1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/bpf_trace.h>
36 #include <net/udp_tunnel.h>
37 #include <linux/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tcp.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <net/ip6_checksum.h>
43 #include "qede_ptp.h"
44
45 #include <linux/qed/qed_if.h>
46 #include "qede.h"
47 /*********************************
48 * Content also used by slowpath *
49 *********************************/
50
qede_alloc_rx_buffer(struct qede_rx_queue * rxq,bool allow_lazy)51 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
52 {
53 struct sw_rx_data *sw_rx_data;
54 struct eth_rx_bd *rx_bd;
55 dma_addr_t mapping;
56 struct page *data;
57
58 /* In case lazy-allocation is allowed, postpone allocation until the
59 * end of the NAPI run. We'd still need to make sure the Rx ring has
60 * sufficient buffers to guarantee an additional Rx interrupt.
61 */
62 if (allow_lazy && likely(rxq->filled_buffers > 12)) {
63 rxq->filled_buffers--;
64 return 0;
65 }
66
67 data = alloc_pages(GFP_ATOMIC, 0);
68 if (unlikely(!data))
69 return -ENOMEM;
70
71 /* Map the entire page as it would be used
72 * for multiple RX buffer segment size mapping.
73 */
74 mapping = dma_map_page(rxq->dev, data, 0,
75 PAGE_SIZE, rxq->data_direction);
76 if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
77 __free_page(data);
78 return -ENOMEM;
79 }
80
81 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
82 sw_rx_data->page_offset = 0;
83 sw_rx_data->data = data;
84 sw_rx_data->mapping = mapping;
85
86 /* Advance PROD and get BD pointer */
87 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
88 WARN_ON(!rx_bd);
89 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
90 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
91 rxq->rx_headroom);
92
93 rxq->sw_rx_prod++;
94 rxq->filled_buffers++;
95
96 return 0;
97 }
98
99 /* Unmap the data and free skb */
qede_free_tx_pkt(struct qede_dev * edev,struct qede_tx_queue * txq,int * len)100 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
101 {
102 u16 idx = txq->sw_tx_cons;
103 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
104 struct eth_tx_1st_bd *first_bd;
105 struct eth_tx_bd *tx_data_bd;
106 int bds_consumed = 0;
107 int nbds;
108 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
109 int i, split_bd_len = 0;
110
111 if (unlikely(!skb)) {
112 DP_ERR(edev,
113 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
114 idx, txq->sw_tx_cons, txq->sw_tx_prod);
115 return -1;
116 }
117
118 *len = skb->len;
119
120 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
121
122 bds_consumed++;
123
124 nbds = first_bd->data.nbds;
125
126 if (data_split) {
127 struct eth_tx_bd *split = (struct eth_tx_bd *)
128 qed_chain_consume(&txq->tx_pbl);
129 split_bd_len = BD_UNMAP_LEN(split);
130 bds_consumed++;
131 }
132 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
133 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
134
135 /* Unmap the data of the skb frags */
136 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
137 tx_data_bd = (struct eth_tx_bd *)
138 qed_chain_consume(&txq->tx_pbl);
139 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
140 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
141 }
142
143 while (bds_consumed++ < nbds)
144 qed_chain_consume(&txq->tx_pbl);
145
146 /* Free skb */
147 dev_kfree_skb_any(skb);
148 txq->sw_tx_ring.skbs[idx].skb = NULL;
149 txq->sw_tx_ring.skbs[idx].flags = 0;
150
151 return 0;
152 }
153
154 /* Unmap the data and free skb when mapping failed during start_xmit */
qede_free_failed_tx_pkt(struct qede_tx_queue * txq,struct eth_tx_1st_bd * first_bd,int nbd,bool data_split)155 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
156 struct eth_tx_1st_bd *first_bd,
157 int nbd, bool data_split)
158 {
159 u16 idx = txq->sw_tx_prod;
160 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
161 struct eth_tx_bd *tx_data_bd;
162 int i, split_bd_len = 0;
163
164 /* Return prod to its position before this skb was handled */
165 qed_chain_set_prod(&txq->tx_pbl,
166 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
167
168 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
169
170 if (data_split) {
171 struct eth_tx_bd *split = (struct eth_tx_bd *)
172 qed_chain_produce(&txq->tx_pbl);
173 split_bd_len = BD_UNMAP_LEN(split);
174 nbd--;
175 }
176
177 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
178 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
179
180 /* Unmap the data of the skb frags */
181 for (i = 0; i < nbd; i++) {
182 tx_data_bd = (struct eth_tx_bd *)
183 qed_chain_produce(&txq->tx_pbl);
184 if (tx_data_bd->nbytes)
185 dma_unmap_page(txq->dev,
186 BD_UNMAP_ADDR(tx_data_bd),
187 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
188 }
189
190 /* Return again prod to its position before this skb was handled */
191 qed_chain_set_prod(&txq->tx_pbl,
192 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
193
194 /* Free skb */
195 dev_kfree_skb_any(skb);
196 txq->sw_tx_ring.skbs[idx].skb = NULL;
197 txq->sw_tx_ring.skbs[idx].flags = 0;
198 }
199
qede_xmit_type(struct sk_buff * skb,int * ipv6_ext)200 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
201 {
202 u32 rc = XMIT_L4_CSUM;
203 __be16 l3_proto;
204
205 if (skb->ip_summed != CHECKSUM_PARTIAL)
206 return XMIT_PLAIN;
207
208 l3_proto = vlan_get_protocol(skb);
209 if (l3_proto == htons(ETH_P_IPV6) &&
210 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
211 *ipv6_ext = 1;
212
213 if (skb->encapsulation) {
214 rc |= XMIT_ENC;
215 if (skb_is_gso(skb)) {
216 unsigned short gso_type = skb_shinfo(skb)->gso_type;
217
218 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
219 (gso_type & SKB_GSO_GRE_CSUM))
220 rc |= XMIT_ENC_GSO_L4_CSUM;
221
222 rc |= XMIT_LSO;
223 return rc;
224 }
225 }
226
227 if (skb_is_gso(skb))
228 rc |= XMIT_LSO;
229
230 return rc;
231 }
232
qede_set_params_for_ipv6_ext(struct sk_buff * skb,struct eth_tx_2nd_bd * second_bd,struct eth_tx_3rd_bd * third_bd)233 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
234 struct eth_tx_2nd_bd *second_bd,
235 struct eth_tx_3rd_bd *third_bd)
236 {
237 u8 l4_proto;
238 u16 bd2_bits1 = 0, bd2_bits2 = 0;
239
240 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
241
242 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
243 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
244 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
245
246 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
247 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
248
249 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
250 l4_proto = ipv6_hdr(skb)->nexthdr;
251 else
252 l4_proto = ip_hdr(skb)->protocol;
253
254 if (l4_proto == IPPROTO_UDP)
255 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
256
257 if (third_bd)
258 third_bd->data.bitfields |=
259 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
260 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
261 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
262
263 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
264 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
265 }
266
map_frag_to_bd(struct qede_tx_queue * txq,skb_frag_t * frag,struct eth_tx_bd * bd)267 static int map_frag_to_bd(struct qede_tx_queue *txq,
268 skb_frag_t *frag, struct eth_tx_bd *bd)
269 {
270 dma_addr_t mapping;
271
272 /* Map skb non-linear frag data for DMA */
273 mapping = skb_frag_dma_map(txq->dev, frag, 0,
274 skb_frag_size(frag), DMA_TO_DEVICE);
275 if (unlikely(dma_mapping_error(txq->dev, mapping)))
276 return -ENOMEM;
277
278 /* Setup the data pointer of the frag data */
279 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
280
281 return 0;
282 }
283
qede_get_skb_hlen(struct sk_buff * skb,bool is_encap_pkt)284 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
285 {
286 if (is_encap_pkt)
287 return (skb_inner_transport_header(skb) +
288 inner_tcp_hdrlen(skb) - skb->data);
289 else
290 return (skb_transport_header(skb) +
291 tcp_hdrlen(skb) - skb->data);
292 }
293
294 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
295 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
qede_pkt_req_lin(struct sk_buff * skb,u8 xmit_type)296 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
297 {
298 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
299
300 if (xmit_type & XMIT_LSO) {
301 int hlen;
302
303 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
304
305 /* linear payload would require its own BD */
306 if (skb_headlen(skb) > hlen)
307 allowed_frags--;
308 }
309
310 return (skb_shinfo(skb)->nr_frags > allowed_frags);
311 }
312 #endif
313
qede_update_tx_producer(struct qede_tx_queue * txq)314 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
315 {
316 /* wmb makes sure that the BDs data is updated before updating the
317 * producer, otherwise FW may read old data from the BDs.
318 */
319 wmb();
320 barrier();
321 writel(txq->tx_db.raw, txq->doorbell_addr);
322
323 /* Fence required to flush the write combined buffer, since another
324 * CPU may write to the same doorbell address and data may be lost
325 * due to relaxed order nature of write combined bar.
326 */
327 wmb();
328 }
329
qede_xdp_xmit(struct qede_dev * edev,struct qede_fastpath * fp,struct sw_rx_data * metadata,u16 padding,u16 length)330 static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
331 struct sw_rx_data *metadata, u16 padding, u16 length)
332 {
333 struct qede_tx_queue *txq = fp->xdp_tx;
334 struct eth_tx_1st_bd *first_bd;
335 u16 idx = txq->sw_tx_prod;
336 u16 val;
337
338 if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
339 txq->stopped_cnt++;
340 return -ENOMEM;
341 }
342
343 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
344
345 memset(first_bd, 0, sizeof(*first_bd));
346 first_bd->data.bd_flags.bitfields =
347 BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
348
349 val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
350 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
351
352 first_bd->data.bitfields |= cpu_to_le16(val);
353 first_bd->data.nbds = 1;
354
355 /* We can safely ignore the offset, as it's 0 for XDP */
356 BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
357
358 /* Synchronize the buffer back to device, as program [probably]
359 * has changed it.
360 */
361 dma_sync_single_for_device(&edev->pdev->dev,
362 metadata->mapping + padding,
363 length, PCI_DMA_TODEVICE);
364
365 txq->sw_tx_ring.xdp[idx].page = metadata->data;
366 txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
367 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
368
369 /* Mark the fastpath for future XDP doorbell */
370 fp->xdp_xmit = 1;
371
372 return 0;
373 }
374
qede_txq_has_work(struct qede_tx_queue * txq)375 int qede_txq_has_work(struct qede_tx_queue *txq)
376 {
377 u16 hw_bd_cons;
378
379 /* Tell compiler that consumer and producer can change */
380 barrier();
381 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
382 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
383 return 0;
384
385 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
386 }
387
qede_xdp_tx_int(struct qede_dev * edev,struct qede_tx_queue * txq)388 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
389 {
390 u16 hw_bd_cons, idx;
391
392 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
393 barrier();
394
395 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
396 qed_chain_consume(&txq->tx_pbl);
397 idx = txq->sw_tx_cons;
398
399 dma_unmap_page(&edev->pdev->dev,
400 txq->sw_tx_ring.xdp[idx].mapping,
401 PAGE_SIZE, DMA_BIDIRECTIONAL);
402 __free_page(txq->sw_tx_ring.xdp[idx].page);
403
404 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
405 txq->xmit_pkts++;
406 }
407 }
408
qede_tx_int(struct qede_dev * edev,struct qede_tx_queue * txq)409 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
410 {
411 unsigned int pkts_compl = 0, bytes_compl = 0;
412 struct netdev_queue *netdev_txq;
413 u16 hw_bd_cons;
414 int rc;
415
416 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
417
418 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
419 barrier();
420
421 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
422 int len = 0;
423
424 rc = qede_free_tx_pkt(edev, txq, &len);
425 if (rc) {
426 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
427 hw_bd_cons,
428 qed_chain_get_cons_idx(&txq->tx_pbl));
429 break;
430 }
431
432 bytes_compl += len;
433 pkts_compl++;
434 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
435 txq->xmit_pkts++;
436 }
437
438 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
439
440 /* Need to make the tx_bd_cons update visible to start_xmit()
441 * before checking for netif_tx_queue_stopped(). Without the
442 * memory barrier, there is a small possibility that
443 * start_xmit() will miss it and cause the queue to be stopped
444 * forever.
445 * On the other hand we need an rmb() here to ensure the proper
446 * ordering of bit testing in the following
447 * netif_tx_queue_stopped(txq) call.
448 */
449 smp_mb();
450
451 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
452 /* Taking tx_lock is needed to prevent reenabling the queue
453 * while it's empty. This could have happen if rx_action() gets
454 * suspended in qede_tx_int() after the condition before
455 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
456 *
457 * stops the queue->sees fresh tx_bd_cons->releases the queue->
458 * sends some packets consuming the whole queue again->
459 * stops the queue
460 */
461
462 __netif_tx_lock(netdev_txq, smp_processor_id());
463
464 if ((netif_tx_queue_stopped(netdev_txq)) &&
465 (edev->state == QEDE_STATE_OPEN) &&
466 (qed_chain_get_elem_left(&txq->tx_pbl)
467 >= (MAX_SKB_FRAGS + 1))) {
468 netif_tx_wake_queue(netdev_txq);
469 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
470 "Wake queue was called\n");
471 }
472
473 __netif_tx_unlock(netdev_txq);
474 }
475
476 return 0;
477 }
478
qede_has_rx_work(struct qede_rx_queue * rxq)479 bool qede_has_rx_work(struct qede_rx_queue *rxq)
480 {
481 u16 hw_comp_cons, sw_comp_cons;
482
483 /* Tell compiler that status block fields can change */
484 barrier();
485
486 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
487 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
488
489 return hw_comp_cons != sw_comp_cons;
490 }
491
qede_rx_bd_ring_consume(struct qede_rx_queue * rxq)492 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
493 {
494 qed_chain_consume(&rxq->rx_bd_ring);
495 rxq->sw_rx_cons++;
496 }
497
498 /* This function reuses the buffer(from an offset) from
499 * consumer index to producer index in the bd ring
500 */
qede_reuse_page(struct qede_rx_queue * rxq,struct sw_rx_data * curr_cons)501 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
502 struct sw_rx_data *curr_cons)
503 {
504 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
505 struct sw_rx_data *curr_prod;
506 dma_addr_t new_mapping;
507
508 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
509 *curr_prod = *curr_cons;
510
511 new_mapping = curr_prod->mapping + curr_prod->page_offset;
512
513 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
514 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
515 rxq->rx_headroom);
516
517 rxq->sw_rx_prod++;
518 curr_cons->data = NULL;
519 }
520
521 /* In case of allocation failures reuse buffers
522 * from consumer index to produce buffers for firmware
523 */
qede_recycle_rx_bd_ring(struct qede_rx_queue * rxq,u8 count)524 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
525 {
526 struct sw_rx_data *curr_cons;
527
528 for (; count > 0; count--) {
529 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
530 qede_reuse_page(rxq, curr_cons);
531 qede_rx_bd_ring_consume(rxq);
532 }
533 }
534
qede_realloc_rx_buffer(struct qede_rx_queue * rxq,struct sw_rx_data * curr_cons)535 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
536 struct sw_rx_data *curr_cons)
537 {
538 /* Move to the next segment in the page */
539 curr_cons->page_offset += rxq->rx_buf_seg_size;
540
541 if (curr_cons->page_offset == PAGE_SIZE) {
542 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
543 /* Since we failed to allocate new buffer
544 * current buffer can be used again.
545 */
546 curr_cons->page_offset -= rxq->rx_buf_seg_size;
547
548 return -ENOMEM;
549 }
550
551 dma_unmap_page(rxq->dev, curr_cons->mapping,
552 PAGE_SIZE, rxq->data_direction);
553 } else {
554 /* Increment refcount of the page as we don't want
555 * network stack to take the ownership of the page
556 * which can be recycled multiple times by the driver.
557 */
558 page_ref_inc(curr_cons->data);
559 qede_reuse_page(rxq, curr_cons);
560 }
561
562 return 0;
563 }
564
qede_update_rx_prod(struct qede_dev * edev,struct qede_rx_queue * rxq)565 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
566 {
567 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
568 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
569 struct eth_rx_prod_data rx_prods = {0};
570
571 /* Update producers */
572 rx_prods.bd_prod = cpu_to_le16(bd_prod);
573 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
574
575 /* Make sure that the BD and SGE data is updated before updating the
576 * producers since FW might read the BD/SGE right after the producer
577 * is updated.
578 */
579 wmb();
580
581 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
582 (u32 *)&rx_prods);
583 }
584
qede_get_rxhash(struct sk_buff * skb,u8 bitfields,__le32 rss_hash)585 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
586 {
587 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
588 enum rss_hash_type htype;
589 u32 hash = 0;
590
591 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
592 if (htype) {
593 hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
594 (htype == RSS_HASH_TYPE_IPV6)) ?
595 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
596 hash = le32_to_cpu(rss_hash);
597 }
598 skb_set_hash(skb, hash, hash_type);
599 }
600
qede_set_skb_csum(struct sk_buff * skb,u8 csum_flag)601 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
602 {
603 skb_checksum_none_assert(skb);
604
605 if (csum_flag & QEDE_CSUM_UNNECESSARY)
606 skb->ip_summed = CHECKSUM_UNNECESSARY;
607
608 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
609 skb->csum_level = 1;
610 skb->encapsulation = 1;
611 }
612 }
613
qede_skb_receive(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,struct sk_buff * skb,u16 vlan_tag)614 static inline void qede_skb_receive(struct qede_dev *edev,
615 struct qede_fastpath *fp,
616 struct qede_rx_queue *rxq,
617 struct sk_buff *skb, u16 vlan_tag)
618 {
619 if (vlan_tag)
620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
621
622 napi_gro_receive(&fp->napi, skb);
623 }
624
qede_set_gro_params(struct qede_dev * edev,struct sk_buff * skb,struct eth_fast_path_rx_tpa_start_cqe * cqe)625 static void qede_set_gro_params(struct qede_dev *edev,
626 struct sk_buff *skb,
627 struct eth_fast_path_rx_tpa_start_cqe *cqe)
628 {
629 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
630
631 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
632 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
633 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
634 else
635 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
636
637 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
638 cqe->header_len;
639 }
640
qede_fill_frag_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,u8 tpa_agg_index,u16 len_on_bd)641 static int qede_fill_frag_skb(struct qede_dev *edev,
642 struct qede_rx_queue *rxq,
643 u8 tpa_agg_index, u16 len_on_bd)
644 {
645 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
646 NUM_RX_BDS_MAX];
647 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
648 struct sk_buff *skb = tpa_info->skb;
649
650 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
651 goto out;
652
653 /* Add one frag and update the appropriate fields in the skb */
654 skb_fill_page_desc(skb, tpa_info->frag_id++,
655 current_bd->data,
656 current_bd->page_offset + rxq->rx_headroom,
657 len_on_bd);
658
659 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
660 /* Incr page ref count to reuse on allocation failure
661 * so that it doesn't get freed while freeing SKB.
662 */
663 page_ref_inc(current_bd->data);
664 goto out;
665 }
666
667 qede_rx_bd_ring_consume(rxq);
668
669 skb->data_len += len_on_bd;
670 skb->truesize += rxq->rx_buf_seg_size;
671 skb->len += len_on_bd;
672
673 return 0;
674
675 out:
676 tpa_info->state = QEDE_AGG_STATE_ERROR;
677 qede_recycle_rx_bd_ring(rxq, 1);
678
679 return -ENOMEM;
680 }
681
qede_tunn_exist(u16 flag)682 static bool qede_tunn_exist(u16 flag)
683 {
684 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
685 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
686 }
687
qede_check_tunn_csum(u16 flag)688 static u8 qede_check_tunn_csum(u16 flag)
689 {
690 u16 csum_flag = 0;
691 u8 tcsum = 0;
692
693 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
694 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
695 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
696 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
697
698 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
699 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
700 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
701 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
702 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
703 }
704
705 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
706 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
707 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
708 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
709
710 if (csum_flag & flag)
711 return QEDE_CSUM_ERROR;
712
713 return QEDE_CSUM_UNNECESSARY | tcsum;
714 }
715
716 static inline struct sk_buff *
qede_build_skb(struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad)717 qede_build_skb(struct qede_rx_queue *rxq,
718 struct sw_rx_data *bd, u16 len, u16 pad)
719 {
720 struct sk_buff *skb;
721 void *buf;
722
723 buf = page_address(bd->data) + bd->page_offset;
724 skb = build_skb(buf, rxq->rx_buf_seg_size);
725
726 skb_reserve(skb, pad);
727 skb_put(skb, len);
728
729 return skb;
730 }
731
732 static struct sk_buff *
qede_tpa_rx_build_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad,bool alloc_skb)733 qede_tpa_rx_build_skb(struct qede_dev *edev,
734 struct qede_rx_queue *rxq,
735 struct sw_rx_data *bd, u16 len, u16 pad,
736 bool alloc_skb)
737 {
738 struct sk_buff *skb;
739
740 skb = qede_build_skb(rxq, bd, len, pad);
741 bd->page_offset += rxq->rx_buf_seg_size;
742
743 if (bd->page_offset == PAGE_SIZE) {
744 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
745 DP_NOTICE(edev,
746 "Failed to allocate RX buffer for tpa start\n");
747 bd->page_offset -= rxq->rx_buf_seg_size;
748 page_ref_inc(bd->data);
749 dev_kfree_skb_any(skb);
750 return NULL;
751 }
752 } else {
753 page_ref_inc(bd->data);
754 qede_reuse_page(rxq, bd);
755 }
756
757 /* We've consumed the first BD and prepared an SKB */
758 qede_rx_bd_ring_consume(rxq);
759
760 return skb;
761 }
762
763 static struct sk_buff *
qede_rx_build_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad)764 qede_rx_build_skb(struct qede_dev *edev,
765 struct qede_rx_queue *rxq,
766 struct sw_rx_data *bd, u16 len, u16 pad)
767 {
768 struct sk_buff *skb = NULL;
769
770 /* For smaller frames still need to allocate skb, memcpy
771 * data and benefit in reusing the page segment instead of
772 * un-mapping it.
773 */
774 if ((len + pad <= edev->rx_copybreak)) {
775 unsigned int offset = bd->page_offset + pad;
776
777 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
778 if (unlikely(!skb))
779 return NULL;
780
781 skb_reserve(skb, pad);
782 skb_put_data(skb, page_address(bd->data) + offset, len);
783 qede_reuse_page(rxq, bd);
784 goto out;
785 }
786
787 skb = qede_build_skb(rxq, bd, len, pad);
788
789 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
790 /* Incr page ref count to reuse on allocation failure so
791 * that it doesn't get freed while freeing SKB [as its
792 * already mapped there].
793 */
794 page_ref_inc(bd->data);
795 dev_kfree_skb_any(skb);
796 return NULL;
797 }
798 out:
799 /* We've consumed the first BD and prepared an SKB */
800 qede_rx_bd_ring_consume(rxq);
801
802 return skb;
803 }
804
qede_tpa_start(struct qede_dev * edev,struct qede_rx_queue * rxq,struct eth_fast_path_rx_tpa_start_cqe * cqe)805 static void qede_tpa_start(struct qede_dev *edev,
806 struct qede_rx_queue *rxq,
807 struct eth_fast_path_rx_tpa_start_cqe *cqe)
808 {
809 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
810 struct sw_rx_data *sw_rx_data_cons;
811 u16 pad;
812
813 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
814 pad = cqe->placement_offset + rxq->rx_headroom;
815
816 tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
817 le16_to_cpu(cqe->len_on_first_bd),
818 pad, false);
819 tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
820 tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
821
822 if (unlikely(!tpa_info->skb)) {
823 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
824
825 /* Consume from ring but do not produce since
826 * this might be used by FW still, it will be re-used
827 * at TPA end.
828 */
829 tpa_info->tpa_start_fail = true;
830 qede_rx_bd_ring_consume(rxq);
831 tpa_info->state = QEDE_AGG_STATE_ERROR;
832 goto cons_buf;
833 }
834
835 tpa_info->frag_id = 0;
836 tpa_info->state = QEDE_AGG_STATE_START;
837
838 if ((le16_to_cpu(cqe->pars_flags.flags) >>
839 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
840 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
841 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
842 else
843 tpa_info->vlan_tag = 0;
844
845 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
846
847 /* This is needed in order to enable forwarding support */
848 qede_set_gro_params(edev, tpa_info->skb, cqe);
849
850 cons_buf: /* We still need to handle bd_len_list to consume buffers */
851 if (likely(cqe->ext_bd_len_list[0]))
852 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
853 le16_to_cpu(cqe->ext_bd_len_list[0]));
854
855 if (unlikely(cqe->ext_bd_len_list[1])) {
856 DP_ERR(edev,
857 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
858 tpa_info->state = QEDE_AGG_STATE_ERROR;
859 }
860 }
861
862 #ifdef CONFIG_INET
qede_gro_ip_csum(struct sk_buff * skb)863 static void qede_gro_ip_csum(struct sk_buff *skb)
864 {
865 const struct iphdr *iph = ip_hdr(skb);
866 struct tcphdr *th;
867
868 skb_set_transport_header(skb, sizeof(struct iphdr));
869 th = tcp_hdr(skb);
870
871 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
872 iph->saddr, iph->daddr, 0);
873
874 tcp_gro_complete(skb);
875 }
876
qede_gro_ipv6_csum(struct sk_buff * skb)877 static void qede_gro_ipv6_csum(struct sk_buff *skb)
878 {
879 struct ipv6hdr *iph = ipv6_hdr(skb);
880 struct tcphdr *th;
881
882 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
883 th = tcp_hdr(skb);
884
885 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
886 &iph->saddr, &iph->daddr, 0);
887 tcp_gro_complete(skb);
888 }
889 #endif
890
qede_gro_receive(struct qede_dev * edev,struct qede_fastpath * fp,struct sk_buff * skb,u16 vlan_tag)891 static void qede_gro_receive(struct qede_dev *edev,
892 struct qede_fastpath *fp,
893 struct sk_buff *skb,
894 u16 vlan_tag)
895 {
896 /* FW can send a single MTU sized packet from gro flow
897 * due to aggregation timeout/last segment etc. which
898 * is not expected to be a gro packet. If a skb has zero
899 * frags then simply push it in the stack as non gso skb.
900 */
901 if (unlikely(!skb->data_len)) {
902 skb_shinfo(skb)->gso_type = 0;
903 skb_shinfo(skb)->gso_size = 0;
904 goto send_skb;
905 }
906
907 #ifdef CONFIG_INET
908 if (skb_shinfo(skb)->gso_size) {
909 skb_reset_network_header(skb);
910
911 switch (skb->protocol) {
912 case htons(ETH_P_IP):
913 qede_gro_ip_csum(skb);
914 break;
915 case htons(ETH_P_IPV6):
916 qede_gro_ipv6_csum(skb);
917 break;
918 default:
919 DP_ERR(edev,
920 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
921 ntohs(skb->protocol));
922 }
923 }
924 #endif
925
926 send_skb:
927 skb_record_rx_queue(skb, fp->rxq->rxq_id);
928 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
929 }
930
qede_tpa_cont(struct qede_dev * edev,struct qede_rx_queue * rxq,struct eth_fast_path_rx_tpa_cont_cqe * cqe)931 static inline void qede_tpa_cont(struct qede_dev *edev,
932 struct qede_rx_queue *rxq,
933 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
934 {
935 int i;
936
937 for (i = 0; cqe->len_list[i]; i++)
938 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
939 le16_to_cpu(cqe->len_list[i]));
940
941 if (unlikely(i > 1))
942 DP_ERR(edev,
943 "Strange - TPA cont with more than a single len_list entry\n");
944 }
945
qede_tpa_end(struct qede_dev * edev,struct qede_fastpath * fp,struct eth_fast_path_rx_tpa_end_cqe * cqe)946 static int qede_tpa_end(struct qede_dev *edev,
947 struct qede_fastpath *fp,
948 struct eth_fast_path_rx_tpa_end_cqe *cqe)
949 {
950 struct qede_rx_queue *rxq = fp->rxq;
951 struct qede_agg_info *tpa_info;
952 struct sk_buff *skb;
953 int i;
954
955 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
956 skb = tpa_info->skb;
957
958 if (tpa_info->buffer.page_offset == PAGE_SIZE)
959 dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
960 PAGE_SIZE, rxq->data_direction);
961
962 for (i = 0; cqe->len_list[i]; i++)
963 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
964 le16_to_cpu(cqe->len_list[i]));
965 if (unlikely(i > 1))
966 DP_ERR(edev,
967 "Strange - TPA emd with more than a single len_list entry\n");
968
969 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
970 goto err;
971
972 /* Sanity */
973 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
974 DP_ERR(edev,
975 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
976 cqe->num_of_bds, tpa_info->frag_id);
977 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
978 DP_ERR(edev,
979 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
980 le16_to_cpu(cqe->total_packet_len), skb->len);
981
982 /* Finalize the SKB */
983 skb->protocol = eth_type_trans(skb, edev->ndev);
984 skb->ip_summed = CHECKSUM_UNNECESSARY;
985
986 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
987 * to skb_shinfo(skb)->gso_segs
988 */
989 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
990
991 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
992
993 tpa_info->state = QEDE_AGG_STATE_NONE;
994
995 return 1;
996 err:
997 tpa_info->state = QEDE_AGG_STATE_NONE;
998
999 if (tpa_info->tpa_start_fail) {
1000 qede_reuse_page(rxq, &tpa_info->buffer);
1001 tpa_info->tpa_start_fail = false;
1002 }
1003
1004 dev_kfree_skb_any(tpa_info->skb);
1005 tpa_info->skb = NULL;
1006 return 0;
1007 }
1008
qede_check_notunn_csum(u16 flag)1009 static u8 qede_check_notunn_csum(u16 flag)
1010 {
1011 u16 csum_flag = 0;
1012 u8 csum = 0;
1013
1014 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1015 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1016 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1017 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1018 csum = QEDE_CSUM_UNNECESSARY;
1019 }
1020
1021 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1022 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1023
1024 if (csum_flag & flag)
1025 return QEDE_CSUM_ERROR;
1026
1027 return csum;
1028 }
1029
qede_check_csum(u16 flag)1030 static u8 qede_check_csum(u16 flag)
1031 {
1032 if (!qede_tunn_exist(flag))
1033 return qede_check_notunn_csum(flag);
1034 else
1035 return qede_check_tunn_csum(flag);
1036 }
1037
qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe * cqe,u16 flag)1038 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1039 u16 flag)
1040 {
1041 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1042
1043 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1044 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1045 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1046 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1047 return true;
1048
1049 return false;
1050 }
1051
1052 /* Return true iff packet is to be passed to stack */
qede_rx_xdp(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,struct bpf_prog * prog,struct sw_rx_data * bd,struct eth_fast_path_rx_reg_cqe * cqe,u16 * data_offset,u16 * len)1053 static bool qede_rx_xdp(struct qede_dev *edev,
1054 struct qede_fastpath *fp,
1055 struct qede_rx_queue *rxq,
1056 struct bpf_prog *prog,
1057 struct sw_rx_data *bd,
1058 struct eth_fast_path_rx_reg_cqe *cqe,
1059 u16 *data_offset, u16 *len)
1060 {
1061 struct xdp_buff xdp;
1062 enum xdp_action act;
1063
1064 xdp.data_hard_start = page_address(bd->data);
1065 xdp.data = xdp.data_hard_start + *data_offset;
1066 xdp_set_data_meta_invalid(&xdp);
1067 xdp.data_end = xdp.data + *len;
1068 xdp.rxq = &rxq->xdp_rxq;
1069
1070 /* Queues always have a full reset currently, so for the time
1071 * being until there's atomic program replace just mark read
1072 * side for map helpers.
1073 */
1074 rcu_read_lock();
1075 act = bpf_prog_run_xdp(prog, &xdp);
1076 rcu_read_unlock();
1077
1078 /* Recalculate, as XDP might have changed the headers */
1079 *data_offset = xdp.data - xdp.data_hard_start;
1080 *len = xdp.data_end - xdp.data;
1081
1082 if (act == XDP_PASS)
1083 return true;
1084
1085 /* Count number of packets not to be passed to stack */
1086 rxq->xdp_no_pass++;
1087
1088 switch (act) {
1089 case XDP_TX:
1090 /* We need the replacement buffer before transmit. */
1091 if (qede_alloc_rx_buffer(rxq, true)) {
1092 qede_recycle_rx_bd_ring(rxq, 1);
1093 trace_xdp_exception(edev->ndev, prog, act);
1094 return false;
1095 }
1096
1097 /* Now if there's a transmission problem, we'd still have to
1098 * throw current buffer, as replacement was already allocated.
1099 */
1100 if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
1101 dma_unmap_page(rxq->dev, bd->mapping,
1102 PAGE_SIZE, DMA_BIDIRECTIONAL);
1103 __free_page(bd->data);
1104 trace_xdp_exception(edev->ndev, prog, act);
1105 }
1106
1107 /* Regardless, we've consumed an Rx BD */
1108 qede_rx_bd_ring_consume(rxq);
1109 return false;
1110
1111 default:
1112 bpf_warn_invalid_xdp_action(act);
1113 /* Fall through */
1114 case XDP_ABORTED:
1115 trace_xdp_exception(edev->ndev, prog, act);
1116 /* Fall through */
1117 case XDP_DROP:
1118 qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1119 }
1120
1121 return false;
1122 }
1123
qede_rx_build_jumbo(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sk_buff * skb,struct eth_fast_path_rx_reg_cqe * cqe,u16 first_bd_len)1124 static int qede_rx_build_jumbo(struct qede_dev *edev,
1125 struct qede_rx_queue *rxq,
1126 struct sk_buff *skb,
1127 struct eth_fast_path_rx_reg_cqe *cqe,
1128 u16 first_bd_len)
1129 {
1130 u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1131 struct sw_rx_data *bd;
1132 u16 bd_cons_idx;
1133 u8 num_frags;
1134
1135 pkt_len -= first_bd_len;
1136
1137 /* We've already used one BD for the SKB. Now take care of the rest */
1138 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1139 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1140 pkt_len;
1141
1142 if (unlikely(!cur_size)) {
1143 DP_ERR(edev,
1144 "Still got %d BDs for mapping jumbo, but length became 0\n",
1145 num_frags);
1146 goto out;
1147 }
1148
1149 /* We need a replacement buffer for each BD */
1150 if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1151 goto out;
1152
1153 /* Now that we've allocated the replacement buffer,
1154 * we can safely consume the next BD and map it to the SKB.
1155 */
1156 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1157 bd = &rxq->sw_rx_ring[bd_cons_idx];
1158 qede_rx_bd_ring_consume(rxq);
1159
1160 dma_unmap_page(rxq->dev, bd->mapping,
1161 PAGE_SIZE, DMA_FROM_DEVICE);
1162
1163 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1164 bd->data, rxq->rx_headroom, cur_size);
1165
1166 skb->truesize += PAGE_SIZE;
1167 skb->data_len += cur_size;
1168 skb->len += cur_size;
1169 pkt_len -= cur_size;
1170 }
1171
1172 if (unlikely(pkt_len))
1173 DP_ERR(edev,
1174 "Mapped all BDs of jumbo, but still have %d bytes\n",
1175 pkt_len);
1176
1177 out:
1178 return num_frags;
1179 }
1180
qede_rx_process_tpa_cqe(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,union eth_rx_cqe * cqe,enum eth_rx_cqe_type type)1181 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1182 struct qede_fastpath *fp,
1183 struct qede_rx_queue *rxq,
1184 union eth_rx_cqe *cqe,
1185 enum eth_rx_cqe_type type)
1186 {
1187 switch (type) {
1188 case ETH_RX_CQE_TYPE_TPA_START:
1189 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1190 return 0;
1191 case ETH_RX_CQE_TYPE_TPA_CONT:
1192 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1193 return 0;
1194 case ETH_RX_CQE_TYPE_TPA_END:
1195 return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1196 default:
1197 return 0;
1198 }
1199 }
1200
qede_rx_process_cqe(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq)1201 static int qede_rx_process_cqe(struct qede_dev *edev,
1202 struct qede_fastpath *fp,
1203 struct qede_rx_queue *rxq)
1204 {
1205 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1206 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1207 u16 len, pad, bd_cons_idx, parse_flag;
1208 enum eth_rx_cqe_type cqe_type;
1209 union eth_rx_cqe *cqe;
1210 struct sw_rx_data *bd;
1211 struct sk_buff *skb;
1212 __le16 flags;
1213 u8 csum_flag;
1214
1215 /* Get the CQE from the completion ring */
1216 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1217 cqe_type = cqe->fast_path_regular.type;
1218
1219 /* Process an unlikely slowpath event */
1220 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1221 struct eth_slow_path_rx_cqe *sp_cqe;
1222
1223 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1224 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1225 return 0;
1226 }
1227
1228 /* Handle TPA cqes */
1229 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1230 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1231
1232 /* Get the data from the SW ring; Consume it only after it's evident
1233 * we wouldn't recycle it.
1234 */
1235 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1236 bd = &rxq->sw_rx_ring[bd_cons_idx];
1237
1238 fp_cqe = &cqe->fast_path_regular;
1239 len = le16_to_cpu(fp_cqe->len_on_first_bd);
1240 pad = fp_cqe->placement_offset + rxq->rx_headroom;
1241
1242 /* Run eBPF program if one is attached */
1243 if (xdp_prog)
1244 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1245 &pad, &len))
1246 return 0;
1247
1248 /* If this is an error packet then drop it */
1249 flags = cqe->fast_path_regular.pars_flags.flags;
1250 parse_flag = le16_to_cpu(flags);
1251
1252 csum_flag = qede_check_csum(parse_flag);
1253 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1254 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
1255 rxq->rx_ip_frags++;
1256 else
1257 rxq->rx_hw_errors++;
1258 }
1259
1260 /* Basic validation passed; Need to prepare an SKB. This would also
1261 * guarantee to finally consume the first BD upon success.
1262 */
1263 skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
1264 if (!skb) {
1265 rxq->rx_alloc_errors++;
1266 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1267 return 0;
1268 }
1269
1270 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1271 * by a single cqe.
1272 */
1273 if (fp_cqe->bd_num > 1) {
1274 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1275 fp_cqe, len);
1276
1277 if (unlikely(unmapped_frags > 0)) {
1278 qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1279 dev_kfree_skb_any(skb);
1280 return 0;
1281 }
1282 }
1283
1284 /* The SKB contains all the data. Now prepare meta-magic */
1285 skb->protocol = eth_type_trans(skb, edev->ndev);
1286 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1287 qede_set_skb_csum(skb, csum_flag);
1288 skb_record_rx_queue(skb, rxq->rxq_id);
1289 qede_ptp_record_rx_ts(edev, cqe, skb);
1290
1291 /* SKB is prepared - pass it to stack */
1292 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1293
1294 return 1;
1295 }
1296
qede_rx_int(struct qede_fastpath * fp,int budget)1297 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1298 {
1299 struct qede_rx_queue *rxq = fp->rxq;
1300 struct qede_dev *edev = fp->edev;
1301 int work_done = 0, rcv_pkts = 0;
1302 u16 hw_comp_cons, sw_comp_cons;
1303
1304 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1305 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1306
1307 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1308 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1309 * read before it is written by FW, then FW writes CQE and SB, and then
1310 * the CPU reads the hw_comp_cons, it will use an old CQE.
1311 */
1312 rmb();
1313
1314 /* Loop to complete all indicated BDs */
1315 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1316 rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1317 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1318 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1319 work_done++;
1320 }
1321
1322 rxq->rcv_pkts += rcv_pkts;
1323
1324 /* Allocate replacement buffers */
1325 while (rxq->num_rx_buffers - rxq->filled_buffers)
1326 if (qede_alloc_rx_buffer(rxq, false))
1327 break;
1328
1329 /* Update producers */
1330 qede_update_rx_prod(edev, rxq);
1331
1332 return work_done;
1333 }
1334
qede_poll_is_more_work(struct qede_fastpath * fp)1335 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1336 {
1337 qed_sb_update_sb_idx(fp->sb_info);
1338
1339 /* *_has_*_work() reads the status block, thus we need to ensure that
1340 * status block indices have been actually read (qed_sb_update_sb_idx)
1341 * prior to this check (*_has_*_work) so that we won't write the
1342 * "newer" value of the status block to HW (if there was a DMA right
1343 * after qede_has_rx_work and if there is no rmb, the memory reading
1344 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1345 * In this case there will never be another interrupt until there is
1346 * another update of the status block, while there is still unhandled
1347 * work.
1348 */
1349 rmb();
1350
1351 if (likely(fp->type & QEDE_FASTPATH_RX))
1352 if (qede_has_rx_work(fp->rxq))
1353 return true;
1354
1355 if (fp->type & QEDE_FASTPATH_XDP)
1356 if (qede_txq_has_work(fp->xdp_tx))
1357 return true;
1358
1359 if (likely(fp->type & QEDE_FASTPATH_TX)) {
1360 int cos;
1361
1362 for_each_cos_in_txq(fp->edev, cos) {
1363 if (qede_txq_has_work(&fp->txq[cos]))
1364 return true;
1365 }
1366 }
1367
1368 return false;
1369 }
1370
1371 /*********************
1372 * NDO & API related *
1373 *********************/
qede_poll(struct napi_struct * napi,int budget)1374 int qede_poll(struct napi_struct *napi, int budget)
1375 {
1376 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1377 napi);
1378 struct qede_dev *edev = fp->edev;
1379 int rx_work_done = 0;
1380
1381 if (likely(fp->type & QEDE_FASTPATH_TX)) {
1382 int cos;
1383
1384 for_each_cos_in_txq(fp->edev, cos) {
1385 if (qede_txq_has_work(&fp->txq[cos]))
1386 qede_tx_int(edev, &fp->txq[cos]);
1387 }
1388 }
1389
1390 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1391 qede_xdp_tx_int(edev, fp->xdp_tx);
1392
1393 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1394 qede_has_rx_work(fp->rxq)) ?
1395 qede_rx_int(fp, budget) : 0;
1396 if (rx_work_done < budget) {
1397 if (!qede_poll_is_more_work(fp)) {
1398 napi_complete_done(napi, rx_work_done);
1399
1400 /* Update and reenable interrupts */
1401 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1402 } else {
1403 rx_work_done = budget;
1404 }
1405 }
1406
1407 if (fp->xdp_xmit) {
1408 u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1409
1410 fp->xdp_xmit = 0;
1411 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1412 qede_update_tx_producer(fp->xdp_tx);
1413 }
1414
1415 return rx_work_done;
1416 }
1417
qede_msix_fp_int(int irq,void * fp_cookie)1418 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1419 {
1420 struct qede_fastpath *fp = fp_cookie;
1421
1422 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1423
1424 napi_schedule_irqoff(&fp->napi);
1425 return IRQ_HANDLED;
1426 }
1427
1428 /* Main transmit function */
qede_start_xmit(struct sk_buff * skb,struct net_device * ndev)1429 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1430 {
1431 struct qede_dev *edev = netdev_priv(ndev);
1432 struct netdev_queue *netdev_txq;
1433 struct qede_tx_queue *txq;
1434 struct eth_tx_1st_bd *first_bd;
1435 struct eth_tx_2nd_bd *second_bd = NULL;
1436 struct eth_tx_3rd_bd *third_bd = NULL;
1437 struct eth_tx_bd *tx_data_bd = NULL;
1438 u16 txq_index, val = 0;
1439 u8 nbd = 0;
1440 dma_addr_t mapping;
1441 int rc, frag_idx = 0, ipv6_ext = 0;
1442 u8 xmit_type;
1443 u16 idx;
1444 u16 hlen;
1445 bool data_split = false;
1446
1447 /* Get tx-queue context and netdev index */
1448 txq_index = skb_get_queue_mapping(skb);
1449 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc);
1450 txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index);
1451 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1452
1453 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1454
1455 xmit_type = qede_xmit_type(skb, &ipv6_ext);
1456
1457 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1458 if (qede_pkt_req_lin(skb, xmit_type)) {
1459 if (skb_linearize(skb)) {
1460 txq->tx_mem_alloc_err++;
1461
1462 dev_kfree_skb_any(skb);
1463 return NETDEV_TX_OK;
1464 }
1465 }
1466 #endif
1467
1468 /* Fill the entry in the SW ring and the BDs in the FW ring */
1469 idx = txq->sw_tx_prod;
1470 txq->sw_tx_ring.skbs[idx].skb = skb;
1471 first_bd = (struct eth_tx_1st_bd *)
1472 qed_chain_produce(&txq->tx_pbl);
1473 memset(first_bd, 0, sizeof(*first_bd));
1474 first_bd->data.bd_flags.bitfields =
1475 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1476
1477 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1478 qede_ptp_tx_ts(edev, skb);
1479
1480 /* Map skb linear data for DMA and set in the first BD */
1481 mapping = dma_map_single(txq->dev, skb->data,
1482 skb_headlen(skb), DMA_TO_DEVICE);
1483 if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1484 DP_NOTICE(edev, "SKB mapping failed\n");
1485 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1486 qede_update_tx_producer(txq);
1487 return NETDEV_TX_OK;
1488 }
1489 nbd++;
1490 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1491
1492 /* In case there is IPv6 with extension headers or LSO we need 2nd and
1493 * 3rd BDs.
1494 */
1495 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1496 second_bd = (struct eth_tx_2nd_bd *)
1497 qed_chain_produce(&txq->tx_pbl);
1498 memset(second_bd, 0, sizeof(*second_bd));
1499
1500 nbd++;
1501 third_bd = (struct eth_tx_3rd_bd *)
1502 qed_chain_produce(&txq->tx_pbl);
1503 memset(third_bd, 0, sizeof(*third_bd));
1504
1505 nbd++;
1506 /* We need to fill in additional data in second_bd... */
1507 tx_data_bd = (struct eth_tx_bd *)second_bd;
1508 }
1509
1510 if (skb_vlan_tag_present(skb)) {
1511 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1512 first_bd->data.bd_flags.bitfields |=
1513 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1514 }
1515
1516 /* Fill the parsing flags & params according to the requested offload */
1517 if (xmit_type & XMIT_L4_CSUM) {
1518 /* We don't re-calculate IP checksum as it is already done by
1519 * the upper stack
1520 */
1521 first_bd->data.bd_flags.bitfields |=
1522 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1523
1524 if (xmit_type & XMIT_ENC) {
1525 first_bd->data.bd_flags.bitfields |=
1526 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1527
1528 val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1529 }
1530
1531 /* Legacy FW had flipped behavior in regard to this bit -
1532 * I.e., needed to set to prevent FW from touching encapsulated
1533 * packets when it didn't need to.
1534 */
1535 if (unlikely(txq->is_legacy))
1536 val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1537
1538 /* If the packet is IPv6 with extension header, indicate that
1539 * to FW and pass few params, since the device cracker doesn't
1540 * support parsing IPv6 with extension header/s.
1541 */
1542 if (unlikely(ipv6_ext))
1543 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1544 }
1545
1546 if (xmit_type & XMIT_LSO) {
1547 first_bd->data.bd_flags.bitfields |=
1548 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1549 third_bd->data.lso_mss =
1550 cpu_to_le16(skb_shinfo(skb)->gso_size);
1551
1552 if (unlikely(xmit_type & XMIT_ENC)) {
1553 first_bd->data.bd_flags.bitfields |=
1554 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1555
1556 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1557 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1558
1559 first_bd->data.bd_flags.bitfields |= 1 << tmp;
1560 }
1561 hlen = qede_get_skb_hlen(skb, true);
1562 } else {
1563 first_bd->data.bd_flags.bitfields |=
1564 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1565 hlen = qede_get_skb_hlen(skb, false);
1566 }
1567
1568 /* @@@TBD - if will not be removed need to check */
1569 third_bd->data.bitfields |=
1570 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1571
1572 /* Make life easier for FW guys who can't deal with header and
1573 * data on same BD. If we need to split, use the second bd...
1574 */
1575 if (unlikely(skb_headlen(skb) > hlen)) {
1576 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1577 "TSO split header size is %d (%x:%x)\n",
1578 first_bd->nbytes, first_bd->addr.hi,
1579 first_bd->addr.lo);
1580
1581 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1582 le32_to_cpu(first_bd->addr.lo)) +
1583 hlen;
1584
1585 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1586 le16_to_cpu(first_bd->nbytes) -
1587 hlen);
1588
1589 /* this marks the BD as one that has no
1590 * individual mapping
1591 */
1592 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1593
1594 first_bd->nbytes = cpu_to_le16(hlen);
1595
1596 tx_data_bd = (struct eth_tx_bd *)third_bd;
1597 data_split = true;
1598 }
1599 } else {
1600 val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1601 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1602 }
1603
1604 first_bd->data.bitfields = cpu_to_le16(val);
1605
1606 /* Handle fragmented skb */
1607 /* special handle for frags inside 2nd and 3rd bds.. */
1608 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1609 rc = map_frag_to_bd(txq,
1610 &skb_shinfo(skb)->frags[frag_idx],
1611 tx_data_bd);
1612 if (rc) {
1613 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1614 qede_update_tx_producer(txq);
1615 return NETDEV_TX_OK;
1616 }
1617
1618 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1619 tx_data_bd = (struct eth_tx_bd *)third_bd;
1620 else
1621 tx_data_bd = NULL;
1622
1623 frag_idx++;
1624 }
1625
1626 /* map last frags into 4th, 5th .... */
1627 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1628 tx_data_bd = (struct eth_tx_bd *)
1629 qed_chain_produce(&txq->tx_pbl);
1630
1631 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1632
1633 rc = map_frag_to_bd(txq,
1634 &skb_shinfo(skb)->frags[frag_idx],
1635 tx_data_bd);
1636 if (rc) {
1637 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1638 qede_update_tx_producer(txq);
1639 return NETDEV_TX_OK;
1640 }
1641 }
1642
1643 /* update the first BD with the actual num BDs */
1644 first_bd->data.nbds = nbd;
1645
1646 netdev_tx_sent_queue(netdev_txq, skb->len);
1647
1648 skb_tx_timestamp(skb);
1649
1650 /* Advance packet producer only before sending the packet since mapping
1651 * of pages may fail.
1652 */
1653 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1654
1655 /* 'next page' entries are counted in the producer value */
1656 txq->tx_db.data.bd_prod =
1657 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1658
1659 if (!netdev_xmit_more() || netif_xmit_stopped(netdev_txq))
1660 qede_update_tx_producer(txq);
1661
1662 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1663 < (MAX_SKB_FRAGS + 1))) {
1664 if (netdev_xmit_more())
1665 qede_update_tx_producer(txq);
1666
1667 netif_tx_stop_queue(netdev_txq);
1668 txq->stopped_cnt++;
1669 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1670 "Stop queue was called\n");
1671 /* paired memory barrier is in qede_tx_int(), we have to keep
1672 * ordering of set_bit() in netif_tx_stop_queue() and read of
1673 * fp->bd_tx_cons
1674 */
1675 smp_mb();
1676
1677 if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1678 (MAX_SKB_FRAGS + 1)) &&
1679 (edev->state == QEDE_STATE_OPEN)) {
1680 netif_tx_wake_queue(netdev_txq);
1681 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1682 "Wake queue was called\n");
1683 }
1684 }
1685
1686 return NETDEV_TX_OK;
1687 }
1688
qede_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1689 u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb,
1690 struct net_device *sb_dev)
1691 {
1692 struct qede_dev *edev = netdev_priv(dev);
1693 int total_txq;
1694
1695 total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc;
1696
1697 return QEDE_TSS_COUNT(edev) ?
1698 netdev_pick_tx(dev, skb, NULL) % total_txq : 0;
1699 }
1700
1701 /* 8B udp header + 8B base tunnel header + 32B option length */
1702 #define QEDE_MAX_TUN_HDR_LEN 48
1703
qede_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1704 netdev_features_t qede_features_check(struct sk_buff *skb,
1705 struct net_device *dev,
1706 netdev_features_t features)
1707 {
1708 if (skb->encapsulation) {
1709 u8 l4_proto = 0;
1710
1711 switch (vlan_get_protocol(skb)) {
1712 case htons(ETH_P_IP):
1713 l4_proto = ip_hdr(skb)->protocol;
1714 break;
1715 case htons(ETH_P_IPV6):
1716 l4_proto = ipv6_hdr(skb)->nexthdr;
1717 break;
1718 default:
1719 return features;
1720 }
1721
1722 /* Disable offloads for geneve tunnels, as HW can't parse
1723 * the geneve header which has option length greater than 32b
1724 * and disable offloads for the ports which are not offloaded.
1725 */
1726 if (l4_proto == IPPROTO_UDP) {
1727 struct qede_dev *edev = netdev_priv(dev);
1728 u16 hdrlen, vxln_port, gnv_port;
1729
1730 hdrlen = QEDE_MAX_TUN_HDR_LEN;
1731 vxln_port = edev->vxlan_dst_port;
1732 gnv_port = edev->geneve_dst_port;
1733
1734 if ((skb_inner_mac_header(skb) -
1735 skb_transport_header(skb)) > hdrlen ||
1736 (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1737 ntohs(udp_hdr(skb)->dest) != gnv_port))
1738 return features & ~(NETIF_F_CSUM_MASK |
1739 NETIF_F_GSO_MASK);
1740 }
1741 }
1742
1743 return features;
1744 }
1745