1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /******************************************************************************
3 *
4 * (C)Copyright 1998,1999 SysKonnect,
5 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6 *
7 * See the file "skfddi.c" for further information.
8 *
9 * The information in this file is provided "AS IS" without warranty.
10 *
11 ******************************************************************************/
12
13 /*
14 PCM
15 Physical Connection Management
16 */
17
18 /*
19 * Hardware independent state machine implemantation
20 * The following external SMT functions are referenced :
21 *
22 * queue_event()
23 * smt_timer_start()
24 * smt_timer_stop()
25 *
26 * The following external HW dependent functions are referenced :
27 * sm_pm_control()
28 * sm_ph_linestate()
29 *
30 * The following HW dependent events are required :
31 * PC_QLS
32 * PC_ILS
33 * PC_HLS
34 * PC_MLS
35 * PC_NSE
36 * PC_LEM
37 *
38 */
39
40
41 #include "h/types.h"
42 #include "h/fddi.h"
43 #include "h/smc.h"
44 #include "h/supern_2.h"
45 #define KERNEL
46 #include "h/smtstate.h"
47
48 #ifndef lint
49 static const char ID_sccs[] = "@(#)pcmplc.c 2.55 99/08/05 (C) SK " ;
50 #endif
51
52 #ifdef FDDI_MIB
53 extern int snmp_fddi_trap(
54 #ifdef ANSIC
55 struct s_smc * smc, int type, int index
56 #endif
57 );
58 #endif
59 #ifdef CONCENTRATOR
60 extern int plc_is_installed(
61 #ifdef ANSIC
62 struct s_smc *smc ,
63 int p
64 #endif
65 ) ;
66 #endif
67 /*
68 * FSM Macros
69 */
70 #define AFLAG (0x20)
71 #define GO_STATE(x) (mib->fddiPORTPCMState = (x)|AFLAG)
72 #define ACTIONS_DONE() (mib->fddiPORTPCMState &= ~AFLAG)
73 #define ACTIONS(x) (x|AFLAG)
74
75 /*
76 * PCM states
77 */
78 #define PC0_OFF 0
79 #define PC1_BREAK 1
80 #define PC2_TRACE 2
81 #define PC3_CONNECT 3
82 #define PC4_NEXT 4
83 #define PC5_SIGNAL 5
84 #define PC6_JOIN 6
85 #define PC7_VERIFY 7
86 #define PC8_ACTIVE 8
87 #define PC9_MAINT 9
88
89 /*
90 * symbolic state names
91 */
92 static const char * const pcm_states[] = {
93 "PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
94 "PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
95 } ;
96
97 /*
98 * symbolic event names
99 */
100 static const char * const pcm_events[] = {
101 "NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
102 "PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
103 "PC_ENABLE","PC_DISABLE",
104 "PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
105 "PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
106 "PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
107 "PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
108 "PC_NSE","PC_LEM"
109 } ;
110
111 #ifdef MOT_ELM
112 /*
113 * PCL-S control register
114 * this register in the PLC-S controls the scrambling parameters
115 */
116 #define PLCS_CONTROL_C_U 0
117 #define PLCS_CONTROL_C_S (PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
118 PL_C_CIPHER_ENABLE)
119 #define PLCS_FASSERT_U 0
120 #define PLCS_FASSERT_S 0xFd76 /* 52.0 us */
121 #define PLCS_FDEASSERT_U 0
122 #define PLCS_FDEASSERT_S 0
123 #else /* nMOT_ELM */
124 /*
125 * PCL-S control register
126 * this register in the PLC-S controls the scrambling parameters
127 * can be patched for ANSI compliance if standard changes
128 */
129 static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
130 static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
131
132 #define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
133 #define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
134 #endif /* nMOT_ELM */
135
136 /*
137 * external vars
138 */
139 /* struct definition see 'cmtdef.h' (also used by CFM) */
140
141 #define PS_OFF 0
142 #define PS_BIT3 1
143 #define PS_BIT4 2
144 #define PS_BIT7 3
145 #define PS_LCT 4
146 #define PS_BIT8 5
147 #define PS_JOIN 6
148 #define PS_ACTIVE 7
149
150 #define LCT_LEM_MAX 255
151
152 /*
153 * PLC timing parameter
154 */
155
156 #define PLC_MS(m) ((int)((0x10000L-(m*100000L/2048))))
157 #define SLOW_TL_MIN PLC_MS(6)
158 #define SLOW_C_MIN PLC_MS(10)
159
160 static const struct plt {
161 int timer ; /* relative plc timer address */
162 int para ; /* default timing parameters */
163 } pltm[] = {
164 { PL_C_MIN, SLOW_C_MIN }, /* min t. to remain Connect State */
165 { PL_TL_MIN, SLOW_TL_MIN }, /* min t. to transmit a Line State */
166 { PL_TB_MIN, TP_TB_MIN }, /* min break time */
167 { PL_T_OUT, TP_T_OUT }, /* Signaling timeout */
168 { PL_LC_LENGTH, TP_LC_LENGTH }, /* Link Confidence Test Time */
169 { PL_T_SCRUB, TP_T_SCRUB }, /* Scrub Time == MAC TVX time ! */
170 { PL_NS_MAX, TP_NS_MAX }, /* max t. that noise is tolerated */
171 { 0,0 }
172 } ;
173
174 /*
175 * interrupt mask
176 */
177 #ifdef SUPERNET_3
178 /*
179 * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
180 * PLL bug?
181 */
182 static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
183 PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
184 #else /* SUPERNET_3 */
185 /*
186 * We do NOT need the elasticity buffer error during signaling.
187 */
188 static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
189 PL_PCM_ENABLED | PL_SELF_TEST ;
190 #endif /* SUPERNET_3 */
191 static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
192 PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
193
194 /* internal functions */
195 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
196 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
197 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
198 static void reset_lem_struct(struct s_phy *phy);
199 static void plc_init(struct s_smc *smc, int p);
200 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
201 static void sm_ph_lem_stop(struct s_smc *smc, int np);
202 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
203 static void real_init_plc(struct s_smc *smc);
204
205 /*
206 * SMT timer interface
207 * start PCM timer 0
208 */
start_pcm_timer0(struct s_smc * smc,u_long value,int event,struct s_phy * phy)209 static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
210 struct s_phy *phy)
211 {
212 phy->timer0_exp = FALSE ; /* clear timer event flag */
213 smt_timer_start(smc,&phy->pcm_timer0,value,
214 EV_TOKEN(EVENT_PCM+phy->np,event)) ;
215 }
216 /*
217 * SMT timer interface
218 * stop PCM timer 0
219 */
stop_pcm_timer0(struct s_smc * smc,struct s_phy * phy)220 static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
221 {
222 if (phy->pcm_timer0.tm_active)
223 smt_timer_stop(smc,&phy->pcm_timer0) ;
224 }
225
226 /*
227 init PCM state machine (called by driver)
228 clear all PCM vars and flags
229 */
pcm_init(struct s_smc * smc)230 void pcm_init(struct s_smc *smc)
231 {
232 int i ;
233 int np ;
234 struct s_phy *phy ;
235 struct fddi_mib_p *mib ;
236
237 for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
238 /* Indicates the type of PHY being used */
239 mib = phy->mib ;
240 mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
241 phy->np = np ;
242 switch (smc->s.sas) {
243 #ifdef CONCENTRATOR
244 case SMT_SAS :
245 mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
246 break ;
247 case SMT_DAS :
248 mib->fddiPORTMy_Type = (np == PA) ? TA :
249 (np == PB) ? TB : TM ;
250 break ;
251 case SMT_NAC :
252 mib->fddiPORTMy_Type = TM ;
253 break;
254 #else
255 case SMT_SAS :
256 mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
257 mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
258 FALSE ;
259 #ifndef SUPERNET_3
260 smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
261 #else
262 smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
263 #endif
264 break ;
265 case SMT_DAS :
266 mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
267 break ;
268 #endif
269 }
270 /*
271 * set PMD-type
272 */
273 phy->pmd_scramble = 0 ;
274 switch (phy->pmd_type[PMD_SK_PMD]) {
275 case 'P' :
276 mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
277 break ;
278 case 'L' :
279 mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
280 break ;
281 case 'D' :
282 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
283 break ;
284 case 'S' :
285 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
286 phy->pmd_scramble = TRUE ;
287 break ;
288 case 'U' :
289 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
290 phy->pmd_scramble = TRUE ;
291 break ;
292 case '1' :
293 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
294 break ;
295 case '2' :
296 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
297 break ;
298 case '3' :
299 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
300 break ;
301 case '4' :
302 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
303 break ;
304 case 'H' :
305 mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
306 break ;
307 case 'I' :
308 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
309 break ;
310 case 'G' :
311 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
312 break ;
313 default:
314 mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
315 break ;
316 }
317 /*
318 * A and B port can be on primary and secondary path
319 */
320 switch (mib->fddiPORTMy_Type) {
321 case TA :
322 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
323 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
324 mib->fddiPORTRequestedPaths[2] =
325 MIB_P_PATH_LOCAL |
326 MIB_P_PATH_CON_ALTER |
327 MIB_P_PATH_SEC_PREFER ;
328 mib->fddiPORTRequestedPaths[3] =
329 MIB_P_PATH_LOCAL |
330 MIB_P_PATH_CON_ALTER |
331 MIB_P_PATH_SEC_PREFER |
332 MIB_P_PATH_THRU ;
333 break ;
334 case TB :
335 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
336 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
337 mib->fddiPORTRequestedPaths[2] =
338 MIB_P_PATH_LOCAL |
339 MIB_P_PATH_PRIM_PREFER ;
340 mib->fddiPORTRequestedPaths[3] =
341 MIB_P_PATH_LOCAL |
342 MIB_P_PATH_PRIM_PREFER |
343 MIB_P_PATH_CON_PREFER |
344 MIB_P_PATH_THRU ;
345 break ;
346 case TS :
347 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
348 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
349 mib->fddiPORTRequestedPaths[2] =
350 MIB_P_PATH_LOCAL |
351 MIB_P_PATH_CON_ALTER |
352 MIB_P_PATH_PRIM_PREFER ;
353 mib->fddiPORTRequestedPaths[3] =
354 MIB_P_PATH_LOCAL |
355 MIB_P_PATH_CON_ALTER |
356 MIB_P_PATH_PRIM_PREFER ;
357 break ;
358 case TM :
359 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
360 mib->fddiPORTRequestedPaths[2] =
361 MIB_P_PATH_LOCAL |
362 MIB_P_PATH_SEC_ALTER |
363 MIB_P_PATH_PRIM_ALTER ;
364 mib->fddiPORTRequestedPaths[3] = 0 ;
365 break ;
366 }
367
368 phy->pc_lem_fail = FALSE ;
369 mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
370 mib->fddiPORTLCTFail_Ct = 0 ;
371 mib->fddiPORTBS_Flag = 0 ;
372 mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
373 mib->fddiPORTNeighborType = TNONE ;
374 phy->ls_flag = 0 ;
375 phy->rc_flag = 0 ;
376 phy->tc_flag = 0 ;
377 phy->td_flag = 0 ;
378 if (np >= PM)
379 phy->phy_name = '0' + np - PM ;
380 else
381 phy->phy_name = 'A' + np ;
382 phy->wc_flag = FALSE ; /* set by SMT */
383 memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
384 reset_lem_struct(phy) ;
385 memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
386 phy->plc.p_state = PS_OFF ;
387 for (i = 0 ; i < NUMBITS ; i++) {
388 phy->t_next[i] = 0 ;
389 }
390 }
391 real_init_plc(smc) ;
392 }
393
init_plc(struct s_smc * smc)394 void init_plc(struct s_smc *smc)
395 {
396 SK_UNUSED(smc) ;
397
398 /*
399 * dummy
400 * this is an obsolete public entry point that has to remain
401 * for compat. It is used by various drivers.
402 * the work is now done in real_init_plc()
403 * which is called from pcm_init() ;
404 */
405 }
406
real_init_plc(struct s_smc * smc)407 static void real_init_plc(struct s_smc *smc)
408 {
409 int p ;
410
411 for (p = 0 ; p < NUMPHYS ; p++)
412 plc_init(smc,p) ;
413 }
414
plc_init(struct s_smc * smc,int p)415 static void plc_init(struct s_smc *smc, int p)
416 {
417 int i ;
418 #ifndef MOT_ELM
419 int rev ; /* Revision of PLC-x */
420 #endif /* MOT_ELM */
421
422 /* transit PCM state machine to MAINT state */
423 outpw(PLC(p,PL_CNTRL_B),0) ;
424 outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
425 outpw(PLC(p,PL_CNTRL_A),0) ;
426
427 /*
428 * if PLC-S then set control register C
429 */
430 #ifndef MOT_ELM
431 rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
432 if (rev != PLC_REVISION_A)
433 #endif /* MOT_ELM */
434 {
435 if (smc->y[p].pmd_scramble) {
436 outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
437 #ifdef MOT_ELM
438 outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
439 outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
440 #endif /* MOT_ELM */
441 }
442 else {
443 outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
444 #ifdef MOT_ELM
445 outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
446 outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
447 #endif /* MOT_ELM */
448 }
449 }
450
451 /*
452 * set timer register
453 */
454 for ( i = 0 ; pltm[i].timer; i++) /* set timer parameter reg */
455 outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
456
457 (void)inpw(PLC(p,PL_INTR_EVENT)) ; /* clear interrupt event reg */
458 plc_clear_irq(smc,p) ;
459 outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
460
461 /*
462 * if PCM is configured for class s, it will NOT go to the
463 * REMOVE state if offline (page 3-36;)
464 * in the concentrator, all inactive PHYS always must be in
465 * the remove state
466 * there's no real need to use this feature at all ..
467 */
468 #ifndef CONCENTRATOR
469 if ((smc->s.sas == SMT_SAS) && (p == PS)) {
470 outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
471 }
472 #endif
473 }
474
475 /*
476 * control PCM state machine
477 */
plc_go_state(struct s_smc * smc,int p,int state)478 static void plc_go_state(struct s_smc *smc, int p, int state)
479 {
480 HW_PTR port ;
481 int val ;
482
483 SK_UNUSED(smc) ;
484
485 port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
486 val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
487 outpw(port,val) ;
488 outpw(port,val | state) ;
489 }
490
491 /*
492 * read current line state (called by ECM & PCM)
493 */
sm_pm_get_ls(struct s_smc * smc,int phy)494 int sm_pm_get_ls(struct s_smc *smc, int phy)
495 {
496 int state ;
497
498 #ifdef CONCENTRATOR
499 if (!plc_is_installed(smc,phy))
500 return PC_QLS;
501 #endif
502
503 state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
504 switch(state) {
505 case PL_L_QLS:
506 state = PC_QLS ;
507 break ;
508 case PL_L_MLS:
509 state = PC_MLS ;
510 break ;
511 case PL_L_HLS:
512 state = PC_HLS ;
513 break ;
514 case PL_L_ILS4:
515 case PL_L_ILS16:
516 state = PC_ILS ;
517 break ;
518 case PL_L_ALS:
519 state = PC_LS_PDR ;
520 break ;
521 default :
522 state = PC_LS_NONE ;
523 }
524 return state;
525 }
526
plc_send_bits(struct s_smc * smc,struct s_phy * phy,int len)527 static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
528 {
529 int np = phy->np ; /* PHY index */
530 int n ;
531 int i ;
532
533 SK_UNUSED(smc) ;
534
535 /* create bit vector */
536 for (i = len-1,n = 0 ; i >= 0 ; i--) {
537 n = (n<<1) | phy->t_val[phy->bitn+i] ;
538 }
539 if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
540 #if 0
541 printf("PL_PCM_SIGNAL is set\n") ;
542 #endif
543 return 1;
544 }
545 /* write bit[n] & length = 1 to regs */
546 outpw(PLC(np,PL_VECTOR_LEN),len-1) ; /* len=nr-1 */
547 outpw(PLC(np,PL_XMIT_VECTOR),n) ;
548 #ifdef DEBUG
549 #if 1
550 #ifdef DEBUG_BRD
551 if (smc->debug.d_plc & 0x80)
552 #else
553 if (debug.d_plc & 0x80)
554 #endif
555 printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
556 #endif
557 #endif
558 return 0;
559 }
560
561 /*
562 * config plc muxes
563 */
plc_config_mux(struct s_smc * smc,int mux)564 void plc_config_mux(struct s_smc *smc, int mux)
565 {
566 if (smc->s.sas != SMT_DAS)
567 return ;
568 if (mux == MUX_WRAPB) {
569 SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
570 SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
571 }
572 else {
573 CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
574 CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
575 }
576 CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
577 CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
578 }
579
580 /*
581 PCM state machine
582 called by dispatcher & fddi_init() (driver)
583 do
584 display state change
585 process event
586 until SM is stable
587 */
pcm(struct s_smc * smc,const int np,int event)588 void pcm(struct s_smc *smc, const int np, int event)
589 {
590 int state ;
591 int oldstate ;
592 struct s_phy *phy ;
593 struct fddi_mib_p *mib ;
594
595 #ifndef CONCENTRATOR
596 /*
597 * ignore 2nd PHY if SAS
598 */
599 if ((np != PS) && (smc->s.sas == SMT_SAS))
600 return ;
601 #endif
602 phy = &smc->y[np] ;
603 mib = phy->mib ;
604 oldstate = mib->fddiPORTPCMState ;
605 do {
606 DB_PCM("PCM %c: state %s%s, event %s",
607 phy->phy_name,
608 mib->fddiPORTPCMState & AFLAG ? "ACTIONS " : "",
609 pcm_states[mib->fddiPORTPCMState & ~AFLAG],
610 pcm_events[event]);
611 state = mib->fddiPORTPCMState ;
612 pcm_fsm(smc,phy,event) ;
613 event = 0 ;
614 } while (state != mib->fddiPORTPCMState) ;
615 /*
616 * because the PLC does the bit signaling for us,
617 * we're always in SIGNAL state
618 * the MIB want's to see CONNECT
619 * we therefore fake an entry in the MIB
620 */
621 if (state == PC5_SIGNAL)
622 mib->fddiPORTPCMStateX = PC3_CONNECT ;
623 else
624 mib->fddiPORTPCMStateX = state ;
625
626 #ifndef SLIM_SMT
627 /*
628 * path change
629 */
630 if ( mib->fddiPORTPCMState != oldstate &&
631 ((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
632 smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
633 (int) (INDEX_PORT+ phy->np),0) ;
634 }
635 #endif
636
637 #ifdef FDDI_MIB
638 /* check whether a snmp-trap has to be sent */
639
640 if ( mib->fddiPORTPCMState != oldstate ) {
641 /* a real state change took place */
642 DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
643 if ( mib->fddiPORTPCMState == PC0_OFF ) {
644 /* send first trap */
645 snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
646 } else if ( oldstate == PC0_OFF ) {
647 /* send second trap */
648 snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
649 } else if ( mib->fddiPORTPCMState != PC2_TRACE &&
650 oldstate == PC8_ACTIVE ) {
651 /* send third trap */
652 snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
653 } else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
654 /* send fourth trap */
655 snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
656 }
657 }
658 #endif
659
660 pcm_state_change(smc,np,state) ;
661 }
662
663 /*
664 * PCM state machine
665 */
pcm_fsm(struct s_smc * smc,struct s_phy * phy,int cmd)666 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
667 {
668 int i ;
669 int np = phy->np ; /* PHY index */
670 struct s_plc *plc ;
671 struct fddi_mib_p *mib ;
672 #ifndef MOT_ELM
673 u_short plc_rev ; /* Revision of the plc */
674 #endif /* nMOT_ELM */
675
676 plc = &phy->plc ;
677 mib = phy->mib ;
678
679 /*
680 * general transitions independent of state
681 */
682 switch (cmd) {
683 case PC_STOP :
684 /*PC00-PC80*/
685 if (mib->fddiPORTPCMState != PC9_MAINT) {
686 GO_STATE(PC0_OFF) ;
687 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
688 FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
689 smt_get_port_event_word(smc));
690 }
691 return ;
692 case PC_START :
693 /*PC01-PC81*/
694 if (mib->fddiPORTPCMState != PC9_MAINT)
695 GO_STATE(PC1_BREAK) ;
696 return ;
697 case PC_DISABLE :
698 /* PC09-PC99 */
699 GO_STATE(PC9_MAINT) ;
700 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
701 FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
702 smt_get_port_event_word(smc));
703 return ;
704 case PC_TIMEOUT_LCT :
705 /* if long or extended LCT */
706 stop_pcm_timer0(smc,phy) ;
707 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
708 /* end of LCT is indicate by PCM_CODE (initiate PCM event) */
709 return ;
710 }
711
712 switch(mib->fddiPORTPCMState) {
713 case ACTIONS(PC0_OFF) :
714 stop_pcm_timer0(smc,phy) ;
715 outpw(PLC(np,PL_CNTRL_A),0) ;
716 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
717 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
718 sm_ph_lem_stop(smc,np) ; /* disable LEM */
719 phy->cf_loop = FALSE ;
720 phy->cf_join = FALSE ;
721 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
722 plc_go_state(smc,np,PL_PCM_STOP) ;
723 mib->fddiPORTConnectState = PCM_DISABLED ;
724 ACTIONS_DONE() ;
725 break ;
726 case PC0_OFF:
727 /*PC09*/
728 if (cmd == PC_MAINT) {
729 GO_STATE(PC9_MAINT) ;
730 break ;
731 }
732 break ;
733 case ACTIONS(PC1_BREAK) :
734 /* Stop the LCT timer if we came from Signal state */
735 stop_pcm_timer0(smc,phy) ;
736 ACTIONS_DONE() ;
737 plc_go_state(smc,np,0) ;
738 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
739 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
740 sm_ph_lem_stop(smc,np) ; /* disable LEM */
741 /*
742 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
743 */
744 #if 0
745 if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
746 plc_go_state(smc,np,PL_PCM_STOP) ;
747 /* TB_MIN ? */
748 }
749 #endif
750 /*
751 * Go to OFF state in any case.
752 */
753 plc_go_state(smc,np,PL_PCM_STOP) ;
754
755 if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
756 mib->fddiPORTConnectState = PCM_CONNECTING ;
757 phy->cf_loop = FALSE ;
758 phy->cf_join = FALSE ;
759 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
760 phy->ls_flag = FALSE ;
761 phy->pc_mode = PM_NONE ; /* needed by CFM */
762 phy->bitn = 0 ; /* bit signaling start bit */
763 for (i = 0 ; i < 3 ; i++)
764 pc_tcode_actions(smc,i,phy) ;
765
766 /* Set the non-active interrupt mask register */
767 outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
768
769 /*
770 * If the LCT was stopped. There might be a
771 * PCM_CODE interrupt event present.
772 * This must be cleared.
773 */
774 (void)inpw(PLC(np,PL_INTR_EVENT)) ;
775 #ifndef MOT_ELM
776 /* Get the plc revision for revision dependent code */
777 plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
778
779 if (plc_rev != PLC_REV_SN3)
780 #endif /* MOT_ELM */
781 {
782 /*
783 * No supernet III PLC, so set Xmit verctor and
784 * length BEFORE starting the state machine.
785 */
786 if (plc_send_bits(smc,phy,3)) {
787 return ;
788 }
789 }
790
791 /*
792 * Now give the Start command.
793 * - The start command shall be done before setting the bits
794 * to be signaled. (In PLC-S description and PLCS in SN3.
795 * - The start command shall be issued AFTER setting the
796 * XMIT vector and the XMIT length register.
797 *
798 * We do it exactly according this specs for the old PLC and
799 * the new PLCS inside the SN3.
800 * For the usual PLCS we try it the way it is done for the
801 * old PLC and set the XMIT registers again, if the PLC is
802 * not in SIGNAL state. This is done according to an PLCS
803 * errata workaround.
804 */
805
806 plc_go_state(smc,np,PL_PCM_START) ;
807
808 /*
809 * workaround for PLC-S eng. sample errata
810 */
811 #ifdef MOT_ELM
812 if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
813 #else /* nMOT_ELM */
814 if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
815 PLC_REVISION_A) &&
816 !(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
817 #endif /* nMOT_ELM */
818 {
819 /*
820 * Set register again (PLCS errata) or the first time
821 * (new SN3 PLCS).
822 */
823 (void) plc_send_bits(smc,phy,3) ;
824 }
825 /*
826 * end of workaround
827 */
828
829 GO_STATE(PC5_SIGNAL) ;
830 plc->p_state = PS_BIT3 ;
831 plc->p_bits = 3 ;
832 plc->p_start = 0 ;
833
834 break ;
835 case PC1_BREAK :
836 break ;
837 case ACTIONS(PC2_TRACE) :
838 plc_go_state(smc,np,PL_PCM_TRACE) ;
839 ACTIONS_DONE() ;
840 break ;
841 case PC2_TRACE :
842 break ;
843
844 case PC3_CONNECT : /* these states are done by hardware */
845 case PC4_NEXT :
846 break ;
847
848 case ACTIONS(PC5_SIGNAL) :
849 ACTIONS_DONE() ;
850 /* fall through */
851 case PC5_SIGNAL :
852 if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
853 break ;
854 switch (plc->p_state) {
855 case PS_BIT3 :
856 for (i = 0 ; i <= 2 ; i++)
857 pc_rcode_actions(smc,i,phy) ;
858 pc_tcode_actions(smc,3,phy) ;
859 plc->p_state = PS_BIT4 ;
860 plc->p_bits = 1 ;
861 plc->p_start = 3 ;
862 phy->bitn = 3 ;
863 if (plc_send_bits(smc,phy,1)) {
864 return ;
865 }
866 break ;
867 case PS_BIT4 :
868 pc_rcode_actions(smc,3,phy) ;
869 for (i = 4 ; i <= 6 ; i++)
870 pc_tcode_actions(smc,i,phy) ;
871 plc->p_state = PS_BIT7 ;
872 plc->p_bits = 3 ;
873 plc->p_start = 4 ;
874 phy->bitn = 4 ;
875 if (plc_send_bits(smc,phy,3)) {
876 return ;
877 }
878 break ;
879 case PS_BIT7 :
880 for (i = 3 ; i <= 6 ; i++)
881 pc_rcode_actions(smc,i,phy) ;
882 plc->p_state = PS_LCT ;
883 plc->p_bits = 0 ;
884 plc->p_start = 7 ;
885 phy->bitn = 7 ;
886 sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
887 /* start LCT */
888 i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
889 outpw(PLC(np,PL_CNTRL_B),i) ; /* must be cleared */
890 outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
891 break ;
892 case PS_LCT :
893 /* check for local LCT failure */
894 pc_tcode_actions(smc,7,phy) ;
895 /*
896 * set tval[7]
897 */
898 plc->p_state = PS_BIT8 ;
899 plc->p_bits = 1 ;
900 plc->p_start = 7 ;
901 phy->bitn = 7 ;
902 if (plc_send_bits(smc,phy,1)) {
903 return ;
904 }
905 break ;
906 case PS_BIT8 :
907 /* check for remote LCT failure */
908 pc_rcode_actions(smc,7,phy) ;
909 if (phy->t_val[7] || phy->r_val[7]) {
910 plc_go_state(smc,np,PL_PCM_STOP) ;
911 GO_STATE(PC1_BREAK) ;
912 break ;
913 }
914 for (i = 8 ; i <= 9 ; i++)
915 pc_tcode_actions(smc,i,phy) ;
916 plc->p_state = PS_JOIN ;
917 plc->p_bits = 2 ;
918 plc->p_start = 8 ;
919 phy->bitn = 8 ;
920 if (plc_send_bits(smc,phy,2)) {
921 return ;
922 }
923 break ;
924 case PS_JOIN :
925 for (i = 8 ; i <= 9 ; i++)
926 pc_rcode_actions(smc,i,phy) ;
927 plc->p_state = PS_ACTIVE ;
928 GO_STATE(PC6_JOIN) ;
929 break ;
930 }
931 break ;
932
933 case ACTIONS(PC6_JOIN) :
934 /*
935 * prevent mux error when going from WRAP_A to WRAP_B
936 */
937 if (smc->s.sas == SMT_DAS && np == PB &&
938 (smc->y[PA].pc_mode == PM_TREE ||
939 smc->y[PB].pc_mode == PM_TREE)) {
940 SETMASK(PLC(np,PL_CNTRL_A),
941 PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
942 SETMASK(PLC(np,PL_CNTRL_B),
943 PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
944 }
945 SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
946 SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
947 ACTIONS_DONE() ;
948 cmd = 0 ;
949 /* fall thru */
950 case PC6_JOIN :
951 switch (plc->p_state) {
952 case PS_ACTIVE:
953 /*PC88b*/
954 if (!phy->cf_join) {
955 phy->cf_join = TRUE ;
956 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
957 }
958 if (cmd == PC_JOIN)
959 GO_STATE(PC8_ACTIVE) ;
960 /*PC82*/
961 if (cmd == PC_TRACE) {
962 GO_STATE(PC2_TRACE) ;
963 break ;
964 }
965 break ;
966 }
967 break ;
968
969 case PC7_VERIFY :
970 break ;
971
972 case ACTIONS(PC8_ACTIVE) :
973 /*
974 * start LEM for SMT
975 */
976 sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
977
978 phy->tr_flag = FALSE ;
979 mib->fddiPORTConnectState = PCM_ACTIVE ;
980
981 /* Set the active interrupt mask register */
982 outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
983
984 ACTIONS_DONE() ;
985 break ;
986 case PC8_ACTIVE :
987 /*PC81 is done by PL_TNE_EXPIRED irq */
988 /*PC82*/
989 if (cmd == PC_TRACE) {
990 GO_STATE(PC2_TRACE) ;
991 break ;
992 }
993 /*PC88c: is done by TRACE_PROP irq */
994
995 break ;
996 case ACTIONS(PC9_MAINT) :
997 stop_pcm_timer0(smc,phy) ;
998 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
999 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
1000 CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ; /* disable LEM int. */
1001 sm_ph_lem_stop(smc,np) ; /* disable LEM */
1002 phy->cf_loop = FALSE ;
1003 phy->cf_join = FALSE ;
1004 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
1005 plc_go_state(smc,np,PL_PCM_STOP) ;
1006 mib->fddiPORTConnectState = PCM_DISABLED ;
1007 SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
1008 sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
1009 outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
1010 ACTIONS_DONE() ;
1011 break ;
1012 case PC9_MAINT :
1013 DB_PCMN(1, "PCM %c : MAINT", phy->phy_name);
1014 /*PC90*/
1015 if (cmd == PC_ENABLE) {
1016 GO_STATE(PC0_OFF) ;
1017 break ;
1018 }
1019 break ;
1020
1021 default:
1022 SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
1023 break ;
1024 }
1025 }
1026
1027 /*
1028 * force line state on a PHY output (only in MAINT state)
1029 */
sm_ph_linestate(struct s_smc * smc,int phy,int ls)1030 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
1031 {
1032 int cntrl ;
1033
1034 SK_UNUSED(smc) ;
1035
1036 cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
1037 PL_PCM_STOP | PL_MAINT ;
1038 switch(ls) {
1039 case PC_QLS: /* Force Quiet */
1040 cntrl |= PL_M_QUI0 ;
1041 break ;
1042 case PC_MLS: /* Force Master */
1043 cntrl |= PL_M_MASTR ;
1044 break ;
1045 case PC_HLS: /* Force Halt */
1046 cntrl |= PL_M_HALT ;
1047 break ;
1048 default :
1049 case PC_ILS: /* Force Idle */
1050 cntrl |= PL_M_IDLE ;
1051 break ;
1052 case PC_LS_PDR: /* Enable repeat filter */
1053 cntrl |= PL_M_TPDR ;
1054 break ;
1055 }
1056 outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
1057 }
1058
reset_lem_struct(struct s_phy * phy)1059 static void reset_lem_struct(struct s_phy *phy)
1060 {
1061 struct lem_counter *lem = &phy->lem ;
1062
1063 phy->mib->fddiPORTLer_Estimate = 15 ;
1064 lem->lem_float_ber = 15 * 100 ;
1065 }
1066
1067 /*
1068 * link error monitor
1069 */
lem_evaluate(struct s_smc * smc,struct s_phy * phy)1070 static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
1071 {
1072 int ber ;
1073 u_long errors ;
1074 struct lem_counter *lem = &phy->lem ;
1075 struct fddi_mib_p *mib ;
1076 int cond ;
1077
1078 mib = phy->mib ;
1079
1080 if (!lem->lem_on)
1081 return ;
1082
1083 errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
1084 lem->lem_errors += errors ;
1085 mib->fddiPORTLem_Ct += errors ;
1086
1087 errors = lem->lem_errors ;
1088 /*
1089 * calculation is called on a intervall of 8 seconds
1090 * -> this means, that one error in 8 sec. is one of 8*125*10E6
1091 * the same as BER = 10E-9
1092 * Please note:
1093 * -> 9 errors in 8 seconds mean:
1094 * BER = 9 * 10E-9 and this is
1095 * < 10E-8, so the limit of 10E-8 is not reached!
1096 */
1097
1098 if (!errors) ber = 15 ;
1099 else if (errors <= 9) ber = 9 ;
1100 else if (errors <= 99) ber = 8 ;
1101 else if (errors <= 999) ber = 7 ;
1102 else if (errors <= 9999) ber = 6 ;
1103 else if (errors <= 99999) ber = 5 ;
1104 else if (errors <= 999999) ber = 4 ;
1105 else if (errors <= 9999999) ber = 3 ;
1106 else if (errors <= 99999999) ber = 2 ;
1107 else if (errors <= 999999999) ber = 1 ;
1108 else ber = 0 ;
1109
1110 /*
1111 * weighted average
1112 */
1113 ber *= 100 ;
1114 lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
1115 lem->lem_float_ber /= 10 ;
1116 mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
1117 if (mib->fddiPORTLer_Estimate < 4) {
1118 mib->fddiPORTLer_Estimate = 4 ;
1119 }
1120
1121 if (lem->lem_errors) {
1122 DB_PCMN(1, "LEM %c :", phy->np == PB ? 'B' : 'A');
1123 DB_PCMN(1, "errors : %ld", lem->lem_errors);
1124 DB_PCMN(1, "sum_errors : %ld", mib->fddiPORTLem_Ct);
1125 DB_PCMN(1, "current BER : 10E-%d", ber / 100);
1126 DB_PCMN(1, "float BER : 10E-(%d/100)", lem->lem_float_ber);
1127 DB_PCMN(1, "avg. BER : 10E-%d", mib->fddiPORTLer_Estimate);
1128 }
1129
1130 lem->lem_errors = 0L ;
1131
1132 #ifndef SLIM_SMT
1133 cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
1134 TRUE : FALSE ;
1135 #ifdef SMT_EXT_CUTOFF
1136 smt_ler_alarm_check(smc,phy,cond) ;
1137 #endif /* nSMT_EXT_CUTOFF */
1138 if (cond != mib->fddiPORTLerFlag) {
1139 smt_srf_event(smc,SMT_COND_PORT_LER,
1140 (int) (INDEX_PORT+ phy->np) ,cond) ;
1141 }
1142 #endif
1143
1144 if ( mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
1145 phy->pc_lem_fail = TRUE ; /* flag */
1146 mib->fddiPORTLem_Reject_Ct++ ;
1147 /*
1148 * "forgive 10e-2" if we cutoff so we can come
1149 * up again ..
1150 */
1151 lem->lem_float_ber += 2*100 ;
1152
1153 /*PC81b*/
1154 #ifdef CONCENTRATOR
1155 DB_PCMN(1, "PCM: LER cutoff on port %d cutoff %d",
1156 phy->np, mib->fddiPORTLer_Cutoff);
1157 #endif
1158 #ifdef SMT_EXT_CUTOFF
1159 smt_port_off_event(smc,phy->np);
1160 #else /* nSMT_EXT_CUTOFF */
1161 queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1162 #endif /* nSMT_EXT_CUTOFF */
1163 }
1164 }
1165
1166 /*
1167 * called by SMT to calculate LEM bit error rate
1168 */
sm_lem_evaluate(struct s_smc * smc)1169 void sm_lem_evaluate(struct s_smc *smc)
1170 {
1171 int np ;
1172
1173 for (np = 0 ; np < NUMPHYS ; np++)
1174 lem_evaluate(smc,&smc->y[np]) ;
1175 }
1176
lem_check_lct(struct s_smc * smc,struct s_phy * phy)1177 static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
1178 {
1179 struct lem_counter *lem = &phy->lem ;
1180 struct fddi_mib_p *mib ;
1181 int errors ;
1182
1183 mib = phy->mib ;
1184
1185 phy->pc_lem_fail = FALSE ; /* flag */
1186 errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
1187 lem->lem_errors += errors ;
1188 mib->fddiPORTLem_Ct += errors ;
1189 if (lem->lem_errors) {
1190 switch(phy->lc_test) {
1191 case LC_SHORT:
1192 if (lem->lem_errors >= smc->s.lct_short)
1193 phy->pc_lem_fail = TRUE ;
1194 break ;
1195 case LC_MEDIUM:
1196 if (lem->lem_errors >= smc->s.lct_medium)
1197 phy->pc_lem_fail = TRUE ;
1198 break ;
1199 case LC_LONG:
1200 if (lem->lem_errors >= smc->s.lct_long)
1201 phy->pc_lem_fail = TRUE ;
1202 break ;
1203 case LC_EXTENDED:
1204 if (lem->lem_errors >= smc->s.lct_extended)
1205 phy->pc_lem_fail = TRUE ;
1206 break ;
1207 }
1208 DB_PCMN(1, " >>errors : %lu", lem->lem_errors);
1209 }
1210 if (phy->pc_lem_fail) {
1211 mib->fddiPORTLCTFail_Ct++ ;
1212 mib->fddiPORTLem_Reject_Ct++ ;
1213 }
1214 else
1215 mib->fddiPORTLCTFail_Ct = 0 ;
1216 }
1217
1218 /*
1219 * LEM functions
1220 */
sm_ph_lem_start(struct s_smc * smc,int np,int threshold)1221 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
1222 {
1223 struct lem_counter *lem = &smc->y[np].lem ;
1224
1225 lem->lem_on = 1 ;
1226 lem->lem_errors = 0L ;
1227
1228 /* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1229 * often.
1230 */
1231
1232 outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
1233 (void)inpw(PLC(np,PL_LINK_ERR_CTR)) ; /* clear error counter */
1234
1235 /* enable LE INT */
1236 SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
1237 }
1238
sm_ph_lem_stop(struct s_smc * smc,int np)1239 static void sm_ph_lem_stop(struct s_smc *smc, int np)
1240 {
1241 struct lem_counter *lem = &smc->y[np].lem ;
1242
1243 lem->lem_on = 0 ;
1244 CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
1245 }
1246
1247 /*
1248 * PCM pseudo code
1249 * receive actions are called AFTER the bit n is received,
1250 * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1251 */
1252
1253 /*
1254 * PCM pseudo code 5.1 .. 6.1
1255 */
pc_rcode_actions(struct s_smc * smc,int bit,struct s_phy * phy)1256 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
1257 {
1258 struct fddi_mib_p *mib ;
1259
1260 mib = phy->mib ;
1261
1262 DB_PCMN(1, "SIG rec %x %x:", bit, phy->r_val[bit]);
1263 bit++ ;
1264
1265 switch(bit) {
1266 case 0:
1267 case 1:
1268 case 2:
1269 break ;
1270 case 3 :
1271 if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
1272 mib->fddiPORTNeighborType = TA ;
1273 else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
1274 mib->fddiPORTNeighborType = TB ;
1275 else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
1276 mib->fddiPORTNeighborType = TS ;
1277 else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
1278 mib->fddiPORTNeighborType = TM ;
1279 break ;
1280 case 4:
1281 if (mib->fddiPORTMy_Type == TM &&
1282 mib->fddiPORTNeighborType == TM) {
1283 DB_PCMN(1, "PCM %c : E100 withhold M-M",
1284 phy->phy_name);
1285 mib->fddiPORTPC_Withhold = PC_WH_M_M ;
1286 RS_SET(smc,RS_EVENT) ;
1287 }
1288 else if (phy->t_val[3] || phy->r_val[3]) {
1289 mib->fddiPORTPC_Withhold = PC_WH_NONE ;
1290 if (mib->fddiPORTMy_Type == TM ||
1291 mib->fddiPORTNeighborType == TM)
1292 phy->pc_mode = PM_TREE ;
1293 else
1294 phy->pc_mode = PM_PEER ;
1295
1296 /* reevaluate the selection criteria (wc_flag) */
1297 all_selection_criteria (smc);
1298
1299 if (phy->wc_flag) {
1300 mib->fddiPORTPC_Withhold = PC_WH_PATH ;
1301 }
1302 }
1303 else {
1304 mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
1305 RS_SET(smc,RS_EVENT) ;
1306 DB_PCMN(1, "PCM %c : E101 withhold other",
1307 phy->phy_name);
1308 }
1309 phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
1310 (mib->fddiPORTMy_Type != TM) &&
1311 (mib->fddiPORTNeighborType ==
1312 mib->fddiPORTMy_Type)) ;
1313 if (phy->twisted) {
1314 DB_PCMN(1, "PCM %c : E102 !!! TWISTED !!!",
1315 phy->phy_name);
1316 }
1317 break ;
1318 case 5 :
1319 break ;
1320 case 6:
1321 if (phy->t_val[4] || phy->r_val[4]) {
1322 if ((phy->t_val[4] && phy->t_val[5]) ||
1323 (phy->r_val[4] && phy->r_val[5]) )
1324 phy->lc_test = LC_EXTENDED ;
1325 else
1326 phy->lc_test = LC_LONG ;
1327 }
1328 else if (phy->t_val[5] || phy->r_val[5])
1329 phy->lc_test = LC_MEDIUM ;
1330 else
1331 phy->lc_test = LC_SHORT ;
1332 switch (phy->lc_test) {
1333 case LC_SHORT : /* 50ms */
1334 outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
1335 phy->t_next[7] = smc->s.pcm_lc_short ;
1336 break ;
1337 case LC_MEDIUM : /* 500ms */
1338 outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
1339 phy->t_next[7] = smc->s.pcm_lc_medium ;
1340 break ;
1341 case LC_LONG :
1342 SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1343 phy->t_next[7] = smc->s.pcm_lc_long ;
1344 break ;
1345 case LC_EXTENDED :
1346 SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1347 phy->t_next[7] = smc->s.pcm_lc_extended ;
1348 break ;
1349 }
1350 if (phy->t_next[7] > smc->s.pcm_lc_medium) {
1351 start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
1352 }
1353 DB_PCMN(1, "LCT timer = %ld us", phy->t_next[7]);
1354 phy->t_next[9] = smc->s.pcm_t_next_9 ;
1355 break ;
1356 case 7:
1357 if (phy->t_val[6]) {
1358 phy->cf_loop = TRUE ;
1359 }
1360 phy->td_flag = TRUE ;
1361 break ;
1362 case 8:
1363 if (phy->t_val[7] || phy->r_val[7]) {
1364 DB_PCMN(1, "PCM %c : E103 LCT fail %s",
1365 phy->phy_name,
1366 phy->t_val[7] ? "local" : "remote");
1367 queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1368 }
1369 break ;
1370 case 9:
1371 if (phy->t_val[8] || phy->r_val[8]) {
1372 if (phy->t_val[8])
1373 phy->cf_loop = TRUE ;
1374 phy->td_flag = TRUE ;
1375 }
1376 break ;
1377 case 10:
1378 if (phy->r_val[9]) {
1379 /* neighbor intends to have MAC on output */ ;
1380 mib->fddiPORTMacIndicated.R_val = TRUE ;
1381 }
1382 else {
1383 /* neighbor does not intend to have MAC on output */ ;
1384 mib->fddiPORTMacIndicated.R_val = FALSE ;
1385 }
1386 break ;
1387 }
1388 }
1389
1390 /*
1391 * PCM pseudo code 5.1 .. 6.1
1392 */
pc_tcode_actions(struct s_smc * smc,const int bit,struct s_phy * phy)1393 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
1394 {
1395 int np = phy->np ;
1396 struct fddi_mib_p *mib ;
1397
1398 mib = phy->mib ;
1399
1400 switch(bit) {
1401 case 0:
1402 phy->t_val[0] = 0 ; /* no escape used */
1403 break ;
1404 case 1:
1405 if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
1406 phy->t_val[1] = 1 ;
1407 else
1408 phy->t_val[1] = 0 ;
1409 break ;
1410 case 2 :
1411 if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
1412 phy->t_val[2] = 1 ;
1413 else
1414 phy->t_val[2] = 0 ;
1415 break ;
1416 case 3:
1417 {
1418 int type,ne ;
1419 int policy ;
1420
1421 type = mib->fddiPORTMy_Type ;
1422 ne = mib->fddiPORTNeighborType ;
1423 policy = smc->mib.fddiSMTConnectionPolicy ;
1424
1425 phy->t_val[3] = 1 ; /* Accept connection */
1426 switch (type) {
1427 case TA :
1428 if (
1429 ((policy & POLICY_AA) && ne == TA) ||
1430 ((policy & POLICY_AB) && ne == TB) ||
1431 ((policy & POLICY_AS) && ne == TS) ||
1432 ((policy & POLICY_AM) && ne == TM) )
1433 phy->t_val[3] = 0 ; /* Reject */
1434 break ;
1435 case TB :
1436 if (
1437 ((policy & POLICY_BA) && ne == TA) ||
1438 ((policy & POLICY_BB) && ne == TB) ||
1439 ((policy & POLICY_BS) && ne == TS) ||
1440 ((policy & POLICY_BM) && ne == TM) )
1441 phy->t_val[3] = 0 ; /* Reject */
1442 break ;
1443 case TS :
1444 if (
1445 ((policy & POLICY_SA) && ne == TA) ||
1446 ((policy & POLICY_SB) && ne == TB) ||
1447 ((policy & POLICY_SS) && ne == TS) ||
1448 ((policy & POLICY_SM) && ne == TM) )
1449 phy->t_val[3] = 0 ; /* Reject */
1450 break ;
1451 case TM :
1452 if ( ne == TM ||
1453 ((policy & POLICY_MA) && ne == TA) ||
1454 ((policy & POLICY_MB) && ne == TB) ||
1455 ((policy & POLICY_MS) && ne == TS) ||
1456 ((policy & POLICY_MM) && ne == TM) )
1457 phy->t_val[3] = 0 ; /* Reject */
1458 break ;
1459 }
1460 #ifndef SLIM_SMT
1461 /*
1462 * detect undesirable connection attempt event
1463 */
1464 if ( (type == TA && ne == TA ) ||
1465 (type == TA && ne == TS ) ||
1466 (type == TB && ne == TB ) ||
1467 (type == TB && ne == TS ) ||
1468 (type == TS && ne == TA ) ||
1469 (type == TS && ne == TB ) ) {
1470 smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
1471 (int) (INDEX_PORT+ phy->np) ,0) ;
1472 }
1473 #endif
1474 }
1475 break ;
1476 case 4:
1477 if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
1478 if (phy->pc_lem_fail) {
1479 phy->t_val[4] = 1 ; /* long */
1480 phy->t_val[5] = 0 ;
1481 }
1482 else {
1483 phy->t_val[4] = 0 ;
1484 if (mib->fddiPORTLCTFail_Ct > 0)
1485 phy->t_val[5] = 1 ; /* medium */
1486 else
1487 phy->t_val[5] = 0 ; /* short */
1488
1489 /*
1490 * Implementers choice: use medium
1491 * instead of short when undesired
1492 * connection attempt is made.
1493 */
1494 if (phy->wc_flag)
1495 phy->t_val[5] = 1 ; /* medium */
1496 }
1497 mib->fddiPORTConnectState = PCM_CONNECTING ;
1498 }
1499 else {
1500 mib->fddiPORTConnectState = PCM_STANDBY ;
1501 phy->t_val[4] = 1 ; /* extended */
1502 phy->t_val[5] = 1 ;
1503 }
1504 break ;
1505 case 5:
1506 break ;
1507 case 6:
1508 /* we do NOT have a MAC for LCT */
1509 phy->t_val[6] = 0 ;
1510 break ;
1511 case 7:
1512 phy->cf_loop = FALSE ;
1513 lem_check_lct(smc,phy) ;
1514 if (phy->pc_lem_fail) {
1515 DB_PCMN(1, "PCM %c : E104 LCT failed", phy->phy_name);
1516 phy->t_val[7] = 1 ;
1517 }
1518 else
1519 phy->t_val[7] = 0 ;
1520 break ;
1521 case 8:
1522 phy->t_val[8] = 0 ; /* Don't request MAC loopback */
1523 break ;
1524 case 9:
1525 phy->cf_loop = 0 ;
1526 if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
1527 ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
1528 queue_event(smc,EVENT_PCM+np,PC_START) ;
1529 break ;
1530 }
1531 phy->t_val[9] = FALSE ;
1532 switch (smc->s.sas) {
1533 case SMT_DAS :
1534 /*
1535 * MAC intended on output
1536 */
1537 if (phy->pc_mode == PM_TREE) {
1538 if ((np == PB) || ((np == PA) &&
1539 (smc->y[PB].mib->fddiPORTConnectState !=
1540 PCM_ACTIVE)))
1541 phy->t_val[9] = TRUE ;
1542 }
1543 else {
1544 if (np == PB)
1545 phy->t_val[9] = TRUE ;
1546 }
1547 break ;
1548 case SMT_SAS :
1549 if (np == PS)
1550 phy->t_val[9] = TRUE ;
1551 break ;
1552 #ifdef CONCENTRATOR
1553 case SMT_NAC :
1554 /*
1555 * MAC intended on output
1556 */
1557 if (np == PB)
1558 phy->t_val[9] = TRUE ;
1559 break ;
1560 #endif
1561 }
1562 mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
1563 break ;
1564 }
1565 DB_PCMN(1, "SIG snd %x %x:", bit, phy->t_val[bit]);
1566 }
1567
1568 /*
1569 * return status twisted (called by SMT)
1570 */
pcm_status_twisted(struct s_smc * smc)1571 int pcm_status_twisted(struct s_smc *smc)
1572 {
1573 int twist = 0 ;
1574 if (smc->s.sas != SMT_DAS)
1575 return 0;
1576 if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
1577 twist |= 1 ;
1578 if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
1579 twist |= 2 ;
1580 return twist;
1581 }
1582
1583 /*
1584 * return status (called by SMT)
1585 * type
1586 * state
1587 * remote phy type
1588 * remote mac yes/no
1589 */
pcm_status_state(struct s_smc * smc,int np,int * type,int * state,int * remote,int * mac)1590 void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
1591 int *remote, int *mac)
1592 {
1593 struct s_phy *phy = &smc->y[np] ;
1594 struct fddi_mib_p *mib ;
1595
1596 mib = phy->mib ;
1597
1598 /* remote PHY type and MAC - set only if active */
1599 *mac = 0 ;
1600 *type = mib->fddiPORTMy_Type ; /* our PHY type */
1601 *state = mib->fddiPORTConnectState ;
1602 *remote = mib->fddiPORTNeighborType ;
1603
1604 switch(mib->fddiPORTPCMState) {
1605 case PC8_ACTIVE :
1606 *mac = mib->fddiPORTMacIndicated.R_val ;
1607 break ;
1608 }
1609 }
1610
1611 /*
1612 * return rooted station status (called by SMT)
1613 */
pcm_rooted_station(struct s_smc * smc)1614 int pcm_rooted_station(struct s_smc *smc)
1615 {
1616 int n ;
1617
1618 for (n = 0 ; n < NUMPHYS ; n++) {
1619 if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
1620 smc->y[n].mib->fddiPORTNeighborType == TM)
1621 return 0;
1622 }
1623 return 1;
1624 }
1625
1626 /*
1627 * Interrupt actions for PLC & PCM events
1628 */
plc_irq(struct s_smc * smc,int np,unsigned int cmd)1629 void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
1630 /* int np; PHY index */
1631 {
1632 struct s_phy *phy = &smc->y[np] ;
1633 struct s_plc *plc = &phy->plc ;
1634 int n ;
1635 #ifdef SUPERNET_3
1636 int corr_mask ;
1637 #endif /* SUPERNET_3 */
1638 int i ;
1639
1640 if (np >= smc->s.numphys) {
1641 plc->soft_err++ ;
1642 return ;
1643 }
1644 if (cmd & PL_EBUF_ERR) { /* elastic buff. det. over-|underflow*/
1645 /*
1646 * Check whether the SRF Condition occurred.
1647 */
1648 if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
1649 /*
1650 * This is the real Elasticity Error.
1651 * More than one in a row are treated as a
1652 * single one.
1653 * Only count this in the active state.
1654 */
1655 phy->mib->fddiPORTEBError_Ct ++ ;
1656
1657 }
1658
1659 plc->ebuf_err++ ;
1660 if (plc->ebuf_cont <= 1000) {
1661 /*
1662 * Prevent counter from being wrapped after
1663 * hanging years in that interrupt.
1664 */
1665 plc->ebuf_cont++ ; /* Ebuf continuous error */
1666 }
1667
1668 #ifdef SUPERNET_3
1669 if (plc->ebuf_cont == 1000 &&
1670 ((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
1671 PLC_REV_SN3)) {
1672 /*
1673 * This interrupt remeained high for at least
1674 * 1000 consecutive interrupt calls.
1675 *
1676 * This is caused by a hardware error of the
1677 * ORION part of the Supernet III chipset.
1678 *
1679 * Disable this bit from the mask.
1680 */
1681 corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
1682 outpw(PLC(np,PL_INTR_MASK),corr_mask);
1683
1684 /*
1685 * Disconnect from the ring.
1686 * Call the driver with the reset indication.
1687 */
1688 queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
1689
1690 /*
1691 * Make an error log entry.
1692 */
1693 SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
1694
1695 /*
1696 * Indicate the Reset.
1697 */
1698 drv_reset_indication(smc) ;
1699 }
1700 #endif /* SUPERNET_3 */
1701 } else {
1702 /* Reset the continuous error variable */
1703 plc->ebuf_cont = 0 ; /* reset Ebuf continuous error */
1704 }
1705 if (cmd & PL_PHYINV) { /* physical layer invalid signal */
1706 plc->phyinv++ ;
1707 }
1708 if (cmd & PL_VSYM_CTR) { /* violation symbol counter has incr.*/
1709 plc->vsym_ctr++ ;
1710 }
1711 if (cmd & PL_MINI_CTR) { /* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1712 plc->mini_ctr++ ;
1713 }
1714 if (cmd & PL_LE_CTR) { /* link error event counter */
1715 int j ;
1716
1717 /*
1718 * note: PL_LINK_ERR_CTR MUST be read to clear it
1719 */
1720 j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
1721 i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
1722
1723 if (i < j) {
1724 /* wrapped around */
1725 i += 256 ;
1726 }
1727
1728 if (phy->lem.lem_on) {
1729 /* Note: Lem errors shall only be counted when
1730 * link is ACTIVE or LCT is active.
1731 */
1732 phy->lem.lem_errors += i ;
1733 phy->mib->fddiPORTLem_Ct += i ;
1734 }
1735 }
1736 if (cmd & PL_TPC_EXPIRED) { /* TPC timer reached zero */
1737 if (plc->p_state == PS_LCT) {
1738 /*
1739 * end of LCT
1740 */
1741 ;
1742 }
1743 plc->tpc_exp++ ;
1744 }
1745 if (cmd & PL_LS_MATCH) { /* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1746 switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
1747 case PL_I_IDLE : phy->curr_ls = PC_ILS ; break ;
1748 case PL_I_HALT : phy->curr_ls = PC_HLS ; break ;
1749 case PL_I_MASTR : phy->curr_ls = PC_MLS ; break ;
1750 case PL_I_QUIET : phy->curr_ls = PC_QLS ; break ;
1751 }
1752 }
1753 if (cmd & PL_PCM_BREAK) { /* PCM has entered the BREAK state */
1754 int reason;
1755
1756 reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
1757
1758 switch (reason) {
1759 case PL_B_PCS : plc->b_pcs++ ; break ;
1760 case PL_B_TPC : plc->b_tpc++ ; break ;
1761 case PL_B_TNE : plc->b_tne++ ; break ;
1762 case PL_B_QLS : plc->b_qls++ ; break ;
1763 case PL_B_ILS : plc->b_ils++ ; break ;
1764 case PL_B_HLS : plc->b_hls++ ; break ;
1765 }
1766
1767 /*jd 05-Aug-1999 changed: Bug #10419 */
1768 DB_PCMN(1, "PLC %d: MDcF = %x", np, smc->e.DisconnectFlag);
1769 if (smc->e.DisconnectFlag == FALSE) {
1770 DB_PCMN(1, "PLC %d: restart (reason %x)", np, reason);
1771 queue_event(smc,EVENT_PCM+np,PC_START) ;
1772 }
1773 else {
1774 DB_PCMN(1, "PLC %d: NO!! restart (reason %x)",
1775 np, reason);
1776 }
1777 return ;
1778 }
1779 /*
1780 * If both CODE & ENABLE are set ignore enable
1781 */
1782 if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
1783 queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
1784 n = inpw(PLC(np,PL_RCV_VECTOR)) ;
1785 for (i = 0 ; i < plc->p_bits ; i++) {
1786 phy->r_val[plc->p_start+i] = n & 1 ;
1787 n >>= 1 ;
1788 }
1789 }
1790 else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
1791 queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
1792 }
1793 if (cmd & PL_TRACE_PROP) { /* MLS while PC8_ACTIV || PC2_TRACE */
1794 /*PC22b*/
1795 if (!phy->tr_flag) {
1796 DB_PCMN(1, "PCM : irq TRACE_PROP %d %d",
1797 np, smc->mib.fddiSMTECMState);
1798 phy->tr_flag = TRUE ;
1799 smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
1800 queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
1801 }
1802 }
1803 /*
1804 * filter PLC glitch ???
1805 * QLS || HLS only while in PC2_TRACE state
1806 */
1807 if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
1808 /*PC22a*/
1809 if (smc->e.path_test == PT_PASSED) {
1810 DB_PCMN(1, "PCM : state = %s %d",
1811 get_pcmstate(smc, np),
1812 phy->mib->fddiPORTPCMState);
1813
1814 smc->e.path_test = PT_PENDING ;
1815 queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
1816 }
1817 }
1818 if (cmd & PL_TNE_EXPIRED) { /* TNE: length of noise events */
1819 /* break_required (TNE > NS_Max) */
1820 if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
1821 if (!phy->tr_flag) {
1822 DB_PCMN(1, "PCM %c : PC81 %s",
1823 phy->phy_name, "NSE");
1824 queue_event(smc, EVENT_PCM + np, PC_START);
1825 return;
1826 }
1827 }
1828 }
1829 #if 0
1830 if (cmd & PL_NP_ERR) { /* NP has requested to r/w an inv reg*/
1831 /*
1832 * It's a bug by AMD
1833 */
1834 plc->np_err++ ;
1835 }
1836 /* pin inactiv (GND) */
1837 if (cmd & PL_PARITY_ERR) { /* p. error dedected on TX9-0 inp */
1838 plc->parity_err++ ;
1839 }
1840 if (cmd & PL_LSDO) { /* carrier detected */
1841 ;
1842 }
1843 #endif
1844 }
1845
1846 #ifdef DEBUG
1847 /*
1848 * fill state struct
1849 */
pcm_get_state(struct s_smc * smc,struct smt_state * state)1850 void pcm_get_state(struct s_smc *smc, struct smt_state *state)
1851 {
1852 struct s_phy *phy ;
1853 struct pcm_state *pcs ;
1854 int i ;
1855 int ii ;
1856 short rbits ;
1857 short tbits ;
1858 struct fddi_mib_p *mib ;
1859
1860 for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
1861 i++ , phy++, pcs++ ) {
1862 mib = phy->mib ;
1863 pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
1864 pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
1865 pcs->pcm_mode = phy->pc_mode ;
1866 pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
1867 pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
1868 pcs->pcm_lsf = phy->ls_flag ;
1869 pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
1870 pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
1871 for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
1872 rbits <<= 1 ;
1873 tbits <<= 1 ;
1874 if (phy->r_val[NUMBITS-1-ii])
1875 rbits |= 1 ;
1876 if (phy->t_val[NUMBITS-1-ii])
1877 tbits |= 1 ;
1878 }
1879 pcs->pcm_r_val = rbits ;
1880 pcs->pcm_t_val = tbits ;
1881 }
1882 }
1883
get_pcm_state(struct s_smc * smc,int np)1884 int get_pcm_state(struct s_smc *smc, int np)
1885 {
1886 int pcs ;
1887
1888 SK_UNUSED(smc) ;
1889
1890 switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1891 case PL_PC0 : pcs = PC_STOP ; break ;
1892 case PL_PC1 : pcs = PC_START ; break ;
1893 case PL_PC2 : pcs = PC_TRACE ; break ;
1894 case PL_PC3 : pcs = PC_SIGNAL ; break ;
1895 case PL_PC4 : pcs = PC_SIGNAL ; break ;
1896 case PL_PC5 : pcs = PC_SIGNAL ; break ;
1897 case PL_PC6 : pcs = PC_JOIN ; break ;
1898 case PL_PC7 : pcs = PC_JOIN ; break ;
1899 case PL_PC8 : pcs = PC_ENABLE ; break ;
1900 case PL_PC9 : pcs = PC_MAINT ; break ;
1901 default : pcs = PC_DISABLE ; break ;
1902 }
1903 return pcs;
1904 }
1905
get_linestate(struct s_smc * smc,int np)1906 char *get_linestate(struct s_smc *smc, int np)
1907 {
1908 char *ls = "" ;
1909
1910 SK_UNUSED(smc) ;
1911
1912 switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
1913 case PL_L_NLS : ls = "NOISE" ; break ;
1914 case PL_L_ALS : ls = "ACTIV" ; break ;
1915 case PL_L_UND : ls = "UNDEF" ; break ;
1916 case PL_L_ILS4: ls = "ILS 4" ; break ;
1917 case PL_L_QLS : ls = "QLS" ; break ;
1918 case PL_L_MLS : ls = "MLS" ; break ;
1919 case PL_L_HLS : ls = "HLS" ; break ;
1920 case PL_L_ILS16:ls = "ILS16" ; break ;
1921 #ifdef lint
1922 default: ls = "unknown" ; break ;
1923 #endif
1924 }
1925 return ls;
1926 }
1927
get_pcmstate(struct s_smc * smc,int np)1928 char *get_pcmstate(struct s_smc *smc, int np)
1929 {
1930 char *pcs ;
1931
1932 SK_UNUSED(smc) ;
1933
1934 switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1935 case PL_PC0 : pcs = "OFF" ; break ;
1936 case PL_PC1 : pcs = "BREAK" ; break ;
1937 case PL_PC2 : pcs = "TRACE" ; break ;
1938 case PL_PC3 : pcs = "CONNECT"; break ;
1939 case PL_PC4 : pcs = "NEXT" ; break ;
1940 case PL_PC5 : pcs = "SIGNAL" ; break ;
1941 case PL_PC6 : pcs = "JOIN" ; break ;
1942 case PL_PC7 : pcs = "VERIFY" ; break ;
1943 case PL_PC8 : pcs = "ACTIV" ; break ;
1944 case PL_PC9 : pcs = "MAINT" ; break ;
1945 default : pcs = "UNKNOWN" ; break ;
1946 }
1947 return pcs;
1948 }
1949
list_phy(struct s_smc * smc)1950 void list_phy(struct s_smc *smc)
1951 {
1952 struct s_plc *plc ;
1953 int np ;
1954
1955 for (np = 0 ; np < NUMPHYS ; np++) {
1956 plc = &smc->y[np].plc ;
1957 printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
1958 printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1959 plc->soft_err,plc->b_pcs);
1960 printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1961 plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
1962 printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1963 plc->ebuf_err,plc->b_tne) ;
1964 printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1965 plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
1966 printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1967 plc->vsym_ctr,plc->b_ils) ;
1968 printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1969 plc->mini_ctr,plc->b_hls) ;
1970 printf("\tnodepr_err: %ld\n",plc->np_err) ;
1971 printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
1972 printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
1973 }
1974 }
1975
1976
1977 #ifdef CONCENTRATOR
pcm_lem_dump(struct s_smc * smc)1978 void pcm_lem_dump(struct s_smc *smc)
1979 {
1980 int i ;
1981 struct s_phy *phy ;
1982 struct fddi_mib_p *mib ;
1983
1984 char *entostring() ;
1985
1986 printf("PHY errors BER\n") ;
1987 printf("----------------------\n") ;
1988 for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
1989 if (!plc_is_installed(smc,i))
1990 continue ;
1991 mib = phy->mib ;
1992 printf("%s\t%ld\t10E-%d\n",
1993 entostring(smc,ENTITY_PHY(i)),
1994 mib->fddiPORTLem_Ct,
1995 mib->fddiPORTLer_Estimate) ;
1996 }
1997 }
1998 #endif
1999 #endif
2000