1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
54 #include <linux/gfp.h>
55 #include <linux/oom.h>
56 #include <linux/smpboot.h>
57 #include <linux/jiffies.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include "../time/tick-internal.h"
61
62 #include "tree.h"
63 #include "rcu.h"
64
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69
70 /* Data structures. */
71
72 /*
73 * Steal a bit from the bottom of ->dynticks for idle entry/exit
74 * control. Initially this is for TLB flushing.
75 */
76 #define RCU_DYNTICK_CTRL_MASK 0x1
77 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
78 #ifndef rcu_eqs_special_exit
79 #define rcu_eqs_special_exit() do { } while (0)
80 #endif
81
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 .dynticks_nesting = 1,
84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 struct rcu_state rcu_state = {
88 .level = { &rcu_state.node[0] },
89 .gp_state = RCU_GP_IDLE,
90 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 .name = RCU_NAME,
93 .abbr = RCU_ABBR,
94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = 1;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115
116 /*
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
121 * optimize synchronize_rcu() to a simple barrier(). When this variable
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
127 */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130
131 /*
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
138 *
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
141 * a time.
142 */
143 static int rcu_scheduler_fully_active __read_mostly;
144
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153
154 /* rcuc/rcub kthread realtime priority */
155 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
156 module_param(kthread_prio, int, 0444);
157
158 /* Delay in jiffies for grace-period initialization delays, debug only. */
159
160 static int gp_preinit_delay;
161 module_param(gp_preinit_delay, int, 0444);
162 static int gp_init_delay;
163 module_param(gp_init_delay, int, 0444);
164 static int gp_cleanup_delay;
165 module_param(gp_cleanup_delay, int, 0444);
166
167 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)168 int rcu_get_gp_kthreads_prio(void)
169 {
170 return kthread_prio;
171 }
172 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
173
174 /*
175 * Number of grace periods between delays, normalized by the duration of
176 * the delay. The longer the delay, the more the grace periods between
177 * each delay. The reason for this normalization is that it means that,
178 * for non-zero delays, the overall slowdown of grace periods is constant
179 * regardless of the duration of the delay. This arrangement balances
180 * the need for long delays to increase some race probabilities with the
181 * need for fast grace periods to increase other race probabilities.
182 */
183 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
184
185 /*
186 * Compute the mask of online CPUs for the specified rcu_node structure.
187 * This will not be stable unless the rcu_node structure's ->lock is
188 * held, but the bit corresponding to the current CPU will be stable
189 * in most contexts.
190 */
rcu_rnp_online_cpus(struct rcu_node * rnp)191 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
192 {
193 return READ_ONCE(rnp->qsmaskinitnext);
194 }
195
196 /*
197 * Return true if an RCU grace period is in progress. The READ_ONCE()s
198 * permit this function to be invoked without holding the root rcu_node
199 * structure's ->lock, but of course results can be subject to change.
200 */
rcu_gp_in_progress(void)201 static int rcu_gp_in_progress(void)
202 {
203 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
204 }
205
206 /*
207 * Return the number of callbacks queued on the specified CPU.
208 * Handles both the nocbs and normal cases.
209 */
rcu_get_n_cbs_cpu(int cpu)210 static long rcu_get_n_cbs_cpu(int cpu)
211 {
212 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
213
214 if (rcu_segcblist_is_enabled(&rdp->cblist))
215 return rcu_segcblist_n_cbs(&rdp->cblist);
216 return 0;
217 }
218
rcu_softirq_qs(void)219 void rcu_softirq_qs(void)
220 {
221 rcu_qs();
222 rcu_preempt_deferred_qs(current);
223 }
224
225 /*
226 * Record entry into an extended quiescent state. This is only to be
227 * called when not already in an extended quiescent state.
228 */
rcu_dynticks_eqs_enter(void)229 static void rcu_dynticks_eqs_enter(void)
230 {
231 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
232 int seq;
233
234 /*
235 * CPUs seeing atomic_add_return() must see prior RCU read-side
236 * critical sections, and we also must force ordering with the
237 * next idle sojourn.
238 */
239 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
240 /* Better be in an extended quiescent state! */
241 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
242 (seq & RCU_DYNTICK_CTRL_CTR));
243 /* Better not have special action (TLB flush) pending! */
244 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
245 (seq & RCU_DYNTICK_CTRL_MASK));
246 }
247
248 /*
249 * Record exit from an extended quiescent state. This is only to be
250 * called from an extended quiescent state.
251 */
rcu_dynticks_eqs_exit(void)252 static void rcu_dynticks_eqs_exit(void)
253 {
254 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
255 int seq;
256
257 /*
258 * CPUs seeing atomic_add_return() must see prior idle sojourns,
259 * and we also must force ordering with the next RCU read-side
260 * critical section.
261 */
262 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
263 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 !(seq & RCU_DYNTICK_CTRL_CTR));
265 if (seq & RCU_DYNTICK_CTRL_MASK) {
266 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
267 smp_mb__after_atomic(); /* _exit after clearing mask. */
268 /* Prefer duplicate flushes to losing a flush. */
269 rcu_eqs_special_exit();
270 }
271 }
272
273 /*
274 * Reset the current CPU's ->dynticks counter to indicate that the
275 * newly onlined CPU is no longer in an extended quiescent state.
276 * This will either leave the counter unchanged, or increment it
277 * to the next non-quiescent value.
278 *
279 * The non-atomic test/increment sequence works because the upper bits
280 * of the ->dynticks counter are manipulated only by the corresponding CPU,
281 * or when the corresponding CPU is offline.
282 */
rcu_dynticks_eqs_online(void)283 static void rcu_dynticks_eqs_online(void)
284 {
285 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
286
287 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
288 return;
289 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
290 }
291
292 /*
293 * Is the current CPU in an extended quiescent state?
294 *
295 * No ordering, as we are sampling CPU-local information.
296 */
rcu_dynticks_curr_cpu_in_eqs(void)297 bool rcu_dynticks_curr_cpu_in_eqs(void)
298 {
299 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
300
301 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
302 }
303
304 /*
305 * Snapshot the ->dynticks counter with full ordering so as to allow
306 * stable comparison of this counter with past and future snapshots.
307 */
rcu_dynticks_snap(struct rcu_data * rdp)308 int rcu_dynticks_snap(struct rcu_data *rdp)
309 {
310 int snap = atomic_add_return(0, &rdp->dynticks);
311
312 return snap & ~RCU_DYNTICK_CTRL_MASK;
313 }
314
315 /*
316 * Return true if the snapshot returned from rcu_dynticks_snap()
317 * indicates that RCU is in an extended quiescent state.
318 */
rcu_dynticks_in_eqs(int snap)319 static bool rcu_dynticks_in_eqs(int snap)
320 {
321 return !(snap & RCU_DYNTICK_CTRL_CTR);
322 }
323
324 /*
325 * Return true if the CPU corresponding to the specified rcu_data
326 * structure has spent some time in an extended quiescent state since
327 * rcu_dynticks_snap() returned the specified snapshot.
328 */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)329 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
330 {
331 return snap != rcu_dynticks_snap(rdp);
332 }
333
334 /*
335 * Set the special (bottom) bit of the specified CPU so that it
336 * will take special action (such as flushing its TLB) on the
337 * next exit from an extended quiescent state. Returns true if
338 * the bit was successfully set, or false if the CPU was not in
339 * an extended quiescent state.
340 */
rcu_eqs_special_set(int cpu)341 bool rcu_eqs_special_set(int cpu)
342 {
343 int old;
344 int new;
345 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
346
347 do {
348 old = atomic_read(&rdp->dynticks);
349 if (old & RCU_DYNTICK_CTRL_CTR)
350 return false;
351 new = old | RCU_DYNTICK_CTRL_MASK;
352 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
353 return true;
354 }
355
356 /*
357 * Let the RCU core know that this CPU has gone through the scheduler,
358 * which is a quiescent state. This is called when the need for a
359 * quiescent state is urgent, so we burn an atomic operation and full
360 * memory barriers to let the RCU core know about it, regardless of what
361 * this CPU might (or might not) do in the near future.
362 *
363 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
364 *
365 * The caller must have disabled interrupts and must not be idle.
366 */
rcu_momentary_dyntick_idle(void)367 static void __maybe_unused rcu_momentary_dyntick_idle(void)
368 {
369 int special;
370
371 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
372 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
373 &this_cpu_ptr(&rcu_data)->dynticks);
374 /* It is illegal to call this from idle state. */
375 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
376 rcu_preempt_deferred_qs(current);
377 }
378
379 /**
380 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
381 *
382 * If the current CPU is idle and running at a first-level (not nested)
383 * interrupt from idle, return true. The caller must have at least
384 * disabled preemption.
385 */
rcu_is_cpu_rrupt_from_idle(void)386 static int rcu_is_cpu_rrupt_from_idle(void)
387 {
388 /* Called only from within the scheduling-clock interrupt */
389 lockdep_assert_in_irq();
390
391 /* Check for counter underflows */
392 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
393 "RCU dynticks_nesting counter underflow!");
394 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
395 "RCU dynticks_nmi_nesting counter underflow/zero!");
396
397 /* Are we at first interrupt nesting level? */
398 if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
399 return false;
400
401 /* Does CPU appear to be idle from an RCU standpoint? */
402 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
403 }
404
405 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
406 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
407 static long blimit = DEFAULT_RCU_BLIMIT;
408 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
409 static long qhimark = DEFAULT_RCU_QHIMARK;
410 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
411 static long qlowmark = DEFAULT_RCU_QLOMARK;
412
413 module_param(blimit, long, 0444);
414 module_param(qhimark, long, 0444);
415 module_param(qlowmark, long, 0444);
416
417 static ulong jiffies_till_first_fqs = ULONG_MAX;
418 static ulong jiffies_till_next_fqs = ULONG_MAX;
419 static bool rcu_kick_kthreads;
420 static int rcu_divisor = 7;
421 module_param(rcu_divisor, int, 0644);
422
423 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
424 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
425 module_param(rcu_resched_ns, long, 0644);
426
427 /*
428 * How long the grace period must be before we start recruiting
429 * quiescent-state help from rcu_note_context_switch().
430 */
431 static ulong jiffies_till_sched_qs = ULONG_MAX;
432 module_param(jiffies_till_sched_qs, ulong, 0444);
433 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
434 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
435
436 /*
437 * Make sure that we give the grace-period kthread time to detect any
438 * idle CPUs before taking active measures to force quiescent states.
439 * However, don't go below 100 milliseconds, adjusted upwards for really
440 * large systems.
441 */
adjust_jiffies_till_sched_qs(void)442 static void adjust_jiffies_till_sched_qs(void)
443 {
444 unsigned long j;
445
446 /* If jiffies_till_sched_qs was specified, respect the request. */
447 if (jiffies_till_sched_qs != ULONG_MAX) {
448 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
449 return;
450 }
451 /* Otherwise, set to third fqs scan, but bound below on large system. */
452 j = READ_ONCE(jiffies_till_first_fqs) +
453 2 * READ_ONCE(jiffies_till_next_fqs);
454 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
455 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
456 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
457 WRITE_ONCE(jiffies_to_sched_qs, j);
458 }
459
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)460 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
461 {
462 ulong j;
463 int ret = kstrtoul(val, 0, &j);
464
465 if (!ret) {
466 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
467 adjust_jiffies_till_sched_qs();
468 }
469 return ret;
470 }
471
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)472 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
473 {
474 ulong j;
475 int ret = kstrtoul(val, 0, &j);
476
477 if (!ret) {
478 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
479 adjust_jiffies_till_sched_qs();
480 }
481 return ret;
482 }
483
484 static struct kernel_param_ops first_fqs_jiffies_ops = {
485 .set = param_set_first_fqs_jiffies,
486 .get = param_get_ulong,
487 };
488
489 static struct kernel_param_ops next_fqs_jiffies_ops = {
490 .set = param_set_next_fqs_jiffies,
491 .get = param_get_ulong,
492 };
493
494 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
495 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
496 module_param(rcu_kick_kthreads, bool, 0644);
497
498 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
499 static int rcu_pending(void);
500
501 /*
502 * Return the number of RCU GPs completed thus far for debug & stats.
503 */
rcu_get_gp_seq(void)504 unsigned long rcu_get_gp_seq(void)
505 {
506 return READ_ONCE(rcu_state.gp_seq);
507 }
508 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
509
510 /*
511 * Return the number of RCU expedited batches completed thus far for
512 * debug & stats. Odd numbers mean that a batch is in progress, even
513 * numbers mean idle. The value returned will thus be roughly double
514 * the cumulative batches since boot.
515 */
rcu_exp_batches_completed(void)516 unsigned long rcu_exp_batches_completed(void)
517 {
518 return rcu_state.expedited_sequence;
519 }
520 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
521
522 /*
523 * Return the root node of the rcu_state structure.
524 */
rcu_get_root(void)525 static struct rcu_node *rcu_get_root(void)
526 {
527 return &rcu_state.node[0];
528 }
529
530 /*
531 * Convert a ->gp_state value to a character string.
532 */
gp_state_getname(short gs)533 static const char *gp_state_getname(short gs)
534 {
535 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
536 return "???";
537 return gp_state_names[gs];
538 }
539
540 /*
541 * Send along grace-period-related data for rcutorture diagnostics.
542 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)543 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
544 unsigned long *gp_seq)
545 {
546 switch (test_type) {
547 case RCU_FLAVOR:
548 *flags = READ_ONCE(rcu_state.gp_flags);
549 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
550 break;
551 default:
552 break;
553 }
554 }
555 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
556
557 /*
558 * Enter an RCU extended quiescent state, which can be either the
559 * idle loop or adaptive-tickless usermode execution.
560 *
561 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
562 * the possibility of usermode upcalls having messed up our count
563 * of interrupt nesting level during the prior busy period.
564 */
rcu_eqs_enter(bool user)565 static void rcu_eqs_enter(bool user)
566 {
567 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
568
569 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
570 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
571 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
572 rdp->dynticks_nesting == 0);
573 if (rdp->dynticks_nesting != 1) {
574 rdp->dynticks_nesting--;
575 return;
576 }
577
578 lockdep_assert_irqs_disabled();
579 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
580 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
581 rdp = this_cpu_ptr(&rcu_data);
582 do_nocb_deferred_wakeup(rdp);
583 rcu_prepare_for_idle();
584 rcu_preempt_deferred_qs(current);
585 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
586 rcu_dynticks_eqs_enter();
587 rcu_dynticks_task_enter();
588 }
589
590 /**
591 * rcu_idle_enter - inform RCU that current CPU is entering idle
592 *
593 * Enter idle mode, in other words, -leave- the mode in which RCU
594 * read-side critical sections can occur. (Though RCU read-side
595 * critical sections can occur in irq handlers in idle, a possibility
596 * handled by irq_enter() and irq_exit().)
597 *
598 * If you add or remove a call to rcu_idle_enter(), be sure to test with
599 * CONFIG_RCU_EQS_DEBUG=y.
600 */
rcu_idle_enter(void)601 void rcu_idle_enter(void)
602 {
603 lockdep_assert_irqs_disabled();
604 rcu_eqs_enter(false);
605 }
606
607 #ifdef CONFIG_NO_HZ_FULL
608 /**
609 * rcu_user_enter - inform RCU that we are resuming userspace.
610 *
611 * Enter RCU idle mode right before resuming userspace. No use of RCU
612 * is permitted between this call and rcu_user_exit(). This way the
613 * CPU doesn't need to maintain the tick for RCU maintenance purposes
614 * when the CPU runs in userspace.
615 *
616 * If you add or remove a call to rcu_user_enter(), be sure to test with
617 * CONFIG_RCU_EQS_DEBUG=y.
618 */
rcu_user_enter(void)619 void rcu_user_enter(void)
620 {
621 lockdep_assert_irqs_disabled();
622 rcu_eqs_enter(true);
623 }
624 #endif /* CONFIG_NO_HZ_FULL */
625
626 /*
627 * If we are returning from the outermost NMI handler that interrupted an
628 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
629 * to let the RCU grace-period handling know that the CPU is back to
630 * being RCU-idle.
631 *
632 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
633 * with CONFIG_RCU_EQS_DEBUG=y.
634 */
rcu_nmi_exit_common(bool irq)635 static __always_inline void rcu_nmi_exit_common(bool irq)
636 {
637 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
638
639 /*
640 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
641 * (We are exiting an NMI handler, so RCU better be paying attention
642 * to us!)
643 */
644 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
645 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
646
647 /*
648 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
649 * leave it in non-RCU-idle state.
650 */
651 if (rdp->dynticks_nmi_nesting != 1) {
652 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
653 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
654 rdp->dynticks_nmi_nesting - 2);
655 return;
656 }
657
658 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
659 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
660 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
661
662 if (irq)
663 rcu_prepare_for_idle();
664
665 rcu_dynticks_eqs_enter();
666
667 if (irq)
668 rcu_dynticks_task_enter();
669 }
670
671 /**
672 * rcu_nmi_exit - inform RCU of exit from NMI context
673 *
674 * If you add or remove a call to rcu_nmi_exit(), be sure to test
675 * with CONFIG_RCU_EQS_DEBUG=y.
676 */
rcu_nmi_exit(void)677 void rcu_nmi_exit(void)
678 {
679 rcu_nmi_exit_common(false);
680 }
681
682 /**
683 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
684 *
685 * Exit from an interrupt handler, which might possibly result in entering
686 * idle mode, in other words, leaving the mode in which read-side critical
687 * sections can occur. The caller must have disabled interrupts.
688 *
689 * This code assumes that the idle loop never does anything that might
690 * result in unbalanced calls to irq_enter() and irq_exit(). If your
691 * architecture's idle loop violates this assumption, RCU will give you what
692 * you deserve, good and hard. But very infrequently and irreproducibly.
693 *
694 * Use things like work queues to work around this limitation.
695 *
696 * You have been warned.
697 *
698 * If you add or remove a call to rcu_irq_exit(), be sure to test with
699 * CONFIG_RCU_EQS_DEBUG=y.
700 */
rcu_irq_exit(void)701 void rcu_irq_exit(void)
702 {
703 lockdep_assert_irqs_disabled();
704 rcu_nmi_exit_common(true);
705 }
706
707 /*
708 * Wrapper for rcu_irq_exit() where interrupts are enabled.
709 *
710 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
711 * with CONFIG_RCU_EQS_DEBUG=y.
712 */
rcu_irq_exit_irqson(void)713 void rcu_irq_exit_irqson(void)
714 {
715 unsigned long flags;
716
717 local_irq_save(flags);
718 rcu_irq_exit();
719 local_irq_restore(flags);
720 }
721
722 /*
723 * Exit an RCU extended quiescent state, which can be either the
724 * idle loop or adaptive-tickless usermode execution.
725 *
726 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
727 * allow for the possibility of usermode upcalls messing up our count of
728 * interrupt nesting level during the busy period that is just now starting.
729 */
rcu_eqs_exit(bool user)730 static void rcu_eqs_exit(bool user)
731 {
732 struct rcu_data *rdp;
733 long oldval;
734
735 lockdep_assert_irqs_disabled();
736 rdp = this_cpu_ptr(&rcu_data);
737 oldval = rdp->dynticks_nesting;
738 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
739 if (oldval) {
740 rdp->dynticks_nesting++;
741 return;
742 }
743 rcu_dynticks_task_exit();
744 rcu_dynticks_eqs_exit();
745 rcu_cleanup_after_idle();
746 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
747 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
748 WRITE_ONCE(rdp->dynticks_nesting, 1);
749 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
750 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
751 }
752
753 /**
754 * rcu_idle_exit - inform RCU that current CPU is leaving idle
755 *
756 * Exit idle mode, in other words, -enter- the mode in which RCU
757 * read-side critical sections can occur.
758 *
759 * If you add or remove a call to rcu_idle_exit(), be sure to test with
760 * CONFIG_RCU_EQS_DEBUG=y.
761 */
rcu_idle_exit(void)762 void rcu_idle_exit(void)
763 {
764 unsigned long flags;
765
766 local_irq_save(flags);
767 rcu_eqs_exit(false);
768 local_irq_restore(flags);
769 }
770
771 #ifdef CONFIG_NO_HZ_FULL
772 /**
773 * rcu_user_exit - inform RCU that we are exiting userspace.
774 *
775 * Exit RCU idle mode while entering the kernel because it can
776 * run a RCU read side critical section anytime.
777 *
778 * If you add or remove a call to rcu_user_exit(), be sure to test with
779 * CONFIG_RCU_EQS_DEBUG=y.
780 */
rcu_user_exit(void)781 void rcu_user_exit(void)
782 {
783 rcu_eqs_exit(1);
784 }
785 #endif /* CONFIG_NO_HZ_FULL */
786
787 /**
788 * rcu_nmi_enter_common - inform RCU of entry to NMI context
789 * @irq: Is this call from rcu_irq_enter?
790 *
791 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
792 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
793 * that the CPU is active. This implementation permits nested NMIs, as
794 * long as the nesting level does not overflow an int. (You will probably
795 * run out of stack space first.)
796 *
797 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
798 * with CONFIG_RCU_EQS_DEBUG=y.
799 */
rcu_nmi_enter_common(bool irq)800 static __always_inline void rcu_nmi_enter_common(bool irq)
801 {
802 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
803 long incby = 2;
804
805 /* Complain about underflow. */
806 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
807
808 /*
809 * If idle from RCU viewpoint, atomically increment ->dynticks
810 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
811 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
812 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
813 * to be in the outermost NMI handler that interrupted an RCU-idle
814 * period (observation due to Andy Lutomirski).
815 */
816 if (rcu_dynticks_curr_cpu_in_eqs()) {
817
818 if (irq)
819 rcu_dynticks_task_exit();
820
821 rcu_dynticks_eqs_exit();
822
823 if (irq)
824 rcu_cleanup_after_idle();
825
826 incby = 1;
827 }
828 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
829 rdp->dynticks_nmi_nesting,
830 rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
831 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
832 rdp->dynticks_nmi_nesting + incby);
833 barrier();
834 }
835
836 /**
837 * rcu_nmi_enter - inform RCU of entry to NMI context
838 */
rcu_nmi_enter(void)839 void rcu_nmi_enter(void)
840 {
841 rcu_nmi_enter_common(false);
842 }
843 NOKPROBE_SYMBOL(rcu_nmi_enter);
844
845 /**
846 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
847 *
848 * Enter an interrupt handler, which might possibly result in exiting
849 * idle mode, in other words, entering the mode in which read-side critical
850 * sections can occur. The caller must have disabled interrupts.
851 *
852 * Note that the Linux kernel is fully capable of entering an interrupt
853 * handler that it never exits, for example when doing upcalls to user mode!
854 * This code assumes that the idle loop never does upcalls to user mode.
855 * If your architecture's idle loop does do upcalls to user mode (or does
856 * anything else that results in unbalanced calls to the irq_enter() and
857 * irq_exit() functions), RCU will give you what you deserve, good and hard.
858 * But very infrequently and irreproducibly.
859 *
860 * Use things like work queues to work around this limitation.
861 *
862 * You have been warned.
863 *
864 * If you add or remove a call to rcu_irq_enter(), be sure to test with
865 * CONFIG_RCU_EQS_DEBUG=y.
866 */
rcu_irq_enter(void)867 void rcu_irq_enter(void)
868 {
869 lockdep_assert_irqs_disabled();
870 rcu_nmi_enter_common(true);
871 }
872
873 /*
874 * Wrapper for rcu_irq_enter() where interrupts are enabled.
875 *
876 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
877 * with CONFIG_RCU_EQS_DEBUG=y.
878 */
rcu_irq_enter_irqson(void)879 void rcu_irq_enter_irqson(void)
880 {
881 unsigned long flags;
882
883 local_irq_save(flags);
884 rcu_irq_enter();
885 local_irq_restore(flags);
886 }
887
888 /**
889 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
890 *
891 * Return true if RCU is watching the running CPU, which means that this
892 * CPU can safely enter RCU read-side critical sections. In other words,
893 * if the current CPU is not in its idle loop or is in an interrupt or
894 * NMI handler, return true.
895 */
rcu_is_watching(void)896 bool notrace rcu_is_watching(void)
897 {
898 bool ret;
899
900 preempt_disable_notrace();
901 ret = !rcu_dynticks_curr_cpu_in_eqs();
902 preempt_enable_notrace();
903 return ret;
904 }
905 EXPORT_SYMBOL_GPL(rcu_is_watching);
906
907 /*
908 * If a holdout task is actually running, request an urgent quiescent
909 * state from its CPU. This is unsynchronized, so migrations can cause
910 * the request to go to the wrong CPU. Which is OK, all that will happen
911 * is that the CPU's next context switch will be a bit slower and next
912 * time around this task will generate another request.
913 */
rcu_request_urgent_qs_task(struct task_struct * t)914 void rcu_request_urgent_qs_task(struct task_struct *t)
915 {
916 int cpu;
917
918 barrier();
919 cpu = task_cpu(t);
920 if (!task_curr(t))
921 return; /* This task is not running on that CPU. */
922 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
923 }
924
925 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
926
927 /*
928 * Is the current CPU online as far as RCU is concerned?
929 *
930 * Disable preemption to avoid false positives that could otherwise
931 * happen due to the current CPU number being sampled, this task being
932 * preempted, its old CPU being taken offline, resuming on some other CPU,
933 * then determining that its old CPU is now offline.
934 *
935 * Disable checking if in an NMI handler because we cannot safely
936 * report errors from NMI handlers anyway. In addition, it is OK to use
937 * RCU on an offline processor during initial boot, hence the check for
938 * rcu_scheduler_fully_active.
939 */
rcu_lockdep_current_cpu_online(void)940 bool rcu_lockdep_current_cpu_online(void)
941 {
942 struct rcu_data *rdp;
943 struct rcu_node *rnp;
944 bool ret = false;
945
946 if (in_nmi() || !rcu_scheduler_fully_active)
947 return true;
948 preempt_disable();
949 rdp = this_cpu_ptr(&rcu_data);
950 rnp = rdp->mynode;
951 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
952 ret = true;
953 preempt_enable();
954 return ret;
955 }
956 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
957
958 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
959
960 /*
961 * We are reporting a quiescent state on behalf of some other CPU, so
962 * it is our responsibility to check for and handle potential overflow
963 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
964 * After all, the CPU might be in deep idle state, and thus executing no
965 * code whatsoever.
966 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)967 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
968 {
969 raw_lockdep_assert_held_rcu_node(rnp);
970 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
971 rnp->gp_seq))
972 WRITE_ONCE(rdp->gpwrap, true);
973 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
974 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
975 }
976
977 /*
978 * Snapshot the specified CPU's dynticks counter so that we can later
979 * credit them with an implicit quiescent state. Return 1 if this CPU
980 * is in dynticks idle mode, which is an extended quiescent state.
981 */
dyntick_save_progress_counter(struct rcu_data * rdp)982 static int dyntick_save_progress_counter(struct rcu_data *rdp)
983 {
984 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
985 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
986 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
987 rcu_gpnum_ovf(rdp->mynode, rdp);
988 return 1;
989 }
990 return 0;
991 }
992
993 /*
994 * Return true if the specified CPU has passed through a quiescent
995 * state by virtue of being in or having passed through an dynticks
996 * idle state since the last call to dyntick_save_progress_counter()
997 * for this same CPU, or by virtue of having been offline.
998 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)999 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1000 {
1001 unsigned long jtsq;
1002 bool *rnhqp;
1003 bool *ruqp;
1004 struct rcu_node *rnp = rdp->mynode;
1005
1006 /*
1007 * If the CPU passed through or entered a dynticks idle phase with
1008 * no active irq/NMI handlers, then we can safely pretend that the CPU
1009 * already acknowledged the request to pass through a quiescent
1010 * state. Either way, that CPU cannot possibly be in an RCU
1011 * read-side critical section that started before the beginning
1012 * of the current RCU grace period.
1013 */
1014 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1015 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1016 rcu_gpnum_ovf(rnp, rdp);
1017 return 1;
1018 }
1019
1020 /* If waiting too long on an offline CPU, complain. */
1021 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1022 time_after(jiffies, rcu_state.gp_start + HZ)) {
1023 bool onl;
1024 struct rcu_node *rnp1;
1025
1026 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1027 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1028 __func__, rnp->grplo, rnp->grphi, rnp->level,
1029 (long)rnp->gp_seq, (long)rnp->completedqs);
1030 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1031 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1032 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1033 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1034 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1035 __func__, rdp->cpu, ".o"[onl],
1036 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1037 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1038 return 1; /* Break things loose after complaining. */
1039 }
1040
1041 /*
1042 * A CPU running for an extended time within the kernel can
1043 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1044 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1045 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1046 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1047 * variable are safe because the assignments are repeated if this
1048 * CPU failed to pass through a quiescent state. This code
1049 * also checks .jiffies_resched in case jiffies_to_sched_qs
1050 * is set way high.
1051 */
1052 jtsq = READ_ONCE(jiffies_to_sched_qs);
1053 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1054 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1055 if (!READ_ONCE(*rnhqp) &&
1056 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1057 time_after(jiffies, rcu_state.jiffies_resched))) {
1058 WRITE_ONCE(*rnhqp, true);
1059 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1060 smp_store_release(ruqp, true);
1061 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1062 WRITE_ONCE(*ruqp, true);
1063 }
1064
1065 /*
1066 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1067 * The above code handles this, but only for straight cond_resched().
1068 * And some in-kernel loops check need_resched() before calling
1069 * cond_resched(), which defeats the above code for CPUs that are
1070 * running in-kernel with scheduling-clock interrupts disabled.
1071 * So hit them over the head with the resched_cpu() hammer!
1072 */
1073 if (tick_nohz_full_cpu(rdp->cpu) &&
1074 time_after(jiffies,
1075 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1076 resched_cpu(rdp->cpu);
1077 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1078 }
1079
1080 /*
1081 * If more than halfway to RCU CPU stall-warning time, invoke
1082 * resched_cpu() more frequently to try to loosen things up a bit.
1083 * Also check to see if the CPU is getting hammered with interrupts,
1084 * but only once per grace period, just to keep the IPIs down to
1085 * a dull roar.
1086 */
1087 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1088 if (time_after(jiffies,
1089 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1090 resched_cpu(rdp->cpu);
1091 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1092 }
1093 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1094 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1095 (rnp->ffmask & rdp->grpmask)) {
1096 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1097 rdp->rcu_iw_pending = true;
1098 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1099 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1100 }
1101 }
1102
1103 return 0;
1104 }
1105
1106 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1107 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1108 unsigned long gp_seq_req, const char *s)
1109 {
1110 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1111 rnp->level, rnp->grplo, rnp->grphi, s);
1112 }
1113
1114 /*
1115 * rcu_start_this_gp - Request the start of a particular grace period
1116 * @rnp_start: The leaf node of the CPU from which to start.
1117 * @rdp: The rcu_data corresponding to the CPU from which to start.
1118 * @gp_seq_req: The gp_seq of the grace period to start.
1119 *
1120 * Start the specified grace period, as needed to handle newly arrived
1121 * callbacks. The required future grace periods are recorded in each
1122 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1123 * is reason to awaken the grace-period kthread.
1124 *
1125 * The caller must hold the specified rcu_node structure's ->lock, which
1126 * is why the caller is responsible for waking the grace-period kthread.
1127 *
1128 * Returns true if the GP thread needs to be awakened else false.
1129 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1130 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1131 unsigned long gp_seq_req)
1132 {
1133 bool ret = false;
1134 struct rcu_node *rnp;
1135
1136 /*
1137 * Use funnel locking to either acquire the root rcu_node
1138 * structure's lock or bail out if the need for this grace period
1139 * has already been recorded -- or if that grace period has in
1140 * fact already started. If there is already a grace period in
1141 * progress in a non-leaf node, no recording is needed because the
1142 * end of the grace period will scan the leaf rcu_node structures.
1143 * Note that rnp_start->lock must not be released.
1144 */
1145 raw_lockdep_assert_held_rcu_node(rnp_start);
1146 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1147 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1148 if (rnp != rnp_start)
1149 raw_spin_lock_rcu_node(rnp);
1150 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1151 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1152 (rnp != rnp_start &&
1153 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1154 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1155 TPS("Prestarted"));
1156 goto unlock_out;
1157 }
1158 rnp->gp_seq_needed = gp_seq_req;
1159 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1160 /*
1161 * We just marked the leaf or internal node, and a
1162 * grace period is in progress, which means that
1163 * rcu_gp_cleanup() will see the marking. Bail to
1164 * reduce contention.
1165 */
1166 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1167 TPS("Startedleaf"));
1168 goto unlock_out;
1169 }
1170 if (rnp != rnp_start && rnp->parent != NULL)
1171 raw_spin_unlock_rcu_node(rnp);
1172 if (!rnp->parent)
1173 break; /* At root, and perhaps also leaf. */
1174 }
1175
1176 /* If GP already in progress, just leave, otherwise start one. */
1177 if (rcu_gp_in_progress()) {
1178 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1179 goto unlock_out;
1180 }
1181 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1182 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1183 rcu_state.gp_req_activity = jiffies;
1184 if (!rcu_state.gp_kthread) {
1185 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1186 goto unlock_out;
1187 }
1188 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1189 ret = true; /* Caller must wake GP kthread. */
1190 unlock_out:
1191 /* Push furthest requested GP to leaf node and rcu_data structure. */
1192 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1193 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1194 rdp->gp_seq_needed = rnp->gp_seq_needed;
1195 }
1196 if (rnp != rnp_start)
1197 raw_spin_unlock_rcu_node(rnp);
1198 return ret;
1199 }
1200
1201 /*
1202 * Clean up any old requests for the just-ended grace period. Also return
1203 * whether any additional grace periods have been requested.
1204 */
rcu_future_gp_cleanup(struct rcu_node * rnp)1205 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1206 {
1207 bool needmore;
1208 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1209
1210 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1211 if (!needmore)
1212 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1213 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1214 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1215 return needmore;
1216 }
1217
1218 /*
1219 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1220 * an interrupt or softirq handler), and don't bother awakening when there
1221 * is nothing for the grace-period kthread to do (as in several CPUs raced
1222 * to awaken, and we lost), and finally don't try to awaken a kthread that
1223 * has not yet been created. If all those checks are passed, track some
1224 * debug information and awaken.
1225 *
1226 * So why do the self-wakeup when in an interrupt or softirq handler
1227 * in the grace-period kthread's context? Because the kthread might have
1228 * been interrupted just as it was going to sleep, and just after the final
1229 * pre-sleep check of the awaken condition. In this case, a wakeup really
1230 * is required, and is therefore supplied.
1231 */
rcu_gp_kthread_wake(void)1232 static void rcu_gp_kthread_wake(void)
1233 {
1234 if ((current == rcu_state.gp_kthread &&
1235 !in_irq() && !in_serving_softirq()) ||
1236 !READ_ONCE(rcu_state.gp_flags) ||
1237 !rcu_state.gp_kthread)
1238 return;
1239 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1240 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1241 swake_up_one(&rcu_state.gp_wq);
1242 }
1243
1244 /*
1245 * If there is room, assign a ->gp_seq number to any callbacks on this
1246 * CPU that have not already been assigned. Also accelerate any callbacks
1247 * that were previously assigned a ->gp_seq number that has since proven
1248 * to be too conservative, which can happen if callbacks get assigned a
1249 * ->gp_seq number while RCU is idle, but with reference to a non-root
1250 * rcu_node structure. This function is idempotent, so it does not hurt
1251 * to call it repeatedly. Returns an flag saying that we should awaken
1252 * the RCU grace-period kthread.
1253 *
1254 * The caller must hold rnp->lock with interrupts disabled.
1255 */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1256 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1257 {
1258 unsigned long gp_seq_req;
1259 bool ret = false;
1260
1261 rcu_lockdep_assert_cblist_protected(rdp);
1262 raw_lockdep_assert_held_rcu_node(rnp);
1263
1264 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1265 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1266 return false;
1267
1268 /*
1269 * Callbacks are often registered with incomplete grace-period
1270 * information. Something about the fact that getting exact
1271 * information requires acquiring a global lock... RCU therefore
1272 * makes a conservative estimate of the grace period number at which
1273 * a given callback will become ready to invoke. The following
1274 * code checks this estimate and improves it when possible, thus
1275 * accelerating callback invocation to an earlier grace-period
1276 * number.
1277 */
1278 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1279 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1280 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1281
1282 /* Trace depending on how much we were able to accelerate. */
1283 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1284 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1285 else
1286 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1287 return ret;
1288 }
1289
1290 /*
1291 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1292 * rcu_node structure's ->lock be held. It consults the cached value
1293 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1294 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1295 * while holding the leaf rcu_node structure's ->lock.
1296 */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1297 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1298 struct rcu_data *rdp)
1299 {
1300 unsigned long c;
1301 bool needwake;
1302
1303 rcu_lockdep_assert_cblist_protected(rdp);
1304 c = rcu_seq_snap(&rcu_state.gp_seq);
1305 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1306 /* Old request still live, so mark recent callbacks. */
1307 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1308 return;
1309 }
1310 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1311 needwake = rcu_accelerate_cbs(rnp, rdp);
1312 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1313 if (needwake)
1314 rcu_gp_kthread_wake();
1315 }
1316
1317 /*
1318 * Move any callbacks whose grace period has completed to the
1319 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1320 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1321 * sublist. This function is idempotent, so it does not hurt to
1322 * invoke it repeatedly. As long as it is not invoked -too- often...
1323 * Returns true if the RCU grace-period kthread needs to be awakened.
1324 *
1325 * The caller must hold rnp->lock with interrupts disabled.
1326 */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1327 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1328 {
1329 rcu_lockdep_assert_cblist_protected(rdp);
1330 raw_lockdep_assert_held_rcu_node(rnp);
1331
1332 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1333 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1334 return false;
1335
1336 /*
1337 * Find all callbacks whose ->gp_seq numbers indicate that they
1338 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1339 */
1340 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1341
1342 /* Classify any remaining callbacks. */
1343 return rcu_accelerate_cbs(rnp, rdp);
1344 }
1345
1346 /*
1347 * Move and classify callbacks, but only if doing so won't require
1348 * that the RCU grace-period kthread be awakened.
1349 */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1350 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1351 struct rcu_data *rdp)
1352 {
1353 rcu_lockdep_assert_cblist_protected(rdp);
1354 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1355 !raw_spin_trylock_rcu_node(rnp))
1356 return;
1357 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1358 raw_spin_unlock_rcu_node(rnp);
1359 }
1360
1361 /*
1362 * Update CPU-local rcu_data state to record the beginnings and ends of
1363 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1364 * structure corresponding to the current CPU, and must have irqs disabled.
1365 * Returns true if the grace-period kthread needs to be awakened.
1366 */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1367 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1368 {
1369 bool ret = false;
1370 bool need_gp;
1371 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1372 rcu_segcblist_is_offloaded(&rdp->cblist);
1373
1374 raw_lockdep_assert_held_rcu_node(rnp);
1375
1376 if (rdp->gp_seq == rnp->gp_seq)
1377 return false; /* Nothing to do. */
1378
1379 /* Handle the ends of any preceding grace periods first. */
1380 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1381 unlikely(READ_ONCE(rdp->gpwrap))) {
1382 if (!offloaded)
1383 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1384 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1385 } else {
1386 if (!offloaded)
1387 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1388 }
1389
1390 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1391 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1392 unlikely(READ_ONCE(rdp->gpwrap))) {
1393 /*
1394 * If the current grace period is waiting for this CPU,
1395 * set up to detect a quiescent state, otherwise don't
1396 * go looking for one.
1397 */
1398 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1399 need_gp = !!(rnp->qsmask & rdp->grpmask);
1400 rdp->cpu_no_qs.b.norm = need_gp;
1401 rdp->core_needs_qs = need_gp;
1402 zero_cpu_stall_ticks(rdp);
1403 }
1404 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1405 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1406 rdp->gp_seq_needed = rnp->gp_seq_needed;
1407 WRITE_ONCE(rdp->gpwrap, false);
1408 rcu_gpnum_ovf(rnp, rdp);
1409 return ret;
1410 }
1411
note_gp_changes(struct rcu_data * rdp)1412 static void note_gp_changes(struct rcu_data *rdp)
1413 {
1414 unsigned long flags;
1415 bool needwake;
1416 struct rcu_node *rnp;
1417
1418 local_irq_save(flags);
1419 rnp = rdp->mynode;
1420 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1421 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1422 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1423 local_irq_restore(flags);
1424 return;
1425 }
1426 needwake = __note_gp_changes(rnp, rdp);
1427 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1428 if (needwake)
1429 rcu_gp_kthread_wake();
1430 }
1431
rcu_gp_slow(int delay)1432 static void rcu_gp_slow(int delay)
1433 {
1434 if (delay > 0 &&
1435 !(rcu_seq_ctr(rcu_state.gp_seq) %
1436 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1437 schedule_timeout_uninterruptible(delay);
1438 }
1439
1440 /*
1441 * Initialize a new grace period. Return false if no grace period required.
1442 */
rcu_gp_init(void)1443 static bool rcu_gp_init(void)
1444 {
1445 unsigned long flags;
1446 unsigned long oldmask;
1447 unsigned long mask;
1448 struct rcu_data *rdp;
1449 struct rcu_node *rnp = rcu_get_root();
1450
1451 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1452 raw_spin_lock_irq_rcu_node(rnp);
1453 if (!READ_ONCE(rcu_state.gp_flags)) {
1454 /* Spurious wakeup, tell caller to go back to sleep. */
1455 raw_spin_unlock_irq_rcu_node(rnp);
1456 return false;
1457 }
1458 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1459
1460 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1461 /*
1462 * Grace period already in progress, don't start another.
1463 * Not supposed to be able to happen.
1464 */
1465 raw_spin_unlock_irq_rcu_node(rnp);
1466 return false;
1467 }
1468
1469 /* Advance to a new grace period and initialize state. */
1470 record_gp_stall_check_time();
1471 /* Record GP times before starting GP, hence rcu_seq_start(). */
1472 rcu_seq_start(&rcu_state.gp_seq);
1473 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1474 raw_spin_unlock_irq_rcu_node(rnp);
1475
1476 /*
1477 * Apply per-leaf buffered online and offline operations to the
1478 * rcu_node tree. Note that this new grace period need not wait
1479 * for subsequent online CPUs, and that quiescent-state forcing
1480 * will handle subsequent offline CPUs.
1481 */
1482 rcu_state.gp_state = RCU_GP_ONOFF;
1483 rcu_for_each_leaf_node(rnp) {
1484 raw_spin_lock(&rcu_state.ofl_lock);
1485 raw_spin_lock_irq_rcu_node(rnp);
1486 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1487 !rnp->wait_blkd_tasks) {
1488 /* Nothing to do on this leaf rcu_node structure. */
1489 raw_spin_unlock_irq_rcu_node(rnp);
1490 raw_spin_unlock(&rcu_state.ofl_lock);
1491 continue;
1492 }
1493
1494 /* Record old state, apply changes to ->qsmaskinit field. */
1495 oldmask = rnp->qsmaskinit;
1496 rnp->qsmaskinit = rnp->qsmaskinitnext;
1497
1498 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1499 if (!oldmask != !rnp->qsmaskinit) {
1500 if (!oldmask) { /* First online CPU for rcu_node. */
1501 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1502 rcu_init_new_rnp(rnp);
1503 } else if (rcu_preempt_has_tasks(rnp)) {
1504 rnp->wait_blkd_tasks = true; /* blocked tasks */
1505 } else { /* Last offline CPU and can propagate. */
1506 rcu_cleanup_dead_rnp(rnp);
1507 }
1508 }
1509
1510 /*
1511 * If all waited-on tasks from prior grace period are
1512 * done, and if all this rcu_node structure's CPUs are
1513 * still offline, propagate up the rcu_node tree and
1514 * clear ->wait_blkd_tasks. Otherwise, if one of this
1515 * rcu_node structure's CPUs has since come back online,
1516 * simply clear ->wait_blkd_tasks.
1517 */
1518 if (rnp->wait_blkd_tasks &&
1519 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1520 rnp->wait_blkd_tasks = false;
1521 if (!rnp->qsmaskinit)
1522 rcu_cleanup_dead_rnp(rnp);
1523 }
1524
1525 raw_spin_unlock_irq_rcu_node(rnp);
1526 raw_spin_unlock(&rcu_state.ofl_lock);
1527 }
1528 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1529
1530 /*
1531 * Set the quiescent-state-needed bits in all the rcu_node
1532 * structures for all currently online CPUs in breadth-first
1533 * order, starting from the root rcu_node structure, relying on the
1534 * layout of the tree within the rcu_state.node[] array. Note that
1535 * other CPUs will access only the leaves of the hierarchy, thus
1536 * seeing that no grace period is in progress, at least until the
1537 * corresponding leaf node has been initialized.
1538 *
1539 * The grace period cannot complete until the initialization
1540 * process finishes, because this kthread handles both.
1541 */
1542 rcu_state.gp_state = RCU_GP_INIT;
1543 rcu_for_each_node_breadth_first(rnp) {
1544 rcu_gp_slow(gp_init_delay);
1545 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1546 rdp = this_cpu_ptr(&rcu_data);
1547 rcu_preempt_check_blocked_tasks(rnp);
1548 rnp->qsmask = rnp->qsmaskinit;
1549 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1550 if (rnp == rdp->mynode)
1551 (void)__note_gp_changes(rnp, rdp);
1552 rcu_preempt_boost_start_gp(rnp);
1553 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1554 rnp->level, rnp->grplo,
1555 rnp->grphi, rnp->qsmask);
1556 /* Quiescent states for tasks on any now-offline CPUs. */
1557 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1558 rnp->rcu_gp_init_mask = mask;
1559 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1560 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1561 else
1562 raw_spin_unlock_irq_rcu_node(rnp);
1563 cond_resched_tasks_rcu_qs();
1564 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1565 }
1566
1567 return true;
1568 }
1569
1570 /*
1571 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1572 * time.
1573 */
rcu_gp_fqs_check_wake(int * gfp)1574 static bool rcu_gp_fqs_check_wake(int *gfp)
1575 {
1576 struct rcu_node *rnp = rcu_get_root();
1577
1578 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1579 *gfp = READ_ONCE(rcu_state.gp_flags);
1580 if (*gfp & RCU_GP_FLAG_FQS)
1581 return true;
1582
1583 /* The current grace period has completed. */
1584 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1585 return true;
1586
1587 return false;
1588 }
1589
1590 /*
1591 * Do one round of quiescent-state forcing.
1592 */
rcu_gp_fqs(bool first_time)1593 static void rcu_gp_fqs(bool first_time)
1594 {
1595 struct rcu_node *rnp = rcu_get_root();
1596
1597 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1598 rcu_state.n_force_qs++;
1599 if (first_time) {
1600 /* Collect dyntick-idle snapshots. */
1601 force_qs_rnp(dyntick_save_progress_counter);
1602 } else {
1603 /* Handle dyntick-idle and offline CPUs. */
1604 force_qs_rnp(rcu_implicit_dynticks_qs);
1605 }
1606 /* Clear flag to prevent immediate re-entry. */
1607 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1608 raw_spin_lock_irq_rcu_node(rnp);
1609 WRITE_ONCE(rcu_state.gp_flags,
1610 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1611 raw_spin_unlock_irq_rcu_node(rnp);
1612 }
1613 }
1614
1615 /*
1616 * Loop doing repeated quiescent-state forcing until the grace period ends.
1617 */
rcu_gp_fqs_loop(void)1618 static void rcu_gp_fqs_loop(void)
1619 {
1620 bool first_gp_fqs;
1621 int gf;
1622 unsigned long j;
1623 int ret;
1624 struct rcu_node *rnp = rcu_get_root();
1625
1626 first_gp_fqs = true;
1627 j = READ_ONCE(jiffies_till_first_fqs);
1628 ret = 0;
1629 for (;;) {
1630 if (!ret) {
1631 rcu_state.jiffies_force_qs = jiffies + j;
1632 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1633 jiffies + (j ? 3 * j : 2));
1634 }
1635 trace_rcu_grace_period(rcu_state.name,
1636 READ_ONCE(rcu_state.gp_seq),
1637 TPS("fqswait"));
1638 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1639 ret = swait_event_idle_timeout_exclusive(
1640 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1641 rcu_state.gp_state = RCU_GP_DOING_FQS;
1642 /* Locking provides needed memory barriers. */
1643 /* If grace period done, leave loop. */
1644 if (!READ_ONCE(rnp->qsmask) &&
1645 !rcu_preempt_blocked_readers_cgp(rnp))
1646 break;
1647 /* If time for quiescent-state forcing, do it. */
1648 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1649 (gf & RCU_GP_FLAG_FQS)) {
1650 trace_rcu_grace_period(rcu_state.name,
1651 READ_ONCE(rcu_state.gp_seq),
1652 TPS("fqsstart"));
1653 rcu_gp_fqs(first_gp_fqs);
1654 first_gp_fqs = false;
1655 trace_rcu_grace_period(rcu_state.name,
1656 READ_ONCE(rcu_state.gp_seq),
1657 TPS("fqsend"));
1658 cond_resched_tasks_rcu_qs();
1659 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1660 ret = 0; /* Force full wait till next FQS. */
1661 j = READ_ONCE(jiffies_till_next_fqs);
1662 } else {
1663 /* Deal with stray signal. */
1664 cond_resched_tasks_rcu_qs();
1665 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1666 WARN_ON(signal_pending(current));
1667 trace_rcu_grace_period(rcu_state.name,
1668 READ_ONCE(rcu_state.gp_seq),
1669 TPS("fqswaitsig"));
1670 ret = 1; /* Keep old FQS timing. */
1671 j = jiffies;
1672 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1673 j = 1;
1674 else
1675 j = rcu_state.jiffies_force_qs - j;
1676 }
1677 }
1678 }
1679
1680 /*
1681 * Clean up after the old grace period.
1682 */
rcu_gp_cleanup(void)1683 static void rcu_gp_cleanup(void)
1684 {
1685 unsigned long gp_duration;
1686 bool needgp = false;
1687 unsigned long new_gp_seq;
1688 bool offloaded;
1689 struct rcu_data *rdp;
1690 struct rcu_node *rnp = rcu_get_root();
1691 struct swait_queue_head *sq;
1692
1693 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694 raw_spin_lock_irq_rcu_node(rnp);
1695 rcu_state.gp_end = jiffies;
1696 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1697 if (gp_duration > rcu_state.gp_max)
1698 rcu_state.gp_max = gp_duration;
1699
1700 /*
1701 * We know the grace period is complete, but to everyone else
1702 * it appears to still be ongoing. But it is also the case
1703 * that to everyone else it looks like there is nothing that
1704 * they can do to advance the grace period. It is therefore
1705 * safe for us to drop the lock in order to mark the grace
1706 * period as completed in all of the rcu_node structures.
1707 */
1708 raw_spin_unlock_irq_rcu_node(rnp);
1709
1710 /*
1711 * Propagate new ->gp_seq value to rcu_node structures so that
1712 * other CPUs don't have to wait until the start of the next grace
1713 * period to process their callbacks. This also avoids some nasty
1714 * RCU grace-period initialization races by forcing the end of
1715 * the current grace period to be completely recorded in all of
1716 * the rcu_node structures before the beginning of the next grace
1717 * period is recorded in any of the rcu_node structures.
1718 */
1719 new_gp_seq = rcu_state.gp_seq;
1720 rcu_seq_end(&new_gp_seq);
1721 rcu_for_each_node_breadth_first(rnp) {
1722 raw_spin_lock_irq_rcu_node(rnp);
1723 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1724 dump_blkd_tasks(rnp, 10);
1725 WARN_ON_ONCE(rnp->qsmask);
1726 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1727 rdp = this_cpu_ptr(&rcu_data);
1728 if (rnp == rdp->mynode)
1729 needgp = __note_gp_changes(rnp, rdp) || needgp;
1730 /* smp_mb() provided by prior unlock-lock pair. */
1731 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1732 sq = rcu_nocb_gp_get(rnp);
1733 raw_spin_unlock_irq_rcu_node(rnp);
1734 rcu_nocb_gp_cleanup(sq);
1735 cond_resched_tasks_rcu_qs();
1736 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1737 rcu_gp_slow(gp_cleanup_delay);
1738 }
1739 rnp = rcu_get_root();
1740 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1741
1742 /* Declare grace period done, trace first to use old GP number. */
1743 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1744 rcu_seq_end(&rcu_state.gp_seq);
1745 rcu_state.gp_state = RCU_GP_IDLE;
1746 /* Check for GP requests since above loop. */
1747 rdp = this_cpu_ptr(&rcu_data);
1748 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1749 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1750 TPS("CleanupMore"));
1751 needgp = true;
1752 }
1753 /* Advance CBs to reduce false positives below. */
1754 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1755 rcu_segcblist_is_offloaded(&rdp->cblist);
1756 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1757 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1758 rcu_state.gp_req_activity = jiffies;
1759 trace_rcu_grace_period(rcu_state.name,
1760 READ_ONCE(rcu_state.gp_seq),
1761 TPS("newreq"));
1762 } else {
1763 WRITE_ONCE(rcu_state.gp_flags,
1764 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1765 }
1766 raw_spin_unlock_irq_rcu_node(rnp);
1767 }
1768
1769 /*
1770 * Body of kthread that handles grace periods.
1771 */
rcu_gp_kthread(void * unused)1772 static int __noreturn rcu_gp_kthread(void *unused)
1773 {
1774 rcu_bind_gp_kthread();
1775 for (;;) {
1776
1777 /* Handle grace-period start. */
1778 for (;;) {
1779 trace_rcu_grace_period(rcu_state.name,
1780 READ_ONCE(rcu_state.gp_seq),
1781 TPS("reqwait"));
1782 rcu_state.gp_state = RCU_GP_WAIT_GPS;
1783 swait_event_idle_exclusive(rcu_state.gp_wq,
1784 READ_ONCE(rcu_state.gp_flags) &
1785 RCU_GP_FLAG_INIT);
1786 rcu_state.gp_state = RCU_GP_DONE_GPS;
1787 /* Locking provides needed memory barrier. */
1788 if (rcu_gp_init())
1789 break;
1790 cond_resched_tasks_rcu_qs();
1791 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1792 WARN_ON(signal_pending(current));
1793 trace_rcu_grace_period(rcu_state.name,
1794 READ_ONCE(rcu_state.gp_seq),
1795 TPS("reqwaitsig"));
1796 }
1797
1798 /* Handle quiescent-state forcing. */
1799 rcu_gp_fqs_loop();
1800
1801 /* Handle grace-period end. */
1802 rcu_state.gp_state = RCU_GP_CLEANUP;
1803 rcu_gp_cleanup();
1804 rcu_state.gp_state = RCU_GP_CLEANED;
1805 }
1806 }
1807
1808 /*
1809 * Report a full set of quiescent states to the rcu_state data structure.
1810 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1811 * another grace period is required. Whether we wake the grace-period
1812 * kthread or it awakens itself for the next round of quiescent-state
1813 * forcing, that kthread will clean up after the just-completed grace
1814 * period. Note that the caller must hold rnp->lock, which is released
1815 * before return.
1816 */
rcu_report_qs_rsp(unsigned long flags)1817 static void rcu_report_qs_rsp(unsigned long flags)
1818 __releases(rcu_get_root()->lock)
1819 {
1820 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1821 WARN_ON_ONCE(!rcu_gp_in_progress());
1822 WRITE_ONCE(rcu_state.gp_flags,
1823 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1824 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1825 rcu_gp_kthread_wake();
1826 }
1827
1828 /*
1829 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1830 * Allows quiescent states for a group of CPUs to be reported at one go
1831 * to the specified rcu_node structure, though all the CPUs in the group
1832 * must be represented by the same rcu_node structure (which need not be a
1833 * leaf rcu_node structure, though it often will be). The gps parameter
1834 * is the grace-period snapshot, which means that the quiescent states
1835 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1836 * must be held upon entry, and it is released before return.
1837 *
1838 * As a special case, if mask is zero, the bit-already-cleared check is
1839 * disabled. This allows propagating quiescent state due to resumed tasks
1840 * during grace-period initialization.
1841 */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)1842 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1843 unsigned long gps, unsigned long flags)
1844 __releases(rnp->lock)
1845 {
1846 unsigned long oldmask = 0;
1847 struct rcu_node *rnp_c;
1848
1849 raw_lockdep_assert_held_rcu_node(rnp);
1850
1851 /* Walk up the rcu_node hierarchy. */
1852 for (;;) {
1853 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1854
1855 /*
1856 * Our bit has already been cleared, or the
1857 * relevant grace period is already over, so done.
1858 */
1859 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1860 return;
1861 }
1862 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1863 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1864 rcu_preempt_blocked_readers_cgp(rnp));
1865 rnp->qsmask &= ~mask;
1866 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1867 mask, rnp->qsmask, rnp->level,
1868 rnp->grplo, rnp->grphi,
1869 !!rnp->gp_tasks);
1870 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1871
1872 /* Other bits still set at this level, so done. */
1873 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1874 return;
1875 }
1876 rnp->completedqs = rnp->gp_seq;
1877 mask = rnp->grpmask;
1878 if (rnp->parent == NULL) {
1879
1880 /* No more levels. Exit loop holding root lock. */
1881
1882 break;
1883 }
1884 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1885 rnp_c = rnp;
1886 rnp = rnp->parent;
1887 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1888 oldmask = rnp_c->qsmask;
1889 }
1890
1891 /*
1892 * Get here if we are the last CPU to pass through a quiescent
1893 * state for this grace period. Invoke rcu_report_qs_rsp()
1894 * to clean up and start the next grace period if one is needed.
1895 */
1896 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1897 }
1898
1899 /*
1900 * Record a quiescent state for all tasks that were previously queued
1901 * on the specified rcu_node structure and that were blocking the current
1902 * RCU grace period. The caller must hold the corresponding rnp->lock with
1903 * irqs disabled, and this lock is released upon return, but irqs remain
1904 * disabled.
1905 */
1906 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)1907 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1908 __releases(rnp->lock)
1909 {
1910 unsigned long gps;
1911 unsigned long mask;
1912 struct rcu_node *rnp_p;
1913
1914 raw_lockdep_assert_held_rcu_node(rnp);
1915 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPTION)) ||
1916 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1917 rnp->qsmask != 0) {
1918 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1919 return; /* Still need more quiescent states! */
1920 }
1921
1922 rnp->completedqs = rnp->gp_seq;
1923 rnp_p = rnp->parent;
1924 if (rnp_p == NULL) {
1925 /*
1926 * Only one rcu_node structure in the tree, so don't
1927 * try to report up to its nonexistent parent!
1928 */
1929 rcu_report_qs_rsp(flags);
1930 return;
1931 }
1932
1933 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1934 gps = rnp->gp_seq;
1935 mask = rnp->grpmask;
1936 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1937 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
1938 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1939 }
1940
1941 /*
1942 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1943 * structure. This must be called from the specified CPU.
1944 */
1945 static void
rcu_report_qs_rdp(int cpu,struct rcu_data * rdp)1946 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1947 {
1948 unsigned long flags;
1949 unsigned long mask;
1950 bool needwake = false;
1951 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1952 rcu_segcblist_is_offloaded(&rdp->cblist);
1953 struct rcu_node *rnp;
1954
1955 rnp = rdp->mynode;
1956 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1957 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1958 rdp->gpwrap) {
1959
1960 /*
1961 * The grace period in which this quiescent state was
1962 * recorded has ended, so don't report it upwards.
1963 * We will instead need a new quiescent state that lies
1964 * within the current grace period.
1965 */
1966 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
1967 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1968 return;
1969 }
1970 mask = rdp->grpmask;
1971 rdp->core_needs_qs = false;
1972 if ((rnp->qsmask & mask) == 0) {
1973 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1974 } else {
1975 /*
1976 * This GP can't end until cpu checks in, so all of our
1977 * callbacks can be processed during the next GP.
1978 */
1979 if (!offloaded)
1980 needwake = rcu_accelerate_cbs(rnp, rdp);
1981
1982 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1983 /* ^^^ Released rnp->lock */
1984 if (needwake)
1985 rcu_gp_kthread_wake();
1986 }
1987 }
1988
1989 /*
1990 * Check to see if there is a new grace period of which this CPU
1991 * is not yet aware, and if so, set up local rcu_data state for it.
1992 * Otherwise, see if this CPU has just passed through its first
1993 * quiescent state for this grace period, and record that fact if so.
1994 */
1995 static void
rcu_check_quiescent_state(struct rcu_data * rdp)1996 rcu_check_quiescent_state(struct rcu_data *rdp)
1997 {
1998 /* Check for grace-period ends and beginnings. */
1999 note_gp_changes(rdp);
2000
2001 /*
2002 * Does this CPU still need to do its part for current grace period?
2003 * If no, return and let the other CPUs do their part as well.
2004 */
2005 if (!rdp->core_needs_qs)
2006 return;
2007
2008 /*
2009 * Was there a quiescent state since the beginning of the grace
2010 * period? If no, then exit and wait for the next call.
2011 */
2012 if (rdp->cpu_no_qs.b.norm)
2013 return;
2014
2015 /*
2016 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2017 * judge of that).
2018 */
2019 rcu_report_qs_rdp(rdp->cpu, rdp);
2020 }
2021
2022 /*
2023 * Near the end of the offline process. Trace the fact that this CPU
2024 * is going offline.
2025 */
rcutree_dying_cpu(unsigned int cpu)2026 int rcutree_dying_cpu(unsigned int cpu)
2027 {
2028 bool blkd;
2029 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2030 struct rcu_node *rnp = rdp->mynode;
2031
2032 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2033 return 0;
2034
2035 blkd = !!(rnp->qsmask & rdp->grpmask);
2036 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2037 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2038 return 0;
2039 }
2040
2041 /*
2042 * All CPUs for the specified rcu_node structure have gone offline,
2043 * and all tasks that were preempted within an RCU read-side critical
2044 * section while running on one of those CPUs have since exited their RCU
2045 * read-side critical section. Some other CPU is reporting this fact with
2046 * the specified rcu_node structure's ->lock held and interrupts disabled.
2047 * This function therefore goes up the tree of rcu_node structures,
2048 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2049 * the leaf rcu_node structure's ->qsmaskinit field has already been
2050 * updated.
2051 *
2052 * This function does check that the specified rcu_node structure has
2053 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2054 * prematurely. That said, invoking it after the fact will cost you
2055 * a needless lock acquisition. So once it has done its work, don't
2056 * invoke it again.
2057 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2058 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2059 {
2060 long mask;
2061 struct rcu_node *rnp = rnp_leaf;
2062
2063 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2064 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2065 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2066 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2067 return;
2068 for (;;) {
2069 mask = rnp->grpmask;
2070 rnp = rnp->parent;
2071 if (!rnp)
2072 break;
2073 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2074 rnp->qsmaskinit &= ~mask;
2075 /* Between grace periods, so better already be zero! */
2076 WARN_ON_ONCE(rnp->qsmask);
2077 if (rnp->qsmaskinit) {
2078 raw_spin_unlock_rcu_node(rnp);
2079 /* irqs remain disabled. */
2080 return;
2081 }
2082 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2083 }
2084 }
2085
2086 /*
2087 * The CPU has been completely removed, and some other CPU is reporting
2088 * this fact from process context. Do the remainder of the cleanup.
2089 * There can only be one CPU hotplug operation at a time, so no need for
2090 * explicit locking.
2091 */
rcutree_dead_cpu(unsigned int cpu)2092 int rcutree_dead_cpu(unsigned int cpu)
2093 {
2094 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2095 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2096
2097 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2098 return 0;
2099
2100 /* Adjust any no-longer-needed kthreads. */
2101 rcu_boost_kthread_setaffinity(rnp, -1);
2102 /* Do any needed no-CB deferred wakeups from this CPU. */
2103 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2104 return 0;
2105 }
2106
2107 /*
2108 * Invoke any RCU callbacks that have made it to the end of their grace
2109 * period. Thottle as specified by rdp->blimit.
2110 */
rcu_do_batch(struct rcu_data * rdp)2111 static void rcu_do_batch(struct rcu_data *rdp)
2112 {
2113 unsigned long flags;
2114 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2115 rcu_segcblist_is_offloaded(&rdp->cblist);
2116 struct rcu_head *rhp;
2117 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2118 long bl, count;
2119 long pending, tlimit = 0;
2120
2121 /* If no callbacks are ready, just return. */
2122 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2123 trace_rcu_batch_start(rcu_state.name,
2124 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2125 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2126 trace_rcu_batch_end(rcu_state.name, 0,
2127 !rcu_segcblist_empty(&rdp->cblist),
2128 need_resched(), is_idle_task(current),
2129 rcu_is_callbacks_kthread());
2130 return;
2131 }
2132
2133 /*
2134 * Extract the list of ready callbacks, disabling to prevent
2135 * races with call_rcu() from interrupt handlers. Leave the
2136 * callback counts, as rcu_barrier() needs to be conservative.
2137 */
2138 local_irq_save(flags);
2139 rcu_nocb_lock(rdp);
2140 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2141 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2142 bl = max(rdp->blimit, pending >> rcu_divisor);
2143 if (unlikely(bl > 100))
2144 tlimit = local_clock() + rcu_resched_ns;
2145 trace_rcu_batch_start(rcu_state.name,
2146 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2147 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2148 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2149 if (offloaded)
2150 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2151 rcu_nocb_unlock_irqrestore(rdp, flags);
2152
2153 /* Invoke callbacks. */
2154 rhp = rcu_cblist_dequeue(&rcl);
2155 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2156 debug_rcu_head_unqueue(rhp);
2157 if (__rcu_reclaim(rcu_state.name, rhp))
2158 rcu_cblist_dequeued_lazy(&rcl);
2159 /*
2160 * Stop only if limit reached and CPU has something to do.
2161 * Note: The rcl structure counts down from zero.
2162 */
2163 if (-rcl.len >= bl && !offloaded &&
2164 (need_resched() ||
2165 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2166 break;
2167 if (unlikely(tlimit)) {
2168 /* only call local_clock() every 32 callbacks */
2169 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2170 continue;
2171 /* Exceeded the time limit, so leave. */
2172 break;
2173 }
2174 if (offloaded) {
2175 WARN_ON_ONCE(in_serving_softirq());
2176 local_bh_enable();
2177 lockdep_assert_irqs_enabled();
2178 cond_resched_tasks_rcu_qs();
2179 lockdep_assert_irqs_enabled();
2180 local_bh_disable();
2181 }
2182 }
2183
2184 local_irq_save(flags);
2185 rcu_nocb_lock(rdp);
2186 count = -rcl.len;
2187 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2188 is_idle_task(current), rcu_is_callbacks_kthread());
2189
2190 /* Update counts and requeue any remaining callbacks. */
2191 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2192 smp_mb(); /* List handling before counting for rcu_barrier(). */
2193 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2194
2195 /* Reinstate batch limit if we have worked down the excess. */
2196 count = rcu_segcblist_n_cbs(&rdp->cblist);
2197 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2198 rdp->blimit = blimit;
2199
2200 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2201 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2202 rdp->qlen_last_fqs_check = 0;
2203 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2204 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2205 rdp->qlen_last_fqs_check = count;
2206
2207 /*
2208 * The following usually indicates a double call_rcu(). To track
2209 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2210 */
2211 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2212 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2213 count != 0 && rcu_segcblist_empty(&rdp->cblist));
2214
2215 rcu_nocb_unlock_irqrestore(rdp, flags);
2216
2217 /* Re-invoke RCU core processing if there are callbacks remaining. */
2218 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2219 invoke_rcu_core();
2220 }
2221
2222 /*
2223 * This function is invoked from each scheduling-clock interrupt,
2224 * and checks to see if this CPU is in a non-context-switch quiescent
2225 * state, for example, user mode or idle loop. It also schedules RCU
2226 * core processing. If the current grace period has gone on too long,
2227 * it will ask the scheduler to manufacture a context switch for the sole
2228 * purpose of providing a providing the needed quiescent state.
2229 */
rcu_sched_clock_irq(int user)2230 void rcu_sched_clock_irq(int user)
2231 {
2232 trace_rcu_utilization(TPS("Start scheduler-tick"));
2233 raw_cpu_inc(rcu_data.ticks_this_gp);
2234 /* The load-acquire pairs with the store-release setting to true. */
2235 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2236 /* Idle and userspace execution already are quiescent states. */
2237 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2238 set_tsk_need_resched(current);
2239 set_preempt_need_resched();
2240 }
2241 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2242 }
2243 rcu_flavor_sched_clock_irq(user);
2244 if (rcu_pending())
2245 invoke_rcu_core();
2246
2247 trace_rcu_utilization(TPS("End scheduler-tick"));
2248 }
2249
2250 /*
2251 * Scan the leaf rcu_node structures. For each structure on which all
2252 * CPUs have reported a quiescent state and on which there are tasks
2253 * blocking the current grace period, initiate RCU priority boosting.
2254 * Otherwise, invoke the specified function to check dyntick state for
2255 * each CPU that has not yet reported a quiescent state.
2256 */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2257 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2258 {
2259 int cpu;
2260 unsigned long flags;
2261 unsigned long mask;
2262 struct rcu_node *rnp;
2263
2264 rcu_for_each_leaf_node(rnp) {
2265 cond_resched_tasks_rcu_qs();
2266 mask = 0;
2267 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2268 if (rnp->qsmask == 0) {
2269 if (!IS_ENABLED(CONFIG_PREEMPTION) ||
2270 rcu_preempt_blocked_readers_cgp(rnp)) {
2271 /*
2272 * No point in scanning bits because they
2273 * are all zero. But we might need to
2274 * priority-boost blocked readers.
2275 */
2276 rcu_initiate_boost(rnp, flags);
2277 /* rcu_initiate_boost() releases rnp->lock */
2278 continue;
2279 }
2280 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2281 continue;
2282 }
2283 for_each_leaf_node_possible_cpu(rnp, cpu) {
2284 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2285 if ((rnp->qsmask & bit) != 0) {
2286 if (f(per_cpu_ptr(&rcu_data, cpu)))
2287 mask |= bit;
2288 }
2289 }
2290 if (mask != 0) {
2291 /* Idle/offline CPUs, report (releases rnp->lock). */
2292 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2293 } else {
2294 /* Nothing to do here, so just drop the lock. */
2295 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2296 }
2297 }
2298 }
2299
2300 /*
2301 * Force quiescent states on reluctant CPUs, and also detect which
2302 * CPUs are in dyntick-idle mode.
2303 */
rcu_force_quiescent_state(void)2304 void rcu_force_quiescent_state(void)
2305 {
2306 unsigned long flags;
2307 bool ret;
2308 struct rcu_node *rnp;
2309 struct rcu_node *rnp_old = NULL;
2310
2311 /* Funnel through hierarchy to reduce memory contention. */
2312 rnp = __this_cpu_read(rcu_data.mynode);
2313 for (; rnp != NULL; rnp = rnp->parent) {
2314 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2315 !raw_spin_trylock(&rnp->fqslock);
2316 if (rnp_old != NULL)
2317 raw_spin_unlock(&rnp_old->fqslock);
2318 if (ret)
2319 return;
2320 rnp_old = rnp;
2321 }
2322 /* rnp_old == rcu_get_root(), rnp == NULL. */
2323
2324 /* Reached the root of the rcu_node tree, acquire lock. */
2325 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2326 raw_spin_unlock(&rnp_old->fqslock);
2327 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2328 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2329 return; /* Someone beat us to it. */
2330 }
2331 WRITE_ONCE(rcu_state.gp_flags,
2332 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2333 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2334 rcu_gp_kthread_wake();
2335 }
2336 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2337
2338 /* Perform RCU core processing work for the current CPU. */
rcu_core(void)2339 static __latent_entropy void rcu_core(void)
2340 {
2341 unsigned long flags;
2342 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2343 struct rcu_node *rnp = rdp->mynode;
2344 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2345 rcu_segcblist_is_offloaded(&rdp->cblist);
2346
2347 if (cpu_is_offline(smp_processor_id()))
2348 return;
2349 trace_rcu_utilization(TPS("Start RCU core"));
2350 WARN_ON_ONCE(!rdp->beenonline);
2351
2352 /* Report any deferred quiescent states if preemption enabled. */
2353 if (!(preempt_count() & PREEMPT_MASK)) {
2354 rcu_preempt_deferred_qs(current);
2355 } else if (rcu_preempt_need_deferred_qs(current)) {
2356 set_tsk_need_resched(current);
2357 set_preempt_need_resched();
2358 }
2359
2360 /* Update RCU state based on any recent quiescent states. */
2361 rcu_check_quiescent_state(rdp);
2362
2363 /* No grace period and unregistered callbacks? */
2364 if (!rcu_gp_in_progress() &&
2365 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2366 local_irq_save(flags);
2367 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2368 rcu_accelerate_cbs_unlocked(rnp, rdp);
2369 local_irq_restore(flags);
2370 }
2371
2372 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2373
2374 /* If there are callbacks ready, invoke them. */
2375 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2376 likely(READ_ONCE(rcu_scheduler_fully_active)))
2377 rcu_do_batch(rdp);
2378
2379 /* Do any needed deferred wakeups of rcuo kthreads. */
2380 do_nocb_deferred_wakeup(rdp);
2381 trace_rcu_utilization(TPS("End RCU core"));
2382 }
2383
rcu_core_si(struct softirq_action * h)2384 static void rcu_core_si(struct softirq_action *h)
2385 {
2386 rcu_core();
2387 }
2388
rcu_wake_cond(struct task_struct * t,int status)2389 static void rcu_wake_cond(struct task_struct *t, int status)
2390 {
2391 /*
2392 * If the thread is yielding, only wake it when this
2393 * is invoked from idle
2394 */
2395 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2396 wake_up_process(t);
2397 }
2398
invoke_rcu_core_kthread(void)2399 static void invoke_rcu_core_kthread(void)
2400 {
2401 struct task_struct *t;
2402 unsigned long flags;
2403
2404 local_irq_save(flags);
2405 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2406 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2407 if (t != NULL && t != current)
2408 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2409 local_irq_restore(flags);
2410 }
2411
2412 /*
2413 * Wake up this CPU's rcuc kthread to do RCU core processing.
2414 */
invoke_rcu_core(void)2415 static void invoke_rcu_core(void)
2416 {
2417 if (!cpu_online(smp_processor_id()))
2418 return;
2419 if (use_softirq)
2420 raise_softirq(RCU_SOFTIRQ);
2421 else
2422 invoke_rcu_core_kthread();
2423 }
2424
rcu_cpu_kthread_park(unsigned int cpu)2425 static void rcu_cpu_kthread_park(unsigned int cpu)
2426 {
2427 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2428 }
2429
rcu_cpu_kthread_should_run(unsigned int cpu)2430 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2431 {
2432 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2433 }
2434
2435 /*
2436 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2437 * the RCU softirq used in configurations of RCU that do not support RCU
2438 * priority boosting.
2439 */
rcu_cpu_kthread(unsigned int cpu)2440 static void rcu_cpu_kthread(unsigned int cpu)
2441 {
2442 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2443 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2444 int spincnt;
2445
2446 for (spincnt = 0; spincnt < 10; spincnt++) {
2447 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2448 local_bh_disable();
2449 *statusp = RCU_KTHREAD_RUNNING;
2450 local_irq_disable();
2451 work = *workp;
2452 *workp = 0;
2453 local_irq_enable();
2454 if (work)
2455 rcu_core();
2456 local_bh_enable();
2457 if (*workp == 0) {
2458 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2459 *statusp = RCU_KTHREAD_WAITING;
2460 return;
2461 }
2462 }
2463 *statusp = RCU_KTHREAD_YIELDING;
2464 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2465 schedule_timeout_interruptible(2);
2466 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2467 *statusp = RCU_KTHREAD_WAITING;
2468 }
2469
2470 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2471 .store = &rcu_data.rcu_cpu_kthread_task,
2472 .thread_should_run = rcu_cpu_kthread_should_run,
2473 .thread_fn = rcu_cpu_kthread,
2474 .thread_comm = "rcuc/%u",
2475 .setup = rcu_cpu_kthread_setup,
2476 .park = rcu_cpu_kthread_park,
2477 };
2478
2479 /*
2480 * Spawn per-CPU RCU core processing kthreads.
2481 */
rcu_spawn_core_kthreads(void)2482 static int __init rcu_spawn_core_kthreads(void)
2483 {
2484 int cpu;
2485
2486 for_each_possible_cpu(cpu)
2487 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2488 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2489 return 0;
2490 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2491 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2492 return 0;
2493 }
2494 early_initcall(rcu_spawn_core_kthreads);
2495
2496 /*
2497 * Handle any core-RCU processing required by a call_rcu() invocation.
2498 */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2499 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2500 unsigned long flags)
2501 {
2502 /*
2503 * If called from an extended quiescent state, invoke the RCU
2504 * core in order to force a re-evaluation of RCU's idleness.
2505 */
2506 if (!rcu_is_watching())
2507 invoke_rcu_core();
2508
2509 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2510 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2511 return;
2512
2513 /*
2514 * Force the grace period if too many callbacks or too long waiting.
2515 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2516 * if some other CPU has recently done so. Also, don't bother
2517 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2518 * is the only one waiting for a grace period to complete.
2519 */
2520 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2521 rdp->qlen_last_fqs_check + qhimark)) {
2522
2523 /* Are we ignoring a completed grace period? */
2524 note_gp_changes(rdp);
2525
2526 /* Start a new grace period if one not already started. */
2527 if (!rcu_gp_in_progress()) {
2528 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2529 } else {
2530 /* Give the grace period a kick. */
2531 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2532 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2533 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2534 rcu_force_quiescent_state();
2535 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2536 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2537 }
2538 }
2539 }
2540
2541 /*
2542 * RCU callback function to leak a callback.
2543 */
rcu_leak_callback(struct rcu_head * rhp)2544 static void rcu_leak_callback(struct rcu_head *rhp)
2545 {
2546 }
2547
2548 /*
2549 * Helper function for call_rcu() and friends. The cpu argument will
2550 * normally be -1, indicating "currently running CPU". It may specify
2551 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
2552 * is expected to specify a CPU.
2553 */
2554 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func,bool lazy)2555 __call_rcu(struct rcu_head *head, rcu_callback_t func, bool lazy)
2556 {
2557 unsigned long flags;
2558 struct rcu_data *rdp;
2559 bool was_alldone;
2560
2561 /* Misaligned rcu_head! */
2562 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2563
2564 if (debug_rcu_head_queue(head)) {
2565 /*
2566 * Probable double call_rcu(), so leak the callback.
2567 * Use rcu:rcu_callback trace event to find the previous
2568 * time callback was passed to __call_rcu().
2569 */
2570 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2571 head, head->func);
2572 WRITE_ONCE(head->func, rcu_leak_callback);
2573 return;
2574 }
2575 head->func = func;
2576 head->next = NULL;
2577 local_irq_save(flags);
2578 rdp = this_cpu_ptr(&rcu_data);
2579
2580 /* Add the callback to our list. */
2581 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2582 // This can trigger due to call_rcu() from offline CPU:
2583 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2584 WARN_ON_ONCE(!rcu_is_watching());
2585 // Very early boot, before rcu_init(). Initialize if needed
2586 // and then drop through to queue the callback.
2587 if (rcu_segcblist_empty(&rdp->cblist))
2588 rcu_segcblist_init(&rdp->cblist);
2589 }
2590 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2591 return; // Enqueued onto ->nocb_bypass, so just leave.
2592 /* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */
2593 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2594 if (__is_kfree_rcu_offset((unsigned long)func))
2595 trace_rcu_kfree_callback(rcu_state.name, head,
2596 (unsigned long)func,
2597 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2598 rcu_segcblist_n_cbs(&rdp->cblist));
2599 else
2600 trace_rcu_callback(rcu_state.name, head,
2601 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2602 rcu_segcblist_n_cbs(&rdp->cblist));
2603
2604 /* Go handle any RCU core processing required. */
2605 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2606 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2607 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2608 } else {
2609 __call_rcu_core(rdp, head, flags);
2610 local_irq_restore(flags);
2611 }
2612 }
2613
2614 /**
2615 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2616 * @head: structure to be used for queueing the RCU updates.
2617 * @func: actual callback function to be invoked after the grace period
2618 *
2619 * The callback function will be invoked some time after a full grace
2620 * period elapses, in other words after all pre-existing RCU read-side
2621 * critical sections have completed. However, the callback function
2622 * might well execute concurrently with RCU read-side critical sections
2623 * that started after call_rcu() was invoked. RCU read-side critical
2624 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2625 * may be nested. In addition, regions of code across which interrupts,
2626 * preemption, or softirqs have been disabled also serve as RCU read-side
2627 * critical sections. This includes hardware interrupt handlers, softirq
2628 * handlers, and NMI handlers.
2629 *
2630 * Note that all CPUs must agree that the grace period extended beyond
2631 * all pre-existing RCU read-side critical section. On systems with more
2632 * than one CPU, this means that when "func()" is invoked, each CPU is
2633 * guaranteed to have executed a full memory barrier since the end of its
2634 * last RCU read-side critical section whose beginning preceded the call
2635 * to call_rcu(). It also means that each CPU executing an RCU read-side
2636 * critical section that continues beyond the start of "func()" must have
2637 * executed a memory barrier after the call_rcu() but before the beginning
2638 * of that RCU read-side critical section. Note that these guarantees
2639 * include CPUs that are offline, idle, or executing in user mode, as
2640 * well as CPUs that are executing in the kernel.
2641 *
2642 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2643 * resulting RCU callback function "func()", then both CPU A and CPU B are
2644 * guaranteed to execute a full memory barrier during the time interval
2645 * between the call to call_rcu() and the invocation of "func()" -- even
2646 * if CPU A and CPU B are the same CPU (but again only if the system has
2647 * more than one CPU).
2648 */
call_rcu(struct rcu_head * head,rcu_callback_t func)2649 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2650 {
2651 __call_rcu(head, func, 0);
2652 }
2653 EXPORT_SYMBOL_GPL(call_rcu);
2654
2655 /*
2656 * Queue an RCU callback for lazy invocation after a grace period.
2657 * This will likely be later named something like "call_rcu_lazy()",
2658 * but this change will require some way of tagging the lazy RCU
2659 * callbacks in the list of pending callbacks. Until then, this
2660 * function may only be called from __kfree_rcu().
2661 */
kfree_call_rcu(struct rcu_head * head,rcu_callback_t func)2662 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2663 {
2664 __call_rcu(head, func, 1);
2665 }
2666 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2667
2668 /*
2669 * During early boot, any blocking grace-period wait automatically
2670 * implies a grace period. Later on, this is never the case for PREEMPT.
2671 *
2672 * Howevr, because a context switch is a grace period for !PREEMPT, any
2673 * blocking grace-period wait automatically implies a grace period if
2674 * there is only one CPU online at any point time during execution of
2675 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
2676 * occasionally incorrectly indicate that there are multiple CPUs online
2677 * when there was in fact only one the whole time, as this just adds some
2678 * overhead: RCU still operates correctly.
2679 */
rcu_blocking_is_gp(void)2680 static int rcu_blocking_is_gp(void)
2681 {
2682 int ret;
2683
2684 if (IS_ENABLED(CONFIG_PREEMPTION))
2685 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2686 might_sleep(); /* Check for RCU read-side critical section. */
2687 preempt_disable();
2688 ret = num_online_cpus() <= 1;
2689 preempt_enable();
2690 return ret;
2691 }
2692
2693 /**
2694 * synchronize_rcu - wait until a grace period has elapsed.
2695 *
2696 * Control will return to the caller some time after a full grace
2697 * period has elapsed, in other words after all currently executing RCU
2698 * read-side critical sections have completed. Note, however, that
2699 * upon return from synchronize_rcu(), the caller might well be executing
2700 * concurrently with new RCU read-side critical sections that began while
2701 * synchronize_rcu() was waiting. RCU read-side critical sections are
2702 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2703 * In addition, regions of code across which interrupts, preemption, or
2704 * softirqs have been disabled also serve as RCU read-side critical
2705 * sections. This includes hardware interrupt handlers, softirq handlers,
2706 * and NMI handlers.
2707 *
2708 * Note that this guarantee implies further memory-ordering guarantees.
2709 * On systems with more than one CPU, when synchronize_rcu() returns,
2710 * each CPU is guaranteed to have executed a full memory barrier since
2711 * the end of its last RCU read-side critical section whose beginning
2712 * preceded the call to synchronize_rcu(). In addition, each CPU having
2713 * an RCU read-side critical section that extends beyond the return from
2714 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2715 * after the beginning of synchronize_rcu() and before the beginning of
2716 * that RCU read-side critical section. Note that these guarantees include
2717 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2718 * that are executing in the kernel.
2719 *
2720 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2721 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2722 * to have executed a full memory barrier during the execution of
2723 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2724 * again only if the system has more than one CPU).
2725 */
synchronize_rcu(void)2726 void synchronize_rcu(void)
2727 {
2728 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2729 lock_is_held(&rcu_lock_map) ||
2730 lock_is_held(&rcu_sched_lock_map),
2731 "Illegal synchronize_rcu() in RCU read-side critical section");
2732 if (rcu_blocking_is_gp())
2733 return;
2734 if (rcu_gp_is_expedited())
2735 synchronize_rcu_expedited();
2736 else
2737 wait_rcu_gp(call_rcu);
2738 }
2739 EXPORT_SYMBOL_GPL(synchronize_rcu);
2740
2741 /**
2742 * get_state_synchronize_rcu - Snapshot current RCU state
2743 *
2744 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2745 * to determine whether or not a full grace period has elapsed in the
2746 * meantime.
2747 */
get_state_synchronize_rcu(void)2748 unsigned long get_state_synchronize_rcu(void)
2749 {
2750 /*
2751 * Any prior manipulation of RCU-protected data must happen
2752 * before the load from ->gp_seq.
2753 */
2754 smp_mb(); /* ^^^ */
2755 return rcu_seq_snap(&rcu_state.gp_seq);
2756 }
2757 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2758
2759 /**
2760 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2761 *
2762 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2763 *
2764 * If a full RCU grace period has elapsed since the earlier call to
2765 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2766 * synchronize_rcu() to wait for a full grace period.
2767 *
2768 * Yes, this function does not take counter wrap into account. But
2769 * counter wrap is harmless. If the counter wraps, we have waited for
2770 * more than 2 billion grace periods (and way more on a 64-bit system!),
2771 * so waiting for one additional grace period should be just fine.
2772 */
cond_synchronize_rcu(unsigned long oldstate)2773 void cond_synchronize_rcu(unsigned long oldstate)
2774 {
2775 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2776 synchronize_rcu();
2777 else
2778 smp_mb(); /* Ensure GP ends before subsequent accesses. */
2779 }
2780 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2781
2782 /*
2783 * Check to see if there is any immediate RCU-related work to be done by
2784 * the current CPU, returning 1 if so and zero otherwise. The checks are
2785 * in order of increasing expense: checks that can be carried out against
2786 * CPU-local state are performed first. However, we must check for CPU
2787 * stalls first, else we might not get a chance.
2788 */
rcu_pending(void)2789 static int rcu_pending(void)
2790 {
2791 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2792 struct rcu_node *rnp = rdp->mynode;
2793
2794 /* Check for CPU stalls, if enabled. */
2795 check_cpu_stall(rdp);
2796
2797 /* Does this CPU need a deferred NOCB wakeup? */
2798 if (rcu_nocb_need_deferred_wakeup(rdp))
2799 return 1;
2800
2801 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2802 if (rcu_nohz_full_cpu())
2803 return 0;
2804
2805 /* Is the RCU core waiting for a quiescent state from this CPU? */
2806 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2807 return 1;
2808
2809 /* Does this CPU have callbacks ready to invoke? */
2810 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2811 return 1;
2812
2813 /* Has RCU gone idle with this CPU needing another grace period? */
2814 if (!rcu_gp_in_progress() &&
2815 rcu_segcblist_is_enabled(&rdp->cblist) &&
2816 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
2817 !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
2818 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2819 return 1;
2820
2821 /* Have RCU grace period completed or started? */
2822 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2823 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2824 return 1;
2825
2826 /* nothing to do */
2827 return 0;
2828 }
2829
2830 /*
2831 * Helper function for rcu_barrier() tracing. If tracing is disabled,
2832 * the compiler is expected to optimize this away.
2833 */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)2834 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2835 {
2836 trace_rcu_barrier(rcu_state.name, s, cpu,
2837 atomic_read(&rcu_state.barrier_cpu_count), done);
2838 }
2839
2840 /*
2841 * RCU callback function for rcu_barrier(). If we are last, wake
2842 * up the task executing rcu_barrier().
2843 */
rcu_barrier_callback(struct rcu_head * rhp)2844 static void rcu_barrier_callback(struct rcu_head *rhp)
2845 {
2846 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2847 rcu_barrier_trace(TPS("LastCB"), -1,
2848 rcu_state.barrier_sequence);
2849 complete(&rcu_state.barrier_completion);
2850 } else {
2851 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2852 }
2853 }
2854
2855 /*
2856 * Called with preemption disabled, and from cross-cpu IRQ context.
2857 */
rcu_barrier_func(void * unused)2858 static void rcu_barrier_func(void *unused)
2859 {
2860 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2861
2862 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2863 rdp->barrier_head.func = rcu_barrier_callback;
2864 debug_rcu_head_queue(&rdp->barrier_head);
2865 rcu_nocb_lock(rdp);
2866 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2867 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2868 atomic_inc(&rcu_state.barrier_cpu_count);
2869 } else {
2870 debug_rcu_head_unqueue(&rdp->barrier_head);
2871 rcu_barrier_trace(TPS("IRQNQ"), -1,
2872 rcu_state.barrier_sequence);
2873 }
2874 rcu_nocb_unlock(rdp);
2875 }
2876
2877 /**
2878 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2879 *
2880 * Note that this primitive does not necessarily wait for an RCU grace period
2881 * to complete. For example, if there are no RCU callbacks queued anywhere
2882 * in the system, then rcu_barrier() is within its rights to return
2883 * immediately, without waiting for anything, much less an RCU grace period.
2884 */
rcu_barrier(void)2885 void rcu_barrier(void)
2886 {
2887 int cpu;
2888 struct rcu_data *rdp;
2889 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2890
2891 rcu_barrier_trace(TPS("Begin"), -1, s);
2892
2893 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2894 mutex_lock(&rcu_state.barrier_mutex);
2895
2896 /* Did someone else do our work for us? */
2897 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2898 rcu_barrier_trace(TPS("EarlyExit"), -1,
2899 rcu_state.barrier_sequence);
2900 smp_mb(); /* caller's subsequent code after above check. */
2901 mutex_unlock(&rcu_state.barrier_mutex);
2902 return;
2903 }
2904
2905 /* Mark the start of the barrier operation. */
2906 rcu_seq_start(&rcu_state.barrier_sequence);
2907 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2908
2909 /*
2910 * Initialize the count to one rather than to zero in order to
2911 * avoid a too-soon return to zero in case of a short grace period
2912 * (or preemption of this task). Exclude CPU-hotplug operations
2913 * to ensure that no offline CPU has callbacks queued.
2914 */
2915 init_completion(&rcu_state.barrier_completion);
2916 atomic_set(&rcu_state.barrier_cpu_count, 1);
2917 get_online_cpus();
2918
2919 /*
2920 * Force each CPU with callbacks to register a new callback.
2921 * When that callback is invoked, we will know that all of the
2922 * corresponding CPU's preceding callbacks have been invoked.
2923 */
2924 for_each_possible_cpu(cpu) {
2925 rdp = per_cpu_ptr(&rcu_data, cpu);
2926 if (!cpu_online(cpu) &&
2927 !rcu_segcblist_is_offloaded(&rdp->cblist))
2928 continue;
2929 if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2930 rcu_barrier_trace(TPS("OnlineQ"), cpu,
2931 rcu_state.barrier_sequence);
2932 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2933 } else {
2934 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2935 rcu_state.barrier_sequence);
2936 }
2937 }
2938 put_online_cpus();
2939
2940 /*
2941 * Now that we have an rcu_barrier_callback() callback on each
2942 * CPU, and thus each counted, remove the initial count.
2943 */
2944 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2945 complete(&rcu_state.barrier_completion);
2946
2947 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2948 wait_for_completion(&rcu_state.barrier_completion);
2949
2950 /* Mark the end of the barrier operation. */
2951 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2952 rcu_seq_end(&rcu_state.barrier_sequence);
2953
2954 /* Other rcu_barrier() invocations can now safely proceed. */
2955 mutex_unlock(&rcu_state.barrier_mutex);
2956 }
2957 EXPORT_SYMBOL_GPL(rcu_barrier);
2958
2959 /*
2960 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2961 * first CPU in a given leaf rcu_node structure coming online. The caller
2962 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2963 * disabled.
2964 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)2965 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2966 {
2967 long mask;
2968 long oldmask;
2969 struct rcu_node *rnp = rnp_leaf;
2970
2971 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2972 WARN_ON_ONCE(rnp->wait_blkd_tasks);
2973 for (;;) {
2974 mask = rnp->grpmask;
2975 rnp = rnp->parent;
2976 if (rnp == NULL)
2977 return;
2978 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2979 oldmask = rnp->qsmaskinit;
2980 rnp->qsmaskinit |= mask;
2981 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2982 if (oldmask)
2983 return;
2984 }
2985 }
2986
2987 /*
2988 * Do boot-time initialization of a CPU's per-CPU RCU data.
2989 */
2990 static void __init
rcu_boot_init_percpu_data(int cpu)2991 rcu_boot_init_percpu_data(int cpu)
2992 {
2993 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2994
2995 /* Set up local state, ensuring consistent view of global state. */
2996 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
2997 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2998 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
2999 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3000 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3001 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3002 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3003 rdp->cpu = cpu;
3004 rcu_boot_init_nocb_percpu_data(rdp);
3005 }
3006
3007 /*
3008 * Invoked early in the CPU-online process, when pretty much all services
3009 * are available. The incoming CPU is not present.
3010 *
3011 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3012 * offline event can be happening at a given time. Note also that we can
3013 * accept some slop in the rsp->gp_seq access due to the fact that this
3014 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3015 * And any offloaded callbacks are being numbered elsewhere.
3016 */
rcutree_prepare_cpu(unsigned int cpu)3017 int rcutree_prepare_cpu(unsigned int cpu)
3018 {
3019 unsigned long flags;
3020 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3021 struct rcu_node *rnp = rcu_get_root();
3022
3023 /* Set up local state, ensuring consistent view of global state. */
3024 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3025 rdp->qlen_last_fqs_check = 0;
3026 rdp->n_force_qs_snap = rcu_state.n_force_qs;
3027 rdp->blimit = blimit;
3028 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3029 !rcu_segcblist_is_offloaded(&rdp->cblist))
3030 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3031 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
3032 rcu_dynticks_eqs_online();
3033 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3034
3035 /*
3036 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3037 * propagation up the rcu_node tree will happen at the beginning
3038 * of the next grace period.
3039 */
3040 rnp = rdp->mynode;
3041 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3042 rdp->beenonline = true; /* We have now been online. */
3043 rdp->gp_seq = rnp->gp_seq;
3044 rdp->gp_seq_needed = rnp->gp_seq;
3045 rdp->cpu_no_qs.b.norm = true;
3046 rdp->core_needs_qs = false;
3047 rdp->rcu_iw_pending = false;
3048 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3049 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3050 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3051 rcu_prepare_kthreads(cpu);
3052 rcu_spawn_cpu_nocb_kthread(cpu);
3053
3054 return 0;
3055 }
3056
3057 /*
3058 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3059 */
rcutree_affinity_setting(unsigned int cpu,int outgoing)3060 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3061 {
3062 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3063
3064 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3065 }
3066
3067 /*
3068 * Near the end of the CPU-online process. Pretty much all services
3069 * enabled, and the CPU is now very much alive.
3070 */
rcutree_online_cpu(unsigned int cpu)3071 int rcutree_online_cpu(unsigned int cpu)
3072 {
3073 unsigned long flags;
3074 struct rcu_data *rdp;
3075 struct rcu_node *rnp;
3076
3077 rdp = per_cpu_ptr(&rcu_data, cpu);
3078 rnp = rdp->mynode;
3079 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3080 rnp->ffmask |= rdp->grpmask;
3081 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3082 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3083 return 0; /* Too early in boot for scheduler work. */
3084 sync_sched_exp_online_cleanup(cpu);
3085 rcutree_affinity_setting(cpu, -1);
3086 return 0;
3087 }
3088
3089 /*
3090 * Near the beginning of the process. The CPU is still very much alive
3091 * with pretty much all services enabled.
3092 */
rcutree_offline_cpu(unsigned int cpu)3093 int rcutree_offline_cpu(unsigned int cpu)
3094 {
3095 unsigned long flags;
3096 struct rcu_data *rdp;
3097 struct rcu_node *rnp;
3098
3099 rdp = per_cpu_ptr(&rcu_data, cpu);
3100 rnp = rdp->mynode;
3101 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3102 rnp->ffmask &= ~rdp->grpmask;
3103 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3104
3105 rcutree_affinity_setting(cpu, cpu);
3106 return 0;
3107 }
3108
3109 static DEFINE_PER_CPU(int, rcu_cpu_started);
3110
3111 /*
3112 * Mark the specified CPU as being online so that subsequent grace periods
3113 * (both expedited and normal) will wait on it. Note that this means that
3114 * incoming CPUs are not allowed to use RCU read-side critical sections
3115 * until this function is called. Failing to observe this restriction
3116 * will result in lockdep splats.
3117 *
3118 * Note that this function is special in that it is invoked directly
3119 * from the incoming CPU rather than from the cpuhp_step mechanism.
3120 * This is because this function must be invoked at a precise location.
3121 */
rcu_cpu_starting(unsigned int cpu)3122 void rcu_cpu_starting(unsigned int cpu)
3123 {
3124 unsigned long flags;
3125 unsigned long mask;
3126 int nbits;
3127 unsigned long oldmask;
3128 struct rcu_data *rdp;
3129 struct rcu_node *rnp;
3130
3131 if (per_cpu(rcu_cpu_started, cpu))
3132 return;
3133
3134 per_cpu(rcu_cpu_started, cpu) = 1;
3135
3136 rdp = per_cpu_ptr(&rcu_data, cpu);
3137 rnp = rdp->mynode;
3138 mask = rdp->grpmask;
3139 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3140 rnp->qsmaskinitnext |= mask;
3141 oldmask = rnp->expmaskinitnext;
3142 rnp->expmaskinitnext |= mask;
3143 oldmask ^= rnp->expmaskinitnext;
3144 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3145 /* Allow lockless access for expedited grace periods. */
3146 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3147 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3148 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3149 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3150 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3151 /* Report QS -after- changing ->qsmaskinitnext! */
3152 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3153 } else {
3154 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3155 }
3156 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3157 }
3158
3159 #ifdef CONFIG_HOTPLUG_CPU
3160 /*
3161 * The outgoing function has no further need of RCU, so remove it from
3162 * the rcu_node tree's ->qsmaskinitnext bit masks.
3163 *
3164 * Note that this function is special in that it is invoked directly
3165 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3166 * This is because this function must be invoked at a precise location.
3167 */
rcu_report_dead(unsigned int cpu)3168 void rcu_report_dead(unsigned int cpu)
3169 {
3170 unsigned long flags;
3171 unsigned long mask;
3172 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3173 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3174
3175 /* QS for any half-done expedited grace period. */
3176 preempt_disable();
3177 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3178 preempt_enable();
3179 rcu_preempt_deferred_qs(current);
3180
3181 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3182 mask = rdp->grpmask;
3183 raw_spin_lock(&rcu_state.ofl_lock);
3184 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3185 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3186 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3187 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3188 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3189 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3190 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3191 }
3192 rnp->qsmaskinitnext &= ~mask;
3193 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3194 raw_spin_unlock(&rcu_state.ofl_lock);
3195
3196 per_cpu(rcu_cpu_started, cpu) = 0;
3197 }
3198
3199 /*
3200 * The outgoing CPU has just passed through the dying-idle state, and we
3201 * are being invoked from the CPU that was IPIed to continue the offline
3202 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3203 */
rcutree_migrate_callbacks(int cpu)3204 void rcutree_migrate_callbacks(int cpu)
3205 {
3206 unsigned long flags;
3207 struct rcu_data *my_rdp;
3208 struct rcu_node *my_rnp;
3209 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3210 bool needwake;
3211
3212 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3213 rcu_segcblist_empty(&rdp->cblist))
3214 return; /* No callbacks to migrate. */
3215
3216 local_irq_save(flags);
3217 my_rdp = this_cpu_ptr(&rcu_data);
3218 my_rnp = my_rdp->mynode;
3219 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3220 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3221 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3222 /* Leverage recent GPs and set GP for new callbacks. */
3223 needwake = rcu_advance_cbs(my_rnp, rdp) ||
3224 rcu_advance_cbs(my_rnp, my_rdp);
3225 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3226 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3227 rcu_segcblist_disable(&rdp->cblist);
3228 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3229 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3230 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3231 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3232 __call_rcu_nocb_wake(my_rdp, true, flags);
3233 } else {
3234 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3235 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3236 }
3237 if (needwake)
3238 rcu_gp_kthread_wake();
3239 lockdep_assert_irqs_enabled();
3240 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3241 !rcu_segcblist_empty(&rdp->cblist),
3242 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3243 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3244 rcu_segcblist_first_cb(&rdp->cblist));
3245 }
3246 #endif
3247
3248 /*
3249 * On non-huge systems, use expedited RCU grace periods to make suspend
3250 * and hibernation run faster.
3251 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)3252 static int rcu_pm_notify(struct notifier_block *self,
3253 unsigned long action, void *hcpu)
3254 {
3255 switch (action) {
3256 case PM_HIBERNATION_PREPARE:
3257 case PM_SUSPEND_PREPARE:
3258 rcu_expedite_gp();
3259 break;
3260 case PM_POST_HIBERNATION:
3261 case PM_POST_SUSPEND:
3262 rcu_unexpedite_gp();
3263 break;
3264 default:
3265 break;
3266 }
3267 return NOTIFY_OK;
3268 }
3269
3270 /*
3271 * Spawn the kthreads that handle RCU's grace periods.
3272 */
rcu_spawn_gp_kthread(void)3273 static int __init rcu_spawn_gp_kthread(void)
3274 {
3275 unsigned long flags;
3276 int kthread_prio_in = kthread_prio;
3277 struct rcu_node *rnp;
3278 struct sched_param sp;
3279 struct task_struct *t;
3280
3281 /* Force priority into range. */
3282 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3283 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3284 kthread_prio = 2;
3285 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3286 kthread_prio = 1;
3287 else if (kthread_prio < 0)
3288 kthread_prio = 0;
3289 else if (kthread_prio > 99)
3290 kthread_prio = 99;
3291
3292 if (kthread_prio != kthread_prio_in)
3293 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3294 kthread_prio, kthread_prio_in);
3295
3296 rcu_scheduler_fully_active = 1;
3297 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3298 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3299 return 0;
3300 if (kthread_prio) {
3301 sp.sched_priority = kthread_prio;
3302 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3303 }
3304 rnp = rcu_get_root();
3305 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3306 rcu_state.gp_kthread = t;
3307 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3308 wake_up_process(t);
3309 rcu_spawn_nocb_kthreads();
3310 rcu_spawn_boost_kthreads();
3311 return 0;
3312 }
3313 early_initcall(rcu_spawn_gp_kthread);
3314
3315 /*
3316 * This function is invoked towards the end of the scheduler's
3317 * initialization process. Before this is called, the idle task might
3318 * contain synchronous grace-period primitives (during which time, this idle
3319 * task is booting the system, and such primitives are no-ops). After this
3320 * function is called, any synchronous grace-period primitives are run as
3321 * expedited, with the requesting task driving the grace period forward.
3322 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3323 * runtime RCU functionality.
3324 */
rcu_scheduler_starting(void)3325 void rcu_scheduler_starting(void)
3326 {
3327 WARN_ON(num_online_cpus() != 1);
3328 WARN_ON(nr_context_switches() > 0);
3329 rcu_test_sync_prims();
3330 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3331 rcu_test_sync_prims();
3332 }
3333
3334 /*
3335 * Helper function for rcu_init() that initializes the rcu_state structure.
3336 */
rcu_init_one(void)3337 static void __init rcu_init_one(void)
3338 {
3339 static const char * const buf[] = RCU_NODE_NAME_INIT;
3340 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3341 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3342 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3343
3344 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3345 int cpustride = 1;
3346 int i;
3347 int j;
3348 struct rcu_node *rnp;
3349
3350 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3351
3352 /* Silence gcc 4.8 false positive about array index out of range. */
3353 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3354 panic("rcu_init_one: rcu_num_lvls out of range");
3355
3356 /* Initialize the level-tracking arrays. */
3357
3358 for (i = 1; i < rcu_num_lvls; i++)
3359 rcu_state.level[i] =
3360 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3361 rcu_init_levelspread(levelspread, num_rcu_lvl);
3362
3363 /* Initialize the elements themselves, starting from the leaves. */
3364
3365 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3366 cpustride *= levelspread[i];
3367 rnp = rcu_state.level[i];
3368 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3369 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3370 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3371 &rcu_node_class[i], buf[i]);
3372 raw_spin_lock_init(&rnp->fqslock);
3373 lockdep_set_class_and_name(&rnp->fqslock,
3374 &rcu_fqs_class[i], fqs[i]);
3375 rnp->gp_seq = rcu_state.gp_seq;
3376 rnp->gp_seq_needed = rcu_state.gp_seq;
3377 rnp->completedqs = rcu_state.gp_seq;
3378 rnp->qsmask = 0;
3379 rnp->qsmaskinit = 0;
3380 rnp->grplo = j * cpustride;
3381 rnp->grphi = (j + 1) * cpustride - 1;
3382 if (rnp->grphi >= nr_cpu_ids)
3383 rnp->grphi = nr_cpu_ids - 1;
3384 if (i == 0) {
3385 rnp->grpnum = 0;
3386 rnp->grpmask = 0;
3387 rnp->parent = NULL;
3388 } else {
3389 rnp->grpnum = j % levelspread[i - 1];
3390 rnp->grpmask = BIT(rnp->grpnum);
3391 rnp->parent = rcu_state.level[i - 1] +
3392 j / levelspread[i - 1];
3393 }
3394 rnp->level = i;
3395 INIT_LIST_HEAD(&rnp->blkd_tasks);
3396 rcu_init_one_nocb(rnp);
3397 init_waitqueue_head(&rnp->exp_wq[0]);
3398 init_waitqueue_head(&rnp->exp_wq[1]);
3399 init_waitqueue_head(&rnp->exp_wq[2]);
3400 init_waitqueue_head(&rnp->exp_wq[3]);
3401 spin_lock_init(&rnp->exp_lock);
3402 }
3403 }
3404
3405 init_swait_queue_head(&rcu_state.gp_wq);
3406 init_swait_queue_head(&rcu_state.expedited_wq);
3407 rnp = rcu_first_leaf_node();
3408 for_each_possible_cpu(i) {
3409 while (i > rnp->grphi)
3410 rnp++;
3411 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3412 rcu_boot_init_percpu_data(i);
3413 }
3414 }
3415
3416 /*
3417 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3418 * replace the definitions in tree.h because those are needed to size
3419 * the ->node array in the rcu_state structure.
3420 */
rcu_init_geometry(void)3421 static void __init rcu_init_geometry(void)
3422 {
3423 ulong d;
3424 int i;
3425 int rcu_capacity[RCU_NUM_LVLS];
3426
3427 /*
3428 * Initialize any unspecified boot parameters.
3429 * The default values of jiffies_till_first_fqs and
3430 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3431 * value, which is a function of HZ, then adding one for each
3432 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3433 */
3434 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3435 if (jiffies_till_first_fqs == ULONG_MAX)
3436 jiffies_till_first_fqs = d;
3437 if (jiffies_till_next_fqs == ULONG_MAX)
3438 jiffies_till_next_fqs = d;
3439 adjust_jiffies_till_sched_qs();
3440
3441 /* If the compile-time values are accurate, just leave. */
3442 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3443 nr_cpu_ids == NR_CPUS)
3444 return;
3445 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3446 rcu_fanout_leaf, nr_cpu_ids);
3447
3448 /*
3449 * The boot-time rcu_fanout_leaf parameter must be at least two
3450 * and cannot exceed the number of bits in the rcu_node masks.
3451 * Complain and fall back to the compile-time values if this
3452 * limit is exceeded.
3453 */
3454 if (rcu_fanout_leaf < 2 ||
3455 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3456 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3457 WARN_ON(1);
3458 return;
3459 }
3460
3461 /*
3462 * Compute number of nodes that can be handled an rcu_node tree
3463 * with the given number of levels.
3464 */
3465 rcu_capacity[0] = rcu_fanout_leaf;
3466 for (i = 1; i < RCU_NUM_LVLS; i++)
3467 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3468
3469 /*
3470 * The tree must be able to accommodate the configured number of CPUs.
3471 * If this limit is exceeded, fall back to the compile-time values.
3472 */
3473 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3474 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3475 WARN_ON(1);
3476 return;
3477 }
3478
3479 /* Calculate the number of levels in the tree. */
3480 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3481 }
3482 rcu_num_lvls = i + 1;
3483
3484 /* Calculate the number of rcu_nodes at each level of the tree. */
3485 for (i = 0; i < rcu_num_lvls; i++) {
3486 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3487 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3488 }
3489
3490 /* Calculate the total number of rcu_node structures. */
3491 rcu_num_nodes = 0;
3492 for (i = 0; i < rcu_num_lvls; i++)
3493 rcu_num_nodes += num_rcu_lvl[i];
3494 }
3495
3496 /*
3497 * Dump out the structure of the rcu_node combining tree associated
3498 * with the rcu_state structure.
3499 */
rcu_dump_rcu_node_tree(void)3500 static void __init rcu_dump_rcu_node_tree(void)
3501 {
3502 int level = 0;
3503 struct rcu_node *rnp;
3504
3505 pr_info("rcu_node tree layout dump\n");
3506 pr_info(" ");
3507 rcu_for_each_node_breadth_first(rnp) {
3508 if (rnp->level != level) {
3509 pr_cont("\n");
3510 pr_info(" ");
3511 level = rnp->level;
3512 }
3513 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3514 }
3515 pr_cont("\n");
3516 }
3517
3518 struct workqueue_struct *rcu_gp_wq;
3519 struct workqueue_struct *rcu_par_gp_wq;
3520
rcu_init(void)3521 void __init rcu_init(void)
3522 {
3523 int cpu;
3524
3525 rcu_early_boot_tests();
3526
3527 rcu_bootup_announce();
3528 rcu_init_geometry();
3529 rcu_init_one();
3530 if (dump_tree)
3531 rcu_dump_rcu_node_tree();
3532 if (use_softirq)
3533 open_softirq(RCU_SOFTIRQ, rcu_core_si);
3534
3535 /*
3536 * We don't need protection against CPU-hotplug here because
3537 * this is called early in boot, before either interrupts
3538 * or the scheduler are operational.
3539 */
3540 pm_notifier(rcu_pm_notify, 0);
3541 for_each_online_cpu(cpu) {
3542 rcutree_prepare_cpu(cpu);
3543 rcu_cpu_starting(cpu);
3544 rcutree_online_cpu(cpu);
3545 }
3546
3547 /* Create workqueue for expedited GPs and for Tree SRCU. */
3548 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3549 WARN_ON(!rcu_gp_wq);
3550 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3551 WARN_ON(!rcu_par_gp_wq);
3552 srcu_init();
3553 }
3554
3555 #include "tree_stall.h"
3556 #include "tree_exp.h"
3557 #include "tree_plugin.h"
3558