1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Dave Airlie
30 */
31
32 #include <linux/atomic.h>
33 #include <linux/firmware.h>
34 #include <linux/kref.h>
35 #include <linux/sched/signal.h>
36 #include <linux/seq_file.h>
37 #include <linux/slab.h>
38 #include <linux/wait.h>
39
40 #include <drm/drm_debugfs.h>
41 #include <drm/drm_device.h>
42 #include <drm/drm_file.h>
43
44 #include "radeon.h"
45 #include "radeon_reg.h"
46 #include "radeon_trace.h"
47
48 /*
49 * Fences
50 * Fences mark an event in the GPUs pipeline and are used
51 * for GPU/CPU synchronization. When the fence is written,
52 * it is expected that all buffers associated with that fence
53 * are no longer in use by the associated ring on the GPU and
54 * that the the relevant GPU caches have been flushed. Whether
55 * we use a scratch register or memory location depends on the asic
56 * and whether writeback is enabled.
57 */
58
59 /**
60 * radeon_fence_write - write a fence value
61 *
62 * @rdev: radeon_device pointer
63 * @seq: sequence number to write
64 * @ring: ring index the fence is associated with
65 *
66 * Writes a fence value to memory or a scratch register (all asics).
67 */
radeon_fence_write(struct radeon_device * rdev,u32 seq,int ring)68 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
69 {
70 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
71 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
72 if (drv->cpu_addr) {
73 *drv->cpu_addr = cpu_to_le32(seq);
74 }
75 } else {
76 WREG32(drv->scratch_reg, seq);
77 }
78 }
79
80 /**
81 * radeon_fence_read - read a fence value
82 *
83 * @rdev: radeon_device pointer
84 * @ring: ring index the fence is associated with
85 *
86 * Reads a fence value from memory or a scratch register (all asics).
87 * Returns the value of the fence read from memory or register.
88 */
radeon_fence_read(struct radeon_device * rdev,int ring)89 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
90 {
91 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
92 u32 seq = 0;
93
94 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
95 if (drv->cpu_addr) {
96 seq = le32_to_cpu(*drv->cpu_addr);
97 } else {
98 seq = lower_32_bits(atomic64_read(&drv->last_seq));
99 }
100 } else {
101 seq = RREG32(drv->scratch_reg);
102 }
103 return seq;
104 }
105
106 /**
107 * radeon_fence_schedule_check - schedule lockup check
108 *
109 * @rdev: radeon_device pointer
110 * @ring: ring index we should work with
111 *
112 * Queues a delayed work item to check for lockups.
113 */
radeon_fence_schedule_check(struct radeon_device * rdev,int ring)114 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
115 {
116 /*
117 * Do not reset the timer here with mod_delayed_work,
118 * this can livelock in an interaction with TTM delayed destroy.
119 */
120 queue_delayed_work(system_power_efficient_wq,
121 &rdev->fence_drv[ring].lockup_work,
122 RADEON_FENCE_JIFFIES_TIMEOUT);
123 }
124
125 /**
126 * radeon_fence_emit - emit a fence on the requested ring
127 *
128 * @rdev: radeon_device pointer
129 * @fence: radeon fence object
130 * @ring: ring index the fence is associated with
131 *
132 * Emits a fence command on the requested ring (all asics).
133 * Returns 0 on success, -ENOMEM on failure.
134 */
radeon_fence_emit(struct radeon_device * rdev,struct radeon_fence ** fence,int ring)135 int radeon_fence_emit(struct radeon_device *rdev,
136 struct radeon_fence **fence,
137 int ring)
138 {
139 u64 seq;
140
141 /* we are protected by the ring emission mutex */
142 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
143 if ((*fence) == NULL) {
144 return -ENOMEM;
145 }
146 (*fence)->rdev = rdev;
147 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
148 (*fence)->ring = ring;
149 (*fence)->is_vm_update = false;
150 dma_fence_init(&(*fence)->base, &radeon_fence_ops,
151 &rdev->fence_queue.lock,
152 rdev->fence_context + ring,
153 seq);
154 radeon_fence_ring_emit(rdev, ring, *fence);
155 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
156 radeon_fence_schedule_check(rdev, ring);
157 return 0;
158 }
159
160 /**
161 * radeon_fence_check_signaled - callback from fence_queue
162 *
163 * this function is called with fence_queue lock held, which is also used
164 * for the fence locking itself, so unlocked variants are used for
165 * fence_signal, and remove_wait_queue.
166 */
radeon_fence_check_signaled(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)167 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
168 {
169 struct radeon_fence *fence;
170 u64 seq;
171
172 fence = container_of(wait, struct radeon_fence, fence_wake);
173
174 /*
175 * We cannot use radeon_fence_process here because we're already
176 * in the waitqueue, in a call from wake_up_all.
177 */
178 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
179 if (seq >= fence->seq) {
180 int ret = dma_fence_signal_locked(&fence->base);
181
182 if (!ret)
183 DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
184 else
185 DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
186
187 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
188 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
189 dma_fence_put(&fence->base);
190 } else
191 DMA_FENCE_TRACE(&fence->base, "pending\n");
192 return 0;
193 }
194
195 /**
196 * radeon_fence_activity - check for fence activity
197 *
198 * @rdev: radeon_device pointer
199 * @ring: ring index the fence is associated with
200 *
201 * Checks the current fence value and calculates the last
202 * signalled fence value. Returns true if activity occured
203 * on the ring, and the fence_queue should be waken up.
204 */
radeon_fence_activity(struct radeon_device * rdev,int ring)205 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
206 {
207 uint64_t seq, last_seq, last_emitted;
208 unsigned count_loop = 0;
209 bool wake = false;
210
211 /* Note there is a scenario here for an infinite loop but it's
212 * very unlikely to happen. For it to happen, the current polling
213 * process need to be interrupted by another process and another
214 * process needs to update the last_seq btw the atomic read and
215 * xchg of the current process.
216 *
217 * More over for this to go in infinite loop there need to be
218 * continuously new fence signaled ie radeon_fence_read needs
219 * to return a different value each time for both the currently
220 * polling process and the other process that xchg the last_seq
221 * btw atomic read and xchg of the current process. And the
222 * value the other process set as last seq must be higher than
223 * the seq value we just read. Which means that current process
224 * need to be interrupted after radeon_fence_read and before
225 * atomic xchg.
226 *
227 * To be even more safe we count the number of time we loop and
228 * we bail after 10 loop just accepting the fact that we might
229 * have temporarly set the last_seq not to the true real last
230 * seq but to an older one.
231 */
232 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
233 do {
234 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
235 seq = radeon_fence_read(rdev, ring);
236 seq |= last_seq & 0xffffffff00000000LL;
237 if (seq < last_seq) {
238 seq &= 0xffffffff;
239 seq |= last_emitted & 0xffffffff00000000LL;
240 }
241
242 if (seq <= last_seq || seq > last_emitted) {
243 break;
244 }
245 /* If we loop over we don't want to return without
246 * checking if a fence is signaled as it means that the
247 * seq we just read is different from the previous on.
248 */
249 wake = true;
250 last_seq = seq;
251 if ((count_loop++) > 10) {
252 /* We looped over too many time leave with the
253 * fact that we might have set an older fence
254 * seq then the current real last seq as signaled
255 * by the hw.
256 */
257 break;
258 }
259 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
260
261 if (seq < last_emitted)
262 radeon_fence_schedule_check(rdev, ring);
263
264 return wake;
265 }
266
267 /**
268 * radeon_fence_check_lockup - check for hardware lockup
269 *
270 * @work: delayed work item
271 *
272 * Checks for fence activity and if there is none probe
273 * the hardware if a lockup occured.
274 */
radeon_fence_check_lockup(struct work_struct * work)275 static void radeon_fence_check_lockup(struct work_struct *work)
276 {
277 struct radeon_fence_driver *fence_drv;
278 struct radeon_device *rdev;
279 int ring;
280
281 fence_drv = container_of(work, struct radeon_fence_driver,
282 lockup_work.work);
283 rdev = fence_drv->rdev;
284 ring = fence_drv - &rdev->fence_drv[0];
285
286 if (!down_read_trylock(&rdev->exclusive_lock)) {
287 /* just reschedule the check if a reset is going on */
288 radeon_fence_schedule_check(rdev, ring);
289 return;
290 }
291
292 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
293 unsigned long irqflags;
294
295 fence_drv->delayed_irq = false;
296 spin_lock_irqsave(&rdev->irq.lock, irqflags);
297 radeon_irq_set(rdev);
298 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
299 }
300
301 if (radeon_fence_activity(rdev, ring))
302 wake_up_all(&rdev->fence_queue);
303
304 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
305
306 /* good news we believe it's a lockup */
307 dev_warn(rdev->dev, "GPU lockup (current fence id "
308 "0x%016llx last fence id 0x%016llx on ring %d)\n",
309 (uint64_t)atomic64_read(&fence_drv->last_seq),
310 fence_drv->sync_seq[ring], ring);
311
312 /* remember that we need an reset */
313 rdev->needs_reset = true;
314 wake_up_all(&rdev->fence_queue);
315 }
316 up_read(&rdev->exclusive_lock);
317 }
318
319 /**
320 * radeon_fence_process - process a fence
321 *
322 * @rdev: radeon_device pointer
323 * @ring: ring index the fence is associated with
324 *
325 * Checks the current fence value and wakes the fence queue
326 * if the sequence number has increased (all asics).
327 */
radeon_fence_process(struct radeon_device * rdev,int ring)328 void radeon_fence_process(struct radeon_device *rdev, int ring)
329 {
330 if (radeon_fence_activity(rdev, ring))
331 wake_up_all(&rdev->fence_queue);
332 }
333
334 /**
335 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
336 *
337 * @rdev: radeon device pointer
338 * @seq: sequence number
339 * @ring: ring index the fence is associated with
340 *
341 * Check if the last signaled fence sequnce number is >= the requested
342 * sequence number (all asics).
343 * Returns true if the fence has signaled (current fence value
344 * is >= requested value) or false if it has not (current fence
345 * value is < the requested value. Helper function for
346 * radeon_fence_signaled().
347 */
radeon_fence_seq_signaled(struct radeon_device * rdev,u64 seq,unsigned ring)348 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
349 u64 seq, unsigned ring)
350 {
351 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
352 return true;
353 }
354 /* poll new last sequence at least once */
355 radeon_fence_process(rdev, ring);
356 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
357 return true;
358 }
359 return false;
360 }
361
radeon_fence_is_signaled(struct dma_fence * f)362 static bool radeon_fence_is_signaled(struct dma_fence *f)
363 {
364 struct radeon_fence *fence = to_radeon_fence(f);
365 struct radeon_device *rdev = fence->rdev;
366 unsigned ring = fence->ring;
367 u64 seq = fence->seq;
368
369 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
370 return true;
371 }
372
373 if (down_read_trylock(&rdev->exclusive_lock)) {
374 radeon_fence_process(rdev, ring);
375 up_read(&rdev->exclusive_lock);
376
377 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
378 return true;
379 }
380 }
381 return false;
382 }
383
384 /**
385 * radeon_fence_enable_signaling - enable signalling on fence
386 * @fence: fence
387 *
388 * This function is called with fence_queue lock held, and adds a callback
389 * to fence_queue that checks if this fence is signaled, and if so it
390 * signals the fence and removes itself.
391 */
radeon_fence_enable_signaling(struct dma_fence * f)392 static bool radeon_fence_enable_signaling(struct dma_fence *f)
393 {
394 struct radeon_fence *fence = to_radeon_fence(f);
395 struct radeon_device *rdev = fence->rdev;
396
397 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
398 return false;
399
400 if (down_read_trylock(&rdev->exclusive_lock)) {
401 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
402
403 if (radeon_fence_activity(rdev, fence->ring))
404 wake_up_all_locked(&rdev->fence_queue);
405
406 /* did fence get signaled after we enabled the sw irq? */
407 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
408 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
409 up_read(&rdev->exclusive_lock);
410 return false;
411 }
412
413 up_read(&rdev->exclusive_lock);
414 } else {
415 /* we're probably in a lockup, lets not fiddle too much */
416 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
417 rdev->fence_drv[fence->ring].delayed_irq = true;
418 radeon_fence_schedule_check(rdev, fence->ring);
419 }
420
421 fence->fence_wake.flags = 0;
422 fence->fence_wake.private = NULL;
423 fence->fence_wake.func = radeon_fence_check_signaled;
424 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
425 dma_fence_get(f);
426
427 DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
428 return true;
429 }
430
431 /**
432 * radeon_fence_signaled - check if a fence has signaled
433 *
434 * @fence: radeon fence object
435 *
436 * Check if the requested fence has signaled (all asics).
437 * Returns true if the fence has signaled or false if it has not.
438 */
radeon_fence_signaled(struct radeon_fence * fence)439 bool radeon_fence_signaled(struct radeon_fence *fence)
440 {
441 if (!fence)
442 return true;
443
444 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
445 int ret;
446
447 ret = dma_fence_signal(&fence->base);
448 if (!ret)
449 DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
450 return true;
451 }
452 return false;
453 }
454
455 /**
456 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
457 *
458 * @rdev: radeon device pointer
459 * @seq: sequence numbers
460 *
461 * Check if the last signaled fence sequnce number is >= the requested
462 * sequence number (all asics).
463 * Returns true if any has signaled (current value is >= requested value)
464 * or false if it has not. Helper function for radeon_fence_wait_seq.
465 */
radeon_fence_any_seq_signaled(struct radeon_device * rdev,u64 * seq)466 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
467 {
468 unsigned i;
469
470 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
471 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
472 return true;
473 }
474 return false;
475 }
476
477 /**
478 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
479 *
480 * @rdev: radeon device pointer
481 * @target_seq: sequence number(s) we want to wait for
482 * @intr: use interruptable sleep
483 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
484 *
485 * Wait for the requested sequence number(s) to be written by any ring
486 * (all asics). Sequnce number array is indexed by ring id.
487 * @intr selects whether to use interruptable (true) or non-interruptable
488 * (false) sleep when waiting for the sequence number. Helper function
489 * for radeon_fence_wait_*().
490 * Returns remaining time if the sequence number has passed, 0 when
491 * the wait timeout, or an error for all other cases.
492 * -EDEADLK is returned when a GPU lockup has been detected.
493 */
radeon_fence_wait_seq_timeout(struct radeon_device * rdev,u64 * target_seq,bool intr,long timeout)494 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
495 u64 *target_seq, bool intr,
496 long timeout)
497 {
498 long r;
499 int i;
500
501 if (radeon_fence_any_seq_signaled(rdev, target_seq))
502 return timeout;
503
504 /* enable IRQs and tracing */
505 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
506 if (!target_seq[i])
507 continue;
508
509 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
510 radeon_irq_kms_sw_irq_get(rdev, i);
511 }
512
513 if (intr) {
514 r = wait_event_interruptible_timeout(rdev->fence_queue, (
515 radeon_fence_any_seq_signaled(rdev, target_seq)
516 || rdev->needs_reset), timeout);
517 } else {
518 r = wait_event_timeout(rdev->fence_queue, (
519 radeon_fence_any_seq_signaled(rdev, target_seq)
520 || rdev->needs_reset), timeout);
521 }
522
523 if (rdev->needs_reset)
524 r = -EDEADLK;
525
526 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
527 if (!target_seq[i])
528 continue;
529
530 radeon_irq_kms_sw_irq_put(rdev, i);
531 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
532 }
533
534 return r;
535 }
536
537 /**
538 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
539 *
540 * @fence: radeon fence object
541 * @intr: use interruptible sleep
542 *
543 * Wait for the requested fence to signal (all asics).
544 * @intr selects whether to use interruptable (true) or non-interruptable
545 * (false) sleep when waiting for the fence.
546 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
547 * Returns remaining time if the sequence number has passed, 0 when
548 * the wait timeout, or an error for all other cases.
549 */
radeon_fence_wait_timeout(struct radeon_fence * fence,bool intr,long timeout)550 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
551 {
552 uint64_t seq[RADEON_NUM_RINGS] = {};
553 long r;
554 int r_sig;
555
556 /*
557 * This function should not be called on !radeon fences.
558 * If this is the case, it would mean this function can
559 * also be called on radeon fences belonging to another card.
560 * exclusive_lock is not held in that case.
561 */
562 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
563 return dma_fence_wait(&fence->base, intr);
564
565 seq[fence->ring] = fence->seq;
566 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
567 if (r <= 0) {
568 return r;
569 }
570
571 r_sig = dma_fence_signal(&fence->base);
572 if (!r_sig)
573 DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
574 return r;
575 }
576
577 /**
578 * radeon_fence_wait - wait for a fence to signal
579 *
580 * @fence: radeon fence object
581 * @intr: use interruptible sleep
582 *
583 * Wait for the requested fence to signal (all asics).
584 * @intr selects whether to use interruptable (true) or non-interruptable
585 * (false) sleep when waiting for the fence.
586 * Returns 0 if the fence has passed, error for all other cases.
587 */
radeon_fence_wait(struct radeon_fence * fence,bool intr)588 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
589 {
590 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
591 if (r > 0) {
592 return 0;
593 } else {
594 return r;
595 }
596 }
597
598 /**
599 * radeon_fence_wait_any - wait for a fence to signal on any ring
600 *
601 * @rdev: radeon device pointer
602 * @fences: radeon fence object(s)
603 * @intr: use interruptable sleep
604 *
605 * Wait for any requested fence to signal (all asics). Fence
606 * array is indexed by ring id. @intr selects whether to use
607 * interruptable (true) or non-interruptable (false) sleep when
608 * waiting for the fences. Used by the suballocator.
609 * Returns 0 if any fence has passed, error for all other cases.
610 */
radeon_fence_wait_any(struct radeon_device * rdev,struct radeon_fence ** fences,bool intr)611 int radeon_fence_wait_any(struct radeon_device *rdev,
612 struct radeon_fence **fences,
613 bool intr)
614 {
615 uint64_t seq[RADEON_NUM_RINGS];
616 unsigned i, num_rings = 0;
617 long r;
618
619 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
620 seq[i] = 0;
621
622 if (!fences[i]) {
623 continue;
624 }
625
626 seq[i] = fences[i]->seq;
627 ++num_rings;
628 }
629
630 /* nothing to wait for ? */
631 if (num_rings == 0)
632 return -ENOENT;
633
634 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
635 if (r < 0) {
636 return r;
637 }
638 return 0;
639 }
640
641 /**
642 * radeon_fence_wait_next - wait for the next fence to signal
643 *
644 * @rdev: radeon device pointer
645 * @ring: ring index the fence is associated with
646 *
647 * Wait for the next fence on the requested ring to signal (all asics).
648 * Returns 0 if the next fence has passed, error for all other cases.
649 * Caller must hold ring lock.
650 */
radeon_fence_wait_next(struct radeon_device * rdev,int ring)651 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
652 {
653 uint64_t seq[RADEON_NUM_RINGS] = {};
654 long r;
655
656 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
657 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
658 /* nothing to wait for, last_seq is
659 already the last emited fence */
660 return -ENOENT;
661 }
662 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
663 if (r < 0)
664 return r;
665 return 0;
666 }
667
668 /**
669 * radeon_fence_wait_empty - wait for all fences to signal
670 *
671 * @rdev: radeon device pointer
672 * @ring: ring index the fence is associated with
673 *
674 * Wait for all fences on the requested ring to signal (all asics).
675 * Returns 0 if the fences have passed, error for all other cases.
676 * Caller must hold ring lock.
677 */
radeon_fence_wait_empty(struct radeon_device * rdev,int ring)678 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
679 {
680 uint64_t seq[RADEON_NUM_RINGS] = {};
681 long r;
682
683 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
684 if (!seq[ring])
685 return 0;
686
687 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
688 if (r < 0) {
689 if (r == -EDEADLK)
690 return -EDEADLK;
691
692 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
693 ring, r);
694 }
695 return 0;
696 }
697
698 /**
699 * radeon_fence_ref - take a ref on a fence
700 *
701 * @fence: radeon fence object
702 *
703 * Take a reference on a fence (all asics).
704 * Returns the fence.
705 */
radeon_fence_ref(struct radeon_fence * fence)706 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
707 {
708 dma_fence_get(&fence->base);
709 return fence;
710 }
711
712 /**
713 * radeon_fence_unref - remove a ref on a fence
714 *
715 * @fence: radeon fence object
716 *
717 * Remove a reference on a fence (all asics).
718 */
radeon_fence_unref(struct radeon_fence ** fence)719 void radeon_fence_unref(struct radeon_fence **fence)
720 {
721 struct radeon_fence *tmp = *fence;
722
723 *fence = NULL;
724 if (tmp) {
725 dma_fence_put(&tmp->base);
726 }
727 }
728
729 /**
730 * radeon_fence_count_emitted - get the count of emitted fences
731 *
732 * @rdev: radeon device pointer
733 * @ring: ring index the fence is associated with
734 *
735 * Get the number of fences emitted on the requested ring (all asics).
736 * Returns the number of emitted fences on the ring. Used by the
737 * dynpm code to ring track activity.
738 */
radeon_fence_count_emitted(struct radeon_device * rdev,int ring)739 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
740 {
741 uint64_t emitted;
742
743 /* We are not protected by ring lock when reading the last sequence
744 * but it's ok to report slightly wrong fence count here.
745 */
746 radeon_fence_process(rdev, ring);
747 emitted = rdev->fence_drv[ring].sync_seq[ring]
748 - atomic64_read(&rdev->fence_drv[ring].last_seq);
749 /* to avoid 32bits warp around */
750 if (emitted > 0x10000000) {
751 emitted = 0x10000000;
752 }
753 return (unsigned)emitted;
754 }
755
756 /**
757 * radeon_fence_need_sync - do we need a semaphore
758 *
759 * @fence: radeon fence object
760 * @dst_ring: which ring to check against
761 *
762 * Check if the fence needs to be synced against another ring
763 * (all asics). If so, we need to emit a semaphore.
764 * Returns true if we need to sync with another ring, false if
765 * not.
766 */
radeon_fence_need_sync(struct radeon_fence * fence,int dst_ring)767 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
768 {
769 struct radeon_fence_driver *fdrv;
770
771 if (!fence) {
772 return false;
773 }
774
775 if (fence->ring == dst_ring) {
776 return false;
777 }
778
779 /* we are protected by the ring mutex */
780 fdrv = &fence->rdev->fence_drv[dst_ring];
781 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
782 return false;
783 }
784
785 return true;
786 }
787
788 /**
789 * radeon_fence_note_sync - record the sync point
790 *
791 * @fence: radeon fence object
792 * @dst_ring: which ring to check against
793 *
794 * Note the sequence number at which point the fence will
795 * be synced with the requested ring (all asics).
796 */
radeon_fence_note_sync(struct radeon_fence * fence,int dst_ring)797 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
798 {
799 struct radeon_fence_driver *dst, *src;
800 unsigned i;
801
802 if (!fence) {
803 return;
804 }
805
806 if (fence->ring == dst_ring) {
807 return;
808 }
809
810 /* we are protected by the ring mutex */
811 src = &fence->rdev->fence_drv[fence->ring];
812 dst = &fence->rdev->fence_drv[dst_ring];
813 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
814 if (i == dst_ring) {
815 continue;
816 }
817 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
818 }
819 }
820
821 /**
822 * radeon_fence_driver_start_ring - make the fence driver
823 * ready for use on the requested ring.
824 *
825 * @rdev: radeon device pointer
826 * @ring: ring index to start the fence driver on
827 *
828 * Make the fence driver ready for processing (all asics).
829 * Not all asics have all rings, so each asic will only
830 * start the fence driver on the rings it has.
831 * Returns 0 for success, errors for failure.
832 */
radeon_fence_driver_start_ring(struct radeon_device * rdev,int ring)833 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
834 {
835 uint64_t index;
836 int r;
837
838 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
839 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
840 rdev->fence_drv[ring].scratch_reg = 0;
841 if (ring != R600_RING_TYPE_UVD_INDEX) {
842 index = R600_WB_EVENT_OFFSET + ring * 4;
843 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
844 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
845 index;
846
847 } else {
848 /* put fence directly behind firmware */
849 index = ALIGN(rdev->uvd_fw->size, 8);
850 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
851 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
852 }
853
854 } else {
855 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
856 if (r) {
857 dev_err(rdev->dev, "fence failed to get scratch register\n");
858 return r;
859 }
860 index = RADEON_WB_SCRATCH_OFFSET +
861 rdev->fence_drv[ring].scratch_reg -
862 rdev->scratch.reg_base;
863 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
864 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
865 }
866 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
867 rdev->fence_drv[ring].initialized = true;
868 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
869 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
870 return 0;
871 }
872
873 /**
874 * radeon_fence_driver_init_ring - init the fence driver
875 * for the requested ring.
876 *
877 * @rdev: radeon device pointer
878 * @ring: ring index to start the fence driver on
879 *
880 * Init the fence driver for the requested ring (all asics).
881 * Helper function for radeon_fence_driver_init().
882 */
radeon_fence_driver_init_ring(struct radeon_device * rdev,int ring)883 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
884 {
885 int i;
886
887 rdev->fence_drv[ring].scratch_reg = -1;
888 rdev->fence_drv[ring].cpu_addr = NULL;
889 rdev->fence_drv[ring].gpu_addr = 0;
890 for (i = 0; i < RADEON_NUM_RINGS; ++i)
891 rdev->fence_drv[ring].sync_seq[i] = 0;
892 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
893 rdev->fence_drv[ring].initialized = false;
894 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
895 radeon_fence_check_lockup);
896 rdev->fence_drv[ring].rdev = rdev;
897 }
898
899 /**
900 * radeon_fence_driver_init - init the fence driver
901 * for all possible rings.
902 *
903 * @rdev: radeon device pointer
904 *
905 * Init the fence driver for all possible rings (all asics).
906 * Not all asics have all rings, so each asic will only
907 * start the fence driver on the rings it has using
908 * radeon_fence_driver_start_ring().
909 * Returns 0 for success.
910 */
radeon_fence_driver_init(struct radeon_device * rdev)911 int radeon_fence_driver_init(struct radeon_device *rdev)
912 {
913 int ring;
914
915 init_waitqueue_head(&rdev->fence_queue);
916 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
917 radeon_fence_driver_init_ring(rdev, ring);
918 }
919 if (radeon_debugfs_fence_init(rdev)) {
920 dev_err(rdev->dev, "fence debugfs file creation failed\n");
921 }
922 return 0;
923 }
924
925 /**
926 * radeon_fence_driver_fini - tear down the fence driver
927 * for all possible rings.
928 *
929 * @rdev: radeon device pointer
930 *
931 * Tear down the fence driver for all possible rings (all asics).
932 */
radeon_fence_driver_fini(struct radeon_device * rdev)933 void radeon_fence_driver_fini(struct radeon_device *rdev)
934 {
935 int ring, r;
936
937 mutex_lock(&rdev->ring_lock);
938 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
939 if (!rdev->fence_drv[ring].initialized)
940 continue;
941 r = radeon_fence_wait_empty(rdev, ring);
942 if (r) {
943 /* no need to trigger GPU reset as we are unloading */
944 radeon_fence_driver_force_completion(rdev, ring);
945 }
946 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
947 wake_up_all(&rdev->fence_queue);
948 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
949 rdev->fence_drv[ring].initialized = false;
950 }
951 mutex_unlock(&rdev->ring_lock);
952 }
953
954 /**
955 * radeon_fence_driver_force_completion - force all fence waiter to complete
956 *
957 * @rdev: radeon device pointer
958 * @ring: the ring to complete
959 *
960 * In case of GPU reset failure make sure no process keep waiting on fence
961 * that will never complete.
962 */
radeon_fence_driver_force_completion(struct radeon_device * rdev,int ring)963 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
964 {
965 if (rdev->fence_drv[ring].initialized) {
966 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
967 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
968 }
969 }
970
971
972 /*
973 * Fence debugfs
974 */
975 #if defined(CONFIG_DEBUG_FS)
radeon_debugfs_fence_info(struct seq_file * m,void * data)976 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
977 {
978 struct drm_info_node *node = (struct drm_info_node *)m->private;
979 struct drm_device *dev = node->minor->dev;
980 struct radeon_device *rdev = dev->dev_private;
981 int i, j;
982
983 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
984 if (!rdev->fence_drv[i].initialized)
985 continue;
986
987 radeon_fence_process(rdev, i);
988
989 seq_printf(m, "--- ring %d ---\n", i);
990 seq_printf(m, "Last signaled fence 0x%016llx\n",
991 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
992 seq_printf(m, "Last emitted 0x%016llx\n",
993 rdev->fence_drv[i].sync_seq[i]);
994
995 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
996 if (i != j && rdev->fence_drv[j].initialized)
997 seq_printf(m, "Last sync to ring %d 0x%016llx\n",
998 j, rdev->fence_drv[i].sync_seq[j]);
999 }
1000 }
1001 return 0;
1002 }
1003
1004 /**
1005 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1006 *
1007 * Manually trigger a gpu reset at the next fence wait.
1008 */
radeon_debugfs_gpu_reset(struct seq_file * m,void * data)1009 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1010 {
1011 struct drm_info_node *node = (struct drm_info_node *) m->private;
1012 struct drm_device *dev = node->minor->dev;
1013 struct radeon_device *rdev = dev->dev_private;
1014
1015 down_read(&rdev->exclusive_lock);
1016 seq_printf(m, "%d\n", rdev->needs_reset);
1017 rdev->needs_reset = true;
1018 wake_up_all(&rdev->fence_queue);
1019 up_read(&rdev->exclusive_lock);
1020
1021 return 0;
1022 }
1023
1024 static struct drm_info_list radeon_debugfs_fence_list[] = {
1025 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1026 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1027 };
1028 #endif
1029
radeon_debugfs_fence_init(struct radeon_device * rdev)1030 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1031 {
1032 #if defined(CONFIG_DEBUG_FS)
1033 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1034 #else
1035 return 0;
1036 #endif
1037 }
1038
radeon_fence_get_driver_name(struct dma_fence * fence)1039 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1040 {
1041 return "radeon";
1042 }
1043
radeon_fence_get_timeline_name(struct dma_fence * f)1044 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1045 {
1046 struct radeon_fence *fence = to_radeon_fence(f);
1047 switch (fence->ring) {
1048 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1049 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1050 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1051 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1052 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1053 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1054 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1055 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1056 default: WARN_ON_ONCE(1); return "radeon.unk";
1057 }
1058 }
1059
radeon_test_signaled(struct radeon_fence * fence)1060 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1061 {
1062 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1063 }
1064
1065 struct radeon_wait_cb {
1066 struct dma_fence_cb base;
1067 struct task_struct *task;
1068 };
1069
1070 static void
radeon_fence_wait_cb(struct dma_fence * fence,struct dma_fence_cb * cb)1071 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1072 {
1073 struct radeon_wait_cb *wait =
1074 container_of(cb, struct radeon_wait_cb, base);
1075
1076 wake_up_process(wait->task);
1077 }
1078
radeon_fence_default_wait(struct dma_fence * f,bool intr,signed long t)1079 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1080 signed long t)
1081 {
1082 struct radeon_fence *fence = to_radeon_fence(f);
1083 struct radeon_device *rdev = fence->rdev;
1084 struct radeon_wait_cb cb;
1085
1086 cb.task = current;
1087
1088 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1089 return t;
1090
1091 while (t > 0) {
1092 if (intr)
1093 set_current_state(TASK_INTERRUPTIBLE);
1094 else
1095 set_current_state(TASK_UNINTERRUPTIBLE);
1096
1097 /*
1098 * radeon_test_signaled must be called after
1099 * set_current_state to prevent a race with wake_up_process
1100 */
1101 if (radeon_test_signaled(fence))
1102 break;
1103
1104 if (rdev->needs_reset) {
1105 t = -EDEADLK;
1106 break;
1107 }
1108
1109 t = schedule_timeout(t);
1110
1111 if (t > 0 && intr && signal_pending(current))
1112 t = -ERESTARTSYS;
1113 }
1114
1115 __set_current_state(TASK_RUNNING);
1116 dma_fence_remove_callback(f, &cb.base);
1117
1118 return t;
1119 }
1120
1121 const struct dma_fence_ops radeon_fence_ops = {
1122 .get_driver_name = radeon_fence_get_driver_name,
1123 .get_timeline_name = radeon_fence_get_timeline_name,
1124 .enable_signaling = radeon_fence_enable_signaling,
1125 .signaled = radeon_fence_is_signaled,
1126 .wait = radeon_fence_default_wait,
1127 .release = NULL,
1128 };
1129