_MINUS
91  *  - _PAGE_CACHE_MODE_WT
92  *
93  * _PAGE_CACHE_MODE_WB is the default type.
94  */
95 
96 #define _PGMT_WB		0
97 #define _PGMT_WC		(1UL << PG_arch_1)
98 #define _PGMT_UC_MINUS		(1UL << PG_uncached)
99 #define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
100 #define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
101 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
102 
get_page_memtype(struct page * pg)103 static inline enum page_cache_mode get_page_memtype(struct page *pg)
104 {
105 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
106 
107 	if (pg_flags == _PGMT_WB)
108 		return _PAGE_CACHE_MODE_WB;
109 	else if (pg_flags == _PGMT_WC)
110 		return _PAGE_CACHE_MODE_WC;
111 	else if (pg_flags == _PGMT_UC_MINUS)
112 		return _PAGE_CACHE_MODE_UC_MINUS;
113 	else
114 		return _PAGE_CACHE_MODE_WT;
115 }
116 
set_page_memtype(struct page * pg,enum page_cache_mode memtype)117 static inline void set_page_memtype(struct page *pg,
118 				    enum page_cache_mode memtype)
119 {
120 	unsigned long memtype_flags;
121 	unsigned long old_flags;
122 	unsigned long new_flags;
123 
124 	switch (memtype) {
125 	case _PAGE_CACHE_MODE_WC:
126 		memtype_flags = _PGMT_WC;
127 		break;
128 	case _PAGE_CACHE_MODE_UC_MINUS:
129 		memtype_flags = _PGMT_UC_MINUS;
130 		break;
131 	case _PAGE_CACHE_MODE_WT:
132 		memtype_flags = _PGMT_WT;
133 		break;
134 	case _PAGE_CACHE_MODE_WB:
135 	default:
136 		memtype_flags = _PGMT_WB;
137 		break;
138 	}
139 
140 	do {
141 		old_flags = pg->flags;
142 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
143 	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
144 }
145 #else
get_page_memtype(struct page * pg)146 static inline enum page_cache_mode get_page_memtype(struct page *pg)
147 {
148 	return -1;
149 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)150 static inline void set_page_memtype(struct page *pg,
151 				    enum page_cache_mode memtype)
152 {
153 }
154 #endif
155 
156 enum {
157 	PAT_UC = 0,		/* uncached */
158 	PAT_WC = 1,		/* Write combining */
159 	PAT_WT = 4,		/* Write Through */
160 	PAT_WP = 5,		/* Write Protected */
161 	PAT_WB = 6,		/* Write Back (default) */
162 	PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */
163 };
164 
165 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
166 
pat_get_cache_mode(unsigned pat_val,char * msg)167 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
168 {
169 	enum page_cache_mode cache;
170 	char *cache_mode;
171 
172 	switch (pat_val) {
173 	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
174 	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
175 	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
176 	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
177 	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
178 	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
179 	default:           cache = CM(WB);       cache_mode = "WB  "; break;
180 	}
181 
182 	memcpy(msg, cache_mode, 4);
183 
184 	return cache;
185 }
186 
187 #undef CM
188 
189 /*
190  * Update the cache mode to pgprot translation tables according to PAT
191  * configuration.
192  * Using lower indices is preferred, so we start with highest index.
193  */
__init_cache_modes(u64 pat)194 static void __init_cache_modes(u64 pat)
195 {
196 	enum page_cache_mode cache;
197 	char pat_msg[33];
198 	int i;
199 
200 	pat_msg[32] = 0;
201 	for (i = 7; i >= 0; i--) {
202 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
203 					   pat_msg + 4 * i);
204 		update_cache_mode_entry(i, cache);
205 	}
206 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
207 
208 	init_cm_done = true;
209 }
210 
211 #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
212 
pat_bsp_init(u64 pat)213 static void pat_bsp_init(u64 pat)
214 {
215 	u64 tmp_pat;
216 
217 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
218 		pat_disable("PAT not supported by CPU.");
219 		return;
220 	}
221 
222 	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
223 	if (!tmp_pat) {
224 		pat_disable("PAT MSR is 0, disabled.");
225 		return;
226 	}
227 
228 	wrmsrl(MSR_IA32_CR_PAT, pat);
229 	pat_initialized = true;
230 
231 	__init_cache_modes(pat);
232 }
233 
pat_ap_init(u64 pat)234 static void pat_ap_init(u64 pat)
235 {
236 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
237 		/*
238 		 * If this happens we are on a secondary CPU, but switched to
239 		 * PAT on the boot CPU. We have no way to undo PAT.
240 		 */
241 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
242 	}
243 
244 	wrmsrl(MSR_IA32_CR_PAT, pat);
245 }
246 
init_cache_modes(void)247 void init_cache_modes(void)
248 {
249 	u64 pat = 0;
250 
251 	if (init_cm_done)
252 		return;
253 
254 	if (boot_cpu_has(X86_FEATURE_PAT)) {
255 		/*
256 		 * CPU supports PAT. Set PAT table to be consistent with
257 		 * PAT MSR. This case supports "nopat" boot option, and
258 		 * virtual machine environments which support PAT without
259 		 * MTRRs. In specific, Xen has unique setup to PAT MSR.
260 		 *
261 		 * If PAT MSR returns 0, it is considered invalid and emulates
262 		 * as No PAT.
263 		 */
264 		rdmsrl(MSR_IA32_CR_PAT, pat);
265 	}
266 
267 	if (!pat) {
268 		/*
269 		 * No PAT. Emulate the PAT table that corresponds to the two
270 		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
271 		 * This setup is also the same as the BIOS default setup.
272 		 *
273 		 * PTE encoding:
274 		 *
275 		 *       PCD
276 		 *       |PWT  PAT
277 		 *       ||    slot
278 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
279 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
280 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
281 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
282 		 *
283 		 * NOTE: When WC or WP is used, it is redirected to UC- per
284 		 * the default setup in __cachemode2pte_tbl[].
285 		 */
286 		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
287 		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
288 	}
289 
290 	__init_cache_modes(pat);
291 }
292 
293 /**
294  * pat_init - Initialize PAT MSR and PAT table
295  *
296  * This function initializes PAT MSR and PAT table with an OS-defined value
297  * to enable additional cache attributes, WC, WT and WP.
298  *
299  * This function must be called on all CPUs using the specific sequence of
300  * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
301  * procedure for PAT.
302  */
pat_init(void)303 void pat_init(void)
304 {
305 	u64 pat;
306 	struct cpuinfo_x86 *c = &boot_cpu_data;
307 
308 	if (pat_disabled)
309 		return;
310 
311 	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
312 	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
313 	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
314 		/*
315 		 * PAT support with the lower four entries. Intel Pentium 2,
316 		 * 3, M, and 4 are affected by PAT errata, which makes the
317 		 * upper four entries unusable. To be on the safe side, we don't
318 		 * use those.
319 		 *
320 		 *  PTE encoding:
321 		 *      PAT
322 		 *      |PCD
323 		 *      ||PWT  PAT
324 		 *      |||    slot
325 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
326 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
327 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
328 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
329 		 * PAT bit unused
330 		 *
331 		 * NOTE: When WT or WP is used, it is redirected to UC- per
332 		 * the default setup in __cachemode2pte_tbl[].
333 		 */
334 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
335 		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
336 	} else {
337 		/*
338 		 * Full PAT support.  We put WT in slot 7 to improve
339 		 * robustness in the presence of errata that might cause
340 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
341 		 * access will hit slot 3, and slot 3 is UC, so at worst
342 		 * we lose performance without causing a correctness issue.
343 		 * Pentium 4 erratum N46 is an example for such an erratum,
344 		 * although we try not to use PAT at all on affected CPUs.
345 		 *
346 		 *  PTE encoding:
347 		 *      PAT
348 		 *      |PCD
349 		 *      ||PWT  PAT
350 		 *      |||    slot
351 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
352 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
353 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
354 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
355 		 *      100    4    WB : Reserved
356 		 *      101    5    WP : _PAGE_CACHE_MODE_WP
357 		 *      110    6    UC-: Reserved
358 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
359 		 *
360 		 * The reserved slots are unused, but mapped to their
361 		 * corresponding types in the presence of PAT errata.
362 		 */
363 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
364 		      PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
365 	}
366 
367 	if (!boot_cpu_done) {
368 		pat_bsp_init(pat);
369 		boot_cpu_done = true;
370 	} else {
371 		pat_ap_init(pat);
372 	}
373 }
374 
375 #undef PAT
376 
377 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
378 
379 /*
380  * Does intersection of PAT memory type and MTRR memory type and returns
381  * the resulting memory type as PAT understands it.
382  * (Type in pat and mtrr will not have same value)
383  * The intersection is based on "Effective Memory Type" tables in IA-32
384  * SDM vol 3a
385  */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)386 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
387 				     enum page_cache_mode req_type)
388 {
389 	/*
390 	 * Look for MTRR hint to get the effective type in case where PAT
391 	 * request is for WB.
392 	 */
393 	if (req_type == _PAGE_CACHE_MODE_WB) {
394 		u8 mtrr_type, uniform;
395 
396 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
397 		if (mtrr_type != MTRR_TYPE_WRBACK)
398 			return _PAGE_CACHE_MODE_UC_MINUS;
399 
400 		return _PAGE_CACHE_MODE_WB;
401 	}
402 
403 	return req_type;
404 }
405 
406 struct pagerange_state {
407 	unsigned long		cur_pfn;
408 	int			ram;
409 	int			not_ram;
410 };
411 
412 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)413 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
414 {
415 	struct pagerange_state *state = arg;
416 
417 	state->not_ram	|= initial_pfn > state->cur_pfn;
418 	state->ram	|= total_nr_pages > 0;
419 	state->cur_pfn	 = initial_pfn + total_nr_pages;
420 
421 	return state->ram && state->not_ram;
422 }
423 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)424 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
425 {
426 	int ret = 0;
427 	unsigned long start_pfn = start >> PAGE_SHIFT;
428 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
429 	struct pagerange_state state = {start_pfn, 0, 0};
430 
431 	/*
432 	 * For legacy reasons, physical address range in the legacy ISA
433 	 * region is tracked as non-RAM. This will allow users of
434 	 * /dev/mem to map portions of legacy ISA region, even when
435 	 * some of those portions are listed(or not even listed) with
436 	 * different e820 types(RAM/reserved/..)
437 	 */
438 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
439 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
440 
441 	if (start_pfn < end_pfn) {
442 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
443 				&state, pagerange_is_ram_callback);
444 	}
445 
446 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
447 }
448 
449 /*
450  * For RAM pages, we use page flags to mark the pages with appropriate type.
451  * The page flags are limited to four types, WB (default), WC, WT and UC-.
452  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
453  * a new memory type is only allowed for a page mapped with the default WB
454  * type.
455  *
456  * Here we do two passes:
457  * - Find the memtype of all the pages in the range, look for any conflicts.
458  * - In case of no conflicts, set the new memtype for pages in the range.
459  */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)460 static int reserve_ram_pages_type(u64 start, u64 end,
461 				  enum page_cache_mode req_type,
462 				  enum page_cache_mode *new_type)
463 {
464 	struct page *page;
465 	u64 pfn;
466 
467 	if (req_type == _PAGE_CACHE_MODE_WP) {
468 		if (new_type)
469 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
470 		return -EINVAL;
471 	}
472 
473 	if (req_type == _PAGE_CACHE_MODE_UC) {
474 		/* We do not support strong UC */
475 		WARN_ON_ONCE(1);
476 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
477 	}
478 
479 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
480 		enum page_cache_mode type;
481 
482 		page = pfn_to_page(pfn);
483 		type = get_page_memtype(page);
484 		if (type != _PAGE_CACHE_MODE_WB) {
485 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
486 				start, end - 1, type, req_type);
487 			if (new_type)
488 				*new_type = type;
489 
490 			return -EBUSY;
491 		}
492 	}
493 
494 	if (new_type)
495 		*new_type = req_type;
496 
497 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
498 		page = pfn_to_page(pfn);
499 		set_page_memtype(page, req_type);
500 	}
501 	return 0;
502 }
503 
free_ram_pages_type(u64 start,u64 end)504 static int free_ram_pages_type(u64 start, u64 end)
505 {
506 	struct page *page;
507 	u64 pfn;
508 
509 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
510 		page = pfn_to_page(pfn);
511 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
512 	}
513 	return 0;
514 }
515 
sanitize_phys(u64 address)516 static u64 sanitize_phys(u64 address)
517 {
518 	/*
519 	 * When changing the memtype for pages containing poison allow
520 	 * for a "decoy" virtual address (bit 63 clear) passed to
521 	 * set_memory_X(). __pa() on a "decoy" address results in a
522 	 * physical address with bit 63 set.
523 	 *
524 	 * Decoy addresses are not present for 32-bit builds, see
525 	 * set_mce_nospec().
526 	 */
527 	if (IS_ENABLED(CONFIG_X86_64))
528 		return address & __PHYSICAL_MASK;
529 	return address;
530 }
531 
532 /*
533  * req_type typically has one of the:
534  * - _PAGE_CACHE_MODE_WB
535  * - _PAGE_CACHE_MODE_WC
536  * - _PAGE_CACHE_MODE_UC_MINUS
537  * - _PAGE_CACHE_MODE_UC
538  * - _PAGE_CACHE_MODE_WT
539  *
540  * If new_type is NULL, function will return an error if it cannot reserve the
541  * region with req_type. If new_type is non-NULL, function will return
542  * available type in new_type in case of no error. In case of any error
543  * it will return a negative return value.
544  */
reserve_memtype(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)545 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
546 		    enum page_cache_mode *new_type)
547 {
548 	struct memtype *new;
549 	enum page_cache_mode actual_type;
550 	int is_range_ram;
551 	int err = 0;
552 
553 	start = sanitize_phys(start);
554 	end = sanitize_phys(end);
555 	if (start >= end) {
556 		WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
557 				start, end - 1, cattr_name(req_type));
558 		return -EINVAL;
559 	}
560 
561 	if (!pat_enabled()) {
562 		/* This is identical to page table setting without PAT */
563 		if (new_type)
564 			*new_type = req_type;
565 		return 0;
566 	}
567 
568 	/* Low ISA region is always mapped WB in page table. No need to track */
569 	if (x86_platform.is_untracked_pat_range(start, end)) {
570 		if (new_type)
571 			*new_type = _PAGE_CACHE_MODE_WB;
572 		return 0;
573 	}
574 
575 	/*
576 	 * Call mtrr_lookup to get the type hint. This is an
577 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
578 	 * tools and ACPI tools). Use WB request for WB memory and use
579 	 * UC_MINUS otherwise.
580 	 */
581 	actual_type = pat_x_mtrr_type(start, end, req_type);
582 
583 	if (new_type)
584 		*new_type = actual_type;
585 
586 	is_range_ram = pat_pagerange_is_ram(start, end);
587 	if (is_range_ram == 1) {
588 
589 		err = reserve_ram_pages_type(start, end, req_type, new_type);
590 
591 		return err;
592 	} else if (is_range_ram < 0) {
593 		return -EINVAL;
594 	}
595 
596 	new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
597 	if (!new)
598 		return -ENOMEM;
599 
600 	new->start	= start;
601 	new->end	= end;
602 	new->type	= actual_type;
603 
604 	spin_lock(&memtype_lock);
605 
606 	err = rbt_memtype_check_insert(new, new_type);
607 	if (err) {
608 		pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
609 			start, end - 1,
610 			cattr_name(new->type), cattr_name(req_type));
611 		kfree(new);
612 		spin_unlock(&memtype_lock);
613 
614 		return err;
615 	}
616 
617 	spin_unlock(&memtype_lock);
618 
619 	dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
620 		start, end - 1, cattr_name(new->type), cattr_name(req_type),
621 		new_type ? cattr_name(*new_type) : "-");
622 
623 	return err;
624 }
625 
free_memtype(u64 start,u64 end)626 int free_memtype(u64 start, u64 end)
627 {
628 	int err = -EINVAL;
629 	int is_range_ram;
630 	struct memtype *entry;
631 
632 	if (!pat_enabled())
633 		return 0;
634 
635 	start = sanitize_phys(start);
636 	end = sanitize_phys(end);
637 
638 	/* Low ISA region is always mapped WB. No need to track */
639 	if (x86_platform.is_untracked_pat_range(start, end))
640 		return 0;
641 
642 	is_range_ram = pat_pagerange_is_ram(start, end);
643 	if (is_range_ram == 1) {
644 
645 		err = free_ram_pages_type(start, end);
646 
647 		return err;
648 	} else if (is_range_ram < 0) {
649 		return -EINVAL;
650 	}
651 
652 	spin_lock(&memtype_lock);
653 	entry = rbt_memtype_erase(start, end);
654 	spin_unlock(&memtype_lock);
655 
656 	if (IS_ERR(entry)) {
657 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
658 			current->comm, current->pid, start, end - 1);
659 		return -EINVAL;
660 	}
661 
662 	kfree(entry);
663 
664 	dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
665 
666 	return 0;
667 }
668 
669 
670 /**
671  * lookup_memtype - Looksup the memory type for a physical address
672  * @paddr: physical address of which memory type needs to be looked up
673  *
674  * Only to be called when PAT is enabled
675  *
676  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
677  * or _PAGE_CACHE_MODE_WT.
678  */
lookup_memtype(u64 paddr)679 static enum page_cache_mode lookup_memtype(u64 paddr)
680 {
681 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
682 	struct memtype *entry;
683 
684 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
685 		return rettype;
686 
687 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
688 		struct page *page;
689 
690 		page = pfn_to_page(paddr >> PAGE_SHIFT);
691 		return get_page_memtype(page);
692 	}
693 
694 	spin_lock(&memtype_lock);
695 
696 	entry = rbt_memtype_lookup(paddr);
697 	if (entry != NULL)
698 		rettype = entry->type;
699 	else
700 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
701 
702 	spin_unlock(&memtype_lock);
703 	return rettype;
704 }
705 
706 /**
707  * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
708  * of @pfn cannot be overridden by UC MTRR memory type.
709  *
710  * Only to be called when PAT is enabled.
711  *
712  * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
713  * Returns false in other cases.
714  */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)715 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
716 {
717 	enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
718 
719 	return cm == _PAGE_CACHE_MODE_UC ||
720 	       cm == _PAGE_CACHE_MODE_UC_MINUS ||
721 	       cm == _PAGE_CACHE_MODE_WC;
722 }
723 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
724 
725 /**
726  * io_reserve_memtype - Request a memory type mapping for a region of memory
727  * @start: start (physical address) of the region
728  * @end: end (physical address) of the region
729  * @type: A pointer to memtype, with requested type. On success, requested
730  * or any other compatible type that was available for the region is returned
731  *
732  * On success, returns 0
733  * On failure, returns non-zero
734  */
io_reserve_memtype(resource_size_t start,resource_size_t end,enum page_cache_mode * type)735 int io_reserve_memtype(resource_size_t start, resource_size_t end,
736 			enum page_cache_mode *type)
737 {
738 	resource_size_t size = end - start;
739 	enum page_cache_mode req_type = *type;
740 	enum page_cache_mode new_type;
741 	int ret;
742 
743 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
744 
745 	ret = reserve_memtype(start, end, req_type, &new_type);
746 	if (ret)
747 		goto out_err;
748 
749 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
750 		goto out_free;
751 
752 	if (kernel_map_sync_memtype(start, size, new_type) < 0)
753 		goto out_free;
754 
755 	*type = new_type;
756 	return 0;
757 
758 out_free:
759 	free_memtype(start, end);
760 	ret = -EBUSY;
761 out_err:
762 	return ret;
763 }
764 
765 /**
766  * io_free_memtype - Release a memory type mapping for a region of memory
767  * @start: start (physical address) of the region
768  * @end: end (physical address) of the region
769  */
io_free_memtype(resource_size_t start,resource_size_t end)770 void io_free_memtype(resource_size_t start, resource_size_t end)
771 {
772 	free_memtype(start, end);
773 }
774 
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)775 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
776 {
777 	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
778 
779 	return io_reserve_memtype(start, start + size, &type);
780 }
781 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
782 
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)783 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
784 {
785 	io_free_memtype(start, start + size);
786 }
787 EXPORT_SYMBOL(arch_io_free_memtype_wc);
788 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)789 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
790 				unsigned long size, pgprot_t vma_prot)
791 {
792 	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
793 		vma_prot = pgprot_decrypted(vma_prot);
794 
795 	return vma_prot;
796 }
797 
798 #ifdef CONFIG_STRICT_DEVMEM
799 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)800 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
801 {
802 	return 1;
803 }
804 #else
805 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)806 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
807 {
808 	u64 from = ((u64)pfn) << PAGE_SHIFT;
809 	u64 to = from + size;
810 	u64 cursor = from;
811 
812 	if (!pat_enabled())
813 		return 1;
814 
815 	while (cursor < to) {
816 		if (!devmem_is_allowed(pfn))
817 			return 0;
818 		cursor += PAGE_SIZE;
819 		pfn++;
820 	}
821 	return 1;
822 }
823 #endif /* CONFIG_STRICT_DEVMEM */
824 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)825 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
826 				unsigned long size, pgprot_t *vma_prot)
827 {
828 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
829 
830 	if (!range_is_allowed(pfn, size))
831 		return 0;
832 
833 	if (file->f_flags & O_DSYNC)
834 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
835 
836 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
837 			     cachemode2protval(pcm));
838 	return 1;
839 }
840 
841 /*
842  * Change the memory type for the physial address range in kernel identity
843  * mapping space if that range is a part of identity map.
844  */
kernel_map_sync_memtype(u64 base,unsigned long size,enum page_cache_mode pcm)845 int kernel_map_sync_memtype(u64 base, unsigned long size,
846 			    enum page_cache_mode pcm)
847 {
848 	unsigned long id_sz;
849 
850 	if (base > __pa(high_memory-1))
851 		return 0;
852 
853 	/*
854 	 * some areas in the middle of the kernel identity range
855 	 * are not mapped, like the PCI space.
856 	 */
857 	if (!page_is_ram(base >> PAGE_SHIFT))
858 		return 0;
859 
860 	id_sz = (__pa(high_memory-1) <= base + size) ?
861 				__pa(high_memory) - base :
862 				size;
863 
864 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
865 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
866 			current->comm, current->pid,
867 			cattr_name(pcm),
868 			base, (unsigned long long)(base + size-1));
869 		return -EINVAL;
870 	}
871 	return 0;
872 }
873 
874 /*
875  * Internal interface to reserve a range of physical memory with prot.
876  * Reserved non RAM regions only and after successful reserve_memtype,
877  * this func also keeps identity mapping (if any) in sync with this new prot.
878  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)879 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
880 				int strict_prot)
881 {
882 	int is_ram = 0;
883 	int ret;
884 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
885 	enum page_cache_mode pcm = want_pcm;
886 
887 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
888 
889 	/*
890 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
891 	 * track of number of mappings of RAM pages. We can assert that
892 	 * the type requested matches the type of first page in the range.
893 	 */
894 	if (is_ram) {
895 		if (!pat_enabled())
896 			return 0;
897 
898 		pcm = lookup_memtype(paddr);
899 		if (want_pcm != pcm) {
900 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
901 				current->comm, current->pid,
902 				cattr_name(want_pcm),
903 				(unsigned long long)paddr,
904 				(unsigned long long)(paddr + size - 1),
905 				cattr_name(pcm));
906 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
907 					     (~_PAGE_CACHE_MASK)) |
908 					     cachemode2protval(pcm));
909 		}
910 		return 0;
911 	}
912 
913 	ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
914 	if (ret)
915 		return ret;
916 
917 	if (pcm != want_pcm) {
918 		if (strict_prot ||
919 		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
920 			free_memtype(paddr, paddr + size);
921 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
922 			       current->comm, current->pid,
923 			       cattr_name(want_pcm),
924 			       (unsigned long long)paddr,
925 			       (unsigned long long)(paddr + size - 1),
926 			       cattr_name(pcm));
927 			return -EINVAL;
928 		}
929 		/*
930 		 * We allow returning different type than the one requested in
931 		 * non strict case.
932 		 */
933 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
934 				      (~_PAGE_CACHE_MASK)) |
935 				     cachemode2protval(pcm));
936 	}
937 
938 	if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
939 		free_memtype(paddr, paddr + size);
940 		return -EINVAL;
941 	}
942 	return 0;
943 }
944 
945 /*
946  * Internal interface to free a range of physical memory.
947  * Frees non RAM regions only.
948  */
free_pfn_range(u64 paddr,unsigned long size)949 static void free_pfn_range(u64 paddr, unsigned long size)
950 {
951 	int is_ram;
952 
953 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
954 	if (is_ram == 0)
955 		free_memtype(paddr, paddr + size);
956 }
957 
958 /*
959  * track_pfn_copy is called when vma that is covering the pfnmap gets
960  * copied through copy_page_range().
961  *
962  * If the vma has a linear pfn mapping for the entire range, we get the prot
963  * from pte and reserve the entire vma range with single reserve_pfn_range call.
964  */
track_pfn_copy(struct vm_area_struct * vma)965 int track_pfn_copy(struct vm_area_struct *vma)
966 {
967 	resource_size_t paddr;
968 	unsigned long prot;
969 	unsigned long vma_size = vma->vm_end - vma->vm_start;
970 	pgprot_t pgprot;
971 
972 	if (vma->vm_flags & VM_PAT) {
973 		/*
974 		 * reserve the whole chunk covered by vma. We need the
975 		 * starting address and protection from pte.
976 		 */
977 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
978 			WARN_ON_ONCE(1);
979 			return -EINVAL;
980 		}
981 		pgprot = __pgprot(prot);
982 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
983 	}
984 
985 	return 0;
986 }
987 
988 /*
989  * prot is passed in as a parameter for the new mapping. If the vma has
990  * a linear pfn mapping for the entire range, or no vma is provided,
991  * reserve the entire pfn + size range with single reserve_pfn_range
992  * call.
993  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)994 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
995 		    unsigned long pfn, unsigned long addr, unsigned long size)
996 {
997 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
998 	enum page_cache_mode pcm;
999 
1000 	/* reserve the whole chunk starting from paddr */
1001 	if (!vma || (addr == vma->vm_start
1002 				&& size == (vma->vm_end - vma->vm_start))) {
1003 		int ret;
1004 
1005 		ret = reserve_pfn_range(paddr, size, prot, 0);
1006 		if (ret == 0 && vma)
1007 			vma->vm_flags |= VM_PAT;
1008 		return ret;
1009 	}
1010 
1011 	if (!pat_enabled())
1012 		return 0;
1013 
1014 	/*
1015 	 * For anything smaller than the vma size we set prot based on the
1016 	 * lookup.
1017 	 */
1018 	pcm = lookup_memtype(paddr);
1019 
1020 	/* Check memtype for the remaining pages */
1021 	while (size > PAGE_SIZE) {
1022 		size -= PAGE_SIZE;
1023 		paddr += PAGE_SIZE;
1024 		if (pcm != lookup_memtype(paddr))
1025 			return -EINVAL;
1026 	}
1027 
1028 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1029 			 cachemode2protval(pcm));
1030 
1031 	return 0;
1032 }
1033 
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1034 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1035 {
1036 	enum page_cache_mode pcm;
1037 
1038 	if (!pat_enabled())
1039 		return;
1040 
1041 	/* Set prot based on lookup */
1042 	pcm = lookup_memtype(pfn_t_to_phys(pfn));
1043 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1044 			 cachemode2protval(pcm));
1045 }
1046 
1047 /*
1048  * untrack_pfn is called while unmapping a pfnmap for a region.
1049  * untrack can be called for a specific region indicated by pfn and size or
1050  * can be for the entire vma (in which case pfn, size are zero).
1051  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1052 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1053 		 unsigned long size)
1054 {
1055 	resource_size_t paddr;
1056 	unsigned long prot;
1057 
1058 	if (vma && !(vma->vm_flags & VM_PAT))
1059 		return;
1060 
1061 	/* free the chunk starting from pfn or the whole chunk */
1062 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
1063 	if (!paddr && !size) {
1064 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1065 			WARN_ON_ONCE(1);
1066 			return;
1067 		}
1068 
1069 		size = vma->vm_end - vma->vm_start;
1070 	}
1071 	free_pfn_range(paddr, size);
1072 	if (vma)
1073 		vma->vm_flags &= ~VM_PAT;
1074 }
1075 
1076 /*
1077  * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1078  * with the old vma after its pfnmap page table has been removed.  The new
1079  * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1080  */
untrack_pfn_moved(struct vm_area_struct * vma)1081 void untrack_pfn_moved(struct vm_area_struct *vma)
1082 {
1083 	vma->vm_flags &= ~VM_PAT;
1084 }
1085 
pgprot_writecombine(pgprot_t prot)1086 pgprot_t pgprot_writecombine(pgprot_t prot)
1087 {
1088 	return __pgprot(pgprot_val(prot) |
1089 				cachemode2protval(_PAGE_CACHE_MODE_WC));
1090 }
1091 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1092 
pgprot_writethrough(pgprot_t prot)1093 pgprot_t pgprot_writethrough(pgprot_t prot)
1094 {
1095 	return __pgprot(pgprot_val(prot) |
1096 				cachemode2protval(_PAGE_CACHE_MODE_WT));
1097 }
1098 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1099 
1100 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1101 
memtype_get_idx(loff_t pos)1102 static struct memtype *memtype_get_idx(loff_t pos)
1103 {
1104 	struct memtype *print_entry;
1105 	int ret;
1106 
1107 	print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1108 	if (!print_entry)
1109 		return NULL;
1110 
1111 	spin_lock(&memtype_lock);
1112 	ret = rbt_memtype_copy_nth_element(print_entry, pos);
1113 	spin_unlock(&memtype_lock);
1114 
1115 	if (!ret) {
1116 		return print_entry;
1117 	} else {
1118 		kfree(print_entry);
1119 		return NULL;
1120 	}
1121 }
1122 
memtype_seq_start(struct seq_file * seq,loff_t * pos)1123 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1124 {
1125 	if (*pos == 0) {
1126 		++*pos;
1127 		seq_puts(seq, "PAT memtype list:\n");
1128 	}
1129 
1130 	return memtype_get_idx(*pos);
1131 }
1132 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1133 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1134 {
1135 	++*pos;
1136 	return memtype_get_idx(*pos);
1137 }
1138 
memtype_seq_stop(struct seq_file * seq,void * v)1139 static void memtype_seq_stop(struct seq_file *seq, void *v)
1140 {
1141 }
1142 
memtype_seq_show(struct seq_file * seq,void * v)1143 static int memtype_seq_show(struct seq_file *seq, void *v)
1144 {
1145 	struct memtype *print_entry = (struct memtype *)v;
1146 
1147 	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1148 			print_entry->start, print_entry->end);
1149 	kfree(print_entry);
1150 
1151 	return 0;
1152 }
1153 
1154 static const struct seq_operations memtype_seq_ops = {
1155 	.start = memtype_seq_start,
1156 	.next  = memtype_seq_next,
1157 	.stop  = memtype_seq_stop,
1158 	.show  = memtype_seq_show,
1159 };
1160 
memtype_seq_open(struct inode * inode,struct file * file)1161 static int memtype_seq_open(struct inode *inode, struct file *file)
1162 {
1163 	return seq_open(file, &memtype_seq_ops);
1164 }
1165 
1166 static const struct file_operations memtype_fops = {
1167 	.open    = memtype_seq_open,
1168 	.read    = seq_read,
1169 	.llseek  = seq_lseek,
1170 	.release = seq_release,
1171 };
1172 
pat_memtype_list_init(void)1173 static int __init pat_memtype_list_init(void)
1174 {
1175 	if (pat_enabled()) {
1176 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1177 				    arch_debugfs_dir, NULL, &memtype_fops);
1178 	}
1179 	return 0;
1180 }
1181 
1182 late_initcall(pat_memtype_list_init);
1183 
1184 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1185