• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
54 #include <linux/gfp.h>
55 #include <linux/oom.h>
56 #include <linux/smpboot.h>
57 #include <linux/jiffies.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include "../time/tick-internal.h"
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * Steal a bit from the bottom of ->dynticks for idle entry/exit
74  * control.  Initially this is for TLB flushing.
75  */
76 #define RCU_DYNTICK_CTRL_MASK 0x1
77 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
78 #ifndef rcu_eqs_special_exit
79 #define rcu_eqs_special_exit() do { } while (0)
80 #endif
81 
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 	.dynticks_nesting = 1,
84 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 struct rcu_state rcu_state = {
88 	.level = { &rcu_state.node[0] },
89 	.gp_state = RCU_GP_IDLE,
90 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 	.name = RCU_NAME,
93 	.abbr = RCU_ABBR,
94 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98 
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = 1;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 
154 /* rcuc/rcub kthread realtime priority */
155 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
156 module_param(kthread_prio, int, 0444);
157 
158 /* Delay in jiffies for grace-period initialization delays, debug only. */
159 
160 static int gp_preinit_delay;
161 module_param(gp_preinit_delay, int, 0444);
162 static int gp_init_delay;
163 module_param(gp_init_delay, int, 0444);
164 static int gp_cleanup_delay;
165 module_param(gp_cleanup_delay, int, 0444);
166 
167 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)168 int rcu_get_gp_kthreads_prio(void)
169 {
170 	return kthread_prio;
171 }
172 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
173 
174 /*
175  * Number of grace periods between delays, normalized by the duration of
176  * the delay.  The longer the delay, the more the grace periods between
177  * each delay.  The reason for this normalization is that it means that,
178  * for non-zero delays, the overall slowdown of grace periods is constant
179  * regardless of the duration of the delay.  This arrangement balances
180  * the need for long delays to increase some race probabilities with the
181  * need for fast grace periods to increase other race probabilities.
182  */
183 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
184 
185 /*
186  * Compute the mask of online CPUs for the specified rcu_node structure.
187  * This will not be stable unless the rcu_node structure's ->lock is
188  * held, but the bit corresponding to the current CPU will be stable
189  * in most contexts.
190  */
rcu_rnp_online_cpus(struct rcu_node * rnp)191 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
192 {
193 	return READ_ONCE(rnp->qsmaskinitnext);
194 }
195 
196 /*
197  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
198  * permit this function to be invoked without holding the root rcu_node
199  * structure's ->lock, but of course results can be subject to change.
200  */
rcu_gp_in_progress(void)201 static int rcu_gp_in_progress(void)
202 {
203 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
204 }
205 
206 /*
207  * Return the number of callbacks queued on the specified CPU.
208  * Handles both the nocbs and normal cases.
209  */
rcu_get_n_cbs_cpu(int cpu)210 static long rcu_get_n_cbs_cpu(int cpu)
211 {
212 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
213 
214 	if (rcu_segcblist_is_enabled(&rdp->cblist))
215 		return rcu_segcblist_n_cbs(&rdp->cblist);
216 	return 0;
217 }
218 
rcu_softirq_qs(void)219 void rcu_softirq_qs(void)
220 {
221 	rcu_qs();
222 	rcu_preempt_deferred_qs(current);
223 }
224 
225 /*
226  * Record entry into an extended quiescent state.  This is only to be
227  * called when not already in an extended quiescent state.
228  */
rcu_dynticks_eqs_enter(void)229 static void rcu_dynticks_eqs_enter(void)
230 {
231 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
232 	int seq;
233 
234 	/*
235 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
236 	 * critical sections, and we also must force ordering with the
237 	 * next idle sojourn.
238 	 */
239 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
240 	/* Better be in an extended quiescent state! */
241 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
242 		     (seq & RCU_DYNTICK_CTRL_CTR));
243 	/* Better not have special action (TLB flush) pending! */
244 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
245 		     (seq & RCU_DYNTICK_CTRL_MASK));
246 }
247 
248 /*
249  * Record exit from an extended quiescent state.  This is only to be
250  * called from an extended quiescent state.
251  */
rcu_dynticks_eqs_exit(void)252 static void rcu_dynticks_eqs_exit(void)
253 {
254 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
255 	int seq;
256 
257 	/*
258 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
259 	 * and we also must force ordering with the next RCU read-side
260 	 * critical section.
261 	 */
262 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
263 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 		     !(seq & RCU_DYNTICK_CTRL_CTR));
265 	if (seq & RCU_DYNTICK_CTRL_MASK) {
266 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
267 		smp_mb__after_atomic(); /* _exit after clearing mask. */
268 		/* Prefer duplicate flushes to losing a flush. */
269 		rcu_eqs_special_exit();
270 	}
271 }
272 
273 /*
274  * Reset the current CPU's ->dynticks counter to indicate that the
275  * newly onlined CPU is no longer in an extended quiescent state.
276  * This will either leave the counter unchanged, or increment it
277  * to the next non-quiescent value.
278  *
279  * The non-atomic test/increment sequence works because the upper bits
280  * of the ->dynticks counter are manipulated only by the corresponding CPU,
281  * or when the corresponding CPU is offline.
282  */
rcu_dynticks_eqs_online(void)283 static void rcu_dynticks_eqs_online(void)
284 {
285 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
286 
287 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
288 		return;
289 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
290 }
291 
292 /*
293  * Is the current CPU in an extended quiescent state?
294  *
295  * No ordering, as we are sampling CPU-local information.
296  */
rcu_dynticks_curr_cpu_in_eqs(void)297 bool rcu_dynticks_curr_cpu_in_eqs(void)
298 {
299 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
300 
301 	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
302 }
303 
304 /*
305  * Snapshot the ->dynticks counter with full ordering so as to allow
306  * stable comparison of this counter with past and future snapshots.
307  */
rcu_dynticks_snap(struct rcu_data * rdp)308 int rcu_dynticks_snap(struct rcu_data *rdp)
309 {
310 	int snap = atomic_add_return(0, &rdp->dynticks);
311 
312 	return snap & ~RCU_DYNTICK_CTRL_MASK;
313 }
314 
315 /*
316  * Return true if the snapshot returned from rcu_dynticks_snap()
317  * indicates that RCU is in an extended quiescent state.
318  */
rcu_dynticks_in_eqs(int snap)319 static bool rcu_dynticks_in_eqs(int snap)
320 {
321 	return !(snap & RCU_DYNTICK_CTRL_CTR);
322 }
323 
324 /*
325  * Return true if the CPU corresponding to the specified rcu_data
326  * structure has spent some time in an extended quiescent state since
327  * rcu_dynticks_snap() returned the specified snapshot.
328  */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)329 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
330 {
331 	return snap != rcu_dynticks_snap(rdp);
332 }
333 
334 /*
335  * Set the special (bottom) bit of the specified CPU so that it
336  * will take special action (such as flushing its TLB) on the
337  * next exit from an extended quiescent state.  Returns true if
338  * the bit was successfully set, or false if the CPU was not in
339  * an extended quiescent state.
340  */
rcu_eqs_special_set(int cpu)341 bool rcu_eqs_special_set(int cpu)
342 {
343 	int old;
344 	int new;
345 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
346 
347 	do {
348 		old = atomic_read(&rdp->dynticks);
349 		if (old & RCU_DYNTICK_CTRL_CTR)
350 			return false;
351 		new = old | RCU_DYNTICK_CTRL_MASK;
352 	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
353 	return true;
354 }
355 
356 /*
357  * Let the RCU core know that this CPU has gone through the scheduler,
358  * which is a quiescent state.  This is called when the need for a
359  * quiescent state is urgent, so we burn an atomic operation and full
360  * memory barriers to let the RCU core know about it, regardless of what
361  * this CPU might (or might not) do in the near future.
362  *
363  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
364  *
365  * The caller must have disabled interrupts and must not be idle.
366  */
rcu_momentary_dyntick_idle(void)367 static void __maybe_unused rcu_momentary_dyntick_idle(void)
368 {
369 	int special;
370 
371 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
372 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
373 				    &this_cpu_ptr(&rcu_data)->dynticks);
374 	/* It is illegal to call this from idle state. */
375 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
376 	rcu_preempt_deferred_qs(current);
377 }
378 
379 /**
380  * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
381  *
382  * If the current CPU is idle and running at a first-level (not nested)
383  * interrupt from idle, return true.  The caller must have at least
384  * disabled preemption.
385  */
rcu_is_cpu_rrupt_from_idle(void)386 static int rcu_is_cpu_rrupt_from_idle(void)
387 {
388 	/* Called only from within the scheduling-clock interrupt */
389 	lockdep_assert_in_irq();
390 
391 	/* Check for counter underflows */
392 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
393 			 "RCU dynticks_nesting counter underflow!");
394 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
395 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
396 
397 	/* Are we at first interrupt nesting level? */
398 	if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
399 		return false;
400 
401 	/* Does CPU appear to be idle from an RCU standpoint? */
402 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
403 }
404 
405 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
406 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
407 static long blimit = DEFAULT_RCU_BLIMIT;
408 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
409 static long qhimark = DEFAULT_RCU_QHIMARK;
410 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
411 static long qlowmark = DEFAULT_RCU_QLOMARK;
412 
413 module_param(blimit, long, 0444);
414 module_param(qhimark, long, 0444);
415 module_param(qlowmark, long, 0444);
416 
417 static ulong jiffies_till_first_fqs = ULONG_MAX;
418 static ulong jiffies_till_next_fqs = ULONG_MAX;
419 static bool rcu_kick_kthreads;
420 static int rcu_divisor = 7;
421 module_param(rcu_divisor, int, 0644);
422 
423 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
424 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
425 module_param(rcu_resched_ns, long, 0644);
426 
427 /*
428  * How long the grace period must be before we start recruiting
429  * quiescent-state help from rcu_note_context_switch().
430  */
431 static ulong jiffies_till_sched_qs = ULONG_MAX;
432 module_param(jiffies_till_sched_qs, ulong, 0444);
433 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
434 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
435 
436 /*
437  * Make sure that we give the grace-period kthread time to detect any
438  * idle CPUs before taking active measures to force quiescent states.
439  * However, don't go below 100 milliseconds, adjusted upwards for really
440  * large systems.
441  */
adjust_jiffies_till_sched_qs(void)442 static void adjust_jiffies_till_sched_qs(void)
443 {
444 	unsigned long j;
445 
446 	/* If jiffies_till_sched_qs was specified, respect the request. */
447 	if (jiffies_till_sched_qs != ULONG_MAX) {
448 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
449 		return;
450 	}
451 	/* Otherwise, set to third fqs scan, but bound below on large system. */
452 	j = READ_ONCE(jiffies_till_first_fqs) +
453 		      2 * READ_ONCE(jiffies_till_next_fqs);
454 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
455 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
456 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
457 	WRITE_ONCE(jiffies_to_sched_qs, j);
458 }
459 
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)460 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
461 {
462 	ulong j;
463 	int ret = kstrtoul(val, 0, &j);
464 
465 	if (!ret) {
466 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
467 		adjust_jiffies_till_sched_qs();
468 	}
469 	return ret;
470 }
471 
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)472 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
473 {
474 	ulong j;
475 	int ret = kstrtoul(val, 0, &j);
476 
477 	if (!ret) {
478 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
479 		adjust_jiffies_till_sched_qs();
480 	}
481 	return ret;
482 }
483 
484 static struct kernel_param_ops first_fqs_jiffies_ops = {
485 	.set = param_set_first_fqs_jiffies,
486 	.get = param_get_ulong,
487 };
488 
489 static struct kernel_param_ops next_fqs_jiffies_ops = {
490 	.set = param_set_next_fqs_jiffies,
491 	.get = param_get_ulong,
492 };
493 
494 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
495 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
496 module_param(rcu_kick_kthreads, bool, 0644);
497 
498 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
499 static int rcu_pending(void);
500 
501 /*
502  * Return the number of RCU GPs completed thus far for debug & stats.
503  */
rcu_get_gp_seq(void)504 unsigned long rcu_get_gp_seq(void)
505 {
506 	return READ_ONCE(rcu_state.gp_seq);
507 }
508 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
509 
510 /*
511  * Return the number of RCU expedited batches completed thus far for
512  * debug & stats.  Odd numbers mean that a batch is in progress, even
513  * numbers mean idle.  The value returned will thus be roughly double
514  * the cumulative batches since boot.
515  */
rcu_exp_batches_completed(void)516 unsigned long rcu_exp_batches_completed(void)
517 {
518 	return rcu_state.expedited_sequence;
519 }
520 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
521 
522 /*
523  * Return the root node of the rcu_state structure.
524  */
rcu_get_root(void)525 static struct rcu_node *rcu_get_root(void)
526 {
527 	return &rcu_state.node[0];
528 }
529 
530 /*
531  * Convert a ->gp_state value to a character string.
532  */
gp_state_getname(short gs)533 static const char *gp_state_getname(short gs)
534 {
535 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
536 		return "???";
537 	return gp_state_names[gs];
538 }
539 
540 /*
541  * Send along grace-period-related data for rcutorture diagnostics.
542  */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)543 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
544 			    unsigned long *gp_seq)
545 {
546 	switch (test_type) {
547 	case RCU_FLAVOR:
548 		*flags = READ_ONCE(rcu_state.gp_flags);
549 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
550 		break;
551 	default:
552 		break;
553 	}
554 }
555 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
556 
557 /*
558  * Enter an RCU extended quiescent state, which can be either the
559  * idle loop or adaptive-tickless usermode execution.
560  *
561  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
562  * the possibility of usermode upcalls having messed up our count
563  * of interrupt nesting level during the prior busy period.
564  */
rcu_eqs_enter(bool user)565 static void rcu_eqs_enter(bool user)
566 {
567 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
568 
569 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
570 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
571 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
572 		     rdp->dynticks_nesting == 0);
573 	if (rdp->dynticks_nesting != 1) {
574 		rdp->dynticks_nesting--;
575 		return;
576 	}
577 
578 	lockdep_assert_irqs_disabled();
579 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
580 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
581 	rdp = this_cpu_ptr(&rcu_data);
582 	do_nocb_deferred_wakeup(rdp);
583 	rcu_prepare_for_idle();
584 	rcu_preempt_deferred_qs(current);
585 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
586 	rcu_dynticks_eqs_enter();
587 	rcu_dynticks_task_enter();
588 }
589 
590 /**
591  * rcu_idle_enter - inform RCU that current CPU is entering idle
592  *
593  * Enter idle mode, in other words, -leave- the mode in which RCU
594  * read-side critical sections can occur.  (Though RCU read-side
595  * critical sections can occur in irq handlers in idle, a possibility
596  * handled by irq_enter() and irq_exit().)
597  *
598  * If you add or remove a call to rcu_idle_enter(), be sure to test with
599  * CONFIG_RCU_EQS_DEBUG=y.
600  */
rcu_idle_enter(void)601 void rcu_idle_enter(void)
602 {
603 	lockdep_assert_irqs_disabled();
604 	rcu_eqs_enter(false);
605 }
606 
607 #ifdef CONFIG_NO_HZ_FULL
608 /**
609  * rcu_user_enter - inform RCU that we are resuming userspace.
610  *
611  * Enter RCU idle mode right before resuming userspace.  No use of RCU
612  * is permitted between this call and rcu_user_exit(). This way the
613  * CPU doesn't need to maintain the tick for RCU maintenance purposes
614  * when the CPU runs in userspace.
615  *
616  * If you add or remove a call to rcu_user_enter(), be sure to test with
617  * CONFIG_RCU_EQS_DEBUG=y.
618  */
rcu_user_enter(void)619 void rcu_user_enter(void)
620 {
621 	lockdep_assert_irqs_disabled();
622 	rcu_eqs_enter(true);
623 }
624 #endif /* CONFIG_NO_HZ_FULL */
625 
626 /*
627  * If we are returning from the outermost NMI handler that interrupted an
628  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
629  * to let the RCU grace-period handling know that the CPU is back to
630  * being RCU-idle.
631  *
632  * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
633  * with CONFIG_RCU_EQS_DEBUG=y.
634  */
rcu_nmi_exit_common(bool irq)635 static __always_inline void rcu_nmi_exit_common(bool irq)
636 {
637 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
638 
639 	/*
640 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
641 	 * (We are exiting an NMI handler, so RCU better be paying attention
642 	 * to us!)
643 	 */
644 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
645 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
646 
647 	/*
648 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
649 	 * leave it in non-RCU-idle state.
650 	 */
651 	if (rdp->dynticks_nmi_nesting != 1) {
652 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
653 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
654 			   rdp->dynticks_nmi_nesting - 2);
655 		return;
656 	}
657 
658 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
659 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
660 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
661 
662 	if (irq)
663 		rcu_prepare_for_idle();
664 
665 	rcu_dynticks_eqs_enter();
666 
667 	if (irq)
668 		rcu_dynticks_task_enter();
669 }
670 
671 /**
672  * rcu_nmi_exit - inform RCU of exit from NMI context
673  *
674  * If you add or remove a call to rcu_nmi_exit(), be sure to test
675  * with CONFIG_RCU_EQS_DEBUG=y.
676  */
rcu_nmi_exit(void)677 void rcu_nmi_exit(void)
678 {
679 	rcu_nmi_exit_common(false);
680 }
681 
682 /**
683  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
684  *
685  * Exit from an interrupt handler, which might possibly result in entering
686  * idle mode, in other words, leaving the mode in which read-side critical
687  * sections can occur.  The caller must have disabled interrupts.
688  *
689  * This code assumes that the idle loop never does anything that might
690  * result in unbalanced calls to irq_enter() and irq_exit().  If your
691  * architecture's idle loop violates this assumption, RCU will give you what
692  * you deserve, good and hard.  But very infrequently and irreproducibly.
693  *
694  * Use things like work queues to work around this limitation.
695  *
696  * You have been warned.
697  *
698  * If you add or remove a call to rcu_irq_exit(), be sure to test with
699  * CONFIG_RCU_EQS_DEBUG=y.
700  */
rcu_irq_exit(void)701 void rcu_irq_exit(void)
702 {
703 	lockdep_assert_irqs_disabled();
704 	rcu_nmi_exit_common(true);
705 }
706 
707 /*
708  * Wrapper for rcu_irq_exit() where interrupts are enabled.
709  *
710  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
711  * with CONFIG_RCU_EQS_DEBUG=y.
712  */
rcu_irq_exit_irqson(void)713 void rcu_irq_exit_irqson(void)
714 {
715 	unsigned long flags;
716 
717 	local_irq_save(flags);
718 	rcu_irq_exit();
719 	local_irq_restore(flags);
720 }
721 
722 /*
723  * Exit an RCU extended quiescent state, which can be either the
724  * idle loop or adaptive-tickless usermode execution.
725  *
726  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
727  * allow for the possibility of usermode upcalls messing up our count of
728  * interrupt nesting level during the busy period that is just now starting.
729  */
rcu_eqs_exit(bool user)730 static void rcu_eqs_exit(bool user)
731 {
732 	struct rcu_data *rdp;
733 	long oldval;
734 
735 	lockdep_assert_irqs_disabled();
736 	rdp = this_cpu_ptr(&rcu_data);
737 	oldval = rdp->dynticks_nesting;
738 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
739 	if (oldval) {
740 		rdp->dynticks_nesting++;
741 		return;
742 	}
743 	rcu_dynticks_task_exit();
744 	rcu_dynticks_eqs_exit();
745 	rcu_cleanup_after_idle();
746 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
747 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
748 	WRITE_ONCE(rdp->dynticks_nesting, 1);
749 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
750 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
751 }
752 
753 /**
754  * rcu_idle_exit - inform RCU that current CPU is leaving idle
755  *
756  * Exit idle mode, in other words, -enter- the mode in which RCU
757  * read-side critical sections can occur.
758  *
759  * If you add or remove a call to rcu_idle_exit(), be sure to test with
760  * CONFIG_RCU_EQS_DEBUG=y.
761  */
rcu_idle_exit(void)762 void rcu_idle_exit(void)
763 {
764 	unsigned long flags;
765 
766 	local_irq_save(flags);
767 	rcu_eqs_exit(false);
768 	local_irq_restore(flags);
769 }
770 
771 #ifdef CONFIG_NO_HZ_FULL
772 /**
773  * rcu_user_exit - inform RCU that we are exiting userspace.
774  *
775  * Exit RCU idle mode while entering the kernel because it can
776  * run a RCU read side critical section anytime.
777  *
778  * If you add or remove a call to rcu_user_exit(), be sure to test with
779  * CONFIG_RCU_EQS_DEBUG=y.
780  */
rcu_user_exit(void)781 void rcu_user_exit(void)
782 {
783 	rcu_eqs_exit(1);
784 }
785 #endif /* CONFIG_NO_HZ_FULL */
786 
787 /**
788  * rcu_nmi_enter_common - inform RCU of entry to NMI context
789  * @irq: Is this call from rcu_irq_enter?
790  *
791  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
792  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
793  * that the CPU is active.  This implementation permits nested NMIs, as
794  * long as the nesting level does not overflow an int.  (You will probably
795  * run out of stack space first.)
796  *
797  * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
798  * with CONFIG_RCU_EQS_DEBUG=y.
799  */
rcu_nmi_enter_common(bool irq)800 static __always_inline void rcu_nmi_enter_common(bool irq)
801 {
802 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
803 	long incby = 2;
804 
805 	/* Complain about underflow. */
806 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
807 
808 	/*
809 	 * If idle from RCU viewpoint, atomically increment ->dynticks
810 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
811 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
812 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
813 	 * to be in the outermost NMI handler that interrupted an RCU-idle
814 	 * period (observation due to Andy Lutomirski).
815 	 */
816 	if (rcu_dynticks_curr_cpu_in_eqs()) {
817 
818 		if (irq)
819 			rcu_dynticks_task_exit();
820 
821 		rcu_dynticks_eqs_exit();
822 
823 		if (irq)
824 			rcu_cleanup_after_idle();
825 
826 		incby = 1;
827 	}
828 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
829 			  rdp->dynticks_nmi_nesting,
830 			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
831 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
832 		   rdp->dynticks_nmi_nesting + incby);
833 	barrier();
834 }
835 
836 /**
837  * rcu_nmi_enter - inform RCU of entry to NMI context
838  */
rcu_nmi_enter(void)839 void rcu_nmi_enter(void)
840 {
841 	rcu_nmi_enter_common(false);
842 }
843 NOKPROBE_SYMBOL(rcu_nmi_enter);
844 
845 /**
846  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
847  *
848  * Enter an interrupt handler, which might possibly result in exiting
849  * idle mode, in other words, entering the mode in which read-side critical
850  * sections can occur.  The caller must have disabled interrupts.
851  *
852  * Note that the Linux kernel is fully capable of entering an interrupt
853  * handler that it never exits, for example when doing upcalls to user mode!
854  * This code assumes that the idle loop never does upcalls to user mode.
855  * If your architecture's idle loop does do upcalls to user mode (or does
856  * anything else that results in unbalanced calls to the irq_enter() and
857  * irq_exit() functions), RCU will give you what you deserve, good and hard.
858  * But very infrequently and irreproducibly.
859  *
860  * Use things like work queues to work around this limitation.
861  *
862  * You have been warned.
863  *
864  * If you add or remove a call to rcu_irq_enter(), be sure to test with
865  * CONFIG_RCU_EQS_DEBUG=y.
866  */
rcu_irq_enter(void)867 void rcu_irq_enter(void)
868 {
869 	lockdep_assert_irqs_disabled();
870 	rcu_nmi_enter_common(true);
871 }
872 
873 /*
874  * Wrapper for rcu_irq_enter() where interrupts are enabled.
875  *
876  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
877  * with CONFIG_RCU_EQS_DEBUG=y.
878  */
rcu_irq_enter_irqson(void)879 void rcu_irq_enter_irqson(void)
880 {
881 	unsigned long flags;
882 
883 	local_irq_save(flags);
884 	rcu_irq_enter();
885 	local_irq_restore(flags);
886 }
887 
888 /**
889  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
890  *
891  * Return true if RCU is watching the running CPU, which means that this
892  * CPU can safely enter RCU read-side critical sections.  In other words,
893  * if the current CPU is not in its idle loop or is in an interrupt or
894  * NMI handler, return true.
895  */
rcu_is_watching(void)896 bool notrace rcu_is_watching(void)
897 {
898 	bool ret;
899 
900 	preempt_disable_notrace();
901 	ret = !rcu_dynticks_curr_cpu_in_eqs();
902 	preempt_enable_notrace();
903 	return ret;
904 }
905 EXPORT_SYMBOL_GPL(rcu_is_watching);
906 
907 /*
908  * If a holdout task is actually running, request an urgent quiescent
909  * state from its CPU.  This is unsynchronized, so migrations can cause
910  * the request to go to the wrong CPU.  Which is OK, all that will happen
911  * is that the CPU's next context switch will be a bit slower and next
912  * time around this task will generate another request.
913  */
rcu_request_urgent_qs_task(struct task_struct * t)914 void rcu_request_urgent_qs_task(struct task_struct *t)
915 {
916 	int cpu;
917 
918 	barrier();
919 	cpu = task_cpu(t);
920 	if (!task_curr(t))
921 		return; /* This task is not running on that CPU. */
922 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
923 }
924 
925 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
926 
927 /*
928  * Is the current CPU online as far as RCU is concerned?
929  *
930  * Disable preemption to avoid false positives that could otherwise
931  * happen due to the current CPU number being sampled, this task being
932  * preempted, its old CPU being taken offline, resuming on some other CPU,
933  * then determining that its old CPU is now offline.
934  *
935  * Disable checking if in an NMI handler because we cannot safely
936  * report errors from NMI handlers anyway.  In addition, it is OK to use
937  * RCU on an offline processor during initial boot, hence the check for
938  * rcu_scheduler_fully_active.
939  */
rcu_lockdep_current_cpu_online(void)940 bool rcu_lockdep_current_cpu_online(void)
941 {
942 	struct rcu_data *rdp;
943 	struct rcu_node *rnp;
944 	bool ret = false;
945 
946 	if (in_nmi() || !rcu_scheduler_fully_active)
947 		return true;
948 	preempt_disable();
949 	rdp = this_cpu_ptr(&rcu_data);
950 	rnp = rdp->mynode;
951 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
952 		ret = true;
953 	preempt_enable();
954 	return ret;
955 }
956 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
957 
958 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
959 
960 /*
961  * We are reporting a quiescent state on behalf of some other CPU, so
962  * it is our responsibility to check for and handle potential overflow
963  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
964  * After all, the CPU might be in deep idle state, and thus executing no
965  * code whatsoever.
966  */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)967 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
968 {
969 	raw_lockdep_assert_held_rcu_node(rnp);
970 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
971 			 rnp->gp_seq))
972 		WRITE_ONCE(rdp->gpwrap, true);
973 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
974 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
975 }
976 
977 /*
978  * Snapshot the specified CPU's dynticks counter so that we can later
979  * credit them with an implicit quiescent state.  Return 1 if this CPU
980  * is in dynticks idle mode, which is an extended quiescent state.
981  */
dyntick_save_progress_counter(struct rcu_data * rdp)982 static int dyntick_save_progress_counter(struct rcu_data *rdp)
983 {
984 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
985 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
986 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
987 		rcu_gpnum_ovf(rdp->mynode, rdp);
988 		return 1;
989 	}
990 	return 0;
991 }
992 
993 /*
994  * Return true if the specified CPU has passed through a quiescent
995  * state by virtue of being in or having passed through an dynticks
996  * idle state since the last call to dyntick_save_progress_counter()
997  * for this same CPU, or by virtue of having been offline.
998  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)999 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1000 {
1001 	unsigned long jtsq;
1002 	bool *rnhqp;
1003 	bool *ruqp;
1004 	struct rcu_node *rnp = rdp->mynode;
1005 
1006 	/*
1007 	 * If the CPU passed through or entered a dynticks idle phase with
1008 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1009 	 * already acknowledged the request to pass through a quiescent
1010 	 * state.  Either way, that CPU cannot possibly be in an RCU
1011 	 * read-side critical section that started before the beginning
1012 	 * of the current RCU grace period.
1013 	 */
1014 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1015 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1016 		rcu_gpnum_ovf(rnp, rdp);
1017 		return 1;
1018 	}
1019 
1020 	/* If waiting too long on an offline CPU, complain. */
1021 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1022 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1023 		bool onl;
1024 		struct rcu_node *rnp1;
1025 
1026 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1027 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1028 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1029 			(long)rnp->gp_seq, (long)rnp->completedqs);
1030 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1031 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1032 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1033 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1034 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1035 			__func__, rdp->cpu, ".o"[onl],
1036 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1037 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1038 		return 1; /* Break things loose after complaining. */
1039 	}
1040 
1041 	/*
1042 	 * A CPU running for an extended time within the kernel can
1043 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1044 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1045 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1046 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1047 	 * variable are safe because the assignments are repeated if this
1048 	 * CPU failed to pass through a quiescent state.  This code
1049 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1050 	 * is set way high.
1051 	 */
1052 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1053 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1054 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1055 	if (!READ_ONCE(*rnhqp) &&
1056 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1057 	     time_after(jiffies, rcu_state.jiffies_resched))) {
1058 		WRITE_ONCE(*rnhqp, true);
1059 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1060 		smp_store_release(ruqp, true);
1061 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1062 		WRITE_ONCE(*ruqp, true);
1063 	}
1064 
1065 	/*
1066 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1067 	 * The above code handles this, but only for straight cond_resched().
1068 	 * And some in-kernel loops check need_resched() before calling
1069 	 * cond_resched(), which defeats the above code for CPUs that are
1070 	 * running in-kernel with scheduling-clock interrupts disabled.
1071 	 * So hit them over the head with the resched_cpu() hammer!
1072 	 */
1073 	if (tick_nohz_full_cpu(rdp->cpu) &&
1074 		   time_after(jiffies,
1075 			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1076 		resched_cpu(rdp->cpu);
1077 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1078 	}
1079 
1080 	/*
1081 	 * If more than halfway to RCU CPU stall-warning time, invoke
1082 	 * resched_cpu() more frequently to try to loosen things up a bit.
1083 	 * Also check to see if the CPU is getting hammered with interrupts,
1084 	 * but only once per grace period, just to keep the IPIs down to
1085 	 * a dull roar.
1086 	 */
1087 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1088 		if (time_after(jiffies,
1089 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1090 			resched_cpu(rdp->cpu);
1091 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1092 		}
1093 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1094 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1095 		    (rnp->ffmask & rdp->grpmask)) {
1096 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1097 			rdp->rcu_iw_pending = true;
1098 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1099 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1100 		}
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1107 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1108 			      unsigned long gp_seq_req, const char *s)
1109 {
1110 	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1111 				      rnp->level, rnp->grplo, rnp->grphi, s);
1112 }
1113 
1114 /*
1115  * rcu_start_this_gp - Request the start of a particular grace period
1116  * @rnp_start: The leaf node of the CPU from which to start.
1117  * @rdp: The rcu_data corresponding to the CPU from which to start.
1118  * @gp_seq_req: The gp_seq of the grace period to start.
1119  *
1120  * Start the specified grace period, as needed to handle newly arrived
1121  * callbacks.  The required future grace periods are recorded in each
1122  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1123  * is reason to awaken the grace-period kthread.
1124  *
1125  * The caller must hold the specified rcu_node structure's ->lock, which
1126  * is why the caller is responsible for waking the grace-period kthread.
1127  *
1128  * Returns true if the GP thread needs to be awakened else false.
1129  */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1130 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1131 			      unsigned long gp_seq_req)
1132 {
1133 	bool ret = false;
1134 	struct rcu_node *rnp;
1135 
1136 	/*
1137 	 * Use funnel locking to either acquire the root rcu_node
1138 	 * structure's lock or bail out if the need for this grace period
1139 	 * has already been recorded -- or if that grace period has in
1140 	 * fact already started.  If there is already a grace period in
1141 	 * progress in a non-leaf node, no recording is needed because the
1142 	 * end of the grace period will scan the leaf rcu_node structures.
1143 	 * Note that rnp_start->lock must not be released.
1144 	 */
1145 	raw_lockdep_assert_held_rcu_node(rnp_start);
1146 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1147 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1148 		if (rnp != rnp_start)
1149 			raw_spin_lock_rcu_node(rnp);
1150 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1151 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1152 		    (rnp != rnp_start &&
1153 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1154 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1155 					  TPS("Prestarted"));
1156 			goto unlock_out;
1157 		}
1158 		rnp->gp_seq_needed = gp_seq_req;
1159 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1160 			/*
1161 			 * We just marked the leaf or internal node, and a
1162 			 * grace period is in progress, which means that
1163 			 * rcu_gp_cleanup() will see the marking.  Bail to
1164 			 * reduce contention.
1165 			 */
1166 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1167 					  TPS("Startedleaf"));
1168 			goto unlock_out;
1169 		}
1170 		if (rnp != rnp_start && rnp->parent != NULL)
1171 			raw_spin_unlock_rcu_node(rnp);
1172 		if (!rnp->parent)
1173 			break;  /* At root, and perhaps also leaf. */
1174 	}
1175 
1176 	/* If GP already in progress, just leave, otherwise start one. */
1177 	if (rcu_gp_in_progress()) {
1178 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1179 		goto unlock_out;
1180 	}
1181 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1182 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1183 	rcu_state.gp_req_activity = jiffies;
1184 	if (!rcu_state.gp_kthread) {
1185 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1186 		goto unlock_out;
1187 	}
1188 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1189 	ret = true;  /* Caller must wake GP kthread. */
1190 unlock_out:
1191 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1192 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1193 		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1194 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1195 	}
1196 	if (rnp != rnp_start)
1197 		raw_spin_unlock_rcu_node(rnp);
1198 	return ret;
1199 }
1200 
1201 /*
1202  * Clean up any old requests for the just-ended grace period.  Also return
1203  * whether any additional grace periods have been requested.
1204  */
rcu_future_gp_cleanup(struct rcu_node * rnp)1205 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1206 {
1207 	bool needmore;
1208 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1209 
1210 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1211 	if (!needmore)
1212 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1213 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1214 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1215 	return needmore;
1216 }
1217 
1218 /*
1219  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1220  * an interrupt or softirq handler), and don't bother awakening when there
1221  * is nothing for the grace-period kthread to do (as in several CPUs raced
1222  * to awaken, and we lost), and finally don't try to awaken a kthread that
1223  * has not yet been created.  If all those checks are passed, track some
1224  * debug information and awaken.
1225  *
1226  * So why do the self-wakeup when in an interrupt or softirq handler
1227  * in the grace-period kthread's context?  Because the kthread might have
1228  * been interrupted just as it was going to sleep, and just after the final
1229  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1230  * is required, and is therefore supplied.
1231  */
rcu_gp_kthread_wake(void)1232 static void rcu_gp_kthread_wake(void)
1233 {
1234 	if ((current == rcu_state.gp_kthread &&
1235 	     !in_irq() && !in_serving_softirq()) ||
1236 	    !READ_ONCE(rcu_state.gp_flags) ||
1237 	    !rcu_state.gp_kthread)
1238 		return;
1239 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1240 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1241 	swake_up_one(&rcu_state.gp_wq);
1242 }
1243 
1244 /*
1245  * If there is room, assign a ->gp_seq number to any callbacks on this
1246  * CPU that have not already been assigned.  Also accelerate any callbacks
1247  * that were previously assigned a ->gp_seq number that has since proven
1248  * to be too conservative, which can happen if callbacks get assigned a
1249  * ->gp_seq number while RCU is idle, but with reference to a non-root
1250  * rcu_node structure.  This function is idempotent, so it does not hurt
1251  * to call it repeatedly.  Returns an flag saying that we should awaken
1252  * the RCU grace-period kthread.
1253  *
1254  * The caller must hold rnp->lock with interrupts disabled.
1255  */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1256 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1257 {
1258 	unsigned long gp_seq_req;
1259 	bool ret = false;
1260 
1261 	rcu_lockdep_assert_cblist_protected(rdp);
1262 	raw_lockdep_assert_held_rcu_node(rnp);
1263 
1264 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1265 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1266 		return false;
1267 
1268 	/*
1269 	 * Callbacks are often registered with incomplete grace-period
1270 	 * information.  Something about the fact that getting exact
1271 	 * information requires acquiring a global lock...  RCU therefore
1272 	 * makes a conservative estimate of the grace period number at which
1273 	 * a given callback will become ready to invoke.	The following
1274 	 * code checks this estimate and improves it when possible, thus
1275 	 * accelerating callback invocation to an earlier grace-period
1276 	 * number.
1277 	 */
1278 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1279 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1280 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1281 
1282 	/* Trace depending on how much we were able to accelerate. */
1283 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1284 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1285 	else
1286 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1287 	return ret;
1288 }
1289 
1290 /*
1291  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1292  * rcu_node structure's ->lock be held.  It consults the cached value
1293  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1294  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1295  * while holding the leaf rcu_node structure's ->lock.
1296  */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1297 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1298 					struct rcu_data *rdp)
1299 {
1300 	unsigned long c;
1301 	bool needwake;
1302 
1303 	rcu_lockdep_assert_cblist_protected(rdp);
1304 	c = rcu_seq_snap(&rcu_state.gp_seq);
1305 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1306 		/* Old request still live, so mark recent callbacks. */
1307 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1308 		return;
1309 	}
1310 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1311 	needwake = rcu_accelerate_cbs(rnp, rdp);
1312 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1313 	if (needwake)
1314 		rcu_gp_kthread_wake();
1315 }
1316 
1317 /*
1318  * Move any callbacks whose grace period has completed to the
1319  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1320  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1321  * sublist.  This function is idempotent, so it does not hurt to
1322  * invoke it repeatedly.  As long as it is not invoked -too- often...
1323  * Returns true if the RCU grace-period kthread needs to be awakened.
1324  *
1325  * The caller must hold rnp->lock with interrupts disabled.
1326  */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1327 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1328 {
1329 	rcu_lockdep_assert_cblist_protected(rdp);
1330 	raw_lockdep_assert_held_rcu_node(rnp);
1331 
1332 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1333 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1334 		return false;
1335 
1336 	/*
1337 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1338 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1339 	 */
1340 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1341 
1342 	/* Classify any remaining callbacks. */
1343 	return rcu_accelerate_cbs(rnp, rdp);
1344 }
1345 
1346 /*
1347  * Move and classify callbacks, but only if doing so won't require
1348  * that the RCU grace-period kthread be awakened.
1349  */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1350 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1351 						  struct rcu_data *rdp)
1352 {
1353 	rcu_lockdep_assert_cblist_protected(rdp);
1354 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1355 	    !raw_spin_trylock_rcu_node(rnp))
1356 		return;
1357 	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1358 	raw_spin_unlock_rcu_node(rnp);
1359 }
1360 
1361 /*
1362  * Update CPU-local rcu_data state to record the beginnings and ends of
1363  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1364  * structure corresponding to the current CPU, and must have irqs disabled.
1365  * Returns true if the grace-period kthread needs to be awakened.
1366  */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1367 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1368 {
1369 	bool ret = false;
1370 	bool need_gp;
1371 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1372 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1373 
1374 	raw_lockdep_assert_held_rcu_node(rnp);
1375 
1376 	if (rdp->gp_seq == rnp->gp_seq)
1377 		return false; /* Nothing to do. */
1378 
1379 	/* Handle the ends of any preceding grace periods first. */
1380 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1381 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1382 		if (!offloaded)
1383 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1384 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1385 	} else {
1386 		if (!offloaded)
1387 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1388 	}
1389 
1390 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1391 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1392 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1393 		/*
1394 		 * If the current grace period is waiting for this CPU,
1395 		 * set up to detect a quiescent state, otherwise don't
1396 		 * go looking for one.
1397 		 */
1398 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1399 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1400 		rdp->cpu_no_qs.b.norm = need_gp;
1401 		rdp->core_needs_qs = need_gp;
1402 		zero_cpu_stall_ticks(rdp);
1403 	}
1404 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1405 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1406 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1407 	WRITE_ONCE(rdp->gpwrap, false);
1408 	rcu_gpnum_ovf(rnp, rdp);
1409 	return ret;
1410 }
1411 
note_gp_changes(struct rcu_data * rdp)1412 static void note_gp_changes(struct rcu_data *rdp)
1413 {
1414 	unsigned long flags;
1415 	bool needwake;
1416 	struct rcu_node *rnp;
1417 
1418 	local_irq_save(flags);
1419 	rnp = rdp->mynode;
1420 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1421 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1422 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1423 		local_irq_restore(flags);
1424 		return;
1425 	}
1426 	needwake = __note_gp_changes(rnp, rdp);
1427 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1428 	if (needwake)
1429 		rcu_gp_kthread_wake();
1430 }
1431 
rcu_gp_slow(int delay)1432 static void rcu_gp_slow(int delay)
1433 {
1434 	if (delay > 0 &&
1435 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1436 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1437 		schedule_timeout_uninterruptible(delay);
1438 }
1439 
1440 /*
1441  * Initialize a new grace period.  Return false if no grace period required.
1442  */
rcu_gp_init(void)1443 static bool rcu_gp_init(void)
1444 {
1445 	unsigned long flags;
1446 	unsigned long oldmask;
1447 	unsigned long mask;
1448 	struct rcu_data *rdp;
1449 	struct rcu_node *rnp = rcu_get_root();
1450 
1451 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1452 	raw_spin_lock_irq_rcu_node(rnp);
1453 	if (!READ_ONCE(rcu_state.gp_flags)) {
1454 		/* Spurious wakeup, tell caller to go back to sleep.  */
1455 		raw_spin_unlock_irq_rcu_node(rnp);
1456 		return false;
1457 	}
1458 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1459 
1460 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1461 		/*
1462 		 * Grace period already in progress, don't start another.
1463 		 * Not supposed to be able to happen.
1464 		 */
1465 		raw_spin_unlock_irq_rcu_node(rnp);
1466 		return false;
1467 	}
1468 
1469 	/* Advance to a new grace period and initialize state. */
1470 	record_gp_stall_check_time();
1471 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1472 	rcu_seq_start(&rcu_state.gp_seq);
1473 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1474 	raw_spin_unlock_irq_rcu_node(rnp);
1475 
1476 	/*
1477 	 * Apply per-leaf buffered online and offline operations to the
1478 	 * rcu_node tree.  Note that this new grace period need not wait
1479 	 * for subsequent online CPUs, and that quiescent-state forcing
1480 	 * will handle subsequent offline CPUs.
1481 	 */
1482 	rcu_state.gp_state = RCU_GP_ONOFF;
1483 	rcu_for_each_leaf_node(rnp) {
1484 		raw_spin_lock(&rcu_state.ofl_lock);
1485 		raw_spin_lock_irq_rcu_node(rnp);
1486 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1487 		    !rnp->wait_blkd_tasks) {
1488 			/* Nothing to do on this leaf rcu_node structure. */
1489 			raw_spin_unlock_irq_rcu_node(rnp);
1490 			raw_spin_unlock(&rcu_state.ofl_lock);
1491 			continue;
1492 		}
1493 
1494 		/* Record old state, apply changes to ->qsmaskinit field. */
1495 		oldmask = rnp->qsmaskinit;
1496 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1497 
1498 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1499 		if (!oldmask != !rnp->qsmaskinit) {
1500 			if (!oldmask) { /* First online CPU for rcu_node. */
1501 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1502 					rcu_init_new_rnp(rnp);
1503 			} else if (rcu_preempt_has_tasks(rnp)) {
1504 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1505 			} else { /* Last offline CPU and can propagate. */
1506 				rcu_cleanup_dead_rnp(rnp);
1507 			}
1508 		}
1509 
1510 		/*
1511 		 * If all waited-on tasks from prior grace period are
1512 		 * done, and if all this rcu_node structure's CPUs are
1513 		 * still offline, propagate up the rcu_node tree and
1514 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1515 		 * rcu_node structure's CPUs has since come back online,
1516 		 * simply clear ->wait_blkd_tasks.
1517 		 */
1518 		if (rnp->wait_blkd_tasks &&
1519 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1520 			rnp->wait_blkd_tasks = false;
1521 			if (!rnp->qsmaskinit)
1522 				rcu_cleanup_dead_rnp(rnp);
1523 		}
1524 
1525 		raw_spin_unlock_irq_rcu_node(rnp);
1526 		raw_spin_unlock(&rcu_state.ofl_lock);
1527 	}
1528 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1529 
1530 	/*
1531 	 * Set the quiescent-state-needed bits in all the rcu_node
1532 	 * structures for all currently online CPUs in breadth-first
1533 	 * order, starting from the root rcu_node structure, relying on the
1534 	 * layout of the tree within the rcu_state.node[] array.  Note that
1535 	 * other CPUs will access only the leaves of the hierarchy, thus
1536 	 * seeing that no grace period is in progress, at least until the
1537 	 * corresponding leaf node has been initialized.
1538 	 *
1539 	 * The grace period cannot complete until the initialization
1540 	 * process finishes, because this kthread handles both.
1541 	 */
1542 	rcu_state.gp_state = RCU_GP_INIT;
1543 	rcu_for_each_node_breadth_first(rnp) {
1544 		rcu_gp_slow(gp_init_delay);
1545 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1546 		rdp = this_cpu_ptr(&rcu_data);
1547 		rcu_preempt_check_blocked_tasks(rnp);
1548 		rnp->qsmask = rnp->qsmaskinit;
1549 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1550 		if (rnp == rdp->mynode)
1551 			(void)__note_gp_changes(rnp, rdp);
1552 		rcu_preempt_boost_start_gp(rnp);
1553 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1554 					    rnp->level, rnp->grplo,
1555 					    rnp->grphi, rnp->qsmask);
1556 		/* Quiescent states for tasks on any now-offline CPUs. */
1557 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1558 		rnp->rcu_gp_init_mask = mask;
1559 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1560 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1561 		else
1562 			raw_spin_unlock_irq_rcu_node(rnp);
1563 		cond_resched_tasks_rcu_qs();
1564 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1565 	}
1566 
1567 	return true;
1568 }
1569 
1570 /*
1571  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1572  * time.
1573  */
rcu_gp_fqs_check_wake(int * gfp)1574 static bool rcu_gp_fqs_check_wake(int *gfp)
1575 {
1576 	struct rcu_node *rnp = rcu_get_root();
1577 
1578 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1579 	*gfp = READ_ONCE(rcu_state.gp_flags);
1580 	if (*gfp & RCU_GP_FLAG_FQS)
1581 		return true;
1582 
1583 	/* The current grace period has completed. */
1584 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1585 		return true;
1586 
1587 	return false;
1588 }
1589 
1590 /*
1591  * Do one round of quiescent-state forcing.
1592  */
rcu_gp_fqs(bool first_time)1593 static void rcu_gp_fqs(bool first_time)
1594 {
1595 	struct rcu_node *rnp = rcu_get_root();
1596 
1597 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1598 	rcu_state.n_force_qs++;
1599 	if (first_time) {
1600 		/* Collect dyntick-idle snapshots. */
1601 		force_qs_rnp(dyntick_save_progress_counter);
1602 	} else {
1603 		/* Handle dyntick-idle and offline CPUs. */
1604 		force_qs_rnp(rcu_implicit_dynticks_qs);
1605 	}
1606 	/* Clear flag to prevent immediate re-entry. */
1607 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1608 		raw_spin_lock_irq_rcu_node(rnp);
1609 		WRITE_ONCE(rcu_state.gp_flags,
1610 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1611 		raw_spin_unlock_irq_rcu_node(rnp);
1612 	}
1613 }
1614 
1615 /*
1616  * Loop doing repeated quiescent-state forcing until the grace period ends.
1617  */
rcu_gp_fqs_loop(void)1618 static void rcu_gp_fqs_loop(void)
1619 {
1620 	bool first_gp_fqs;
1621 	int gf;
1622 	unsigned long j;
1623 	int ret;
1624 	struct rcu_node *rnp = rcu_get_root();
1625 
1626 	first_gp_fqs = true;
1627 	j = READ_ONCE(jiffies_till_first_fqs);
1628 	ret = 0;
1629 	for (;;) {
1630 		if (!ret) {
1631 			rcu_state.jiffies_force_qs = jiffies + j;
1632 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1633 				   jiffies + (j ? 3 * j : 2));
1634 		}
1635 		trace_rcu_grace_period(rcu_state.name,
1636 				       READ_ONCE(rcu_state.gp_seq),
1637 				       TPS("fqswait"));
1638 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1639 		ret = swait_event_idle_timeout_exclusive(
1640 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1641 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1642 		/* Locking provides needed memory barriers. */
1643 		/* If grace period done, leave loop. */
1644 		if (!READ_ONCE(rnp->qsmask) &&
1645 		    !rcu_preempt_blocked_readers_cgp(rnp))
1646 			break;
1647 		/* If time for quiescent-state forcing, do it. */
1648 		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1649 		    (gf & RCU_GP_FLAG_FQS)) {
1650 			trace_rcu_grace_period(rcu_state.name,
1651 					       READ_ONCE(rcu_state.gp_seq),
1652 					       TPS("fqsstart"));
1653 			rcu_gp_fqs(first_gp_fqs);
1654 			first_gp_fqs = false;
1655 			trace_rcu_grace_period(rcu_state.name,
1656 					       READ_ONCE(rcu_state.gp_seq),
1657 					       TPS("fqsend"));
1658 			cond_resched_tasks_rcu_qs();
1659 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1660 			ret = 0; /* Force full wait till next FQS. */
1661 			j = READ_ONCE(jiffies_till_next_fqs);
1662 		} else {
1663 			/* Deal with stray signal. */
1664 			cond_resched_tasks_rcu_qs();
1665 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1666 			WARN_ON(signal_pending(current));
1667 			trace_rcu_grace_period(rcu_state.name,
1668 					       READ_ONCE(rcu_state.gp_seq),
1669 					       TPS("fqswaitsig"));
1670 			ret = 1; /* Keep old FQS timing. */
1671 			j = jiffies;
1672 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1673 				j = 1;
1674 			else
1675 				j = rcu_state.jiffies_force_qs - j;
1676 		}
1677 	}
1678 }
1679 
1680 /*
1681  * Clean up after the old grace period.
1682  */
rcu_gp_cleanup(void)1683 static void rcu_gp_cleanup(void)
1684 {
1685 	unsigned long gp_duration;
1686 	bool needgp = false;
1687 	unsigned long new_gp_seq;
1688 	bool offloaded;
1689 	struct rcu_data *rdp;
1690 	struct rcu_node *rnp = rcu_get_root();
1691 	struct swait_queue_head *sq;
1692 
1693 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694 	raw_spin_lock_irq_rcu_node(rnp);
1695 	rcu_state.gp_end = jiffies;
1696 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1697 	if (gp_duration > rcu_state.gp_max)
1698 		rcu_state.gp_max = gp_duration;
1699 
1700 	/*
1701 	 * We know the grace period is complete, but to everyone else
1702 	 * it appears to still be ongoing.  But it is also the case
1703 	 * that to everyone else it looks like there is nothing that
1704 	 * they can do to advance the grace period.  It is therefore
1705 	 * safe for us to drop the lock in order to mark the grace
1706 	 * period as completed in all of the rcu_node structures.
1707 	 */
1708 	raw_spin_unlock_irq_rcu_node(rnp);
1709 
1710 	/*
1711 	 * Propagate new ->gp_seq value to rcu_node structures so that
1712 	 * other CPUs don't have to wait until the start of the next grace
1713 	 * period to process their callbacks.  This also avoids some nasty
1714 	 * RCU grace-period initialization races by forcing the end of
1715 	 * the current grace period to be completely recorded in all of
1716 	 * the rcu_node structures before the beginning of the next grace
1717 	 * period is recorded in any of the rcu_node structures.
1718 	 */
1719 	new_gp_seq = rcu_state.gp_seq;
1720 	rcu_seq_end(&new_gp_seq);
1721 	rcu_for_each_node_breadth_first(rnp) {
1722 		raw_spin_lock_irq_rcu_node(rnp);
1723 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1724 			dump_blkd_tasks(rnp, 10);
1725 		WARN_ON_ONCE(rnp->qsmask);
1726 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1727 		rdp = this_cpu_ptr(&rcu_data);
1728 		if (rnp == rdp->mynode)
1729 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1730 		/* smp_mb() provided by prior unlock-lock pair. */
1731 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1732 		sq = rcu_nocb_gp_get(rnp);
1733 		raw_spin_unlock_irq_rcu_node(rnp);
1734 		rcu_nocb_gp_cleanup(sq);
1735 		cond_resched_tasks_rcu_qs();
1736 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1737 		rcu_gp_slow(gp_cleanup_delay);
1738 	}
1739 	rnp = rcu_get_root();
1740 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1741 
1742 	/* Declare grace period done, trace first to use old GP number. */
1743 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1744 	rcu_seq_end(&rcu_state.gp_seq);
1745 	rcu_state.gp_state = RCU_GP_IDLE;
1746 	/* Check for GP requests since above loop. */
1747 	rdp = this_cpu_ptr(&rcu_data);
1748 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1749 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1750 				  TPS("CleanupMore"));
1751 		needgp = true;
1752 	}
1753 	/* Advance CBs to reduce false positives below. */
1754 	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1755 		    rcu_segcblist_is_offloaded(&rdp->cblist);
1756 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1757 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1758 		rcu_state.gp_req_activity = jiffies;
1759 		trace_rcu_grace_period(rcu_state.name,
1760 				       READ_ONCE(rcu_state.gp_seq),
1761 				       TPS("newreq"));
1762 	} else {
1763 		WRITE_ONCE(rcu_state.gp_flags,
1764 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1765 	}
1766 	raw_spin_unlock_irq_rcu_node(rnp);
1767 }
1768 
1769 /*
1770  * Body of kthread that handles grace periods.
1771  */
rcu_gp_kthread(void * unused)1772 static int __noreturn rcu_gp_kthread(void *unused)
1773 {
1774 	rcu_bind_gp_kthread();
1775 	for (;;) {
1776 
1777 		/* Handle grace-period start. */
1778 		for (;;) {
1779 			trace_rcu_grace_period(rcu_state.name,
1780 					       READ_ONCE(rcu_state.gp_seq),
1781 					       TPS("reqwait"));
1782 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
1783 			swait_event_idle_exclusive(rcu_state.gp_wq,
1784 					 READ_ONCE(rcu_state.gp_flags) &
1785 					 RCU_GP_FLAG_INIT);
1786 			rcu_state.gp_state = RCU_GP_DONE_GPS;
1787 			/* Locking provides needed memory barrier. */
1788 			if (rcu_gp_init())
1789 				break;
1790 			cond_resched_tasks_rcu_qs();
1791 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1792 			WARN_ON(signal_pending(current));
1793 			trace_rcu_grace_period(rcu_state.name,
1794 					       READ_ONCE(rcu_state.gp_seq),
1795 					       TPS("reqwaitsig"));
1796 		}
1797 
1798 		/* Handle quiescent-state forcing. */
1799 		rcu_gp_fqs_loop();
1800 
1801 		/* Handle grace-period end. */
1802 		rcu_state.gp_state = RCU_GP_CLEANUP;
1803 		rcu_gp_cleanup();
1804 		rcu_state.gp_state = RCU_GP_CLEANED;
1805 	}
1806 }
1807 
1808 /*
1809  * Report a full set of quiescent states to the rcu_state data structure.
1810  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1811  * another grace period is required.  Whether we wake the grace-period
1812  * kthread or it awakens itself for the next round of quiescent-state
1813  * forcing, that kthread will clean up after the just-completed grace
1814  * period.  Note that the caller must hold rnp->lock, which is released
1815  * before return.
1816  */
rcu_report_qs_rsp(unsigned long flags)1817 static void rcu_report_qs_rsp(unsigned long flags)
1818 	__releases(rcu_get_root()->lock)
1819 {
1820 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1821 	WARN_ON_ONCE(!rcu_gp_in_progress());
1822 	WRITE_ONCE(rcu_state.gp_flags,
1823 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1824 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1825 	rcu_gp_kthread_wake();
1826 }
1827 
1828 /*
1829  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1830  * Allows quiescent states for a group of CPUs to be reported at one go
1831  * to the specified rcu_node structure, though all the CPUs in the group
1832  * must be represented by the same rcu_node structure (which need not be a
1833  * leaf rcu_node structure, though it often will be).  The gps parameter
1834  * is the grace-period snapshot, which means that the quiescent states
1835  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1836  * must be held upon entry, and it is released before return.
1837  *
1838  * As a special case, if mask is zero, the bit-already-cleared check is
1839  * disabled.  This allows propagating quiescent state due to resumed tasks
1840  * during grace-period initialization.
1841  */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)1842 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1843 			      unsigned long gps, unsigned long flags)
1844 	__releases(rnp->lock)
1845 {
1846 	unsigned long oldmask = 0;
1847 	struct rcu_node *rnp_c;
1848 
1849 	raw_lockdep_assert_held_rcu_node(rnp);
1850 
1851 	/* Walk up the rcu_node hierarchy. */
1852 	for (;;) {
1853 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1854 
1855 			/*
1856 			 * Our bit has already been cleared, or the
1857 			 * relevant grace period is already over, so done.
1858 			 */
1859 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1860 			return;
1861 		}
1862 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1863 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1864 			     rcu_preempt_blocked_readers_cgp(rnp));
1865 		rnp->qsmask &= ~mask;
1866 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1867 						 mask, rnp->qsmask, rnp->level,
1868 						 rnp->grplo, rnp->grphi,
1869 						 !!rnp->gp_tasks);
1870 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1871 
1872 			/* Other bits still set at this level, so done. */
1873 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1874 			return;
1875 		}
1876 		rnp->completedqs = rnp->gp_seq;
1877 		mask = rnp->grpmask;
1878 		if (rnp->parent == NULL) {
1879 
1880 			/* No more levels.  Exit loop holding root lock. */
1881 
1882 			break;
1883 		}
1884 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1885 		rnp_c = rnp;
1886 		rnp = rnp->parent;
1887 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1888 		oldmask = rnp_c->qsmask;
1889 	}
1890 
1891 	/*
1892 	 * Get here if we are the last CPU to pass through a quiescent
1893 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1894 	 * to clean up and start the next grace period if one is needed.
1895 	 */
1896 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1897 }
1898 
1899 /*
1900  * Record a quiescent state for all tasks that were previously queued
1901  * on the specified rcu_node structure and that were blocking the current
1902  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1903  * irqs disabled, and this lock is released upon return, but irqs remain
1904  * disabled.
1905  */
1906 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)1907 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1908 	__releases(rnp->lock)
1909 {
1910 	unsigned long gps;
1911 	unsigned long mask;
1912 	struct rcu_node *rnp_p;
1913 
1914 	raw_lockdep_assert_held_rcu_node(rnp);
1915 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPTION)) ||
1916 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1917 	    rnp->qsmask != 0) {
1918 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1919 		return;  /* Still need more quiescent states! */
1920 	}
1921 
1922 	rnp->completedqs = rnp->gp_seq;
1923 	rnp_p = rnp->parent;
1924 	if (rnp_p == NULL) {
1925 		/*
1926 		 * Only one rcu_node structure in the tree, so don't
1927 		 * try to report up to its nonexistent parent!
1928 		 */
1929 		rcu_report_qs_rsp(flags);
1930 		return;
1931 	}
1932 
1933 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1934 	gps = rnp->gp_seq;
1935 	mask = rnp->grpmask;
1936 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1937 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1938 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1939 }
1940 
1941 /*
1942  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1943  * structure.  This must be called from the specified CPU.
1944  */
1945 static void
rcu_report_qs_rdp(int cpu,struct rcu_data * rdp)1946 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1947 {
1948 	unsigned long flags;
1949 	unsigned long mask;
1950 	bool needwake = false;
1951 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1952 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1953 	struct rcu_node *rnp;
1954 
1955 	rnp = rdp->mynode;
1956 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1957 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1958 	    rdp->gpwrap) {
1959 
1960 		/*
1961 		 * The grace period in which this quiescent state was
1962 		 * recorded has ended, so don't report it upwards.
1963 		 * We will instead need a new quiescent state that lies
1964 		 * within the current grace period.
1965 		 */
1966 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1967 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1968 		return;
1969 	}
1970 	mask = rdp->grpmask;
1971 	rdp->core_needs_qs = false;
1972 	if ((rnp->qsmask & mask) == 0) {
1973 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1974 	} else {
1975 		/*
1976 		 * This GP can't end until cpu checks in, so all of our
1977 		 * callbacks can be processed during the next GP.
1978 		 */
1979 		if (!offloaded)
1980 			needwake = rcu_accelerate_cbs(rnp, rdp);
1981 
1982 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1983 		/* ^^^ Released rnp->lock */
1984 		if (needwake)
1985 			rcu_gp_kthread_wake();
1986 	}
1987 }
1988 
1989 /*
1990  * Check to see if there is a new grace period of which this CPU
1991  * is not yet aware, and if so, set up local rcu_data state for it.
1992  * Otherwise, see if this CPU has just passed through its first
1993  * quiescent state for this grace period, and record that fact if so.
1994  */
1995 static void
rcu_check_quiescent_state(struct rcu_data * rdp)1996 rcu_check_quiescent_state(struct rcu_data *rdp)
1997 {
1998 	/* Check for grace-period ends and beginnings. */
1999 	note_gp_changes(rdp);
2000 
2001 	/*
2002 	 * Does this CPU still need to do its part for current grace period?
2003 	 * If no, return and let the other CPUs do their part as well.
2004 	 */
2005 	if (!rdp->core_needs_qs)
2006 		return;
2007 
2008 	/*
2009 	 * Was there a quiescent state since the beginning of the grace
2010 	 * period? If no, then exit and wait for the next call.
2011 	 */
2012 	if (rdp->cpu_no_qs.b.norm)
2013 		return;
2014 
2015 	/*
2016 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2017 	 * judge of that).
2018 	 */
2019 	rcu_report_qs_rdp(rdp->cpu, rdp);
2020 }
2021 
2022 /*
2023  * Near the end of the offline process.  Trace the fact that this CPU
2024  * is going offline.
2025  */
rcutree_dying_cpu(unsigned int cpu)2026 int rcutree_dying_cpu(unsigned int cpu)
2027 {
2028 	bool blkd;
2029 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2030 	struct rcu_node *rnp = rdp->mynode;
2031 
2032 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2033 		return 0;
2034 
2035 	blkd = !!(rnp->qsmask & rdp->grpmask);
2036 	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2037 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2038 	return 0;
2039 }
2040 
2041 /*
2042  * All CPUs for the specified rcu_node structure have gone offline,
2043  * and all tasks that were preempted within an RCU read-side critical
2044  * section while running on one of those CPUs have since exited their RCU
2045  * read-side critical section.  Some other CPU is reporting this fact with
2046  * the specified rcu_node structure's ->lock held and interrupts disabled.
2047  * This function therefore goes up the tree of rcu_node structures,
2048  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2049  * the leaf rcu_node structure's ->qsmaskinit field has already been
2050  * updated.
2051  *
2052  * This function does check that the specified rcu_node structure has
2053  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2054  * prematurely.  That said, invoking it after the fact will cost you
2055  * a needless lock acquisition.  So once it has done its work, don't
2056  * invoke it again.
2057  */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2058 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2059 {
2060 	long mask;
2061 	struct rcu_node *rnp = rnp_leaf;
2062 
2063 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2064 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2065 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2066 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2067 		return;
2068 	for (;;) {
2069 		mask = rnp->grpmask;
2070 		rnp = rnp->parent;
2071 		if (!rnp)
2072 			break;
2073 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2074 		rnp->qsmaskinit &= ~mask;
2075 		/* Between grace periods, so better already be zero! */
2076 		WARN_ON_ONCE(rnp->qsmask);
2077 		if (rnp->qsmaskinit) {
2078 			raw_spin_unlock_rcu_node(rnp);
2079 			/* irqs remain disabled. */
2080 			return;
2081 		}
2082 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2083 	}
2084 }
2085 
2086 /*
2087  * The CPU has been completely removed, and some other CPU is reporting
2088  * this fact from process context.  Do the remainder of the cleanup.
2089  * There can only be one CPU hotplug operation at a time, so no need for
2090  * explicit locking.
2091  */
rcutree_dead_cpu(unsigned int cpu)2092 int rcutree_dead_cpu(unsigned int cpu)
2093 {
2094 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2095 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2096 
2097 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2098 		return 0;
2099 
2100 	/* Adjust any no-longer-needed kthreads. */
2101 	rcu_boost_kthread_setaffinity(rnp, -1);
2102 	/* Do any needed no-CB deferred wakeups from this CPU. */
2103 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2104 	return 0;
2105 }
2106 
2107 /*
2108  * Invoke any RCU callbacks that have made it to the end of their grace
2109  * period.  Thottle as specified by rdp->blimit.
2110  */
rcu_do_batch(struct rcu_data * rdp)2111 static void rcu_do_batch(struct rcu_data *rdp)
2112 {
2113 	unsigned long flags;
2114 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2115 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2116 	struct rcu_head *rhp;
2117 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2118 	long bl, count;
2119 	long pending, tlimit = 0;
2120 
2121 	/* If no callbacks are ready, just return. */
2122 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2123 		trace_rcu_batch_start(rcu_state.name,
2124 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2125 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2126 		trace_rcu_batch_end(rcu_state.name, 0,
2127 				    !rcu_segcblist_empty(&rdp->cblist),
2128 				    need_resched(), is_idle_task(current),
2129 				    rcu_is_callbacks_kthread());
2130 		return;
2131 	}
2132 
2133 	/*
2134 	 * Extract the list of ready callbacks, disabling to prevent
2135 	 * races with call_rcu() from interrupt handlers.  Leave the
2136 	 * callback counts, as rcu_barrier() needs to be conservative.
2137 	 */
2138 	local_irq_save(flags);
2139 	rcu_nocb_lock(rdp);
2140 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2141 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2142 	bl = max(rdp->blimit, pending >> rcu_divisor);
2143 	if (unlikely(bl > 100))
2144 		tlimit = local_clock() + rcu_resched_ns;
2145 	trace_rcu_batch_start(rcu_state.name,
2146 			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2147 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2148 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2149 	if (offloaded)
2150 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2151 	rcu_nocb_unlock_irqrestore(rdp, flags);
2152 
2153 	/* Invoke callbacks. */
2154 	rhp = rcu_cblist_dequeue(&rcl);
2155 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2156 		debug_rcu_head_unqueue(rhp);
2157 		if (__rcu_reclaim(rcu_state.name, rhp))
2158 			rcu_cblist_dequeued_lazy(&rcl);
2159 		/*
2160 		 * Stop only if limit reached and CPU has something to do.
2161 		 * Note: The rcl structure counts down from zero.
2162 		 */
2163 		if (-rcl.len >= bl && !offloaded &&
2164 		    (need_resched() ||
2165 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2166 			break;
2167 		if (unlikely(tlimit)) {
2168 			/* only call local_clock() every 32 callbacks */
2169 			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2170 				continue;
2171 			/* Exceeded the time limit, so leave. */
2172 			break;
2173 		}
2174 		if (offloaded) {
2175 			WARN_ON_ONCE(in_serving_softirq());
2176 			local_bh_enable();
2177 			lockdep_assert_irqs_enabled();
2178 			cond_resched_tasks_rcu_qs();
2179 			lockdep_assert_irqs_enabled();
2180 			local_bh_disable();
2181 		}
2182 	}
2183 
2184 	local_irq_save(flags);
2185 	rcu_nocb_lock(rdp);
2186 	count = -rcl.len;
2187 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2188 			    is_idle_task(current), rcu_is_callbacks_kthread());
2189 
2190 	/* Update counts and requeue any remaining callbacks. */
2191 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2192 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2193 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2194 
2195 	/* Reinstate batch limit if we have worked down the excess. */
2196 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2197 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2198 		rdp->blimit = blimit;
2199 
2200 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2201 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2202 		rdp->qlen_last_fqs_check = 0;
2203 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2204 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2205 		rdp->qlen_last_fqs_check = count;
2206 
2207 	/*
2208 	 * The following usually indicates a double call_rcu().  To track
2209 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2210 	 */
2211 	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2212 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2213 		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2214 
2215 	rcu_nocb_unlock_irqrestore(rdp, flags);
2216 
2217 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2218 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2219 		invoke_rcu_core();
2220 }
2221 
2222 /*
2223  * This function is invoked from each scheduling-clock interrupt,
2224  * and checks to see if this CPU is in a non-context-switch quiescent
2225  * state, for example, user mode or idle loop.  It also schedules RCU
2226  * core processing.  If the current grace period has gone on too long,
2227  * it will ask the scheduler to manufacture a context switch for the sole
2228  * purpose of providing a providing the needed quiescent state.
2229  */
rcu_sched_clock_irq(int user)2230 void rcu_sched_clock_irq(int user)
2231 {
2232 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2233 	raw_cpu_inc(rcu_data.ticks_this_gp);
2234 	/* The load-acquire pairs with the store-release setting to true. */
2235 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2236 		/* Idle and userspace execution already are quiescent states. */
2237 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2238 			set_tsk_need_resched(current);
2239 			set_preempt_need_resched();
2240 		}
2241 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2242 	}
2243 	rcu_flavor_sched_clock_irq(user);
2244 	if (rcu_pending())
2245 		invoke_rcu_core();
2246 
2247 	trace_rcu_utilization(TPS("End scheduler-tick"));
2248 }
2249 
2250 /*
2251  * Scan the leaf rcu_node structures.  For each structure on which all
2252  * CPUs have reported a quiescent state and on which there are tasks
2253  * blocking the current grace period, initiate RCU priority boosting.
2254  * Otherwise, invoke the specified function to check dyntick state for
2255  * each CPU that has not yet reported a quiescent state.
2256  */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2257 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2258 {
2259 	int cpu;
2260 	unsigned long flags;
2261 	unsigned long mask;
2262 	struct rcu_node *rnp;
2263 
2264 	rcu_for_each_leaf_node(rnp) {
2265 		cond_resched_tasks_rcu_qs();
2266 		mask = 0;
2267 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2268 		if (rnp->qsmask == 0) {
2269 			if (!IS_ENABLED(CONFIG_PREEMPTION) ||
2270 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2271 				/*
2272 				 * No point in scanning bits because they
2273 				 * are all zero.  But we might need to
2274 				 * priority-boost blocked readers.
2275 				 */
2276 				rcu_initiate_boost(rnp, flags);
2277 				/* rcu_initiate_boost() releases rnp->lock */
2278 				continue;
2279 			}
2280 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2281 			continue;
2282 		}
2283 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2284 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2285 			if ((rnp->qsmask & bit) != 0) {
2286 				if (f(per_cpu_ptr(&rcu_data, cpu)))
2287 					mask |= bit;
2288 			}
2289 		}
2290 		if (mask != 0) {
2291 			/* Idle/offline CPUs, report (releases rnp->lock). */
2292 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2293 		} else {
2294 			/* Nothing to do here, so just drop the lock. */
2295 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2296 		}
2297 	}
2298 }
2299 
2300 /*
2301  * Force quiescent states on reluctant CPUs, and also detect which
2302  * CPUs are in dyntick-idle mode.
2303  */
rcu_force_quiescent_state(void)2304 void rcu_force_quiescent_state(void)
2305 {
2306 	unsigned long flags;
2307 	bool ret;
2308 	struct rcu_node *rnp;
2309 	struct rcu_node *rnp_old = NULL;
2310 
2311 	/* Funnel through hierarchy to reduce memory contention. */
2312 	rnp = __this_cpu_read(rcu_data.mynode);
2313 	for (; rnp != NULL; rnp = rnp->parent) {
2314 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2315 		      !raw_spin_trylock(&rnp->fqslock);
2316 		if (rnp_old != NULL)
2317 			raw_spin_unlock(&rnp_old->fqslock);
2318 		if (ret)
2319 			return;
2320 		rnp_old = rnp;
2321 	}
2322 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2323 
2324 	/* Reached the root of the rcu_node tree, acquire lock. */
2325 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2326 	raw_spin_unlock(&rnp_old->fqslock);
2327 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2328 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2329 		return;  /* Someone beat us to it. */
2330 	}
2331 	WRITE_ONCE(rcu_state.gp_flags,
2332 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2333 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2334 	rcu_gp_kthread_wake();
2335 }
2336 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2337 
2338 /* Perform RCU core processing work for the current CPU.  */
rcu_core(void)2339 static __latent_entropy void rcu_core(void)
2340 {
2341 	unsigned long flags;
2342 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2343 	struct rcu_node *rnp = rdp->mynode;
2344 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2345 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2346 
2347 	if (cpu_is_offline(smp_processor_id()))
2348 		return;
2349 	trace_rcu_utilization(TPS("Start RCU core"));
2350 	WARN_ON_ONCE(!rdp->beenonline);
2351 
2352 	/* Report any deferred quiescent states if preemption enabled. */
2353 	if (!(preempt_count() & PREEMPT_MASK)) {
2354 		rcu_preempt_deferred_qs(current);
2355 	} else if (rcu_preempt_need_deferred_qs(current)) {
2356 		set_tsk_need_resched(current);
2357 		set_preempt_need_resched();
2358 	}
2359 
2360 	/* Update RCU state based on any recent quiescent states. */
2361 	rcu_check_quiescent_state(rdp);
2362 
2363 	/* No grace period and unregistered callbacks? */
2364 	if (!rcu_gp_in_progress() &&
2365 	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2366 		local_irq_save(flags);
2367 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2368 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2369 		local_irq_restore(flags);
2370 	}
2371 
2372 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2373 
2374 	/* If there are callbacks ready, invoke them. */
2375 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2376 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2377 		rcu_do_batch(rdp);
2378 
2379 	/* Do any needed deferred wakeups of rcuo kthreads. */
2380 	do_nocb_deferred_wakeup(rdp);
2381 	trace_rcu_utilization(TPS("End RCU core"));
2382 }
2383 
rcu_core_si(struct softirq_action * h)2384 static void rcu_core_si(struct softirq_action *h)
2385 {
2386 	rcu_core();
2387 }
2388 
rcu_wake_cond(struct task_struct * t,int status)2389 static void rcu_wake_cond(struct task_struct *t, int status)
2390 {
2391 	/*
2392 	 * If the thread is yielding, only wake it when this
2393 	 * is invoked from idle
2394 	 */
2395 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2396 		wake_up_process(t);
2397 }
2398 
invoke_rcu_core_kthread(void)2399 static void invoke_rcu_core_kthread(void)
2400 {
2401 	struct task_struct *t;
2402 	unsigned long flags;
2403 
2404 	local_irq_save(flags);
2405 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2406 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2407 	if (t != NULL && t != current)
2408 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2409 	local_irq_restore(flags);
2410 }
2411 
2412 /*
2413  * Wake up this CPU's rcuc kthread to do RCU core processing.
2414  */
invoke_rcu_core(void)2415 static void invoke_rcu_core(void)
2416 {
2417 	if (!cpu_online(smp_processor_id()))
2418 		return;
2419 	if (use_softirq)
2420 		raise_softirq(RCU_SOFTIRQ);
2421 	else
2422 		invoke_rcu_core_kthread();
2423 }
2424 
rcu_cpu_kthread_park(unsigned int cpu)2425 static void rcu_cpu_kthread_park(unsigned int cpu)
2426 {
2427 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2428 }
2429 
rcu_cpu_kthread_should_run(unsigned int cpu)2430 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2431 {
2432 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2433 }
2434 
2435 /*
2436  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2437  * the RCU softirq used in configurations of RCU that do not support RCU
2438  * priority boosting.
2439  */
rcu_cpu_kthread(unsigned int cpu)2440 static void rcu_cpu_kthread(unsigned int cpu)
2441 {
2442 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2443 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2444 	int spincnt;
2445 
2446 	for (spincnt = 0; spincnt < 10; spincnt++) {
2447 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2448 		local_bh_disable();
2449 		*statusp = RCU_KTHREAD_RUNNING;
2450 		local_irq_disable();
2451 		work = *workp;
2452 		*workp = 0;
2453 		local_irq_enable();
2454 		if (work)
2455 			rcu_core();
2456 		local_bh_enable();
2457 		if (*workp == 0) {
2458 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2459 			*statusp = RCU_KTHREAD_WAITING;
2460 			return;
2461 		}
2462 	}
2463 	*statusp = RCU_KTHREAD_YIELDING;
2464 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2465 	schedule_timeout_interruptible(2);
2466 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2467 	*statusp = RCU_KTHREAD_WAITING;
2468 }
2469 
2470 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2471 	.store			= &rcu_data.rcu_cpu_kthread_task,
2472 	.thread_should_run	= rcu_cpu_kthread_should_run,
2473 	.thread_fn		= rcu_cpu_kthread,
2474 	.thread_comm		= "rcuc/%u",
2475 	.setup			= rcu_cpu_kthread_setup,
2476 	.park			= rcu_cpu_kthread_park,
2477 };
2478 
2479 /*
2480  * Spawn per-CPU RCU core processing kthreads.
2481  */
rcu_spawn_core_kthreads(void)2482 static int __init rcu_spawn_core_kthreads(void)
2483 {
2484 	int cpu;
2485 
2486 	for_each_possible_cpu(cpu)
2487 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2488 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2489 		return 0;
2490 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2491 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2492 	return 0;
2493 }
2494 early_initcall(rcu_spawn_core_kthreads);
2495 
2496 /*
2497  * Handle any core-RCU processing required by a call_rcu() invocation.
2498  */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2499 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2500 			    unsigned long flags)
2501 {
2502 	/*
2503 	 * If called from an extended quiescent state, invoke the RCU
2504 	 * core in order to force a re-evaluation of RCU's idleness.
2505 	 */
2506 	if (!rcu_is_watching())
2507 		invoke_rcu_core();
2508 
2509 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2510 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2511 		return;
2512 
2513 	/*
2514 	 * Force the grace period if too many callbacks or too long waiting.
2515 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2516 	 * if some other CPU has recently done so.  Also, don't bother
2517 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2518 	 * is the only one waiting for a grace period to complete.
2519 	 */
2520 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2521 		     rdp->qlen_last_fqs_check + qhimark)) {
2522 
2523 		/* Are we ignoring a completed grace period? */
2524 		note_gp_changes(rdp);
2525 
2526 		/* Start a new grace period if one not already started. */
2527 		if (!rcu_gp_in_progress()) {
2528 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2529 		} else {
2530 			/* Give the grace period a kick. */
2531 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2532 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2533 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2534 				rcu_force_quiescent_state();
2535 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2536 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2537 		}
2538 	}
2539 }
2540 
2541 /*
2542  * RCU callback function to leak a callback.
2543  */
rcu_leak_callback(struct rcu_head * rhp)2544 static void rcu_leak_callback(struct rcu_head *rhp)
2545 {
2546 }
2547 
2548 /*
2549  * Helper function for call_rcu() and friends.  The cpu argument will
2550  * normally be -1, indicating "currently running CPU".  It may specify
2551  * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2552  * is expected to specify a CPU.
2553  */
2554 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func,bool lazy)2555 __call_rcu(struct rcu_head *head, rcu_callback_t func, bool lazy)
2556 {
2557 	unsigned long flags;
2558 	struct rcu_data *rdp;
2559 	bool was_alldone;
2560 
2561 	/* Misaligned rcu_head! */
2562 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2563 
2564 	if (debug_rcu_head_queue(head)) {
2565 		/*
2566 		 * Probable double call_rcu(), so leak the callback.
2567 		 * Use rcu:rcu_callback trace event to find the previous
2568 		 * time callback was passed to __call_rcu().
2569 		 */
2570 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2571 			  head, head->func);
2572 		WRITE_ONCE(head->func, rcu_leak_callback);
2573 		return;
2574 	}
2575 	head->func = func;
2576 	head->next = NULL;
2577 	local_irq_save(flags);
2578 	rdp = this_cpu_ptr(&rcu_data);
2579 
2580 	/* Add the callback to our list. */
2581 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2582 		// This can trigger due to call_rcu() from offline CPU:
2583 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2584 		WARN_ON_ONCE(!rcu_is_watching());
2585 		// Very early boot, before rcu_init().  Initialize if needed
2586 		// and then drop through to queue the callback.
2587 		if (rcu_segcblist_empty(&rdp->cblist))
2588 			rcu_segcblist_init(&rdp->cblist);
2589 	}
2590 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2591 		return; // Enqueued onto ->nocb_bypass, so just leave.
2592 	/* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */
2593 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2594 	if (__is_kfree_rcu_offset((unsigned long)func))
2595 		trace_rcu_kfree_callback(rcu_state.name, head,
2596 					 (unsigned long)func,
2597 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2598 					 rcu_segcblist_n_cbs(&rdp->cblist));
2599 	else
2600 		trace_rcu_callback(rcu_state.name, head,
2601 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2602 				   rcu_segcblist_n_cbs(&rdp->cblist));
2603 
2604 	/* Go handle any RCU core processing required. */
2605 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2606 	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2607 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2608 	} else {
2609 		__call_rcu_core(rdp, head, flags);
2610 		local_irq_restore(flags);
2611 	}
2612 }
2613 
2614 /**
2615  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2616  * @head: structure to be used for queueing the RCU updates.
2617  * @func: actual callback function to be invoked after the grace period
2618  *
2619  * The callback function will be invoked some time after a full grace
2620  * period elapses, in other words after all pre-existing RCU read-side
2621  * critical sections have completed.  However, the callback function
2622  * might well execute concurrently with RCU read-side critical sections
2623  * that started after call_rcu() was invoked.  RCU read-side critical
2624  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2625  * may be nested.  In addition, regions of code across which interrupts,
2626  * preemption, or softirqs have been disabled also serve as RCU read-side
2627  * critical sections.  This includes hardware interrupt handlers, softirq
2628  * handlers, and NMI handlers.
2629  *
2630  * Note that all CPUs must agree that the grace period extended beyond
2631  * all pre-existing RCU read-side critical section.  On systems with more
2632  * than one CPU, this means that when "func()" is invoked, each CPU is
2633  * guaranteed to have executed a full memory barrier since the end of its
2634  * last RCU read-side critical section whose beginning preceded the call
2635  * to call_rcu().  It also means that each CPU executing an RCU read-side
2636  * critical section that continues beyond the start of "func()" must have
2637  * executed a memory barrier after the call_rcu() but before the beginning
2638  * of that RCU read-side critical section.  Note that these guarantees
2639  * include CPUs that are offline, idle, or executing in user mode, as
2640  * well as CPUs that are executing in the kernel.
2641  *
2642  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2643  * resulting RCU callback function "func()", then both CPU A and CPU B are
2644  * guaranteed to execute a full memory barrier during the time interval
2645  * between the call to call_rcu() and the invocation of "func()" -- even
2646  * if CPU A and CPU B are the same CPU (but again only if the system has
2647  * more than one CPU).
2648  */
call_rcu(struct rcu_head * head,rcu_callback_t func)2649 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2650 {
2651 	__call_rcu(head, func, 0);
2652 }
2653 EXPORT_SYMBOL_GPL(call_rcu);
2654 
2655 /*
2656  * Queue an RCU callback for lazy invocation after a grace period.
2657  * This will likely be later named something like "call_rcu_lazy()",
2658  * but this change will require some way of tagging the lazy RCU
2659  * callbacks in the list of pending callbacks. Until then, this
2660  * function may only be called from __kfree_rcu().
2661  */
kfree_call_rcu(struct rcu_head * head,rcu_callback_t func)2662 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2663 {
2664 	__call_rcu(head, func, 1);
2665 }
2666 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2667 
2668 /*
2669  * During early boot, any blocking grace-period wait automatically
2670  * implies a grace period.  Later on, this is never the case for PREEMPT.
2671  *
2672  * Howevr, because a context switch is a grace period for !PREEMPT, any
2673  * blocking grace-period wait automatically implies a grace period if
2674  * there is only one CPU online at any point time during execution of
2675  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2676  * occasionally incorrectly indicate that there are multiple CPUs online
2677  * when there was in fact only one the whole time, as this just adds some
2678  * overhead: RCU still operates correctly.
2679  */
rcu_blocking_is_gp(void)2680 static int rcu_blocking_is_gp(void)
2681 {
2682 	int ret;
2683 
2684 	if (IS_ENABLED(CONFIG_PREEMPTION))
2685 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2686 	might_sleep();  /* Check for RCU read-side critical section. */
2687 	preempt_disable();
2688 	ret = num_online_cpus() <= 1;
2689 	preempt_enable();
2690 	return ret;
2691 }
2692 
2693 /**
2694  * synchronize_rcu - wait until a grace period has elapsed.
2695  *
2696  * Control will return to the caller some time after a full grace
2697  * period has elapsed, in other words after all currently executing RCU
2698  * read-side critical sections have completed.  Note, however, that
2699  * upon return from synchronize_rcu(), the caller might well be executing
2700  * concurrently with new RCU read-side critical sections that began while
2701  * synchronize_rcu() was waiting.  RCU read-side critical sections are
2702  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2703  * In addition, regions of code across which interrupts, preemption, or
2704  * softirqs have been disabled also serve as RCU read-side critical
2705  * sections.  This includes hardware interrupt handlers, softirq handlers,
2706  * and NMI handlers.
2707  *
2708  * Note that this guarantee implies further memory-ordering guarantees.
2709  * On systems with more than one CPU, when synchronize_rcu() returns,
2710  * each CPU is guaranteed to have executed a full memory barrier since
2711  * the end of its last RCU read-side critical section whose beginning
2712  * preceded the call to synchronize_rcu().  In addition, each CPU having
2713  * an RCU read-side critical section that extends beyond the return from
2714  * synchronize_rcu() is guaranteed to have executed a full memory barrier
2715  * after the beginning of synchronize_rcu() and before the beginning of
2716  * that RCU read-side critical section.  Note that these guarantees include
2717  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2718  * that are executing in the kernel.
2719  *
2720  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2721  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2722  * to have executed a full memory barrier during the execution of
2723  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2724  * again only if the system has more than one CPU).
2725  */
synchronize_rcu(void)2726 void synchronize_rcu(void)
2727 {
2728 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2729 			 lock_is_held(&rcu_lock_map) ||
2730 			 lock_is_held(&rcu_sched_lock_map),
2731 			 "Illegal synchronize_rcu() in RCU read-side critical section");
2732 	if (rcu_blocking_is_gp())
2733 		return;
2734 	if (rcu_gp_is_expedited())
2735 		synchronize_rcu_expedited();
2736 	else
2737 		wait_rcu_gp(call_rcu);
2738 }
2739 EXPORT_SYMBOL_GPL(synchronize_rcu);
2740 
2741 /**
2742  * get_state_synchronize_rcu - Snapshot current RCU state
2743  *
2744  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2745  * to determine whether or not a full grace period has elapsed in the
2746  * meantime.
2747  */
get_state_synchronize_rcu(void)2748 unsigned long get_state_synchronize_rcu(void)
2749 {
2750 	/*
2751 	 * Any prior manipulation of RCU-protected data must happen
2752 	 * before the load from ->gp_seq.
2753 	 */
2754 	smp_mb();  /* ^^^ */
2755 	return rcu_seq_snap(&rcu_state.gp_seq);
2756 }
2757 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2758 
2759 /**
2760  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2761  *
2762  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2763  *
2764  * If a full RCU grace period has elapsed since the earlier call to
2765  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2766  * synchronize_rcu() to wait for a full grace period.
2767  *
2768  * Yes, this function does not take counter wrap into account.  But
2769  * counter wrap is harmless.  If the counter wraps, we have waited for
2770  * more than 2 billion grace periods (and way more on a 64-bit system!),
2771  * so waiting for one additional grace period should be just fine.
2772  */
cond_synchronize_rcu(unsigned long oldstate)2773 void cond_synchronize_rcu(unsigned long oldstate)
2774 {
2775 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2776 		synchronize_rcu();
2777 	else
2778 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
2779 }
2780 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2781 
2782 /*
2783  * Check to see if there is any immediate RCU-related work to be done by
2784  * the current CPU, returning 1 if so and zero otherwise.  The checks are
2785  * in order of increasing expense: checks that can be carried out against
2786  * CPU-local state are performed first.  However, we must check for CPU
2787  * stalls first, else we might not get a chance.
2788  */
rcu_pending(void)2789 static int rcu_pending(void)
2790 {
2791 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2792 	struct rcu_node *rnp = rdp->mynode;
2793 
2794 	/* Check for CPU stalls, if enabled. */
2795 	check_cpu_stall(rdp);
2796 
2797 	/* Does this CPU need a deferred NOCB wakeup? */
2798 	if (rcu_nocb_need_deferred_wakeup(rdp))
2799 		return 1;
2800 
2801 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2802 	if (rcu_nohz_full_cpu())
2803 		return 0;
2804 
2805 	/* Is the RCU core waiting for a quiescent state from this CPU? */
2806 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2807 		return 1;
2808 
2809 	/* Does this CPU have callbacks ready to invoke? */
2810 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2811 		return 1;
2812 
2813 	/* Has RCU gone idle with this CPU needing another grace period? */
2814 	if (!rcu_gp_in_progress() &&
2815 	    rcu_segcblist_is_enabled(&rdp->cblist) &&
2816 	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
2817 	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
2818 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2819 		return 1;
2820 
2821 	/* Have RCU grace period completed or started?  */
2822 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2823 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2824 		return 1;
2825 
2826 	/* nothing to do */
2827 	return 0;
2828 }
2829 
2830 /*
2831  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
2832  * the compiler is expected to optimize this away.
2833  */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)2834 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2835 {
2836 	trace_rcu_barrier(rcu_state.name, s, cpu,
2837 			  atomic_read(&rcu_state.barrier_cpu_count), done);
2838 }
2839 
2840 /*
2841  * RCU callback function for rcu_barrier().  If we are last, wake
2842  * up the task executing rcu_barrier().
2843  */
rcu_barrier_callback(struct rcu_head * rhp)2844 static void rcu_barrier_callback(struct rcu_head *rhp)
2845 {
2846 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2847 		rcu_barrier_trace(TPS("LastCB"), -1,
2848 				   rcu_state.barrier_sequence);
2849 		complete(&rcu_state.barrier_completion);
2850 	} else {
2851 		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2852 	}
2853 }
2854 
2855 /*
2856  * Called with preemption disabled, and from cross-cpu IRQ context.
2857  */
rcu_barrier_func(void * unused)2858 static void rcu_barrier_func(void *unused)
2859 {
2860 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2861 
2862 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2863 	rdp->barrier_head.func = rcu_barrier_callback;
2864 	debug_rcu_head_queue(&rdp->barrier_head);
2865 	rcu_nocb_lock(rdp);
2866 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2867 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2868 		atomic_inc(&rcu_state.barrier_cpu_count);
2869 	} else {
2870 		debug_rcu_head_unqueue(&rdp->barrier_head);
2871 		rcu_barrier_trace(TPS("IRQNQ"), -1,
2872 				   rcu_state.barrier_sequence);
2873 	}
2874 	rcu_nocb_unlock(rdp);
2875 }
2876 
2877 /**
2878  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2879  *
2880  * Note that this primitive does not necessarily wait for an RCU grace period
2881  * to complete.  For example, if there are no RCU callbacks queued anywhere
2882  * in the system, then rcu_barrier() is within its rights to return
2883  * immediately, without waiting for anything, much less an RCU grace period.
2884  */
rcu_barrier(void)2885 void rcu_barrier(void)
2886 {
2887 	int cpu;
2888 	struct rcu_data *rdp;
2889 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2890 
2891 	rcu_barrier_trace(TPS("Begin"), -1, s);
2892 
2893 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2894 	mutex_lock(&rcu_state.barrier_mutex);
2895 
2896 	/* Did someone else do our work for us? */
2897 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2898 		rcu_barrier_trace(TPS("EarlyExit"), -1,
2899 				   rcu_state.barrier_sequence);
2900 		smp_mb(); /* caller's subsequent code after above check. */
2901 		mutex_unlock(&rcu_state.barrier_mutex);
2902 		return;
2903 	}
2904 
2905 	/* Mark the start of the barrier operation. */
2906 	rcu_seq_start(&rcu_state.barrier_sequence);
2907 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2908 
2909 	/*
2910 	 * Initialize the count to one rather than to zero in order to
2911 	 * avoid a too-soon return to zero in case of a short grace period
2912 	 * (or preemption of this task).  Exclude CPU-hotplug operations
2913 	 * to ensure that no offline CPU has callbacks queued.
2914 	 */
2915 	init_completion(&rcu_state.barrier_completion);
2916 	atomic_set(&rcu_state.barrier_cpu_count, 1);
2917 	get_online_cpus();
2918 
2919 	/*
2920 	 * Force each CPU with callbacks to register a new callback.
2921 	 * When that callback is invoked, we will know that all of the
2922 	 * corresponding CPU's preceding callbacks have been invoked.
2923 	 */
2924 	for_each_possible_cpu(cpu) {
2925 		rdp = per_cpu_ptr(&rcu_data, cpu);
2926 		if (!cpu_online(cpu) &&
2927 		    !rcu_segcblist_is_offloaded(&rdp->cblist))
2928 			continue;
2929 		if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2930 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
2931 					   rcu_state.barrier_sequence);
2932 			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2933 		} else {
2934 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2935 					   rcu_state.barrier_sequence);
2936 		}
2937 	}
2938 	put_online_cpus();
2939 
2940 	/*
2941 	 * Now that we have an rcu_barrier_callback() callback on each
2942 	 * CPU, and thus each counted, remove the initial count.
2943 	 */
2944 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2945 		complete(&rcu_state.barrier_completion);
2946 
2947 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2948 	wait_for_completion(&rcu_state.barrier_completion);
2949 
2950 	/* Mark the end of the barrier operation. */
2951 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2952 	rcu_seq_end(&rcu_state.barrier_sequence);
2953 
2954 	/* Other rcu_barrier() invocations can now safely proceed. */
2955 	mutex_unlock(&rcu_state.barrier_mutex);
2956 }
2957 EXPORT_SYMBOL_GPL(rcu_barrier);
2958 
2959 /*
2960  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2961  * first CPU in a given leaf rcu_node structure coming online.  The caller
2962  * must hold the corresponding leaf rcu_node ->lock with interrrupts
2963  * disabled.
2964  */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)2965 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2966 {
2967 	long mask;
2968 	long oldmask;
2969 	struct rcu_node *rnp = rnp_leaf;
2970 
2971 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2972 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
2973 	for (;;) {
2974 		mask = rnp->grpmask;
2975 		rnp = rnp->parent;
2976 		if (rnp == NULL)
2977 			return;
2978 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2979 		oldmask = rnp->qsmaskinit;
2980 		rnp->qsmaskinit |= mask;
2981 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2982 		if (oldmask)
2983 			return;
2984 	}
2985 }
2986 
2987 /*
2988  * Do boot-time initialization of a CPU's per-CPU RCU data.
2989  */
2990 static void __init
rcu_boot_init_percpu_data(int cpu)2991 rcu_boot_init_percpu_data(int cpu)
2992 {
2993 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2994 
2995 	/* Set up local state, ensuring consistent view of global state. */
2996 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
2997 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2998 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
2999 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3000 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3001 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3002 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3003 	rdp->cpu = cpu;
3004 	rcu_boot_init_nocb_percpu_data(rdp);
3005 }
3006 
3007 /*
3008  * Invoked early in the CPU-online process, when pretty much all services
3009  * are available.  The incoming CPU is not present.
3010  *
3011  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3012  * offline event can be happening at a given time.  Note also that we can
3013  * accept some slop in the rsp->gp_seq access due to the fact that this
3014  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3015  * And any offloaded callbacks are being numbered elsewhere.
3016  */
rcutree_prepare_cpu(unsigned int cpu)3017 int rcutree_prepare_cpu(unsigned int cpu)
3018 {
3019 	unsigned long flags;
3020 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3021 	struct rcu_node *rnp = rcu_get_root();
3022 
3023 	/* Set up local state, ensuring consistent view of global state. */
3024 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3025 	rdp->qlen_last_fqs_check = 0;
3026 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3027 	rdp->blimit = blimit;
3028 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3029 	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3030 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3031 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3032 	rcu_dynticks_eqs_online();
3033 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3034 
3035 	/*
3036 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3037 	 * propagation up the rcu_node tree will happen at the beginning
3038 	 * of the next grace period.
3039 	 */
3040 	rnp = rdp->mynode;
3041 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3042 	rdp->beenonline = true;	 /* We have now been online. */
3043 	rdp->gp_seq = rnp->gp_seq;
3044 	rdp->gp_seq_needed = rnp->gp_seq;
3045 	rdp->cpu_no_qs.b.norm = true;
3046 	rdp->core_needs_qs = false;
3047 	rdp->rcu_iw_pending = false;
3048 	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3049 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3050 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3051 	rcu_prepare_kthreads(cpu);
3052 	rcu_spawn_cpu_nocb_kthread(cpu);
3053 
3054 	return 0;
3055 }
3056 
3057 /*
3058  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3059  */
rcutree_affinity_setting(unsigned int cpu,int outgoing)3060 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3061 {
3062 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3063 
3064 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3065 }
3066 
3067 /*
3068  * Near the end of the CPU-online process.  Pretty much all services
3069  * enabled, and the CPU is now very much alive.
3070  */
rcutree_online_cpu(unsigned int cpu)3071 int rcutree_online_cpu(unsigned int cpu)
3072 {
3073 	unsigned long flags;
3074 	struct rcu_data *rdp;
3075 	struct rcu_node *rnp;
3076 
3077 	rdp = per_cpu_ptr(&rcu_data, cpu);
3078 	rnp = rdp->mynode;
3079 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3080 	rnp->ffmask |= rdp->grpmask;
3081 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3082 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3083 		return 0; /* Too early in boot for scheduler work. */
3084 	sync_sched_exp_online_cleanup(cpu);
3085 	rcutree_affinity_setting(cpu, -1);
3086 	return 0;
3087 }
3088 
3089 /*
3090  * Near the beginning of the process.  The CPU is still very much alive
3091  * with pretty much all services enabled.
3092  */
rcutree_offline_cpu(unsigned int cpu)3093 int rcutree_offline_cpu(unsigned int cpu)
3094 {
3095 	unsigned long flags;
3096 	struct rcu_data *rdp;
3097 	struct rcu_node *rnp;
3098 
3099 	rdp = per_cpu_ptr(&rcu_data, cpu);
3100 	rnp = rdp->mynode;
3101 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3102 	rnp->ffmask &= ~rdp->grpmask;
3103 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3104 
3105 	rcutree_affinity_setting(cpu, cpu);
3106 	return 0;
3107 }
3108 
3109 static DEFINE_PER_CPU(int, rcu_cpu_started);
3110 
3111 /*
3112  * Mark the specified CPU as being online so that subsequent grace periods
3113  * (both expedited and normal) will wait on it.  Note that this means that
3114  * incoming CPUs are not allowed to use RCU read-side critical sections
3115  * until this function is called.  Failing to observe this restriction
3116  * will result in lockdep splats.
3117  *
3118  * Note that this function is special in that it is invoked directly
3119  * from the incoming CPU rather than from the cpuhp_step mechanism.
3120  * This is because this function must be invoked at a precise location.
3121  */
rcu_cpu_starting(unsigned int cpu)3122 void rcu_cpu_starting(unsigned int cpu)
3123 {
3124 	unsigned long flags;
3125 	unsigned long mask;
3126 	int nbits;
3127 	unsigned long oldmask;
3128 	struct rcu_data *rdp;
3129 	struct rcu_node *rnp;
3130 
3131 	if (per_cpu(rcu_cpu_started, cpu))
3132 		return;
3133 
3134 	per_cpu(rcu_cpu_started, cpu) = 1;
3135 
3136 	rdp = per_cpu_ptr(&rcu_data, cpu);
3137 	rnp = rdp->mynode;
3138 	mask = rdp->grpmask;
3139 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3140 	rnp->qsmaskinitnext |= mask;
3141 	oldmask = rnp->expmaskinitnext;
3142 	rnp->expmaskinitnext |= mask;
3143 	oldmask ^= rnp->expmaskinitnext;
3144 	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3145 	/* Allow lockless access for expedited grace periods. */
3146 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3147 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3148 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3149 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3150 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3151 		/* Report QS -after- changing ->qsmaskinitnext! */
3152 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3153 	} else {
3154 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3155 	}
3156 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3157 }
3158 
3159 #ifdef CONFIG_HOTPLUG_CPU
3160 /*
3161  * The outgoing function has no further need of RCU, so remove it from
3162  * the rcu_node tree's ->qsmaskinitnext bit masks.
3163  *
3164  * Note that this function is special in that it is invoked directly
3165  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3166  * This is because this function must be invoked at a precise location.
3167  */
rcu_report_dead(unsigned int cpu)3168 void rcu_report_dead(unsigned int cpu)
3169 {
3170 	unsigned long flags;
3171 	unsigned long mask;
3172 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3173 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3174 
3175 	/* QS for any half-done expedited grace period. */
3176 	preempt_disable();
3177 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3178 	preempt_enable();
3179 	rcu_preempt_deferred_qs(current);
3180 
3181 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3182 	mask = rdp->grpmask;
3183 	raw_spin_lock(&rcu_state.ofl_lock);
3184 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3185 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3186 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3187 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3188 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3189 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3190 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3191 	}
3192 	rnp->qsmaskinitnext &= ~mask;
3193 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3194 	raw_spin_unlock(&rcu_state.ofl_lock);
3195 
3196 	per_cpu(rcu_cpu_started, cpu) = 0;
3197 }
3198 
3199 /*
3200  * The outgoing CPU has just passed through the dying-idle state, and we
3201  * are being invoked from the CPU that was IPIed to continue the offline
3202  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3203  */
rcutree_migrate_callbacks(int cpu)3204 void rcutree_migrate_callbacks(int cpu)
3205 {
3206 	unsigned long flags;
3207 	struct rcu_data *my_rdp;
3208 	struct rcu_node *my_rnp;
3209 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3210 	bool needwake;
3211 
3212 	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3213 	    rcu_segcblist_empty(&rdp->cblist))
3214 		return;  /* No callbacks to migrate. */
3215 
3216 	local_irq_save(flags);
3217 	my_rdp = this_cpu_ptr(&rcu_data);
3218 	my_rnp = my_rdp->mynode;
3219 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3220 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3221 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3222 	/* Leverage recent GPs and set GP for new callbacks. */
3223 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
3224 		   rcu_advance_cbs(my_rnp, my_rdp);
3225 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3226 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3227 	rcu_segcblist_disable(&rdp->cblist);
3228 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3229 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3230 	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3231 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3232 		__call_rcu_nocb_wake(my_rdp, true, flags);
3233 	} else {
3234 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3235 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3236 	}
3237 	if (needwake)
3238 		rcu_gp_kthread_wake();
3239 	lockdep_assert_irqs_enabled();
3240 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3241 		  !rcu_segcblist_empty(&rdp->cblist),
3242 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3243 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3244 		  rcu_segcblist_first_cb(&rdp->cblist));
3245 }
3246 #endif
3247 
3248 /*
3249  * On non-huge systems, use expedited RCU grace periods to make suspend
3250  * and hibernation run faster.
3251  */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)3252 static int rcu_pm_notify(struct notifier_block *self,
3253 			 unsigned long action, void *hcpu)
3254 {
3255 	switch (action) {
3256 	case PM_HIBERNATION_PREPARE:
3257 	case PM_SUSPEND_PREPARE:
3258 		rcu_expedite_gp();
3259 		break;
3260 	case PM_POST_HIBERNATION:
3261 	case PM_POST_SUSPEND:
3262 		rcu_unexpedite_gp();
3263 		break;
3264 	default:
3265 		break;
3266 	}
3267 	return NOTIFY_OK;
3268 }
3269 
3270 /*
3271  * Spawn the kthreads that handle RCU's grace periods.
3272  */
rcu_spawn_gp_kthread(void)3273 static int __init rcu_spawn_gp_kthread(void)
3274 {
3275 	unsigned long flags;
3276 	int kthread_prio_in = kthread_prio;
3277 	struct rcu_node *rnp;
3278 	struct sched_param sp;
3279 	struct task_struct *t;
3280 
3281 	/* Force priority into range. */
3282 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3283 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3284 		kthread_prio = 2;
3285 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3286 		kthread_prio = 1;
3287 	else if (kthread_prio < 0)
3288 		kthread_prio = 0;
3289 	else if (kthread_prio > 99)
3290 		kthread_prio = 99;
3291 
3292 	if (kthread_prio != kthread_prio_in)
3293 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3294 			 kthread_prio, kthread_prio_in);
3295 
3296 	rcu_scheduler_fully_active = 1;
3297 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3298 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3299 		return 0;
3300 	if (kthread_prio) {
3301 		sp.sched_priority = kthread_prio;
3302 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3303 	}
3304 	rnp = rcu_get_root();
3305 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3306 	rcu_state.gp_kthread = t;
3307 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3308 	wake_up_process(t);
3309 	rcu_spawn_nocb_kthreads();
3310 	rcu_spawn_boost_kthreads();
3311 	return 0;
3312 }
3313 early_initcall(rcu_spawn_gp_kthread);
3314 
3315 /*
3316  * This function is invoked towards the end of the scheduler's
3317  * initialization process.  Before this is called, the idle task might
3318  * contain synchronous grace-period primitives (during which time, this idle
3319  * task is booting the system, and such primitives are no-ops).  After this
3320  * function is called, any synchronous grace-period primitives are run as
3321  * expedited, with the requesting task driving the grace period forward.
3322  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3323  * runtime RCU functionality.
3324  */
rcu_scheduler_starting(void)3325 void rcu_scheduler_starting(void)
3326 {
3327 	WARN_ON(num_online_cpus() != 1);
3328 	WARN_ON(nr_context_switches() > 0);
3329 	rcu_test_sync_prims();
3330 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3331 	rcu_test_sync_prims();
3332 }
3333 
3334 /*
3335  * Helper function for rcu_init() that initializes the rcu_state structure.
3336  */
rcu_init_one(void)3337 static void __init rcu_init_one(void)
3338 {
3339 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3340 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3341 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3342 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3343 
3344 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3345 	int cpustride = 1;
3346 	int i;
3347 	int j;
3348 	struct rcu_node *rnp;
3349 
3350 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3351 
3352 	/* Silence gcc 4.8 false positive about array index out of range. */
3353 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3354 		panic("rcu_init_one: rcu_num_lvls out of range");
3355 
3356 	/* Initialize the level-tracking arrays. */
3357 
3358 	for (i = 1; i < rcu_num_lvls; i++)
3359 		rcu_state.level[i] =
3360 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3361 	rcu_init_levelspread(levelspread, num_rcu_lvl);
3362 
3363 	/* Initialize the elements themselves, starting from the leaves. */
3364 
3365 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3366 		cpustride *= levelspread[i];
3367 		rnp = rcu_state.level[i];
3368 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3369 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3370 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3371 						   &rcu_node_class[i], buf[i]);
3372 			raw_spin_lock_init(&rnp->fqslock);
3373 			lockdep_set_class_and_name(&rnp->fqslock,
3374 						   &rcu_fqs_class[i], fqs[i]);
3375 			rnp->gp_seq = rcu_state.gp_seq;
3376 			rnp->gp_seq_needed = rcu_state.gp_seq;
3377 			rnp->completedqs = rcu_state.gp_seq;
3378 			rnp->qsmask = 0;
3379 			rnp->qsmaskinit = 0;
3380 			rnp->grplo = j * cpustride;
3381 			rnp->grphi = (j + 1) * cpustride - 1;
3382 			if (rnp->grphi >= nr_cpu_ids)
3383 				rnp->grphi = nr_cpu_ids - 1;
3384 			if (i == 0) {
3385 				rnp->grpnum = 0;
3386 				rnp->grpmask = 0;
3387 				rnp->parent = NULL;
3388 			} else {
3389 				rnp->grpnum = j % levelspread[i - 1];
3390 				rnp->grpmask = BIT(rnp->grpnum);
3391 				rnp->parent = rcu_state.level[i - 1] +
3392 					      j / levelspread[i - 1];
3393 			}
3394 			rnp->level = i;
3395 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3396 			rcu_init_one_nocb(rnp);
3397 			init_waitqueue_head(&rnp->exp_wq[0]);
3398 			init_waitqueue_head(&rnp->exp_wq[1]);
3399 			init_waitqueue_head(&rnp->exp_wq[2]);
3400 			init_waitqueue_head(&rnp->exp_wq[3]);
3401 			spin_lock_init(&rnp->exp_lock);
3402 		}
3403 	}
3404 
3405 	init_swait_queue_head(&rcu_state.gp_wq);
3406 	init_swait_queue_head(&rcu_state.expedited_wq);
3407 	rnp = rcu_first_leaf_node();
3408 	for_each_possible_cpu(i) {
3409 		while (i > rnp->grphi)
3410 			rnp++;
3411 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3412 		rcu_boot_init_percpu_data(i);
3413 	}
3414 }
3415 
3416 /*
3417  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3418  * replace the definitions in tree.h because those are needed to size
3419  * the ->node array in the rcu_state structure.
3420  */
rcu_init_geometry(void)3421 static void __init rcu_init_geometry(void)
3422 {
3423 	ulong d;
3424 	int i;
3425 	int rcu_capacity[RCU_NUM_LVLS];
3426 
3427 	/*
3428 	 * Initialize any unspecified boot parameters.
3429 	 * The default values of jiffies_till_first_fqs and
3430 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3431 	 * value, which is a function of HZ, then adding one for each
3432 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3433 	 */
3434 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3435 	if (jiffies_till_first_fqs == ULONG_MAX)
3436 		jiffies_till_first_fqs = d;
3437 	if (jiffies_till_next_fqs == ULONG_MAX)
3438 		jiffies_till_next_fqs = d;
3439 	adjust_jiffies_till_sched_qs();
3440 
3441 	/* If the compile-time values are accurate, just leave. */
3442 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3443 	    nr_cpu_ids == NR_CPUS)
3444 		return;
3445 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3446 		rcu_fanout_leaf, nr_cpu_ids);
3447 
3448 	/*
3449 	 * The boot-time rcu_fanout_leaf parameter must be at least two
3450 	 * and cannot exceed the number of bits in the rcu_node masks.
3451 	 * Complain and fall back to the compile-time values if this
3452 	 * limit is exceeded.
3453 	 */
3454 	if (rcu_fanout_leaf < 2 ||
3455 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3456 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3457 		WARN_ON(1);
3458 		return;
3459 	}
3460 
3461 	/*
3462 	 * Compute number of nodes that can be handled an rcu_node tree
3463 	 * with the given number of levels.
3464 	 */
3465 	rcu_capacity[0] = rcu_fanout_leaf;
3466 	for (i = 1; i < RCU_NUM_LVLS; i++)
3467 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3468 
3469 	/*
3470 	 * The tree must be able to accommodate the configured number of CPUs.
3471 	 * If this limit is exceeded, fall back to the compile-time values.
3472 	 */
3473 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3474 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3475 		WARN_ON(1);
3476 		return;
3477 	}
3478 
3479 	/* Calculate the number of levels in the tree. */
3480 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3481 	}
3482 	rcu_num_lvls = i + 1;
3483 
3484 	/* Calculate the number of rcu_nodes at each level of the tree. */
3485 	for (i = 0; i < rcu_num_lvls; i++) {
3486 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3487 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3488 	}
3489 
3490 	/* Calculate the total number of rcu_node structures. */
3491 	rcu_num_nodes = 0;
3492 	for (i = 0; i < rcu_num_lvls; i++)
3493 		rcu_num_nodes += num_rcu_lvl[i];
3494 }
3495 
3496 /*
3497  * Dump out the structure of the rcu_node combining tree associated
3498  * with the rcu_state structure.
3499  */
rcu_dump_rcu_node_tree(void)3500 static void __init rcu_dump_rcu_node_tree(void)
3501 {
3502 	int level = 0;
3503 	struct rcu_node *rnp;
3504 
3505 	pr_info("rcu_node tree layout dump\n");
3506 	pr_info(" ");
3507 	rcu_for_each_node_breadth_first(rnp) {
3508 		if (rnp->level != level) {
3509 			pr_cont("\n");
3510 			pr_info(" ");
3511 			level = rnp->level;
3512 		}
3513 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3514 	}
3515 	pr_cont("\n");
3516 }
3517 
3518 struct workqueue_struct *rcu_gp_wq;
3519 struct workqueue_struct *rcu_par_gp_wq;
3520 
rcu_init(void)3521 void __init rcu_init(void)
3522 {
3523 	int cpu;
3524 
3525 	rcu_early_boot_tests();
3526 
3527 	rcu_bootup_announce();
3528 	rcu_init_geometry();
3529 	rcu_init_one();
3530 	if (dump_tree)
3531 		rcu_dump_rcu_node_tree();
3532 	if (use_softirq)
3533 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
3534 
3535 	/*
3536 	 * We don't need protection against CPU-hotplug here because
3537 	 * this is called early in boot, before either interrupts
3538 	 * or the scheduler are operational.
3539 	 */
3540 	pm_notifier(rcu_pm_notify, 0);
3541 	for_each_online_cpu(cpu) {
3542 		rcutree_prepare_cpu(cpu);
3543 		rcu_cpu_starting(cpu);
3544 		rcutree_online_cpu(cpu);
3545 	}
3546 
3547 	/* Create workqueue for expedited GPs and for Tree SRCU. */
3548 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3549 	WARN_ON(!rcu_gp_wq);
3550 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3551 	WARN_ON(!rcu_par_gp_wq);
3552 	srcu_init();
3553 }
3554 
3555 #include "tree_stall.h"
3556 #include "tree_exp.h"
3557 #include "tree_plugin.h"
3558