• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2001 Momchil Velikov
4  * Portions Copyright (C) 2001 Christoph Hellwig
5  * Copyright (C) 2005 SGI, Christoph Lameter
6  * Copyright (C) 2006 Nick Piggin
7  * Copyright (C) 2012 Konstantin Khlebnikov
8  * Copyright (C) 2016 Intel, Matthew Wilcox
9  * Copyright (C) 2016 Intel, Ross Zwisler
10  */
11 
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/cpu.h>
16 #include <linux/errno.h>
17 #include <linux/export.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/percpu.h>
23 #include <linux/preempt.h>		/* in_interrupt() */
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/xarray.h>
29 
30 
31 /*
32  * Radix tree node cache.
33  */
34 struct kmem_cache *radix_tree_node_cachep;
35 
36 /*
37  * The radix tree is variable-height, so an insert operation not only has
38  * to build the branch to its corresponding item, it also has to build the
39  * branch to existing items if the size has to be increased (by
40  * radix_tree_extend).
41  *
42  * The worst case is a zero height tree with just a single item at index 0,
43  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
44  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
45  * Hence:
46  */
47 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
48 
49 /*
50  * The IDR does not have to be as high as the radix tree since it uses
51  * signed integers, not unsigned longs.
52  */
53 #define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
54 #define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
55 						RADIX_TREE_MAP_SHIFT))
56 #define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
57 
58 /*
59  * The IDA is even shorter since it uses a bitmap at the last level.
60  */
61 #define IDA_INDEX_BITS		(8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
62 #define IDA_MAX_PATH		(DIV_ROUND_UP(IDA_INDEX_BITS, \
63 						RADIX_TREE_MAP_SHIFT))
64 #define IDA_PRELOAD_SIZE	(IDA_MAX_PATH * 2 - 1)
65 
66 /*
67  * Per-cpu pool of preloaded nodes
68  */
69 struct radix_tree_preload {
70 	unsigned nr;
71 	/* nodes->parent points to next preallocated node */
72 	struct radix_tree_node *nodes;
73 };
74 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
75 
entry_to_node(void * ptr)76 static inline struct radix_tree_node *entry_to_node(void *ptr)
77 {
78 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
79 }
80 
node_to_entry(void * ptr)81 static inline void *node_to_entry(void *ptr)
82 {
83 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
84 }
85 
86 #define RADIX_TREE_RETRY	XA_RETRY_ENTRY
87 
88 static inline unsigned long
get_slot_offset(const struct radix_tree_node * parent,void __rcu ** slot)89 get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
90 {
91 	return parent ? slot - parent->slots : 0;
92 }
93 
radix_tree_descend(const struct radix_tree_node * parent,struct radix_tree_node ** nodep,unsigned long index)94 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
95 			struct radix_tree_node **nodep, unsigned long index)
96 {
97 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
98 	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
99 
100 	*nodep = (void *)entry;
101 	return offset;
102 }
103 
root_gfp_mask(const struct radix_tree_root * root)104 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
105 {
106 	return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
107 }
108 
tag_set(struct radix_tree_node * node,unsigned int tag,int offset)109 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
110 		int offset)
111 {
112 	__set_bit(offset, node->tags[tag]);
113 }
114 
tag_clear(struct radix_tree_node * node,unsigned int tag,int offset)115 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
116 		int offset)
117 {
118 	__clear_bit(offset, node->tags[tag]);
119 }
120 
tag_get(const struct radix_tree_node * node,unsigned int tag,int offset)121 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
122 		int offset)
123 {
124 	return test_bit(offset, node->tags[tag]);
125 }
126 
root_tag_set(struct radix_tree_root * root,unsigned tag)127 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
128 {
129 	root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
130 }
131 
root_tag_clear(struct radix_tree_root * root,unsigned tag)132 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
133 {
134 	root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
135 }
136 
root_tag_clear_all(struct radix_tree_root * root)137 static inline void root_tag_clear_all(struct radix_tree_root *root)
138 {
139 	root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
140 }
141 
root_tag_get(const struct radix_tree_root * root,unsigned tag)142 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
143 {
144 	return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
145 }
146 
root_tags_get(const struct radix_tree_root * root)147 static inline unsigned root_tags_get(const struct radix_tree_root *root)
148 {
149 	return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
150 }
151 
is_idr(const struct radix_tree_root * root)152 static inline bool is_idr(const struct radix_tree_root *root)
153 {
154 	return !!(root->xa_flags & ROOT_IS_IDR);
155 }
156 
157 /*
158  * Returns 1 if any slot in the node has this tag set.
159  * Otherwise returns 0.
160  */
any_tag_set(const struct radix_tree_node * node,unsigned int tag)161 static inline int any_tag_set(const struct radix_tree_node *node,
162 							unsigned int tag)
163 {
164 	unsigned idx;
165 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
166 		if (node->tags[tag][idx])
167 			return 1;
168 	}
169 	return 0;
170 }
171 
all_tag_set(struct radix_tree_node * node,unsigned int tag)172 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
173 {
174 	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
175 }
176 
177 /**
178  * radix_tree_find_next_bit - find the next set bit in a memory region
179  *
180  * @addr: The address to base the search on
181  * @size: The bitmap size in bits
182  * @offset: The bitnumber to start searching at
183  *
184  * Unrollable variant of find_next_bit() for constant size arrays.
185  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
186  * Returns next bit offset, or size if nothing found.
187  */
188 static __always_inline unsigned long
radix_tree_find_next_bit(struct radix_tree_node * node,unsigned int tag,unsigned long offset)189 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
190 			 unsigned long offset)
191 {
192 	const unsigned long *addr = node->tags[tag];
193 
194 	if (offset < RADIX_TREE_MAP_SIZE) {
195 		unsigned long tmp;
196 
197 		addr += offset / BITS_PER_LONG;
198 		tmp = *addr >> (offset % BITS_PER_LONG);
199 		if (tmp)
200 			return __ffs(tmp) + offset;
201 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
202 		while (offset < RADIX_TREE_MAP_SIZE) {
203 			tmp = *++addr;
204 			if (tmp)
205 				return __ffs(tmp) + offset;
206 			offset += BITS_PER_LONG;
207 		}
208 	}
209 	return RADIX_TREE_MAP_SIZE;
210 }
211 
iter_offset(const struct radix_tree_iter * iter)212 static unsigned int iter_offset(const struct radix_tree_iter *iter)
213 {
214 	return iter->index & RADIX_TREE_MAP_MASK;
215 }
216 
217 /*
218  * The maximum index which can be stored in a radix tree
219  */
shift_maxindex(unsigned int shift)220 static inline unsigned long shift_maxindex(unsigned int shift)
221 {
222 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
223 }
224 
node_maxindex(const struct radix_tree_node * node)225 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
226 {
227 	return shift_maxindex(node->shift);
228 }
229 
next_index(unsigned long index,const struct radix_tree_node * node,unsigned long offset)230 static unsigned long next_index(unsigned long index,
231 				const struct radix_tree_node *node,
232 				unsigned long offset)
233 {
234 	return (index & ~node_maxindex(node)) + (offset << node->shift);
235 }
236 
237 /*
238  * This assumes that the caller has performed appropriate preallocation, and
239  * that the caller has pinned this thread of control to the current CPU.
240  */
241 static struct radix_tree_node *
radix_tree_node_alloc(gfp_t gfp_mask,struct radix_tree_node * parent,struct radix_tree_root * root,unsigned int shift,unsigned int offset,unsigned int count,unsigned int nr_values)242 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
243 			struct radix_tree_root *root,
244 			unsigned int shift, unsigned int offset,
245 			unsigned int count, unsigned int nr_values)
246 {
247 	struct radix_tree_node *ret = NULL;
248 
249 	/*
250 	 * Preload code isn't irq safe and it doesn't make sense to use
251 	 * preloading during an interrupt anyway as all the allocations have
252 	 * to be atomic. So just do normal allocation when in interrupt.
253 	 */
254 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
255 		struct radix_tree_preload *rtp;
256 
257 		/*
258 		 * Even if the caller has preloaded, try to allocate from the
259 		 * cache first for the new node to get accounted to the memory
260 		 * cgroup.
261 		 */
262 		ret = kmem_cache_alloc(radix_tree_node_cachep,
263 				       gfp_mask | __GFP_NOWARN);
264 		if (ret)
265 			goto out;
266 
267 		/*
268 		 * Provided the caller has preloaded here, we will always
269 		 * succeed in getting a node here (and never reach
270 		 * kmem_cache_alloc)
271 		 */
272 		rtp = this_cpu_ptr(&radix_tree_preloads);
273 		if (rtp->nr) {
274 			ret = rtp->nodes;
275 			rtp->nodes = ret->parent;
276 			rtp->nr--;
277 		}
278 		/*
279 		 * Update the allocation stack trace as this is more useful
280 		 * for debugging.
281 		 */
282 		kmemleak_update_trace(ret);
283 		goto out;
284 	}
285 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
286 out:
287 	BUG_ON(radix_tree_is_internal_node(ret));
288 	if (ret) {
289 		ret->shift = shift;
290 		ret->offset = offset;
291 		ret->count = count;
292 		ret->nr_values = nr_values;
293 		ret->parent = parent;
294 		ret->array = root;
295 	}
296 	return ret;
297 }
298 
radix_tree_node_rcu_free(struct rcu_head * head)299 void radix_tree_node_rcu_free(struct rcu_head *head)
300 {
301 	struct radix_tree_node *node =
302 			container_of(head, struct radix_tree_node, rcu_head);
303 
304 	/*
305 	 * Must only free zeroed nodes into the slab.  We can be left with
306 	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
307 	 * and tags here.
308 	 */
309 	memset(node->slots, 0, sizeof(node->slots));
310 	memset(node->tags, 0, sizeof(node->tags));
311 	INIT_LIST_HEAD(&node->private_list);
312 
313 	kmem_cache_free(radix_tree_node_cachep, node);
314 }
315 
316 static inline void
radix_tree_node_free(struct radix_tree_node * node)317 radix_tree_node_free(struct radix_tree_node *node)
318 {
319 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
320 }
321 
322 /*
323  * Load up this CPU's radix_tree_node buffer with sufficient objects to
324  * ensure that the addition of a single element in the tree cannot fail.  On
325  * success, return zero, with preemption disabled.  On error, return -ENOMEM
326  * with preemption not disabled.
327  *
328  * To make use of this facility, the radix tree must be initialised without
329  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
330  */
__radix_tree_preload(gfp_t gfp_mask,unsigned nr)331 static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
332 {
333 	struct radix_tree_preload *rtp;
334 	struct radix_tree_node *node;
335 	int ret = -ENOMEM;
336 
337 	/*
338 	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
339 	 * they should never be accounted to any particular memory cgroup.
340 	 */
341 	gfp_mask &= ~__GFP_ACCOUNT;
342 
343 	preempt_disable();
344 	rtp = this_cpu_ptr(&radix_tree_preloads);
345 	while (rtp->nr < nr) {
346 		preempt_enable();
347 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
348 		if (node == NULL)
349 			goto out;
350 		preempt_disable();
351 		rtp = this_cpu_ptr(&radix_tree_preloads);
352 		if (rtp->nr < nr) {
353 			node->parent = rtp->nodes;
354 			rtp->nodes = node;
355 			rtp->nr++;
356 		} else {
357 			kmem_cache_free(radix_tree_node_cachep, node);
358 		}
359 	}
360 	ret = 0;
361 out:
362 	return ret;
363 }
364 
365 /*
366  * Load up this CPU's radix_tree_node buffer with sufficient objects to
367  * ensure that the addition of a single element in the tree cannot fail.  On
368  * success, return zero, with preemption disabled.  On error, return -ENOMEM
369  * with preemption not disabled.
370  *
371  * To make use of this facility, the radix tree must be initialised without
372  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
373  */
radix_tree_preload(gfp_t gfp_mask)374 int radix_tree_preload(gfp_t gfp_mask)
375 {
376 	/* Warn on non-sensical use... */
377 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
378 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
379 }
380 EXPORT_SYMBOL(radix_tree_preload);
381 
382 /*
383  * The same as above function, except we don't guarantee preloading happens.
384  * We do it, if we decide it helps. On success, return zero with preemption
385  * disabled. On error, return -ENOMEM with preemption not disabled.
386  */
radix_tree_maybe_preload(gfp_t gfp_mask)387 int radix_tree_maybe_preload(gfp_t gfp_mask)
388 {
389 	if (gfpflags_allow_blocking(gfp_mask))
390 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
391 	/* Preloading doesn't help anything with this gfp mask, skip it */
392 	preempt_disable();
393 	return 0;
394 }
395 EXPORT_SYMBOL(radix_tree_maybe_preload);
396 
radix_tree_load_root(const struct radix_tree_root * root,struct radix_tree_node ** nodep,unsigned long * maxindex)397 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
398 		struct radix_tree_node **nodep, unsigned long *maxindex)
399 {
400 	struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
401 
402 	*nodep = node;
403 
404 	if (likely(radix_tree_is_internal_node(node))) {
405 		node = entry_to_node(node);
406 		*maxindex = node_maxindex(node);
407 		return node->shift + RADIX_TREE_MAP_SHIFT;
408 	}
409 
410 	*maxindex = 0;
411 	return 0;
412 }
413 
414 /*
415  *	Extend a radix tree so it can store key @index.
416  */
radix_tree_extend(struct radix_tree_root * root,gfp_t gfp,unsigned long index,unsigned int shift)417 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
418 				unsigned long index, unsigned int shift)
419 {
420 	void *entry;
421 	unsigned int maxshift;
422 	int tag;
423 
424 	/* Figure out what the shift should be.  */
425 	maxshift = shift;
426 	while (index > shift_maxindex(maxshift))
427 		maxshift += RADIX_TREE_MAP_SHIFT;
428 
429 	entry = rcu_dereference_raw(root->xa_head);
430 	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
431 		goto out;
432 
433 	do {
434 		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
435 							root, shift, 0, 1, 0);
436 		if (!node)
437 			return -ENOMEM;
438 
439 		if (is_idr(root)) {
440 			all_tag_set(node, IDR_FREE);
441 			if (!root_tag_get(root, IDR_FREE)) {
442 				tag_clear(node, IDR_FREE, 0);
443 				root_tag_set(root, IDR_FREE);
444 			}
445 		} else {
446 			/* Propagate the aggregated tag info to the new child */
447 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
448 				if (root_tag_get(root, tag))
449 					tag_set(node, tag, 0);
450 			}
451 		}
452 
453 		BUG_ON(shift > BITS_PER_LONG);
454 		if (radix_tree_is_internal_node(entry)) {
455 			entry_to_node(entry)->parent = node;
456 		} else if (xa_is_value(entry)) {
457 			/* Moving a value entry root->xa_head to a node */
458 			node->nr_values = 1;
459 		}
460 		/*
461 		 * entry was already in the radix tree, so we do not need
462 		 * rcu_assign_pointer here
463 		 */
464 		node->slots[0] = (void __rcu *)entry;
465 		entry = node_to_entry(node);
466 		rcu_assign_pointer(root->xa_head, entry);
467 		shift += RADIX_TREE_MAP_SHIFT;
468 	} while (shift <= maxshift);
469 out:
470 	return maxshift + RADIX_TREE_MAP_SHIFT;
471 }
472 
473 /**
474  *	radix_tree_shrink    -    shrink radix tree to minimum height
475  *	@root		radix tree root
476  */
radix_tree_shrink(struct radix_tree_root * root)477 static inline bool radix_tree_shrink(struct radix_tree_root *root)
478 {
479 	bool shrunk = false;
480 
481 	for (;;) {
482 		struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
483 		struct radix_tree_node *child;
484 
485 		if (!radix_tree_is_internal_node(node))
486 			break;
487 		node = entry_to_node(node);
488 
489 		/*
490 		 * The candidate node has more than one child, or its child
491 		 * is not at the leftmost slot, we cannot shrink.
492 		 */
493 		if (node->count != 1)
494 			break;
495 		child = rcu_dereference_raw(node->slots[0]);
496 		if (!child)
497 			break;
498 
499 		/*
500 		 * For an IDR, we must not shrink entry 0 into the root in
501 		 * case somebody calls idr_replace() with a pointer that
502 		 * appears to be an internal entry
503 		 */
504 		if (!node->shift && is_idr(root))
505 			break;
506 
507 		if (radix_tree_is_internal_node(child))
508 			entry_to_node(child)->parent = NULL;
509 
510 		/*
511 		 * We don't need rcu_assign_pointer(), since we are simply
512 		 * moving the node from one part of the tree to another: if it
513 		 * was safe to dereference the old pointer to it
514 		 * (node->slots[0]), it will be safe to dereference the new
515 		 * one (root->xa_head) as far as dependent read barriers go.
516 		 */
517 		root->xa_head = (void __rcu *)child;
518 		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
519 			root_tag_clear(root, IDR_FREE);
520 
521 		/*
522 		 * We have a dilemma here. The node's slot[0] must not be
523 		 * NULLed in case there are concurrent lookups expecting to
524 		 * find the item. However if this was a bottom-level node,
525 		 * then it may be subject to the slot pointer being visible
526 		 * to callers dereferencing it. If item corresponding to
527 		 * slot[0] is subsequently deleted, these callers would expect
528 		 * their slot to become empty sooner or later.
529 		 *
530 		 * For example, lockless pagecache will look up a slot, deref
531 		 * the page pointer, and if the page has 0 refcount it means it
532 		 * was concurrently deleted from pagecache so try the deref
533 		 * again. Fortunately there is already a requirement for logic
534 		 * to retry the entire slot lookup -- the indirect pointer
535 		 * problem (replacing direct root node with an indirect pointer
536 		 * also results in a stale slot). So tag the slot as indirect
537 		 * to force callers to retry.
538 		 */
539 		node->count = 0;
540 		if (!radix_tree_is_internal_node(child)) {
541 			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
542 		}
543 
544 		WARN_ON_ONCE(!list_empty(&node->private_list));
545 		radix_tree_node_free(node);
546 		shrunk = true;
547 	}
548 
549 	return shrunk;
550 }
551 
delete_node(struct radix_tree_root * root,struct radix_tree_node * node)552 static bool delete_node(struct radix_tree_root *root,
553 			struct radix_tree_node *node)
554 {
555 	bool deleted = false;
556 
557 	do {
558 		struct radix_tree_node *parent;
559 
560 		if (node->count) {
561 			if (node_to_entry(node) ==
562 					rcu_dereference_raw(root->xa_head))
563 				deleted |= radix_tree_shrink(root);
564 			return deleted;
565 		}
566 
567 		parent = node->parent;
568 		if (parent) {
569 			parent->slots[node->offset] = NULL;
570 			parent->count--;
571 		} else {
572 			/*
573 			 * Shouldn't the tags already have all been cleared
574 			 * by the caller?
575 			 */
576 			if (!is_idr(root))
577 				root_tag_clear_all(root);
578 			root->xa_head = NULL;
579 		}
580 
581 		WARN_ON_ONCE(!list_empty(&node->private_list));
582 		radix_tree_node_free(node);
583 		deleted = true;
584 
585 		node = parent;
586 	} while (node);
587 
588 	return deleted;
589 }
590 
591 /**
592  *	__radix_tree_create	-	create a slot in a radix tree
593  *	@root:		radix tree root
594  *	@index:		index key
595  *	@nodep:		returns node
596  *	@slotp:		returns slot
597  *
598  *	Create, if necessary, and return the node and slot for an item
599  *	at position @index in the radix tree @root.
600  *
601  *	Until there is more than one item in the tree, no nodes are
602  *	allocated and @root->xa_head is used as a direct slot instead of
603  *	pointing to a node, in which case *@nodep will be NULL.
604  *
605  *	Returns -ENOMEM, or 0 for success.
606  */
__radix_tree_create(struct radix_tree_root * root,unsigned long index,struct radix_tree_node ** nodep,void __rcu *** slotp)607 static int __radix_tree_create(struct radix_tree_root *root,
608 		unsigned long index, struct radix_tree_node **nodep,
609 		void __rcu ***slotp)
610 {
611 	struct radix_tree_node *node = NULL, *child;
612 	void __rcu **slot = (void __rcu **)&root->xa_head;
613 	unsigned long maxindex;
614 	unsigned int shift, offset = 0;
615 	unsigned long max = index;
616 	gfp_t gfp = root_gfp_mask(root);
617 
618 	shift = radix_tree_load_root(root, &child, &maxindex);
619 
620 	/* Make sure the tree is high enough.  */
621 	if (max > maxindex) {
622 		int error = radix_tree_extend(root, gfp, max, shift);
623 		if (error < 0)
624 			return error;
625 		shift = error;
626 		child = rcu_dereference_raw(root->xa_head);
627 	}
628 
629 	while (shift > 0) {
630 		shift -= RADIX_TREE_MAP_SHIFT;
631 		if (child == NULL) {
632 			/* Have to add a child node.  */
633 			child = radix_tree_node_alloc(gfp, node, root, shift,
634 							offset, 0, 0);
635 			if (!child)
636 				return -ENOMEM;
637 			rcu_assign_pointer(*slot, node_to_entry(child));
638 			if (node)
639 				node->count++;
640 		} else if (!radix_tree_is_internal_node(child))
641 			break;
642 
643 		/* Go a level down */
644 		node = entry_to_node(child);
645 		offset = radix_tree_descend(node, &child, index);
646 		slot = &node->slots[offset];
647 	}
648 
649 	if (nodep)
650 		*nodep = node;
651 	if (slotp)
652 		*slotp = slot;
653 	return 0;
654 }
655 
656 /*
657  * Free any nodes below this node.  The tree is presumed to not need
658  * shrinking, and any user data in the tree is presumed to not need a
659  * destructor called on it.  If we need to add a destructor, we can
660  * add that functionality later.  Note that we may not clear tags or
661  * slots from the tree as an RCU walker may still have a pointer into
662  * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
663  * but we'll still have to clear those in rcu_free.
664  */
radix_tree_free_nodes(struct radix_tree_node * node)665 static void radix_tree_free_nodes(struct radix_tree_node *node)
666 {
667 	unsigned offset = 0;
668 	struct radix_tree_node *child = entry_to_node(node);
669 
670 	for (;;) {
671 		void *entry = rcu_dereference_raw(child->slots[offset]);
672 		if (xa_is_node(entry) && child->shift) {
673 			child = entry_to_node(entry);
674 			offset = 0;
675 			continue;
676 		}
677 		offset++;
678 		while (offset == RADIX_TREE_MAP_SIZE) {
679 			struct radix_tree_node *old = child;
680 			offset = child->offset + 1;
681 			child = child->parent;
682 			WARN_ON_ONCE(!list_empty(&old->private_list));
683 			radix_tree_node_free(old);
684 			if (old == entry_to_node(node))
685 				return;
686 		}
687 	}
688 }
689 
insert_entries(struct radix_tree_node * node,void __rcu ** slot,void * item,bool replace)690 static inline int insert_entries(struct radix_tree_node *node,
691 		void __rcu **slot, void *item, bool replace)
692 {
693 	if (*slot)
694 		return -EEXIST;
695 	rcu_assign_pointer(*slot, item);
696 	if (node) {
697 		node->count++;
698 		if (xa_is_value(item))
699 			node->nr_values++;
700 	}
701 	return 1;
702 }
703 
704 /**
705  *	__radix_tree_insert    -    insert into a radix tree
706  *	@root:		radix tree root
707  *	@index:		index key
708  *	@item:		item to insert
709  *
710  *	Insert an item into the radix tree at position @index.
711  */
radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)712 int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
713 			void *item)
714 {
715 	struct radix_tree_node *node;
716 	void __rcu **slot;
717 	int error;
718 
719 	BUG_ON(radix_tree_is_internal_node(item));
720 
721 	error = __radix_tree_create(root, index, &node, &slot);
722 	if (error)
723 		return error;
724 
725 	error = insert_entries(node, slot, item, false);
726 	if (error < 0)
727 		return error;
728 
729 	if (node) {
730 		unsigned offset = get_slot_offset(node, slot);
731 		BUG_ON(tag_get(node, 0, offset));
732 		BUG_ON(tag_get(node, 1, offset));
733 		BUG_ON(tag_get(node, 2, offset));
734 	} else {
735 		BUG_ON(root_tags_get(root));
736 	}
737 
738 	return 0;
739 }
740 EXPORT_SYMBOL(radix_tree_insert);
741 
742 /**
743  *	__radix_tree_lookup	-	lookup an item in a radix tree
744  *	@root:		radix tree root
745  *	@index:		index key
746  *	@nodep:		returns node
747  *	@slotp:		returns slot
748  *
749  *	Lookup and return the item at position @index in the radix
750  *	tree @root.
751  *
752  *	Until there is more than one item in the tree, no nodes are
753  *	allocated and @root->xa_head is used as a direct slot instead of
754  *	pointing to a node, in which case *@nodep will be NULL.
755  */
__radix_tree_lookup(const struct radix_tree_root * root,unsigned long index,struct radix_tree_node ** nodep,void __rcu *** slotp)756 void *__radix_tree_lookup(const struct radix_tree_root *root,
757 			  unsigned long index, struct radix_tree_node **nodep,
758 			  void __rcu ***slotp)
759 {
760 	struct radix_tree_node *node, *parent;
761 	unsigned long maxindex;
762 	void __rcu **slot;
763 
764  restart:
765 	parent = NULL;
766 	slot = (void __rcu **)&root->xa_head;
767 	radix_tree_load_root(root, &node, &maxindex);
768 	if (index > maxindex)
769 		return NULL;
770 
771 	while (radix_tree_is_internal_node(node)) {
772 		unsigned offset;
773 
774 		parent = entry_to_node(node);
775 		offset = radix_tree_descend(parent, &node, index);
776 		slot = parent->slots + offset;
777 		if (node == RADIX_TREE_RETRY)
778 			goto restart;
779 		if (parent->shift == 0)
780 			break;
781 	}
782 
783 	if (nodep)
784 		*nodep = parent;
785 	if (slotp)
786 		*slotp = slot;
787 	return node;
788 }
789 
790 /**
791  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
792  *	@root:		radix tree root
793  *	@index:		index key
794  *
795  *	Returns:  the slot corresponding to the position @index in the
796  *	radix tree @root. This is useful for update-if-exists operations.
797  *
798  *	This function can be called under rcu_read_lock iff the slot is not
799  *	modified by radix_tree_replace_slot, otherwise it must be called
800  *	exclusive from other writers. Any dereference of the slot must be done
801  *	using radix_tree_deref_slot.
802  */
radix_tree_lookup_slot(const struct radix_tree_root * root,unsigned long index)803 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
804 				unsigned long index)
805 {
806 	void __rcu **slot;
807 
808 	if (!__radix_tree_lookup(root, index, NULL, &slot))
809 		return NULL;
810 	return slot;
811 }
812 EXPORT_SYMBOL(radix_tree_lookup_slot);
813 
814 /**
815  *	radix_tree_lookup    -    perform lookup operation on a radix tree
816  *	@root:		radix tree root
817  *	@index:		index key
818  *
819  *	Lookup the item at the position @index in the radix tree @root.
820  *
821  *	This function can be called under rcu_read_lock, however the caller
822  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
823  *	them safely). No RCU barriers are required to access or modify the
824  *	returned item, however.
825  */
radix_tree_lookup(const struct radix_tree_root * root,unsigned long index)826 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
827 {
828 	return __radix_tree_lookup(root, index, NULL, NULL);
829 }
830 EXPORT_SYMBOL(radix_tree_lookup);
831 
replace_slot(void __rcu ** slot,void * item,struct radix_tree_node * node,int count,int values)832 static void replace_slot(void __rcu **slot, void *item,
833 		struct radix_tree_node *node, int count, int values)
834 {
835 	if (node && (count || values)) {
836 		node->count += count;
837 		node->nr_values += values;
838 	}
839 
840 	rcu_assign_pointer(*slot, item);
841 }
842 
node_tag_get(const struct radix_tree_root * root,const struct radix_tree_node * node,unsigned int tag,unsigned int offset)843 static bool node_tag_get(const struct radix_tree_root *root,
844 				const struct radix_tree_node *node,
845 				unsigned int tag, unsigned int offset)
846 {
847 	if (node)
848 		return tag_get(node, tag, offset);
849 	return root_tag_get(root, tag);
850 }
851 
852 /*
853  * IDR users want to be able to store NULL in the tree, so if the slot isn't
854  * free, don't adjust the count, even if it's transitioning between NULL and
855  * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
856  * have empty bits, but it only stores NULL in slots when they're being
857  * deleted.
858  */
calculate_count(struct radix_tree_root * root,struct radix_tree_node * node,void __rcu ** slot,void * item,void * old)859 static int calculate_count(struct radix_tree_root *root,
860 				struct radix_tree_node *node, void __rcu **slot,
861 				void *item, void *old)
862 {
863 	if (is_idr(root)) {
864 		unsigned offset = get_slot_offset(node, slot);
865 		bool free = node_tag_get(root, node, IDR_FREE, offset);
866 		if (!free)
867 			return 0;
868 		if (!old)
869 			return 1;
870 	}
871 	return !!item - !!old;
872 }
873 
874 /**
875  * __radix_tree_replace		- replace item in a slot
876  * @root:		radix tree root
877  * @node:		pointer to tree node
878  * @slot:		pointer to slot in @node
879  * @item:		new item to store in the slot.
880  *
881  * For use with __radix_tree_lookup().  Caller must hold tree write locked
882  * across slot lookup and replacement.
883  */
__radix_tree_replace(struct radix_tree_root * root,struct radix_tree_node * node,void __rcu ** slot,void * item)884 void __radix_tree_replace(struct radix_tree_root *root,
885 			  struct radix_tree_node *node,
886 			  void __rcu **slot, void *item)
887 {
888 	void *old = rcu_dereference_raw(*slot);
889 	int values = !!xa_is_value(item) - !!xa_is_value(old);
890 	int count = calculate_count(root, node, slot, item, old);
891 
892 	/*
893 	 * This function supports replacing value entries and
894 	 * deleting entries, but that needs accounting against the
895 	 * node unless the slot is root->xa_head.
896 	 */
897 	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
898 			(count || values));
899 	replace_slot(slot, item, node, count, values);
900 
901 	if (!node)
902 		return;
903 
904 	delete_node(root, node);
905 }
906 
907 /**
908  * radix_tree_replace_slot	- replace item in a slot
909  * @root:	radix tree root
910  * @slot:	pointer to slot
911  * @item:	new item to store in the slot.
912  *
913  * For use with radix_tree_lookup_slot() and
914  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
915  * across slot lookup and replacement.
916  *
917  * NOTE: This cannot be used to switch between non-entries (empty slots),
918  * regular entries, and value entries, as that requires accounting
919  * inside the radix tree node. When switching from one type of entry or
920  * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
921  * radix_tree_iter_replace().
922  */
radix_tree_replace_slot(struct radix_tree_root * root,void __rcu ** slot,void * item)923 void radix_tree_replace_slot(struct radix_tree_root *root,
924 			     void __rcu **slot, void *item)
925 {
926 	__radix_tree_replace(root, NULL, slot, item);
927 }
928 EXPORT_SYMBOL(radix_tree_replace_slot);
929 
930 /**
931  * radix_tree_iter_replace - replace item in a slot
932  * @root:	radix tree root
933  * @slot:	pointer to slot
934  * @item:	new item to store in the slot.
935  *
936  * For use with radix_tree_for_each_slot().
937  * Caller must hold tree write locked.
938  */
radix_tree_iter_replace(struct radix_tree_root * root,const struct radix_tree_iter * iter,void __rcu ** slot,void * item)939 void radix_tree_iter_replace(struct radix_tree_root *root,
940 				const struct radix_tree_iter *iter,
941 				void __rcu **slot, void *item)
942 {
943 	__radix_tree_replace(root, iter->node, slot, item);
944 }
945 
node_tag_set(struct radix_tree_root * root,struct radix_tree_node * node,unsigned int tag,unsigned int offset)946 static void node_tag_set(struct radix_tree_root *root,
947 				struct radix_tree_node *node,
948 				unsigned int tag, unsigned int offset)
949 {
950 	while (node) {
951 		if (tag_get(node, tag, offset))
952 			return;
953 		tag_set(node, tag, offset);
954 		offset = node->offset;
955 		node = node->parent;
956 	}
957 
958 	if (!root_tag_get(root, tag))
959 		root_tag_set(root, tag);
960 }
961 
962 /**
963  *	radix_tree_tag_set - set a tag on a radix tree node
964  *	@root:		radix tree root
965  *	@index:		index key
966  *	@tag:		tag index
967  *
968  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
969  *	corresponding to @index in the radix tree.  From
970  *	the root all the way down to the leaf node.
971  *
972  *	Returns the address of the tagged item.  Setting a tag on a not-present
973  *	item is a bug.
974  */
radix_tree_tag_set(struct radix_tree_root * root,unsigned long index,unsigned int tag)975 void *radix_tree_tag_set(struct radix_tree_root *root,
976 			unsigned long index, unsigned int tag)
977 {
978 	struct radix_tree_node *node, *parent;
979 	unsigned long maxindex;
980 
981 	radix_tree_load_root(root, &node, &maxindex);
982 	BUG_ON(index > maxindex);
983 
984 	while (radix_tree_is_internal_node(node)) {
985 		unsigned offset;
986 
987 		parent = entry_to_node(node);
988 		offset = radix_tree_descend(parent, &node, index);
989 		BUG_ON(!node);
990 
991 		if (!tag_get(parent, tag, offset))
992 			tag_set(parent, tag, offset);
993 	}
994 
995 	/* set the root's tag bit */
996 	if (!root_tag_get(root, tag))
997 		root_tag_set(root, tag);
998 
999 	return node;
1000 }
1001 EXPORT_SYMBOL(radix_tree_tag_set);
1002 
node_tag_clear(struct radix_tree_root * root,struct radix_tree_node * node,unsigned int tag,unsigned int offset)1003 static void node_tag_clear(struct radix_tree_root *root,
1004 				struct radix_tree_node *node,
1005 				unsigned int tag, unsigned int offset)
1006 {
1007 	while (node) {
1008 		if (!tag_get(node, tag, offset))
1009 			return;
1010 		tag_clear(node, tag, offset);
1011 		if (any_tag_set(node, tag))
1012 			return;
1013 
1014 		offset = node->offset;
1015 		node = node->parent;
1016 	}
1017 
1018 	/* clear the root's tag bit */
1019 	if (root_tag_get(root, tag))
1020 		root_tag_clear(root, tag);
1021 }
1022 
1023 /**
1024  *	radix_tree_tag_clear - clear a tag on a radix tree node
1025  *	@root:		radix tree root
1026  *	@index:		index key
1027  *	@tag:		tag index
1028  *
1029  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1030  *	corresponding to @index in the radix tree.  If this causes
1031  *	the leaf node to have no tags set then clear the tag in the
1032  *	next-to-leaf node, etc.
1033  *
1034  *	Returns the address of the tagged item on success, else NULL.  ie:
1035  *	has the same return value and semantics as radix_tree_lookup().
1036  */
radix_tree_tag_clear(struct radix_tree_root * root,unsigned long index,unsigned int tag)1037 void *radix_tree_tag_clear(struct radix_tree_root *root,
1038 			unsigned long index, unsigned int tag)
1039 {
1040 	struct radix_tree_node *node, *parent;
1041 	unsigned long maxindex;
1042 	int uninitialized_var(offset);
1043 
1044 	radix_tree_load_root(root, &node, &maxindex);
1045 	if (index > maxindex)
1046 		return NULL;
1047 
1048 	parent = NULL;
1049 
1050 	while (radix_tree_is_internal_node(node)) {
1051 		parent = entry_to_node(node);
1052 		offset = radix_tree_descend(parent, &node, index);
1053 	}
1054 
1055 	if (node)
1056 		node_tag_clear(root, parent, tag, offset);
1057 
1058 	return node;
1059 }
1060 EXPORT_SYMBOL(radix_tree_tag_clear);
1061 
1062 /**
1063   * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1064   * @root: radix tree root
1065   * @iter: iterator state
1066   * @tag: tag to clear
1067   */
radix_tree_iter_tag_clear(struct radix_tree_root * root,const struct radix_tree_iter * iter,unsigned int tag)1068 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1069 			const struct radix_tree_iter *iter, unsigned int tag)
1070 {
1071 	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1072 }
1073 
1074 /**
1075  * radix_tree_tag_get - get a tag on a radix tree node
1076  * @root:		radix tree root
1077  * @index:		index key
1078  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1079  *
1080  * Return values:
1081  *
1082  *  0: tag not present or not set
1083  *  1: tag set
1084  *
1085  * Note that the return value of this function may not be relied on, even if
1086  * the RCU lock is held, unless tag modification and node deletion are excluded
1087  * from concurrency.
1088  */
radix_tree_tag_get(const struct radix_tree_root * root,unsigned long index,unsigned int tag)1089 int radix_tree_tag_get(const struct radix_tree_root *root,
1090 			unsigned long index, unsigned int tag)
1091 {
1092 	struct radix_tree_node *node, *parent;
1093 	unsigned long maxindex;
1094 
1095 	if (!root_tag_get(root, tag))
1096 		return 0;
1097 
1098 	radix_tree_load_root(root, &node, &maxindex);
1099 	if (index > maxindex)
1100 		return 0;
1101 
1102 	while (radix_tree_is_internal_node(node)) {
1103 		unsigned offset;
1104 
1105 		parent = entry_to_node(node);
1106 		offset = radix_tree_descend(parent, &node, index);
1107 
1108 		if (!tag_get(parent, tag, offset))
1109 			return 0;
1110 		if (node == RADIX_TREE_RETRY)
1111 			break;
1112 	}
1113 
1114 	return 1;
1115 }
1116 EXPORT_SYMBOL(radix_tree_tag_get);
1117 
1118 /* Construct iter->tags bit-mask from node->tags[tag] array */
set_iter_tags(struct radix_tree_iter * iter,struct radix_tree_node * node,unsigned offset,unsigned tag)1119 static void set_iter_tags(struct radix_tree_iter *iter,
1120 				struct radix_tree_node *node, unsigned offset,
1121 				unsigned tag)
1122 {
1123 	unsigned tag_long = offset / BITS_PER_LONG;
1124 	unsigned tag_bit  = offset % BITS_PER_LONG;
1125 
1126 	if (!node) {
1127 		iter->tags = 1;
1128 		return;
1129 	}
1130 
1131 	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1132 
1133 	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1134 	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1135 		/* Pick tags from next element */
1136 		if (tag_bit)
1137 			iter->tags |= node->tags[tag][tag_long + 1] <<
1138 						(BITS_PER_LONG - tag_bit);
1139 		/* Clip chunk size, here only BITS_PER_LONG tags */
1140 		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1141 	}
1142 }
1143 
radix_tree_iter_resume(void __rcu ** slot,struct radix_tree_iter * iter)1144 void __rcu **radix_tree_iter_resume(void __rcu **slot,
1145 					struct radix_tree_iter *iter)
1146 {
1147 	slot++;
1148 	iter->index = __radix_tree_iter_add(iter, 1);
1149 	iter->next_index = iter->index;
1150 	iter->tags = 0;
1151 	return NULL;
1152 }
1153 EXPORT_SYMBOL(radix_tree_iter_resume);
1154 
1155 /**
1156  * radix_tree_next_chunk - find next chunk of slots for iteration
1157  *
1158  * @root:	radix tree root
1159  * @iter:	iterator state
1160  * @flags:	RADIX_TREE_ITER_* flags and tag index
1161  * Returns:	pointer to chunk first slot, or NULL if iteration is over
1162  */
radix_tree_next_chunk(const struct radix_tree_root * root,struct radix_tree_iter * iter,unsigned flags)1163 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1164 			     struct radix_tree_iter *iter, unsigned flags)
1165 {
1166 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1167 	struct radix_tree_node *node, *child;
1168 	unsigned long index, offset, maxindex;
1169 
1170 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1171 		return NULL;
1172 
1173 	/*
1174 	 * Catch next_index overflow after ~0UL. iter->index never overflows
1175 	 * during iterating; it can be zero only at the beginning.
1176 	 * And we cannot overflow iter->next_index in a single step,
1177 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1178 	 *
1179 	 * This condition also used by radix_tree_next_slot() to stop
1180 	 * contiguous iterating, and forbid switching to the next chunk.
1181 	 */
1182 	index = iter->next_index;
1183 	if (!index && iter->index)
1184 		return NULL;
1185 
1186  restart:
1187 	radix_tree_load_root(root, &child, &maxindex);
1188 	if (index > maxindex)
1189 		return NULL;
1190 	if (!child)
1191 		return NULL;
1192 
1193 	if (!radix_tree_is_internal_node(child)) {
1194 		/* Single-slot tree */
1195 		iter->index = index;
1196 		iter->next_index = maxindex + 1;
1197 		iter->tags = 1;
1198 		iter->node = NULL;
1199 		return (void __rcu **)&root->xa_head;
1200 	}
1201 
1202 	do {
1203 		node = entry_to_node(child);
1204 		offset = radix_tree_descend(node, &child, index);
1205 
1206 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1207 				!tag_get(node, tag, offset) : !child) {
1208 			/* Hole detected */
1209 			if (flags & RADIX_TREE_ITER_CONTIG)
1210 				return NULL;
1211 
1212 			if (flags & RADIX_TREE_ITER_TAGGED)
1213 				offset = radix_tree_find_next_bit(node, tag,
1214 						offset + 1);
1215 			else
1216 				while (++offset	< RADIX_TREE_MAP_SIZE) {
1217 					void *slot = rcu_dereference_raw(
1218 							node->slots[offset]);
1219 					if (slot)
1220 						break;
1221 				}
1222 			index &= ~node_maxindex(node);
1223 			index += offset << node->shift;
1224 			/* Overflow after ~0UL */
1225 			if (!index)
1226 				return NULL;
1227 			if (offset == RADIX_TREE_MAP_SIZE)
1228 				goto restart;
1229 			child = rcu_dereference_raw(node->slots[offset]);
1230 		}
1231 
1232 		if (!child)
1233 			goto restart;
1234 		if (child == RADIX_TREE_RETRY)
1235 			break;
1236 	} while (node->shift && radix_tree_is_internal_node(child));
1237 
1238 	/* Update the iterator state */
1239 	iter->index = (index &~ node_maxindex(node)) | offset;
1240 	iter->next_index = (index | node_maxindex(node)) + 1;
1241 	iter->node = node;
1242 
1243 	if (flags & RADIX_TREE_ITER_TAGGED)
1244 		set_iter_tags(iter, node, offset, tag);
1245 
1246 	return node->slots + offset;
1247 }
1248 EXPORT_SYMBOL(radix_tree_next_chunk);
1249 
1250 /**
1251  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1252  *	@root:		radix tree root
1253  *	@results:	where the results of the lookup are placed
1254  *	@first_index:	start the lookup from this key
1255  *	@max_items:	place up to this many items at *results
1256  *
1257  *	Performs an index-ascending scan of the tree for present items.  Places
1258  *	them at *@results and returns the number of items which were placed at
1259  *	*@results.
1260  *
1261  *	The implementation is naive.
1262  *
1263  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1264  *	rcu_read_lock. In this case, rather than the returned results being
1265  *	an atomic snapshot of the tree at a single point in time, the
1266  *	semantics of an RCU protected gang lookup are as though multiple
1267  *	radix_tree_lookups have been issued in individual locks, and results
1268  *	stored in 'results'.
1269  */
1270 unsigned int
radix_tree_gang_lookup(const struct radix_tree_root * root,void ** results,unsigned long first_index,unsigned int max_items)1271 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1272 			unsigned long first_index, unsigned int max_items)
1273 {
1274 	struct radix_tree_iter iter;
1275 	void __rcu **slot;
1276 	unsigned int ret = 0;
1277 
1278 	if (unlikely(!max_items))
1279 		return 0;
1280 
1281 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1282 		results[ret] = rcu_dereference_raw(*slot);
1283 		if (!results[ret])
1284 			continue;
1285 		if (radix_tree_is_internal_node(results[ret])) {
1286 			slot = radix_tree_iter_retry(&iter);
1287 			continue;
1288 		}
1289 		if (++ret == max_items)
1290 			break;
1291 	}
1292 
1293 	return ret;
1294 }
1295 EXPORT_SYMBOL(radix_tree_gang_lookup);
1296 
1297 /**
1298  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1299  *	                             based on a tag
1300  *	@root:		radix tree root
1301  *	@results:	where the results of the lookup are placed
1302  *	@first_index:	start the lookup from this key
1303  *	@max_items:	place up to this many items at *results
1304  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1305  *
1306  *	Performs an index-ascending scan of the tree for present items which
1307  *	have the tag indexed by @tag set.  Places the items at *@results and
1308  *	returns the number of items which were placed at *@results.
1309  */
1310 unsigned int
radix_tree_gang_lookup_tag(const struct radix_tree_root * root,void ** results,unsigned long first_index,unsigned int max_items,unsigned int tag)1311 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1312 		unsigned long first_index, unsigned int max_items,
1313 		unsigned int tag)
1314 {
1315 	struct radix_tree_iter iter;
1316 	void __rcu **slot;
1317 	unsigned int ret = 0;
1318 
1319 	if (unlikely(!max_items))
1320 		return 0;
1321 
1322 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1323 		results[ret] = rcu_dereference_raw(*slot);
1324 		if (!results[ret])
1325 			continue;
1326 		if (radix_tree_is_internal_node(results[ret])) {
1327 			slot = radix_tree_iter_retry(&iter);
1328 			continue;
1329 		}
1330 		if (++ret == max_items)
1331 			break;
1332 	}
1333 
1334 	return ret;
1335 }
1336 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1337 
1338 /**
1339  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1340  *					  radix tree based on a tag
1341  *	@root:		radix tree root
1342  *	@results:	where the results of the lookup are placed
1343  *	@first_index:	start the lookup from this key
1344  *	@max_items:	place up to this many items at *results
1345  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1346  *
1347  *	Performs an index-ascending scan of the tree for present items which
1348  *	have the tag indexed by @tag set.  Places the slots at *@results and
1349  *	returns the number of slots which were placed at *@results.
1350  */
1351 unsigned int
radix_tree_gang_lookup_tag_slot(const struct radix_tree_root * root,void __rcu *** results,unsigned long first_index,unsigned int max_items,unsigned int tag)1352 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1353 		void __rcu ***results, unsigned long first_index,
1354 		unsigned int max_items, unsigned int tag)
1355 {
1356 	struct radix_tree_iter iter;
1357 	void __rcu **slot;
1358 	unsigned int ret = 0;
1359 
1360 	if (unlikely(!max_items))
1361 		return 0;
1362 
1363 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1364 		results[ret] = slot;
1365 		if (++ret == max_items)
1366 			break;
1367 	}
1368 
1369 	return ret;
1370 }
1371 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1372 
__radix_tree_delete(struct radix_tree_root * root,struct radix_tree_node * node,void __rcu ** slot)1373 static bool __radix_tree_delete(struct radix_tree_root *root,
1374 				struct radix_tree_node *node, void __rcu **slot)
1375 {
1376 	void *old = rcu_dereference_raw(*slot);
1377 	int values = xa_is_value(old) ? -1 : 0;
1378 	unsigned offset = get_slot_offset(node, slot);
1379 	int tag;
1380 
1381 	if (is_idr(root))
1382 		node_tag_set(root, node, IDR_FREE, offset);
1383 	else
1384 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1385 			node_tag_clear(root, node, tag, offset);
1386 
1387 	replace_slot(slot, NULL, node, -1, values);
1388 	return node && delete_node(root, node);
1389 }
1390 
1391 /**
1392  * radix_tree_iter_delete - delete the entry at this iterator position
1393  * @root: radix tree root
1394  * @iter: iterator state
1395  * @slot: pointer to slot
1396  *
1397  * Delete the entry at the position currently pointed to by the iterator.
1398  * This may result in the current node being freed; if it is, the iterator
1399  * is advanced so that it will not reference the freed memory.  This
1400  * function may be called without any locking if there are no other threads
1401  * which can access this tree.
1402  */
radix_tree_iter_delete(struct radix_tree_root * root,struct radix_tree_iter * iter,void __rcu ** slot)1403 void radix_tree_iter_delete(struct radix_tree_root *root,
1404 				struct radix_tree_iter *iter, void __rcu **slot)
1405 {
1406 	if (__radix_tree_delete(root, iter->node, slot))
1407 		iter->index = iter->next_index;
1408 }
1409 EXPORT_SYMBOL(radix_tree_iter_delete);
1410 
1411 /**
1412  * radix_tree_delete_item - delete an item from a radix tree
1413  * @root: radix tree root
1414  * @index: index key
1415  * @item: expected item
1416  *
1417  * Remove @item at @index from the radix tree rooted at @root.
1418  *
1419  * Return: the deleted entry, or %NULL if it was not present
1420  * or the entry at the given @index was not @item.
1421  */
radix_tree_delete_item(struct radix_tree_root * root,unsigned long index,void * item)1422 void *radix_tree_delete_item(struct radix_tree_root *root,
1423 			     unsigned long index, void *item)
1424 {
1425 	struct radix_tree_node *node = NULL;
1426 	void __rcu **slot = NULL;
1427 	void *entry;
1428 
1429 	entry = __radix_tree_lookup(root, index, &node, &slot);
1430 	if (!slot)
1431 		return NULL;
1432 	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1433 						get_slot_offset(node, slot))))
1434 		return NULL;
1435 
1436 	if (item && entry != item)
1437 		return NULL;
1438 
1439 	__radix_tree_delete(root, node, slot);
1440 
1441 	return entry;
1442 }
1443 EXPORT_SYMBOL(radix_tree_delete_item);
1444 
1445 /**
1446  * radix_tree_delete - delete an entry from a radix tree
1447  * @root: radix tree root
1448  * @index: index key
1449  *
1450  * Remove the entry at @index from the radix tree rooted at @root.
1451  *
1452  * Return: The deleted entry, or %NULL if it was not present.
1453  */
radix_tree_delete(struct radix_tree_root * root,unsigned long index)1454 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1455 {
1456 	return radix_tree_delete_item(root, index, NULL);
1457 }
1458 EXPORT_SYMBOL(radix_tree_delete);
1459 
1460 /**
1461  *	radix_tree_tagged - test whether any items in the tree are tagged
1462  *	@root:		radix tree root
1463  *	@tag:		tag to test
1464  */
radix_tree_tagged(const struct radix_tree_root * root,unsigned int tag)1465 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1466 {
1467 	return root_tag_get(root, tag);
1468 }
1469 EXPORT_SYMBOL(radix_tree_tagged);
1470 
1471 /**
1472  * idr_preload - preload for idr_alloc()
1473  * @gfp_mask: allocation mask to use for preloading
1474  *
1475  * Preallocate memory to use for the next call to idr_alloc().  This function
1476  * returns with preemption disabled.  It will be enabled by idr_preload_end().
1477  */
idr_preload(gfp_t gfp_mask)1478 void idr_preload(gfp_t gfp_mask)
1479 {
1480 	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1481 		preempt_disable();
1482 }
1483 EXPORT_SYMBOL(idr_preload);
1484 
idr_get_free(struct radix_tree_root * root,struct radix_tree_iter * iter,gfp_t gfp,unsigned long max)1485 void __rcu **idr_get_free(struct radix_tree_root *root,
1486 			      struct radix_tree_iter *iter, gfp_t gfp,
1487 			      unsigned long max)
1488 {
1489 	struct radix_tree_node *node = NULL, *child;
1490 	void __rcu **slot = (void __rcu **)&root->xa_head;
1491 	unsigned long maxindex, start = iter->next_index;
1492 	unsigned int shift, offset = 0;
1493 
1494  grow:
1495 	shift = radix_tree_load_root(root, &child, &maxindex);
1496 	if (!radix_tree_tagged(root, IDR_FREE))
1497 		start = max(start, maxindex + 1);
1498 	if (start > max)
1499 		return ERR_PTR(-ENOSPC);
1500 
1501 	if (start > maxindex) {
1502 		int error = radix_tree_extend(root, gfp, start, shift);
1503 		if (error < 0)
1504 			return ERR_PTR(error);
1505 		shift = error;
1506 		child = rcu_dereference_raw(root->xa_head);
1507 	}
1508 	if (start == 0 && shift == 0)
1509 		shift = RADIX_TREE_MAP_SHIFT;
1510 
1511 	while (shift) {
1512 		shift -= RADIX_TREE_MAP_SHIFT;
1513 		if (child == NULL) {
1514 			/* Have to add a child node.  */
1515 			child = radix_tree_node_alloc(gfp, node, root, shift,
1516 							offset, 0, 0);
1517 			if (!child)
1518 				return ERR_PTR(-ENOMEM);
1519 			all_tag_set(child, IDR_FREE);
1520 			rcu_assign_pointer(*slot, node_to_entry(child));
1521 			if (node)
1522 				node->count++;
1523 		} else if (!radix_tree_is_internal_node(child))
1524 			break;
1525 
1526 		node = entry_to_node(child);
1527 		offset = radix_tree_descend(node, &child, start);
1528 		if (!tag_get(node, IDR_FREE, offset)) {
1529 			offset = radix_tree_find_next_bit(node, IDR_FREE,
1530 							offset + 1);
1531 			start = next_index(start, node, offset);
1532 			if (start > max || start == 0)
1533 				return ERR_PTR(-ENOSPC);
1534 			while (offset == RADIX_TREE_MAP_SIZE) {
1535 				offset = node->offset + 1;
1536 				node = node->parent;
1537 				if (!node)
1538 					goto grow;
1539 				shift = node->shift;
1540 			}
1541 			child = rcu_dereference_raw(node->slots[offset]);
1542 		}
1543 		slot = &node->slots[offset];
1544 	}
1545 
1546 	iter->index = start;
1547 	if (node)
1548 		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1549 	else
1550 		iter->next_index = 1;
1551 	iter->node = node;
1552 	set_iter_tags(iter, node, offset, IDR_FREE);
1553 
1554 	return slot;
1555 }
1556 
1557 /**
1558  * idr_destroy - release all internal memory from an IDR
1559  * @idr: idr handle
1560  *
1561  * After this function is called, the IDR is empty, and may be reused or
1562  * the data structure containing it may be freed.
1563  *
1564  * A typical clean-up sequence for objects stored in an idr tree will use
1565  * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1566  * free the memory used to keep track of those objects.
1567  */
idr_destroy(struct idr * idr)1568 void idr_destroy(struct idr *idr)
1569 {
1570 	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1571 	if (radix_tree_is_internal_node(node))
1572 		radix_tree_free_nodes(node);
1573 	idr->idr_rt.xa_head = NULL;
1574 	root_tag_set(&idr->idr_rt, IDR_FREE);
1575 }
1576 EXPORT_SYMBOL(idr_destroy);
1577 
1578 static void
radix_tree_node_ctor(void * arg)1579 radix_tree_node_ctor(void *arg)
1580 {
1581 	struct radix_tree_node *node = arg;
1582 
1583 	memset(node, 0, sizeof(*node));
1584 	INIT_LIST_HEAD(&node->private_list);
1585 }
1586 
radix_tree_cpu_dead(unsigned int cpu)1587 static int radix_tree_cpu_dead(unsigned int cpu)
1588 {
1589 	struct radix_tree_preload *rtp;
1590 	struct radix_tree_node *node;
1591 
1592 	/* Free per-cpu pool of preloaded nodes */
1593 	rtp = &per_cpu(radix_tree_preloads, cpu);
1594 	while (rtp->nr) {
1595 		node = rtp->nodes;
1596 		rtp->nodes = node->parent;
1597 		kmem_cache_free(radix_tree_node_cachep, node);
1598 		rtp->nr--;
1599 	}
1600 	return 0;
1601 }
1602 
radix_tree_init(void)1603 void __init radix_tree_init(void)
1604 {
1605 	int ret;
1606 
1607 	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1608 	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1609 	BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1610 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1611 			sizeof(struct radix_tree_node), 0,
1612 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1613 			radix_tree_node_ctor);
1614 	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1615 					NULL, radix_tree_cpu_dead);
1616 	WARN_ON(ret < 0);
1617 }
1618