• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * Copyright 2016-2019 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10 
11 #include "include/armcp_if.h"
12 #include "include/qman_if.h"
13 
14 #include <linux/cdev.h>
15 #include <linux/iopoll.h>
16 #include <linux/irqreturn.h>
17 #include <linux/dma-fence.h>
18 #include <linux/dma-direction.h>
19 #include <linux/scatterlist.h>
20 #include <linux/hashtable.h>
21 
22 #define HL_NAME				"habanalabs"
23 
24 #define HL_MMAP_CB_MASK			(0x8000000000000000ull >> PAGE_SHIFT)
25 
26 #define HL_PENDING_RESET_PER_SEC	5
27 
28 #define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
29 
30 #define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
31 
32 #define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
33 
34 #define HL_ARMCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
35 #define HL_ARMCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
36 
37 #define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
38 
39 #define HL_SIM_MAX_TIMEOUT_US		10000000 /* 10s */
40 
41 #define HL_MAX_QUEUES			128
42 
43 #define HL_MAX_JOBS_PER_CS		64
44 
45 /* MUST BE POWER OF 2 and larger than 1 */
46 #define HL_MAX_PENDING_CS		64
47 
48 #define HL_IDLE_BUSY_TS_ARR_SIZE	4096
49 
50 /* Memory */
51 #define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
52 
53 /* MMU */
54 #define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
55 
56 /**
57  * struct pgt_info - MMU hop page info.
58  * @node: hash linked-list node for the pgts shadow hash of pgts.
59  * @phys_addr: physical address of the pgt.
60  * @shadow_addr: shadow hop in the host.
61  * @ctx: pointer to the owner ctx.
62  * @num_of_ptes: indicates how many ptes are used in the pgt.
63  *
64  * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
65  * is needed during mapping, a new page is allocated and this structure holds
66  * its essential information. During unmapping, if no valid PTEs remained in the
67  * page, it is freed with its pgt_info structure.
68  */
69 struct pgt_info {
70 	struct hlist_node	node;
71 	u64			phys_addr;
72 	u64			shadow_addr;
73 	struct hl_ctx		*ctx;
74 	int			num_of_ptes;
75 };
76 
77 struct hl_device;
78 struct hl_fpriv;
79 
80 /**
81  * enum hl_queue_type - Supported QUEUE types.
82  * @QUEUE_TYPE_NA: queue is not available.
83  * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
84  *                  host.
85  * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
86  *			memories and/or operates the compute engines.
87  * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
88  */
89 enum hl_queue_type {
90 	QUEUE_TYPE_NA,
91 	QUEUE_TYPE_EXT,
92 	QUEUE_TYPE_INT,
93 	QUEUE_TYPE_CPU
94 };
95 
96 /**
97  * struct hw_queue_properties - queue information.
98  * @type: queue type.
99  * @driver_only: true if only the driver is allowed to send a job to this queue,
100  *               false otherwise.
101  */
102 struct hw_queue_properties {
103 	enum hl_queue_type	type;
104 	u8			driver_only;
105 };
106 
107 /**
108  * enum vm_type_t - virtual memory mapping request information.
109  * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
110  * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
111  */
112 enum vm_type_t {
113 	VM_TYPE_USERPTR,
114 	VM_TYPE_PHYS_PACK
115 };
116 
117 /**
118  * enum hl_device_hw_state - H/W device state. use this to understand whether
119  *                           to do reset before hw_init or not
120  * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
121  * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
122  *                            hw_init
123  */
124 enum hl_device_hw_state {
125 	HL_DEVICE_HW_STATE_CLEAN = 0,
126 	HL_DEVICE_HW_STATE_DIRTY
127 };
128 
129 /**
130  * struct asic_fixed_properties - ASIC specific immutable properties.
131  * @hw_queues_props: H/W queues properties.
132  * @armcp_info: received various information from ArmCP regarding the H/W, e.g.
133  *		available sensors.
134  * @uboot_ver: F/W U-boot version.
135  * @preboot_ver: F/W Preboot version.
136  * @sram_base_address: SRAM physical start address.
137  * @sram_end_address: SRAM physical end address.
138  * @sram_user_base_address - SRAM physical start address for user access.
139  * @dram_base_address: DRAM physical start address.
140  * @dram_end_address: DRAM physical end address.
141  * @dram_user_base_address: DRAM physical start address for user access.
142  * @dram_size: DRAM total size.
143  * @dram_pci_bar_size: size of PCI bar towards DRAM.
144  * @max_power_default: max power of the device after reset
145  * @va_space_host_start_address: base address of virtual memory range for
146  *                               mapping host memory.
147  * @va_space_host_end_address: end address of virtual memory range for
148  *                             mapping host memory.
149  * @va_space_dram_start_address: base address of virtual memory range for
150  *                               mapping DRAM memory.
151  * @va_space_dram_end_address: end address of virtual memory range for
152  *                             mapping DRAM memory.
153  * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
154  *                                      fault.
155  * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
156  * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
157  * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
158  * @mmu_dram_default_page_addr: DRAM default page physical address.
159  * @mmu_pgt_size: MMU page tables total size.
160  * @mmu_pte_size: PTE size in MMU page tables.
161  * @mmu_hop_table_size: MMU hop table size.
162  * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
163  * @dram_page_size: page size for MMU DRAM allocation.
164  * @cfg_size: configuration space size on SRAM.
165  * @sram_size: total size of SRAM.
166  * @max_asid: maximum number of open contexts (ASIDs).
167  * @num_of_events: number of possible internal H/W IRQs.
168  * @psoc_pci_pll_nr: PCI PLL NR value.
169  * @psoc_pci_pll_nf: PCI PLL NF value.
170  * @psoc_pci_pll_od: PCI PLL OD value.
171  * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
172  * @completion_queues_count: number of completion queues.
173  * @high_pll: high PLL frequency used by the device.
174  * @cb_pool_cb_cnt: number of CBs in the CB pool.
175  * @cb_pool_cb_size: size of each CB in the CB pool.
176  * @tpc_enabled_mask: which TPCs are enabled.
177  */
178 struct asic_fixed_properties {
179 	struct hw_queue_properties	hw_queues_props[HL_MAX_QUEUES];
180 	struct armcp_info	armcp_info;
181 	char			uboot_ver[VERSION_MAX_LEN];
182 	char			preboot_ver[VERSION_MAX_LEN];
183 	u64			sram_base_address;
184 	u64			sram_end_address;
185 	u64			sram_user_base_address;
186 	u64			dram_base_address;
187 	u64			dram_end_address;
188 	u64			dram_user_base_address;
189 	u64			dram_size;
190 	u64			dram_pci_bar_size;
191 	u64			max_power_default;
192 	u64			va_space_host_start_address;
193 	u64			va_space_host_end_address;
194 	u64			va_space_dram_start_address;
195 	u64			va_space_dram_end_address;
196 	u64			dram_size_for_default_page_mapping;
197 	u64			pcie_dbi_base_address;
198 	u64			pcie_aux_dbi_reg_addr;
199 	u64			mmu_pgt_addr;
200 	u64			mmu_dram_default_page_addr;
201 	u32			mmu_pgt_size;
202 	u32			mmu_pte_size;
203 	u32			mmu_hop_table_size;
204 	u32			mmu_hop0_tables_total_size;
205 	u32			dram_page_size;
206 	u32			cfg_size;
207 	u32			sram_size;
208 	u32			max_asid;
209 	u32			num_of_events;
210 	u32			psoc_pci_pll_nr;
211 	u32			psoc_pci_pll_nf;
212 	u32			psoc_pci_pll_od;
213 	u32			psoc_pci_pll_div_factor;
214 	u32			high_pll;
215 	u32			cb_pool_cb_cnt;
216 	u32			cb_pool_cb_size;
217 	u8			completion_queues_count;
218 	u8			tpc_enabled_mask;
219 };
220 
221 /**
222  * struct hl_dma_fence - wrapper for fence object used by command submissions.
223  * @base_fence: kernel fence object.
224  * @lock: spinlock to protect fence.
225  * @hdev: habanalabs device structure.
226  * @cs_seq: command submission sequence number.
227  */
228 struct hl_dma_fence {
229 	struct dma_fence	base_fence;
230 	spinlock_t		lock;
231 	struct hl_device	*hdev;
232 	u64			cs_seq;
233 };
234 
235 /*
236  * Command Buffers
237  */
238 
239 #define HL_MAX_CB_SIZE		0x200000	/* 2MB */
240 
241 /**
242  * struct hl_cb_mgr - describes a Command Buffer Manager.
243  * @cb_lock: protects cb_handles.
244  * @cb_handles: an idr to hold all command buffer handles.
245  */
246 struct hl_cb_mgr {
247 	spinlock_t		cb_lock;
248 	struct idr		cb_handles; /* protected by cb_lock */
249 };
250 
251 /**
252  * struct hl_cb - describes a Command Buffer.
253  * @refcount: reference counter for usage of the CB.
254  * @hdev: pointer to device this CB belongs to.
255  * @lock: spinlock to protect mmap/cs flows.
256  * @debugfs_list: node in debugfs list of command buffers.
257  * @pool_list: node in pool list of command buffers.
258  * @kernel_address: Holds the CB's kernel virtual address.
259  * @bus_address: Holds the CB's DMA address.
260  * @mmap_size: Holds the CB's size that was mmaped.
261  * @size: holds the CB's size.
262  * @id: the CB's ID.
263  * @cs_cnt: holds number of CS that this CB participates in.
264  * @ctx_id: holds the ID of the owner's context.
265  * @mmap: true if the CB is currently mmaped to user.
266  * @is_pool: true if CB was acquired from the pool, false otherwise.
267  */
268 struct hl_cb {
269 	struct kref		refcount;
270 	struct hl_device	*hdev;
271 	spinlock_t		lock;
272 	struct list_head	debugfs_list;
273 	struct list_head	pool_list;
274 	u64			kernel_address;
275 	dma_addr_t		bus_address;
276 	u32			mmap_size;
277 	u32			size;
278 	u32			id;
279 	u32			cs_cnt;
280 	u32			ctx_id;
281 	u8			mmap;
282 	u8			is_pool;
283 };
284 
285 
286 /*
287  * QUEUES
288  */
289 
290 struct hl_cs_job;
291 
292 /*
293  * Currently, there are two limitations on the maximum length of a queue:
294  *
295  * 1. The memory footprint of the queue. The current allocated space for the
296  *    queue is PAGE_SIZE. Because each entry in the queue is HL_BD_SIZE,
297  *    the maximum length of the queue can be PAGE_SIZE / HL_BD_SIZE,
298  *    which currently is 4096/16 = 256 entries.
299  *
300  *    To increase that, we need either to decrease the size of the
301  *    BD (difficult), or allocate more than a single page (easier).
302  *
303  * 2. Because the size of the JOB handle field in the BD CTL / completion queue
304  *    is 10-bit, we can have up to 1024 open jobs per hardware queue.
305  *    Therefore, each queue can hold up to 1024 entries.
306  *
307  * HL_QUEUE_LENGTH is in units of struct hl_bd.
308  * HL_QUEUE_LENGTH * sizeof(struct hl_bd) should be <= HL_PAGE_SIZE
309  */
310 
311 #define HL_PAGE_SIZE			4096 /* minimum page size */
312 /* Must be power of 2 (HL_PAGE_SIZE / HL_BD_SIZE) */
313 #define HL_QUEUE_LENGTH			256
314 #define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
315 
316 /*
317  * HL_CQ_LENGTH is in units of struct hl_cq_entry.
318  * HL_CQ_LENGTH should be <= HL_PAGE_SIZE
319  */
320 #define HL_CQ_LENGTH			HL_QUEUE_LENGTH
321 #define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
322 
323 /* Must be power of 2 (HL_PAGE_SIZE / HL_EQ_ENTRY_SIZE) */
324 #define HL_EQ_LENGTH			64
325 #define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
326 
327 /* Host <-> ArmCP shared memory size */
328 #define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
329 
330 /**
331  * struct hl_hw_queue - describes a H/W transport queue.
332  * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
333  * @queue_type: type of queue.
334  * @kernel_address: holds the queue's kernel virtual address.
335  * @bus_address: holds the queue's DMA address.
336  * @pi: holds the queue's pi value.
337  * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
338  * @hw_queue_id: the id of the H/W queue.
339  * @int_queue_len: length of internal queue (number of entries).
340  * @valid: is the queue valid (we have array of 32 queues, not all of them
341  *		exists).
342  */
343 struct hl_hw_queue {
344 	struct hl_cs_job	**shadow_queue;
345 	enum hl_queue_type	queue_type;
346 	u64			kernel_address;
347 	dma_addr_t		bus_address;
348 	u32			pi;
349 	u32			ci;
350 	u32			hw_queue_id;
351 	u16			int_queue_len;
352 	u8			valid;
353 };
354 
355 /**
356  * struct hl_cq - describes a completion queue
357  * @hdev: pointer to the device structure
358  * @kernel_address: holds the queue's kernel virtual address
359  * @bus_address: holds the queue's DMA address
360  * @hw_queue_id: the id of the matching H/W queue
361  * @ci: ci inside the queue
362  * @pi: pi inside the queue
363  * @free_slots_cnt: counter of free slots in queue
364  */
365 struct hl_cq {
366 	struct hl_device	*hdev;
367 	u64			kernel_address;
368 	dma_addr_t		bus_address;
369 	u32			hw_queue_id;
370 	u32			ci;
371 	u32			pi;
372 	atomic_t		free_slots_cnt;
373 };
374 
375 /**
376  * struct hl_eq - describes the event queue (single one per device)
377  * @hdev: pointer to the device structure
378  * @kernel_address: holds the queue's kernel virtual address
379  * @bus_address: holds the queue's DMA address
380  * @ci: ci inside the queue
381  */
382 struct hl_eq {
383 	struct hl_device	*hdev;
384 	u64			kernel_address;
385 	dma_addr_t		bus_address;
386 	u32			ci;
387 };
388 
389 
390 /*
391  * ASICs
392  */
393 
394 /**
395  * enum hl_asic_type - supported ASIC types.
396  * @ASIC_INVALID: Invalid ASIC type.
397  * @ASIC_GOYA: Goya device.
398  */
399 enum hl_asic_type {
400 	ASIC_INVALID,
401 	ASIC_GOYA
402 };
403 
404 struct hl_cs_parser;
405 
406 /**
407  * enum hl_pm_mng_profile - power management profile.
408  * @PM_AUTO: internal clock is set by the Linux driver.
409  * @PM_MANUAL: internal clock is set by the user.
410  * @PM_LAST: last power management type.
411  */
412 enum hl_pm_mng_profile {
413 	PM_AUTO = 1,
414 	PM_MANUAL,
415 	PM_LAST
416 };
417 
418 /**
419  * enum hl_pll_frequency - PLL frequency.
420  * @PLL_HIGH: high frequency.
421  * @PLL_LOW: low frequency.
422  * @PLL_LAST: last frequency values that were configured by the user.
423  */
424 enum hl_pll_frequency {
425 	PLL_HIGH = 1,
426 	PLL_LOW,
427 	PLL_LAST
428 };
429 
430 /**
431  * struct hl_asic_funcs - ASIC specific functions that are can be called from
432  *                        common code.
433  * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
434  * @early_fini: tears down what was done in early_init.
435  * @late_init: sets up late driver/hw state (post hw_init) - Optional.
436  * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
437  * @sw_init: sets up driver state, does not configure H/W.
438  * @sw_fini: tears down driver state, does not configure H/W.
439  * @hw_init: sets up the H/W state.
440  * @hw_fini: tears down the H/W state.
441  * @halt_engines: halt engines, needed for reset sequence. This also disables
442  *                interrupts from the device. Should be called before
443  *                hw_fini and before CS rollback.
444  * @suspend: handles IP specific H/W or SW changes for suspend.
445  * @resume: handles IP specific H/W or SW changes for resume.
446  * @cb_mmap: maps a CB.
447  * @ring_doorbell: increment PI on a given QMAN.
448  * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
449  *             function because the PQs are located in different memory areas
450  *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
451  *             writing the PQE must match the destination memory area
452  *             properties.
453  * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
454  *                           dma_alloc_coherent(). This is ASIC function because
455  *                           its implementation is not trivial when the driver
456  *                           is loaded in simulation mode (not upstreamed).
457  * @asic_dma_free_coherent:  Free coherent DMA memory by calling
458  *                           dma_free_coherent(). This is ASIC function because
459  *                           its implementation is not trivial when the driver
460  *                           is loaded in simulation mode (not upstreamed).
461  * @get_int_queue_base: get the internal queue base address.
462  * @test_queues: run simple test on all queues for sanity check.
463  * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
464  *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
465  * @asic_dma_pool_free: free small DMA allocation from pool.
466  * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
467  * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
468  * @hl_dma_unmap_sg: DMA unmap scatter-gather list.
469  * @cs_parser: parse Command Submission.
470  * @asic_dma_map_sg: DMA map scatter-gather list.
471  * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
472  * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
473  * @update_eq_ci: update event queue CI.
474  * @context_switch: called upon ASID context switch.
475  * @restore_phase_topology: clear all SOBs amd MONs.
476  * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM.
477  * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM.
478  * @add_device_attr: add ASIC specific device attributes.
479  * @handle_eqe: handle event queue entry (IRQ) from ArmCP.
480  * @set_pll_profile: change PLL profile (manual/automatic).
481  * @get_events_stat: retrieve event queue entries histogram.
482  * @read_pte: read MMU page table entry from DRAM.
483  * @write_pte: write MMU page table entry to DRAM.
484  * @mmu_invalidate_cache: flush MMU STLB cache, either with soft (L1 only) or
485  *                        hard (L0 & L1) flush.
486  * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
487  *                              ASID-VA-size mask.
488  * @send_heartbeat: send is-alive packet to ArmCP and verify response.
489  * @debug_coresight: perform certain actions on Coresight for debugging.
490  * @is_device_idle: return true if device is idle, false otherwise.
491  * @soft_reset_late_init: perform certain actions needed after soft reset.
492  * @hw_queues_lock: acquire H/W queues lock.
493  * @hw_queues_unlock: release H/W queues lock.
494  * @get_pci_id: retrieve PCI ID.
495  * @get_eeprom_data: retrieve EEPROM data from F/W.
496  * @send_cpu_message: send buffer to ArmCP.
497  * @get_hw_state: retrieve the H/W state
498  * @pci_bars_map: Map PCI BARs.
499  * @set_dram_bar_base: Set DRAM BAR to map specific device address. Returns
500  *                     old address the bar pointed to or U64_MAX for failure
501  * @init_iatu: Initialize the iATU unit inside the PCI controller.
502  * @rreg: Read a register. Needed for simulator support.
503  * @wreg: Write a register. Needed for simulator support.
504  * @halt_coresight: stop the ETF and ETR traces.
505  */
506 struct hl_asic_funcs {
507 	int (*early_init)(struct hl_device *hdev);
508 	int (*early_fini)(struct hl_device *hdev);
509 	int (*late_init)(struct hl_device *hdev);
510 	void (*late_fini)(struct hl_device *hdev);
511 	int (*sw_init)(struct hl_device *hdev);
512 	int (*sw_fini)(struct hl_device *hdev);
513 	int (*hw_init)(struct hl_device *hdev);
514 	void (*hw_fini)(struct hl_device *hdev, bool hard_reset);
515 	void (*halt_engines)(struct hl_device *hdev, bool hard_reset);
516 	int (*suspend)(struct hl_device *hdev);
517 	int (*resume)(struct hl_device *hdev);
518 	int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
519 			u64 kaddress, phys_addr_t paddress, u32 size);
520 	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
521 	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
522 			struct hl_bd *bd);
523 	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
524 					dma_addr_t *dma_handle, gfp_t flag);
525 	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
526 					void *cpu_addr, dma_addr_t dma_handle);
527 	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
528 				dma_addr_t *dma_handle, u16 *queue_len);
529 	int (*test_queues)(struct hl_device *hdev);
530 	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
531 				gfp_t mem_flags, dma_addr_t *dma_handle);
532 	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
533 				dma_addr_t dma_addr);
534 	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
535 				size_t size, dma_addr_t *dma_handle);
536 	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
537 				size_t size, void *vaddr);
538 	void (*hl_dma_unmap_sg)(struct hl_device *hdev,
539 				struct scatterlist *sgl, int nents,
540 				enum dma_data_direction dir);
541 	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
542 	int (*asic_dma_map_sg)(struct hl_device *hdev,
543 				struct scatterlist *sgl, int nents,
544 				enum dma_data_direction dir);
545 	u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
546 					struct sg_table *sgt);
547 	void (*add_end_of_cb_packets)(struct hl_device *hdev,
548 					u64 kernel_address, u32 len,
549 					u64 cq_addr, u32 cq_val, u32 msix_num);
550 	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
551 	int (*context_switch)(struct hl_device *hdev, u32 asid);
552 	void (*restore_phase_topology)(struct hl_device *hdev);
553 	int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val);
554 	int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val);
555 	void (*add_device_attr)(struct hl_device *hdev,
556 				struct attribute_group *dev_attr_grp);
557 	void (*handle_eqe)(struct hl_device *hdev,
558 				struct hl_eq_entry *eq_entry);
559 	void (*set_pll_profile)(struct hl_device *hdev,
560 			enum hl_pll_frequency freq);
561 	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
562 				u32 *size);
563 	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
564 	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
565 	void (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard);
566 	void (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
567 			u32 asid, u64 va, u64 size);
568 	int (*send_heartbeat)(struct hl_device *hdev);
569 	int (*debug_coresight)(struct hl_device *hdev, void *data);
570 	bool (*is_device_idle)(struct hl_device *hdev, u32 *mask,
571 				struct seq_file *s);
572 	int (*soft_reset_late_init)(struct hl_device *hdev);
573 	void (*hw_queues_lock)(struct hl_device *hdev);
574 	void (*hw_queues_unlock)(struct hl_device *hdev);
575 	u32 (*get_pci_id)(struct hl_device *hdev);
576 	int (*get_eeprom_data)(struct hl_device *hdev, void *data,
577 				size_t max_size);
578 	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
579 				u16 len, u32 timeout, long *result);
580 	enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev);
581 	int (*pci_bars_map)(struct hl_device *hdev);
582 	u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
583 	int (*init_iatu)(struct hl_device *hdev);
584 	u32 (*rreg)(struct hl_device *hdev, u32 reg);
585 	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
586 	void (*halt_coresight)(struct hl_device *hdev);
587 };
588 
589 
590 /*
591  * CONTEXTS
592  */
593 
594 #define HL_KERNEL_ASID_ID	0
595 
596 /**
597  * struct hl_va_range - virtual addresses range.
598  * @lock: protects the virtual addresses list.
599  * @list: list of virtual addresses blocks available for mappings.
600  * @start_addr: range start address.
601  * @end_addr: range end address.
602  */
603 struct hl_va_range {
604 	struct mutex		lock;
605 	struct list_head	list;
606 	u64			start_addr;
607 	u64			end_addr;
608 };
609 
610 /**
611  * struct hl_ctx - user/kernel context.
612  * @mem_hash: holds mapping from virtual address to virtual memory area
613  *		descriptor (hl_vm_phys_pg_list or hl_userptr).
614  * @mmu_phys_hash: holds a mapping from physical address to pgt_info structure.
615  * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
616  * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
617  * @hdev: pointer to the device structure.
618  * @refcount: reference counter for the context. Context is released only when
619  *		this hits 0l. It is incremented on CS and CS_WAIT.
620  * @cs_pending: array of DMA fence objects representing pending CS.
621  * @host_va_range: holds available virtual addresses for host mappings.
622  * @dram_va_range: holds available virtual addresses for DRAM mappings.
623  * @mem_hash_lock: protects the mem_hash.
624  * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifing the
625  *            MMU hash or walking the PGT requires talking this lock
626  * @debugfs_list: node in debugfs list of contexts.
627  * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
628  *			to user so user could inquire about CS. It is used as
629  *			index to cs_pending array.
630  * @dram_default_hops: array that holds all hops addresses needed for default
631  *                     DRAM mapping.
632  * @cs_lock: spinlock to protect cs_sequence.
633  * @dram_phys_mem: amount of used physical DRAM memory by this context.
634  * @thread_ctx_switch_token: token to prevent multiple threads of the same
635  *				context	from running the context switch phase.
636  *				Only a single thread should run it.
637  * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
638  *				the context switch phase from moving to their
639  *				execution phase before the context switch phase
640  *				has finished.
641  * @asid: context's unique address space ID in the device's MMU.
642  * @handle: context's opaque handle for user
643  */
644 struct hl_ctx {
645 	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
646 	DECLARE_HASHTABLE(mmu_phys_hash, MMU_HASH_TABLE_BITS);
647 	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
648 	struct hl_fpriv		*hpriv;
649 	struct hl_device	*hdev;
650 	struct kref		refcount;
651 	struct dma_fence	*cs_pending[HL_MAX_PENDING_CS];
652 	struct hl_va_range	host_va_range;
653 	struct hl_va_range	dram_va_range;
654 	struct mutex		mem_hash_lock;
655 	struct mutex		mmu_lock;
656 	struct list_head	debugfs_list;
657 	u64			cs_sequence;
658 	u64			*dram_default_hops;
659 	spinlock_t		cs_lock;
660 	atomic64_t		dram_phys_mem;
661 	atomic_t		thread_ctx_switch_token;
662 	u32			thread_ctx_switch_wait_token;
663 	u32			asid;
664 	u32			handle;
665 };
666 
667 /**
668  * struct hl_ctx_mgr - for handling multiple contexts.
669  * @ctx_lock: protects ctx_handles.
670  * @ctx_handles: idr to hold all ctx handles.
671  */
672 struct hl_ctx_mgr {
673 	struct mutex		ctx_lock;
674 	struct idr		ctx_handles;
675 };
676 
677 
678 
679 /*
680  * COMMAND SUBMISSIONS
681  */
682 
683 /**
684  * struct hl_userptr - memory mapping chunk information
685  * @vm_type: type of the VM.
686  * @job_node: linked-list node for hanging the object on the Job's list.
687  * @vec: pointer to the frame vector.
688  * @sgt: pointer to the scatter-gather table that holds the pages.
689  * @dir: for DMA unmapping, the direction must be supplied, so save it.
690  * @debugfs_list: node in debugfs list of command submissions.
691  * @addr: user-space virtual pointer to the start of the memory area.
692  * @size: size of the memory area to pin & map.
693  * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
694  */
695 struct hl_userptr {
696 	enum vm_type_t		vm_type; /* must be first */
697 	struct list_head	job_node;
698 	struct frame_vector	*vec;
699 	struct sg_table		*sgt;
700 	enum dma_data_direction dir;
701 	struct list_head	debugfs_list;
702 	u64			addr;
703 	u32			size;
704 	u8			dma_mapped;
705 };
706 
707 /**
708  * struct hl_cs - command submission.
709  * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
710  * @ctx: the context this CS belongs to.
711  * @job_list: list of the CS's jobs in the various queues.
712  * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
713  * @refcount: reference counter for usage of the CS.
714  * @fence: pointer to the fence object of this CS.
715  * @work_tdr: delayed work node for TDR.
716  * @mirror_node : node in device mirror list of command submissions.
717  * @debugfs_list: node in debugfs list of command submissions.
718  * @sequence: the sequence number of this CS.
719  * @submitted: true if CS was submitted to H/W.
720  * @completed: true if CS was completed by device.
721  * @timedout : true if CS was timedout.
722  * @tdr_active: true if TDR was activated for this CS (to prevent
723  *		double TDR activation).
724  * @aborted: true if CS was aborted due to some device error.
725  */
726 struct hl_cs {
727 	u8			jobs_in_queue_cnt[HL_MAX_QUEUES];
728 	struct hl_ctx		*ctx;
729 	struct list_head	job_list;
730 	spinlock_t		job_lock;
731 	struct kref		refcount;
732 	struct dma_fence	*fence;
733 	struct delayed_work	work_tdr;
734 	struct list_head	mirror_node;
735 	struct list_head	debugfs_list;
736 	u64			sequence;
737 	u8			submitted;
738 	u8			completed;
739 	u8			timedout;
740 	u8			tdr_active;
741 	u8			aborted;
742 };
743 
744 /**
745  * struct hl_cs_job - command submission job.
746  * @cs_node: the node to hang on the CS jobs list.
747  * @cs: the CS this job belongs to.
748  * @user_cb: the CB we got from the user.
749  * @patched_cb: in case of patching, this is internal CB which is submitted on
750  *		the queue instead of the CB we got from the IOCTL.
751  * @finish_work: workqueue object to run when job is completed.
752  * @userptr_list: linked-list of userptr mappings that belong to this job and
753  *			wait for completion.
754  * @debugfs_list: node in debugfs list of command submission jobs.
755  * @id: the id of this job inside a CS.
756  * @hw_queue_id: the id of the H/W queue this job is submitted to.
757  * @user_cb_size: the actual size of the CB we got from the user.
758  * @job_cb_size: the actual size of the CB that we put on the queue.
759  * @ext_queue: whether the job is for external queue or internal queue.
760  */
761 struct hl_cs_job {
762 	struct list_head	cs_node;
763 	struct hl_cs		*cs;
764 	struct hl_cb		*user_cb;
765 	struct hl_cb		*patched_cb;
766 	struct work_struct	finish_work;
767 	struct list_head	userptr_list;
768 	struct list_head	debugfs_list;
769 	u32			id;
770 	u32			hw_queue_id;
771 	u32			user_cb_size;
772 	u32			job_cb_size;
773 	u8			ext_queue;
774 };
775 
776 /**
777  * struct hl_cs_parser - command submission paerser properties.
778  * @user_cb: the CB we got from the user.
779  * @patched_cb: in case of patching, this is internal CB which is submitted on
780  *		the queue instead of the CB we got from the IOCTL.
781  * @job_userptr_list: linked-list of userptr mappings that belong to the related
782  *			job and wait for completion.
783  * @cs_sequence: the sequence number of the related CS.
784  * @ctx_id: the ID of the context the related CS belongs to.
785  * @hw_queue_id: the id of the H/W queue this job is submitted to.
786  * @user_cb_size: the actual size of the CB we got from the user.
787  * @patched_cb_size: the size of the CB after parsing.
788  * @ext_queue: whether the job is for external queue or internal queue.
789  * @job_id: the id of the related job inside the related CS.
790  */
791 struct hl_cs_parser {
792 	struct hl_cb		*user_cb;
793 	struct hl_cb		*patched_cb;
794 	struct list_head	*job_userptr_list;
795 	u64			cs_sequence;
796 	u32			ctx_id;
797 	u32			hw_queue_id;
798 	u32			user_cb_size;
799 	u32			patched_cb_size;
800 	u8			ext_queue;
801 	u8			job_id;
802 };
803 
804 
805 /*
806  * MEMORY STRUCTURE
807  */
808 
809 /**
810  * struct hl_vm_hash_node - hash element from virtual address to virtual
811  *				memory area descriptor (hl_vm_phys_pg_list or
812  *				hl_userptr).
813  * @node: node to hang on the hash table in context object.
814  * @vaddr: key virtual address.
815  * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
816  */
817 struct hl_vm_hash_node {
818 	struct hlist_node	node;
819 	u64			vaddr;
820 	void			*ptr;
821 };
822 
823 /**
824  * struct hl_vm_phys_pg_pack - physical page pack.
825  * @vm_type: describes the type of the virtual area descriptor.
826  * @pages: the physical page array.
827  * @npages: num physical pages in the pack.
828  * @total_size: total size of all the pages in this list.
829  * @mapping_cnt: number of shared mappings.
830  * @asid: the context related to this list.
831  * @page_size: size of each page in the pack.
832  * @flags: HL_MEM_* flags related to this list.
833  * @handle: the provided handle related to this list.
834  * @offset: offset from the first page.
835  * @contiguous: is contiguous physical memory.
836  * @created_from_userptr: is product of host virtual address.
837  */
838 struct hl_vm_phys_pg_pack {
839 	enum vm_type_t		vm_type; /* must be first */
840 	u64			*pages;
841 	u64			npages;
842 	u64			total_size;
843 	atomic_t		mapping_cnt;
844 	u32			asid;
845 	u32			page_size;
846 	u32			flags;
847 	u32			handle;
848 	u32			offset;
849 	u8			contiguous;
850 	u8			created_from_userptr;
851 };
852 
853 /**
854  * struct hl_vm_va_block - virtual range block information.
855  * @node: node to hang on the virtual range list in context object.
856  * @start: virtual range start address.
857  * @end: virtual range end address.
858  * @size: virtual range size.
859  */
860 struct hl_vm_va_block {
861 	struct list_head	node;
862 	u64			start;
863 	u64			end;
864 	u64			size;
865 };
866 
867 /**
868  * struct hl_vm - virtual memory manager for MMU.
869  * @dram_pg_pool: pool for DRAM physical pages of 2MB.
870  * @dram_pg_pool_refcount: reference counter for the pool usage.
871  * @idr_lock: protects the phys_pg_list_handles.
872  * @phys_pg_pack_handles: idr to hold all device allocations handles.
873  * @init_done: whether initialization was done. We need this because VM
874  *		initialization might be skipped during device initialization.
875  */
876 struct hl_vm {
877 	struct gen_pool		*dram_pg_pool;
878 	struct kref		dram_pg_pool_refcount;
879 	spinlock_t		idr_lock;
880 	struct idr		phys_pg_pack_handles;
881 	u8			init_done;
882 };
883 
884 
885 /*
886  * DEBUG, PROFILING STRUCTURE
887  */
888 
889 /**
890  * struct hl_debug_params - Coresight debug parameters.
891  * @input: pointer to component specific input parameters.
892  * @output: pointer to component specific output parameters.
893  * @output_size: size of output buffer.
894  * @reg_idx: relevant register ID.
895  * @op: component operation to execute.
896  * @enable: true if to enable component debugging, false otherwise.
897  */
898 struct hl_debug_params {
899 	void *input;
900 	void *output;
901 	u32 output_size;
902 	u32 reg_idx;
903 	u32 op;
904 	bool enable;
905 };
906 
907 /*
908  * FILE PRIVATE STRUCTURE
909  */
910 
911 /**
912  * struct hl_fpriv - process information stored in FD private data.
913  * @hdev: habanalabs device structure.
914  * @filp: pointer to the given file structure.
915  * @taskpid: current process ID.
916  * @ctx: current executing context. TODO: remove for multiple ctx per process
917  * @ctx_mgr: context manager to handle multiple context for this FD.
918  * @cb_mgr: command buffer manager to handle multiple buffers for this FD.
919  * @debugfs_list: list of relevant ASIC debugfs.
920  * @dev_node: node in the device list of file private data
921  * @refcount: number of related contexts.
922  * @restore_phase_mutex: lock for context switch and restore phase.
923  * @is_control: true for control device, false otherwise
924  */
925 struct hl_fpriv {
926 	struct hl_device	*hdev;
927 	struct file		*filp;
928 	struct pid		*taskpid;
929 	struct hl_ctx		*ctx;
930 	struct hl_ctx_mgr	ctx_mgr;
931 	struct hl_cb_mgr	cb_mgr;
932 	struct list_head	debugfs_list;
933 	struct list_head	dev_node;
934 	struct kref		refcount;
935 	struct mutex		restore_phase_mutex;
936 	u8			is_control;
937 };
938 
939 
940 /*
941  * DebugFS
942  */
943 
944 /**
945  * struct hl_info_list - debugfs file ops.
946  * @name: file name.
947  * @show: function to output information.
948  * @write: function to write to the file.
949  */
950 struct hl_info_list {
951 	const char	*name;
952 	int		(*show)(struct seq_file *s, void *data);
953 	ssize_t		(*write)(struct file *file, const char __user *buf,
954 				size_t count, loff_t *f_pos);
955 };
956 
957 /**
958  * struct hl_debugfs_entry - debugfs dentry wrapper.
959  * @dent: base debugfs entry structure.
960  * @info_ent: dentry realted ops.
961  * @dev_entry: ASIC specific debugfs manager.
962  */
963 struct hl_debugfs_entry {
964 	struct dentry			*dent;
965 	const struct hl_info_list	*info_ent;
966 	struct hl_dbg_device_entry	*dev_entry;
967 };
968 
969 /**
970  * struct hl_dbg_device_entry - ASIC specific debugfs manager.
971  * @root: root dentry.
972  * @hdev: habanalabs device structure.
973  * @entry_arr: array of available hl_debugfs_entry.
974  * @file_list: list of available debugfs files.
975  * @file_mutex: protects file_list.
976  * @cb_list: list of available CBs.
977  * @cb_spinlock: protects cb_list.
978  * @cs_list: list of available CSs.
979  * @cs_spinlock: protects cs_list.
980  * @cs_job_list: list of available CB jobs.
981  * @cs_job_spinlock: protects cs_job_list.
982  * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
983  * @userptr_spinlock: protects userptr_list.
984  * @ctx_mem_hash_list: list of available contexts with MMU mappings.
985  * @ctx_mem_hash_spinlock: protects cb_list.
986  * @addr: next address to read/write from/to in read/write32.
987  * @mmu_addr: next virtual address to translate to physical address in mmu_show.
988  * @mmu_asid: ASID to use while translating in mmu_show.
989  * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
990  * @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read.
991  * @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read.
992  */
993 struct hl_dbg_device_entry {
994 	struct dentry			*root;
995 	struct hl_device		*hdev;
996 	struct hl_debugfs_entry		*entry_arr;
997 	struct list_head		file_list;
998 	struct mutex			file_mutex;
999 	struct list_head		cb_list;
1000 	spinlock_t			cb_spinlock;
1001 	struct list_head		cs_list;
1002 	spinlock_t			cs_spinlock;
1003 	struct list_head		cs_job_list;
1004 	spinlock_t			cs_job_spinlock;
1005 	struct list_head		userptr_list;
1006 	spinlock_t			userptr_spinlock;
1007 	struct list_head		ctx_mem_hash_list;
1008 	spinlock_t			ctx_mem_hash_spinlock;
1009 	u64				addr;
1010 	u64				mmu_addr;
1011 	u32				mmu_asid;
1012 	u8				i2c_bus;
1013 	u8				i2c_addr;
1014 	u8				i2c_reg;
1015 };
1016 
1017 
1018 /*
1019  * DEVICES
1020  */
1021 
1022 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
1023  * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
1024  */
1025 #define HL_MAX_MINORS	256
1026 
1027 /*
1028  * Registers read & write functions.
1029  */
1030 
1031 u32 hl_rreg(struct hl_device *hdev, u32 reg);
1032 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
1033 
1034 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
1035 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
1036 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
1037 			hdev->asic_funcs->rreg(hdev, (reg)))
1038 
1039 #define WREG32_P(reg, val, mask)				\
1040 	do {							\
1041 		u32 tmp_ = RREG32(reg);				\
1042 		tmp_ &= (mask);					\
1043 		tmp_ |= ((val) & ~(mask));			\
1044 		WREG32(reg, tmp_);				\
1045 	} while (0)
1046 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
1047 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
1048 
1049 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
1050 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
1051 #define WREG32_FIELD(reg, field, val)	\
1052 	WREG32(mm##reg, (RREG32(mm##reg) & ~REG_FIELD_MASK(reg, field)) | \
1053 			(val) << REG_FIELD_SHIFT(reg, field))
1054 
1055 /* Timeout should be longer when working with simulator but cap the
1056  * increased timeout to some maximum
1057  */
1058 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
1059 ({ \
1060 	ktime_t __timeout; \
1061 	if (hdev->pdev) \
1062 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1063 	else \
1064 		__timeout = ktime_add_us(ktime_get(),\
1065 				min((u64)(timeout_us * 10), \
1066 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1067 	might_sleep_if(sleep_us); \
1068 	for (;;) { \
1069 		(val) = RREG32(addr); \
1070 		if (cond) \
1071 			break; \
1072 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1073 			(val) = RREG32(addr); \
1074 			break; \
1075 		} \
1076 		if (sleep_us) \
1077 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1078 	} \
1079 	(cond) ? 0 : -ETIMEDOUT; \
1080 })
1081 
1082 /*
1083  * address in this macro points always to a memory location in the
1084  * host's (server's) memory. That location is updated asynchronously
1085  * either by the direct access of the device or by another core.
1086  *
1087  * To work both in LE and BE architectures, we need to distinguish between the
1088  * two states (device or another core updates the memory location). Therefore,
1089  * if mem_written_by_device is true, the host memory being polled will be
1090  * updated directly by the device. If false, the host memory being polled will
1091  * be updated by host CPU. Required so host knows whether or not the memory
1092  * might need to be byte-swapped before returning value to caller.
1093  */
1094 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
1095 				mem_written_by_device) \
1096 ({ \
1097 	ktime_t __timeout; \
1098 	if (hdev->pdev) \
1099 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1100 	else \
1101 		__timeout = ktime_add_us(ktime_get(),\
1102 				min((u64)(timeout_us * 10), \
1103 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1104 	might_sleep_if(sleep_us); \
1105 	for (;;) { \
1106 		/* Verify we read updates done by other cores or by device */ \
1107 		mb(); \
1108 		(val) = *((u32 *) (uintptr_t) (addr)); \
1109 		if (mem_written_by_device) \
1110 			(val) = le32_to_cpu(*(__le32 *) &(val)); \
1111 		if (cond) \
1112 			break; \
1113 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1114 			(val) = *((u32 *) (uintptr_t) (addr)); \
1115 			if (mem_written_by_device) \
1116 				(val) = le32_to_cpu(*(__le32 *) &(val)); \
1117 			break; \
1118 		} \
1119 		if (sleep_us) \
1120 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1121 	} \
1122 	(cond) ? 0 : -ETIMEDOUT; \
1123 })
1124 
1125 #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
1126 					timeout_us) \
1127 ({ \
1128 	ktime_t __timeout; \
1129 	if (hdev->pdev) \
1130 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1131 	else \
1132 		__timeout = ktime_add_us(ktime_get(),\
1133 				min((u64)(timeout_us * 10), \
1134 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1135 	might_sleep_if(sleep_us); \
1136 	for (;;) { \
1137 		(val) = readl(addr); \
1138 		if (cond) \
1139 			break; \
1140 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1141 			(val) = readl(addr); \
1142 			break; \
1143 		} \
1144 		if (sleep_us) \
1145 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1146 	} \
1147 	(cond) ? 0 : -ETIMEDOUT; \
1148 })
1149 
1150 struct hwmon_chip_info;
1151 
1152 /**
1153  * struct hl_device_reset_work - reset workqueue task wrapper.
1154  * @reset_work: reset work to be done.
1155  * @hdev: habanalabs device structure.
1156  */
1157 struct hl_device_reset_work {
1158 	struct work_struct		reset_work;
1159 	struct hl_device		*hdev;
1160 };
1161 
1162 /**
1163  * struct hl_device_idle_busy_ts - used for calculating device utilization rate.
1164  * @idle_to_busy_ts: timestamp where device changed from idle to busy.
1165  * @busy_to_idle_ts: timestamp where device changed from busy to idle.
1166  */
1167 struct hl_device_idle_busy_ts {
1168 	ktime_t				idle_to_busy_ts;
1169 	ktime_t				busy_to_idle_ts;
1170 };
1171 
1172 /**
1173  * struct hl_device - habanalabs device structure.
1174  * @pdev: pointer to PCI device, can be NULL in case of simulator device.
1175  * @pcie_bar: array of available PCIe bars.
1176  * @rmmio: configuration area address on SRAM.
1177  * @cdev: related char device.
1178  * @cdev_ctrl: char device for control operations only (INFO IOCTL)
1179  * @dev: related kernel basic device structure.
1180  * @dev_ctrl: related kernel device structure for the control device
1181  * @work_freq: delayed work to lower device frequency if possible.
1182  * @work_heartbeat: delayed work for ArmCP is-alive check.
1183  * @asic_name: ASIC specific nmae.
1184  * @asic_type: ASIC specific type.
1185  * @completion_queue: array of hl_cq.
1186  * @cq_wq: work queue of completion queues for executing work in process context
1187  * @eq_wq: work queue of event queue for executing work in process context.
1188  * @kernel_ctx: Kernel driver context structure.
1189  * @kernel_queues: array of hl_hw_queue.
1190  * @hw_queues_mirror_list: CS mirror list for TDR.
1191  * @hw_queues_mirror_lock: protects hw_queues_mirror_list.
1192  * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
1193  * @event_queue: event queue for IRQ from ArmCP.
1194  * @dma_pool: DMA pool for small allocations.
1195  * @cpu_accessible_dma_mem: Host <-> ArmCP shared memory CPU address.
1196  * @cpu_accessible_dma_address: Host <-> ArmCP shared memory DMA address.
1197  * @cpu_accessible_dma_pool: Host <-> ArmCP shared memory pool.
1198  * @asid_bitmap: holds used/available ASIDs.
1199  * @asid_mutex: protects asid_bitmap.
1200  * @send_cpu_message_lock: enforces only one message in Host <-> ArmCP queue.
1201  * @debug_lock: protects critical section of setting debug mode for device
1202  * @asic_prop: ASIC specific immutable properties.
1203  * @asic_funcs: ASIC specific functions.
1204  * @asic_specific: ASIC specific information to use only from ASIC files.
1205  * @mmu_pgt_pool: pool of available MMU hops.
1206  * @vm: virtual memory manager for MMU.
1207  * @mmu_cache_lock: protects MMU cache invalidation as it can serve one context.
1208  * @mmu_shadow_hop0: shadow mapping of the MMU hop 0 zone.
1209  * @hwmon_dev: H/W monitor device.
1210  * @pm_mng_profile: current power management profile.
1211  * @hl_chip_info: ASIC's sensors information.
1212  * @hl_debugfs: device's debugfs manager.
1213  * @cb_pool: list of preallocated CBs.
1214  * @cb_pool_lock: protects the CB pool.
1215  * @fpriv_list: list of file private data structures. Each structure is created
1216  *              when a user opens the device
1217  * @fpriv_list_lock: protects the fpriv_list
1218  * @compute_ctx: current compute context executing.
1219  * @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy
1220  *                    and vice-versa
1221  * @dram_used_mem: current DRAM memory consumption.
1222  * @timeout_jiffies: device CS timeout value.
1223  * @max_power: the max power of the device, as configured by the sysadmin. This
1224  *             value is saved so in case of hard-reset, the driver will restore
1225  *             this value and update the F/W after the re-initialization
1226  * @in_reset: is device in reset flow.
1227  * @curr_pll_profile: current PLL profile.
1228  * @cs_active_cnt: number of active command submissions on this device (active
1229  *                 means already in H/W queues)
1230  * @major: habanalabs kernel driver major.
1231  * @high_pll: high PLL profile frequency.
1232  * @soft_reset_cnt: number of soft reset since the driver was loaded.
1233  * @hard_reset_cnt: number of hard reset since the driver was loaded.
1234  * @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr
1235  * @id: device minor.
1236  * @id_control: minor of the control device
1237  * @disabled: is device disabled.
1238  * @late_init_done: is late init stage was done during initialization.
1239  * @hwmon_initialized: is H/W monitor sensors was initialized.
1240  * @hard_reset_pending: is there a hard reset work pending.
1241  * @heartbeat: is heartbeat sanity check towards ArmCP enabled.
1242  * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
1243  *                   otherwise.
1244  * @dram_supports_virtual_memory: is MMU enabled towards DRAM.
1245  * @dram_default_page_mapping: is DRAM default page mapping enabled.
1246  * @init_done: is the initialization of the device done.
1247  * @mmu_enable: is MMU enabled.
1248  * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
1249  * @dma_mask: the dma mask that was set for this device
1250  * @in_debug: is device under debug. This, together with fpriv_list, enforces
1251  *            that only a single user is configuring the debug infrastructure.
1252  * @cdev_sysfs_created: were char devices and sysfs nodes created.
1253  */
1254 struct hl_device {
1255 	struct pci_dev			*pdev;
1256 	void __iomem			*pcie_bar[6];
1257 	void __iomem			*rmmio;
1258 	struct cdev			cdev;
1259 	struct cdev			cdev_ctrl;
1260 	struct device			*dev;
1261 	struct device			*dev_ctrl;
1262 	struct delayed_work		work_freq;
1263 	struct delayed_work		work_heartbeat;
1264 	char				asic_name[16];
1265 	enum hl_asic_type		asic_type;
1266 	struct hl_cq			*completion_queue;
1267 	struct workqueue_struct		*cq_wq;
1268 	struct workqueue_struct		*eq_wq;
1269 	struct hl_ctx			*kernel_ctx;
1270 	struct hl_hw_queue		*kernel_queues;
1271 	struct list_head		hw_queues_mirror_list;
1272 	spinlock_t			hw_queues_mirror_lock;
1273 	struct hl_cb_mgr		kernel_cb_mgr;
1274 	struct hl_eq			event_queue;
1275 	struct dma_pool			*dma_pool;
1276 	void				*cpu_accessible_dma_mem;
1277 	dma_addr_t			cpu_accessible_dma_address;
1278 	struct gen_pool			*cpu_accessible_dma_pool;
1279 	unsigned long			*asid_bitmap;
1280 	struct mutex			asid_mutex;
1281 	struct mutex			send_cpu_message_lock;
1282 	struct mutex			debug_lock;
1283 	struct asic_fixed_properties	asic_prop;
1284 	const struct hl_asic_funcs	*asic_funcs;
1285 	void				*asic_specific;
1286 	struct gen_pool			*mmu_pgt_pool;
1287 	struct hl_vm			vm;
1288 	struct mutex			mmu_cache_lock;
1289 	void				*mmu_shadow_hop0;
1290 	struct device			*hwmon_dev;
1291 	enum hl_pm_mng_profile		pm_mng_profile;
1292 	struct hwmon_chip_info		*hl_chip_info;
1293 
1294 	struct hl_dbg_device_entry	hl_debugfs;
1295 
1296 	struct list_head		cb_pool;
1297 	spinlock_t			cb_pool_lock;
1298 
1299 	struct list_head		fpriv_list;
1300 	struct mutex			fpriv_list_lock;
1301 
1302 	struct hl_ctx			*compute_ctx;
1303 
1304 	struct hl_device_idle_busy_ts	*idle_busy_ts_arr;
1305 
1306 	atomic64_t			dram_used_mem;
1307 	u64				timeout_jiffies;
1308 	u64				max_power;
1309 	atomic_t			in_reset;
1310 	enum hl_pll_frequency		curr_pll_profile;
1311 	int				cs_active_cnt;
1312 	u32				major;
1313 	u32				high_pll;
1314 	u32				soft_reset_cnt;
1315 	u32				hard_reset_cnt;
1316 	u32				idle_busy_ts_idx;
1317 	u16				id;
1318 	u16				id_control;
1319 	u8				disabled;
1320 	u8				late_init_done;
1321 	u8				hwmon_initialized;
1322 	u8				hard_reset_pending;
1323 	u8				heartbeat;
1324 	u8				reset_on_lockup;
1325 	u8				dram_supports_virtual_memory;
1326 	u8				dram_default_page_mapping;
1327 	u8				init_done;
1328 	u8				device_cpu_disabled;
1329 	u8				dma_mask;
1330 	u8				in_debug;
1331 	u8				cdev_sysfs_created;
1332 
1333 	/* Parameters for bring-up */
1334 	u8				mmu_enable;
1335 	u8				cpu_enable;
1336 	u8				reset_pcilink;
1337 	u8				cpu_queues_enable;
1338 	u8				fw_loading;
1339 	u8				pldm;
1340 };
1341 
1342 
1343 /*
1344  * IOCTLs
1345  */
1346 
1347 /**
1348  * typedef hl_ioctl_t - typedef for ioctl function in the driver
1349  * @hpriv: pointer to the FD's private data, which contains state of
1350  *		user process
1351  * @data: pointer to the input/output arguments structure of the IOCTL
1352  *
1353  * Return: 0 for success, negative value for error
1354  */
1355 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
1356 
1357 /**
1358  * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
1359  * @cmd: the IOCTL code as created by the kernel macros.
1360  * @func: pointer to the driver's function that should be called for this IOCTL.
1361  */
1362 struct hl_ioctl_desc {
1363 	unsigned int cmd;
1364 	hl_ioctl_t *func;
1365 };
1366 
1367 
1368 /*
1369  * Kernel module functions that can be accessed by entire module
1370  */
1371 
1372 /**
1373  * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
1374  * @address: The start address of the area we want to validate.
1375  * @size: The size in bytes of the area we want to validate.
1376  * @range_start_address: The start address of the valid range.
1377  * @range_end_address: The end address of the valid range.
1378  *
1379  * Return: true if the area is inside the valid range, false otherwise.
1380  */
hl_mem_area_inside_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)1381 static inline bool hl_mem_area_inside_range(u64 address, u32 size,
1382 				u64 range_start_address, u64 range_end_address)
1383 {
1384 	u64 end_address = address + size;
1385 
1386 	if ((address >= range_start_address) &&
1387 			(end_address <= range_end_address) &&
1388 			(end_address > address))
1389 		return true;
1390 
1391 	return false;
1392 }
1393 
1394 /**
1395  * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
1396  * @address: The start address of the area we want to validate.
1397  * @size: The size in bytes of the area we want to validate.
1398  * @range_start_address: The start address of the valid range.
1399  * @range_end_address: The end address of the valid range.
1400  *
1401  * Return: true if the area overlaps part or all of the valid range,
1402  *		false otherwise.
1403  */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)1404 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
1405 				u64 range_start_address, u64 range_end_address)
1406 {
1407 	u64 end_address = address + size;
1408 
1409 	if ((address >= range_start_address) &&
1410 			(address < range_end_address))
1411 		return true;
1412 
1413 	if ((end_address >= range_start_address) &&
1414 			(end_address < range_end_address))
1415 		return true;
1416 
1417 	if ((address < range_start_address) &&
1418 			(end_address >= range_end_address))
1419 		return true;
1420 
1421 	return false;
1422 }
1423 
1424 int hl_device_open(struct inode *inode, struct file *filp);
1425 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
1426 bool hl_device_disabled_or_in_reset(struct hl_device *hdev);
1427 enum hl_device_status hl_device_status(struct hl_device *hdev);
1428 int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
1429 int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
1430 		enum hl_asic_type asic_type, int minor);
1431 void destroy_hdev(struct hl_device *hdev);
1432 int hl_hw_queues_create(struct hl_device *hdev);
1433 void hl_hw_queues_destroy(struct hl_device *hdev);
1434 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
1435 				u32 cb_size, u64 cb_ptr);
1436 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
1437 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
1438 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
1439 void hl_int_hw_queue_update_ci(struct hl_cs *cs);
1440 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
1441 
1442 #define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
1443 #define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
1444 
1445 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
1446 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
1447 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
1448 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
1449 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
1450 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
1451 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
1452 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
1453 u32 hl_cq_inc_ptr(u32 ptr);
1454 
1455 int hl_asid_init(struct hl_device *hdev);
1456 void hl_asid_fini(struct hl_device *hdev);
1457 unsigned long hl_asid_alloc(struct hl_device *hdev);
1458 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
1459 
1460 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
1461 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
1462 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
1463 void hl_ctx_do_release(struct kref *ref);
1464 void hl_ctx_get(struct hl_device *hdev,	struct hl_ctx *ctx);
1465 int hl_ctx_put(struct hl_ctx *ctx);
1466 struct dma_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
1467 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
1468 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
1469 
1470 int hl_device_init(struct hl_device *hdev, struct class *hclass);
1471 void hl_device_fini(struct hl_device *hdev);
1472 int hl_device_suspend(struct hl_device *hdev);
1473 int hl_device_resume(struct hl_device *hdev);
1474 int hl_device_reset(struct hl_device *hdev, bool hard_reset,
1475 			bool from_hard_reset_thread);
1476 void hl_hpriv_get(struct hl_fpriv *hpriv);
1477 void hl_hpriv_put(struct hl_fpriv *hpriv);
1478 int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
1479 uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms);
1480 
1481 int hl_build_hwmon_channel_info(struct hl_device *hdev,
1482 		struct armcp_sensor *sensors_arr);
1483 
1484 int hl_sysfs_init(struct hl_device *hdev);
1485 void hl_sysfs_fini(struct hl_device *hdev);
1486 
1487 int hl_hwmon_init(struct hl_device *hdev);
1488 void hl_hwmon_fini(struct hl_device *hdev);
1489 
1490 int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 cb_size,
1491 		u64 *handle, int ctx_id);
1492 int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
1493 int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
1494 struct hl_cb *hl_cb_get(struct hl_device *hdev,	struct hl_cb_mgr *mgr,
1495 			u32 handle);
1496 void hl_cb_put(struct hl_cb *cb);
1497 void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
1498 void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
1499 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size);
1500 int hl_cb_pool_init(struct hl_device *hdev);
1501 int hl_cb_pool_fini(struct hl_device *hdev);
1502 
1503 void hl_cs_rollback_all(struct hl_device *hdev);
1504 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, bool ext_queue);
1505 
1506 void goya_set_asic_funcs(struct hl_device *hdev);
1507 
1508 int hl_vm_ctx_init(struct hl_ctx *ctx);
1509 void hl_vm_ctx_fini(struct hl_ctx *ctx);
1510 
1511 int hl_vm_init(struct hl_device *hdev);
1512 void hl_vm_fini(struct hl_device *hdev);
1513 
1514 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1515 			struct hl_userptr *userptr);
1516 int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
1517 void hl_userptr_delete_list(struct hl_device *hdev,
1518 				struct list_head *userptr_list);
1519 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
1520 				struct list_head *userptr_list,
1521 				struct hl_userptr **userptr);
1522 
1523 int hl_mmu_init(struct hl_device *hdev);
1524 void hl_mmu_fini(struct hl_device *hdev);
1525 int hl_mmu_ctx_init(struct hl_ctx *ctx);
1526 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
1527 int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size);
1528 int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size);
1529 void hl_mmu_swap_out(struct hl_ctx *ctx);
1530 void hl_mmu_swap_in(struct hl_ctx *ctx);
1531 
1532 int hl_fw_push_fw_to_device(struct hl_device *hdev, const char *fw_name,
1533 				void __iomem *dst);
1534 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
1535 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
1536 				u16 len, u32 timeout, long *result);
1537 int hl_fw_test_cpu_queue(struct hl_device *hdev);
1538 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
1539 						dma_addr_t *dma_handle);
1540 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
1541 					void *vaddr);
1542 int hl_fw_send_heartbeat(struct hl_device *hdev);
1543 int hl_fw_armcp_info_get(struct hl_device *hdev);
1544 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
1545 
1546 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
1547 			bool is_wc[3]);
1548 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
1549 int hl_pci_set_dram_bar_base(struct hl_device *hdev, u8 inbound_region, u8 bar,
1550 				u64 addr);
1551 int hl_pci_init_iatu(struct hl_device *hdev, u64 sram_base_address,
1552 			u64 dram_base_address, u64 host_phys_base_address,
1553 			u64 host_phys_size);
1554 int hl_pci_init(struct hl_device *hdev, u8 dma_mask);
1555 void hl_pci_fini(struct hl_device *hdev);
1556 int hl_pci_set_dma_mask(struct hl_device *hdev, u8 dma_mask);
1557 
1558 long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
1559 void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
1560 long hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr);
1561 long hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr);
1562 long hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr);
1563 long hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr);
1564 long hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr);
1565 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
1566 			long value);
1567 u64 hl_get_max_power(struct hl_device *hdev);
1568 void hl_set_max_power(struct hl_device *hdev, u64 value);
1569 
1570 #ifdef CONFIG_DEBUG_FS
1571 
1572 void hl_debugfs_init(void);
1573 void hl_debugfs_fini(void);
1574 void hl_debugfs_add_device(struct hl_device *hdev);
1575 void hl_debugfs_remove_device(struct hl_device *hdev);
1576 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
1577 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
1578 void hl_debugfs_add_cb(struct hl_cb *cb);
1579 void hl_debugfs_remove_cb(struct hl_cb *cb);
1580 void hl_debugfs_add_cs(struct hl_cs *cs);
1581 void hl_debugfs_remove_cs(struct hl_cs *cs);
1582 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
1583 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
1584 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
1585 void hl_debugfs_remove_userptr(struct hl_device *hdev,
1586 				struct hl_userptr *userptr);
1587 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
1588 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
1589 
1590 #else
1591 
hl_debugfs_init(void)1592 static inline void __init hl_debugfs_init(void)
1593 {
1594 }
1595 
hl_debugfs_fini(void)1596 static inline void hl_debugfs_fini(void)
1597 {
1598 }
1599 
hl_debugfs_add_device(struct hl_device * hdev)1600 static inline void hl_debugfs_add_device(struct hl_device *hdev)
1601 {
1602 }
1603 
hl_debugfs_remove_device(struct hl_device * hdev)1604 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
1605 {
1606 }
1607 
hl_debugfs_add_file(struct hl_fpriv * hpriv)1608 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
1609 {
1610 }
1611 
hl_debugfs_remove_file(struct hl_fpriv * hpriv)1612 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
1613 {
1614 }
1615 
hl_debugfs_add_cb(struct hl_cb * cb)1616 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
1617 {
1618 }
1619 
hl_debugfs_remove_cb(struct hl_cb * cb)1620 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
1621 {
1622 }
1623 
hl_debugfs_add_cs(struct hl_cs * cs)1624 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
1625 {
1626 }
1627 
hl_debugfs_remove_cs(struct hl_cs * cs)1628 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
1629 {
1630 }
1631 
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)1632 static inline void hl_debugfs_add_job(struct hl_device *hdev,
1633 					struct hl_cs_job *job)
1634 {
1635 }
1636 
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)1637 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
1638 					struct hl_cs_job *job)
1639 {
1640 }
1641 
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)1642 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
1643 					struct hl_userptr *userptr)
1644 {
1645 }
1646 
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)1647 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
1648 					struct hl_userptr *userptr)
1649 {
1650 }
1651 
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)1652 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
1653 					struct hl_ctx *ctx)
1654 {
1655 }
1656 
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)1657 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
1658 					struct hl_ctx *ctx)
1659 {
1660 }
1661 
1662 #endif
1663 
1664 /* IOCTLs */
1665 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
1666 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
1667 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
1668 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
1669 int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data);
1670 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
1671 
1672 #endif /* HABANALABSP_H_ */
1673