1 /*
2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3 *
4 * Copyright 2004 IDT Inc. (rischelp@idt.com)
5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 * Copyright 2008 Florian Fainelli <florian@openwrt.org>
7 * Copyright 2017 Roman Yeryomin <roman@advem.lv>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
15 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
17 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
20 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 *
29 * Writing to a DMA status register:
30 *
31 * When writing to the status register, you should mask the bit you have
32 * been testing the status register with. Both Tx and Rx DMA registers
33 * should stick to this procedure.
34 */
35
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>
40 #include <linux/ctype.h>
41 #include <linux/types.h>
42 #include <linux/interrupt.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56
57 #include <asm/bootinfo.h>
58 #include <asm/bitops.h>
59 #include <asm/pgtable.h>
60 #include <asm/io.h>
61 #include <asm/dma.h>
62
63 #include <asm/mach-rc32434/rb.h>
64 #include <asm/mach-rc32434/rc32434.h>
65 #include <asm/mach-rc32434/eth.h>
66 #include <asm/mach-rc32434/dma_v.h>
67
68 #define DRV_NAME "korina"
69 #define DRV_VERSION "0.20"
70 #define DRV_RELDATE "15Sep2017"
71
72 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
73 ((dev)->dev_addr[1]))
74 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
75 ((dev)->dev_addr[3] << 16) | \
76 ((dev)->dev_addr[4] << 8) | \
77 ((dev)->dev_addr[5]))
78
79 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
80
81 /* the following must be powers of two */
82 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
83 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
84
85 /* KORINA_RBSIZE is the hardware's default maximum receive
86 * frame size in bytes. Having this hardcoded means that there
87 * is no support for MTU sizes greater than 1500. */
88 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
89 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
90 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
91 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
92 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
93
94 #define TX_TIMEOUT (6000 * HZ / 1000)
95
96 enum chain_status {
97 desc_filled,
98 desc_empty
99 };
100
101 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
102 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
103 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
104
105 /* Information that need to be kept for each board. */
106 struct korina_private {
107 struct eth_regs *eth_regs;
108 struct dma_reg *rx_dma_regs;
109 struct dma_reg *tx_dma_regs;
110 struct dma_desc *td_ring; /* transmit descriptor ring */
111 struct dma_desc *rd_ring; /* receive descriptor ring */
112
113 struct sk_buff *tx_skb[KORINA_NUM_TDS];
114 struct sk_buff *rx_skb[KORINA_NUM_RDS];
115
116 int rx_next_done;
117 int rx_chain_head;
118 int rx_chain_tail;
119 enum chain_status rx_chain_status;
120
121 int tx_next_done;
122 int tx_chain_head;
123 int tx_chain_tail;
124 enum chain_status tx_chain_status;
125 int tx_count;
126 int tx_full;
127
128 int rx_irq;
129 int tx_irq;
130
131 spinlock_t lock; /* NIC xmit lock */
132
133 int dma_halt_cnt;
134 int dma_run_cnt;
135 struct napi_struct napi;
136 struct timer_list media_check_timer;
137 struct mii_if_info mii_if;
138 struct work_struct restart_task;
139 struct net_device *dev;
140 int phy_addr;
141 };
142
143 extern unsigned int idt_cpu_freq;
144
korina_start_dma(struct dma_reg * ch,u32 dma_addr)145 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
146 {
147 writel(0, &ch->dmandptr);
148 writel(dma_addr, &ch->dmadptr);
149 }
150
korina_abort_dma(struct net_device * dev,struct dma_reg * ch)151 static inline void korina_abort_dma(struct net_device *dev,
152 struct dma_reg *ch)
153 {
154 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
155 writel(0x10, &ch->dmac);
156
157 while (!(readl(&ch->dmas) & DMA_STAT_HALT))
158 netif_trans_update(dev);
159
160 writel(0, &ch->dmas);
161 }
162
163 writel(0, &ch->dmadptr);
164 writel(0, &ch->dmandptr);
165 }
166
korina_chain_dma(struct dma_reg * ch,u32 dma_addr)167 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
168 {
169 writel(dma_addr, &ch->dmandptr);
170 }
171
korina_abort_tx(struct net_device * dev)172 static void korina_abort_tx(struct net_device *dev)
173 {
174 struct korina_private *lp = netdev_priv(dev);
175
176 korina_abort_dma(dev, lp->tx_dma_regs);
177 }
178
korina_abort_rx(struct net_device * dev)179 static void korina_abort_rx(struct net_device *dev)
180 {
181 struct korina_private *lp = netdev_priv(dev);
182
183 korina_abort_dma(dev, lp->rx_dma_regs);
184 }
185
korina_start_rx(struct korina_private * lp,struct dma_desc * rd)186 static void korina_start_rx(struct korina_private *lp,
187 struct dma_desc *rd)
188 {
189 korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
190 }
191
korina_chain_rx(struct korina_private * lp,struct dma_desc * rd)192 static void korina_chain_rx(struct korina_private *lp,
193 struct dma_desc *rd)
194 {
195 korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
196 }
197
198 /* transmit packet */
korina_send_packet(struct sk_buff * skb,struct net_device * dev)199 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
200 {
201 struct korina_private *lp = netdev_priv(dev);
202 unsigned long flags;
203 u32 length;
204 u32 chain_prev, chain_next;
205 struct dma_desc *td;
206
207 spin_lock_irqsave(&lp->lock, flags);
208
209 td = &lp->td_ring[lp->tx_chain_tail];
210
211 /* stop queue when full, drop pkts if queue already full */
212 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
213 lp->tx_full = 1;
214
215 if (lp->tx_count == (KORINA_NUM_TDS - 2))
216 netif_stop_queue(dev);
217 else {
218 dev->stats.tx_dropped++;
219 dev_kfree_skb_any(skb);
220 spin_unlock_irqrestore(&lp->lock, flags);
221
222 return NETDEV_TX_BUSY;
223 }
224 }
225
226 lp->tx_count++;
227
228 lp->tx_skb[lp->tx_chain_tail] = skb;
229
230 length = skb->len;
231 dma_cache_wback((u32)skb->data, skb->len);
232
233 /* Setup the transmit descriptor. */
234 dma_cache_inv((u32) td, sizeof(*td));
235 td->ca = CPHYSADDR(skb->data);
236 chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
237 chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
238
239 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
240 if (lp->tx_chain_status == desc_empty) {
241 /* Update tail */
242 td->control = DMA_COUNT(length) |
243 DMA_DESC_COF | DMA_DESC_IOF;
244 /* Move tail */
245 lp->tx_chain_tail = chain_next;
246 /* Write to NDPTR */
247 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
248 &lp->tx_dma_regs->dmandptr);
249 /* Move head to tail */
250 lp->tx_chain_head = lp->tx_chain_tail;
251 } else {
252 /* Update tail */
253 td->control = DMA_COUNT(length) |
254 DMA_DESC_COF | DMA_DESC_IOF;
255 /* Link to prev */
256 lp->td_ring[chain_prev].control &=
257 ~DMA_DESC_COF;
258 /* Link to prev */
259 lp->td_ring[chain_prev].link = CPHYSADDR(td);
260 /* Move tail */
261 lp->tx_chain_tail = chain_next;
262 /* Write to NDPTR */
263 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
264 &(lp->tx_dma_regs->dmandptr));
265 /* Move head to tail */
266 lp->tx_chain_head = lp->tx_chain_tail;
267 lp->tx_chain_status = desc_empty;
268 }
269 } else {
270 if (lp->tx_chain_status == desc_empty) {
271 /* Update tail */
272 td->control = DMA_COUNT(length) |
273 DMA_DESC_COF | DMA_DESC_IOF;
274 /* Move tail */
275 lp->tx_chain_tail = chain_next;
276 lp->tx_chain_status = desc_filled;
277 } else {
278 /* Update tail */
279 td->control = DMA_COUNT(length) |
280 DMA_DESC_COF | DMA_DESC_IOF;
281 lp->td_ring[chain_prev].control &=
282 ~DMA_DESC_COF;
283 lp->td_ring[chain_prev].link = CPHYSADDR(td);
284 lp->tx_chain_tail = chain_next;
285 }
286 }
287 dma_cache_wback((u32) td, sizeof(*td));
288
289 netif_trans_update(dev);
290 spin_unlock_irqrestore(&lp->lock, flags);
291
292 return NETDEV_TX_OK;
293 }
294
mdio_read(struct net_device * dev,int mii_id,int reg)295 static int mdio_read(struct net_device *dev, int mii_id, int reg)
296 {
297 struct korina_private *lp = netdev_priv(dev);
298 int ret;
299
300 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
301
302 writel(0, &lp->eth_regs->miimcfg);
303 writel(0, &lp->eth_regs->miimcmd);
304 writel(mii_id | reg, &lp->eth_regs->miimaddr);
305 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
306
307 ret = (int)(readl(&lp->eth_regs->miimrdd));
308 return ret;
309 }
310
mdio_write(struct net_device * dev,int mii_id,int reg,int val)311 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
312 {
313 struct korina_private *lp = netdev_priv(dev);
314
315 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
316
317 writel(0, &lp->eth_regs->miimcfg);
318 writel(1, &lp->eth_regs->miimcmd);
319 writel(mii_id | reg, &lp->eth_regs->miimaddr);
320 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
321 writel(val, &lp->eth_regs->miimwtd);
322 }
323
324 /* Ethernet Rx DMA interrupt */
korina_rx_dma_interrupt(int irq,void * dev_id)325 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
326 {
327 struct net_device *dev = dev_id;
328 struct korina_private *lp = netdev_priv(dev);
329 u32 dmas, dmasm;
330 irqreturn_t retval;
331
332 dmas = readl(&lp->rx_dma_regs->dmas);
333 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
334 dmasm = readl(&lp->rx_dma_regs->dmasm);
335 writel(dmasm | (DMA_STAT_DONE |
336 DMA_STAT_HALT | DMA_STAT_ERR),
337 &lp->rx_dma_regs->dmasm);
338
339 napi_schedule(&lp->napi);
340
341 if (dmas & DMA_STAT_ERR)
342 printk(KERN_ERR "%s: DMA error\n", dev->name);
343
344 retval = IRQ_HANDLED;
345 } else
346 retval = IRQ_NONE;
347
348 return retval;
349 }
350
korina_rx(struct net_device * dev,int limit)351 static int korina_rx(struct net_device *dev, int limit)
352 {
353 struct korina_private *lp = netdev_priv(dev);
354 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
355 struct sk_buff *skb, *skb_new;
356 u8 *pkt_buf;
357 u32 devcs, pkt_len, dmas;
358 int count;
359
360 dma_cache_inv((u32)rd, sizeof(*rd));
361
362 for (count = 0; count < limit; count++) {
363 skb = lp->rx_skb[lp->rx_next_done];
364 skb_new = NULL;
365
366 devcs = rd->devcs;
367
368 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
369 break;
370
371 /* check that this is a whole packet
372 * WARNING: DMA_FD bit incorrectly set
373 * in Rc32434 (errata ref #077) */
374 if (!(devcs & ETH_RX_LD))
375 goto next;
376
377 if (!(devcs & ETH_RX_ROK)) {
378 /* Update statistics counters */
379 dev->stats.rx_errors++;
380 dev->stats.rx_dropped++;
381 if (devcs & ETH_RX_CRC)
382 dev->stats.rx_crc_errors++;
383 if (devcs & ETH_RX_LE)
384 dev->stats.rx_length_errors++;
385 if (devcs & ETH_RX_OVR)
386 dev->stats.rx_fifo_errors++;
387 if (devcs & ETH_RX_CV)
388 dev->stats.rx_frame_errors++;
389 if (devcs & ETH_RX_CES)
390 dev->stats.rx_frame_errors++;
391
392 goto next;
393 }
394
395 pkt_len = RCVPKT_LENGTH(devcs);
396
397 /* must be the (first and) last
398 * descriptor then */
399 pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
400
401 /* invalidate the cache */
402 dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
403
404 /* Malloc up new buffer. */
405 skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
406
407 if (!skb_new)
408 break;
409 /* Do not count the CRC */
410 skb_put(skb, pkt_len - 4);
411 skb->protocol = eth_type_trans(skb, dev);
412
413 /* Pass the packet to upper layers */
414 napi_gro_receive(&lp->napi, skb);
415 dev->stats.rx_packets++;
416 dev->stats.rx_bytes += pkt_len;
417
418 /* Update the mcast stats */
419 if (devcs & ETH_RX_MP)
420 dev->stats.multicast++;
421
422 lp->rx_skb[lp->rx_next_done] = skb_new;
423
424 next:
425 rd->devcs = 0;
426
427 /* Restore descriptor's curr_addr */
428 if (skb_new)
429 rd->ca = CPHYSADDR(skb_new->data);
430 else
431 rd->ca = CPHYSADDR(skb->data);
432
433 rd->control = DMA_COUNT(KORINA_RBSIZE) |
434 DMA_DESC_COD | DMA_DESC_IOD;
435 lp->rd_ring[(lp->rx_next_done - 1) &
436 KORINA_RDS_MASK].control &=
437 ~DMA_DESC_COD;
438
439 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
440 dma_cache_wback((u32)rd, sizeof(*rd));
441 rd = &lp->rd_ring[lp->rx_next_done];
442 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
443 }
444
445 dmas = readl(&lp->rx_dma_regs->dmas);
446
447 if (dmas & DMA_STAT_HALT) {
448 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
449 &lp->rx_dma_regs->dmas);
450
451 lp->dma_halt_cnt++;
452 rd->devcs = 0;
453 skb = lp->rx_skb[lp->rx_next_done];
454 rd->ca = CPHYSADDR(skb->data);
455 dma_cache_wback((u32)rd, sizeof(*rd));
456 korina_chain_rx(lp, rd);
457 }
458
459 return count;
460 }
461
korina_poll(struct napi_struct * napi,int budget)462 static int korina_poll(struct napi_struct *napi, int budget)
463 {
464 struct korina_private *lp =
465 container_of(napi, struct korina_private, napi);
466 struct net_device *dev = lp->dev;
467 int work_done;
468
469 work_done = korina_rx(dev, budget);
470 if (work_done < budget) {
471 napi_complete_done(napi, work_done);
472
473 writel(readl(&lp->rx_dma_regs->dmasm) &
474 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
475 &lp->rx_dma_regs->dmasm);
476 }
477 return work_done;
478 }
479
480 /*
481 * Set or clear the multicast filter for this adaptor.
482 */
korina_multicast_list(struct net_device * dev)483 static void korina_multicast_list(struct net_device *dev)
484 {
485 struct korina_private *lp = netdev_priv(dev);
486 unsigned long flags;
487 struct netdev_hw_addr *ha;
488 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
489
490 /* Set promiscuous mode */
491 if (dev->flags & IFF_PROMISC)
492 recognise |= ETH_ARC_PRO;
493
494 else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
495 /* All multicast and broadcast */
496 recognise |= ETH_ARC_AM;
497
498 /* Build the hash table */
499 if (netdev_mc_count(dev) > 4) {
500 u16 hash_table[4] = { 0 };
501 u32 crc;
502
503 netdev_for_each_mc_addr(ha, dev) {
504 crc = ether_crc_le(6, ha->addr);
505 crc >>= 26;
506 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
507 }
508 /* Accept filtered multicast */
509 recognise |= ETH_ARC_AFM;
510
511 /* Fill the MAC hash tables with their values */
512 writel((u32)(hash_table[1] << 16 | hash_table[0]),
513 &lp->eth_regs->ethhash0);
514 writel((u32)(hash_table[3] << 16 | hash_table[2]),
515 &lp->eth_regs->ethhash1);
516 }
517
518 spin_lock_irqsave(&lp->lock, flags);
519 writel(recognise, &lp->eth_regs->etharc);
520 spin_unlock_irqrestore(&lp->lock, flags);
521 }
522
korina_tx(struct net_device * dev)523 static void korina_tx(struct net_device *dev)
524 {
525 struct korina_private *lp = netdev_priv(dev);
526 struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
527 u32 devcs;
528 u32 dmas;
529
530 spin_lock(&lp->lock);
531
532 /* Process all desc that are done */
533 while (IS_DMA_FINISHED(td->control)) {
534 if (lp->tx_full == 1) {
535 netif_wake_queue(dev);
536 lp->tx_full = 0;
537 }
538
539 devcs = lp->td_ring[lp->tx_next_done].devcs;
540 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
541 (ETH_TX_FD | ETH_TX_LD)) {
542 dev->stats.tx_errors++;
543 dev->stats.tx_dropped++;
544
545 /* Should never happen */
546 printk(KERN_ERR "%s: split tx ignored\n",
547 dev->name);
548 } else if (devcs & ETH_TX_TOK) {
549 dev->stats.tx_packets++;
550 dev->stats.tx_bytes +=
551 lp->tx_skb[lp->tx_next_done]->len;
552 } else {
553 dev->stats.tx_errors++;
554 dev->stats.tx_dropped++;
555
556 /* Underflow */
557 if (devcs & ETH_TX_UND)
558 dev->stats.tx_fifo_errors++;
559
560 /* Oversized frame */
561 if (devcs & ETH_TX_OF)
562 dev->stats.tx_aborted_errors++;
563
564 /* Excessive deferrals */
565 if (devcs & ETH_TX_ED)
566 dev->stats.tx_carrier_errors++;
567
568 /* Collisions: medium busy */
569 if (devcs & ETH_TX_EC)
570 dev->stats.collisions++;
571
572 /* Late collision */
573 if (devcs & ETH_TX_LC)
574 dev->stats.tx_window_errors++;
575 }
576
577 /* We must always free the original skb */
578 if (lp->tx_skb[lp->tx_next_done]) {
579 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
580 lp->tx_skb[lp->tx_next_done] = NULL;
581 }
582
583 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
584 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
585 lp->td_ring[lp->tx_next_done].link = 0;
586 lp->td_ring[lp->tx_next_done].ca = 0;
587 lp->tx_count--;
588
589 /* Go on to next transmission */
590 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
591 td = &lp->td_ring[lp->tx_next_done];
592
593 }
594
595 /* Clear the DMA status register */
596 dmas = readl(&lp->tx_dma_regs->dmas);
597 writel(~dmas, &lp->tx_dma_regs->dmas);
598
599 writel(readl(&lp->tx_dma_regs->dmasm) &
600 ~(DMA_STAT_FINI | DMA_STAT_ERR),
601 &lp->tx_dma_regs->dmasm);
602
603 spin_unlock(&lp->lock);
604 }
605
606 static irqreturn_t
korina_tx_dma_interrupt(int irq,void * dev_id)607 korina_tx_dma_interrupt(int irq, void *dev_id)
608 {
609 struct net_device *dev = dev_id;
610 struct korina_private *lp = netdev_priv(dev);
611 u32 dmas, dmasm;
612 irqreturn_t retval;
613
614 dmas = readl(&lp->tx_dma_regs->dmas);
615
616 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
617 dmasm = readl(&lp->tx_dma_regs->dmasm);
618 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
619 &lp->tx_dma_regs->dmasm);
620
621 korina_tx(dev);
622
623 if (lp->tx_chain_status == desc_filled &&
624 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
625 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
626 &(lp->tx_dma_regs->dmandptr));
627 lp->tx_chain_status = desc_empty;
628 lp->tx_chain_head = lp->tx_chain_tail;
629 netif_trans_update(dev);
630 }
631 if (dmas & DMA_STAT_ERR)
632 printk(KERN_ERR "%s: DMA error\n", dev->name);
633
634 retval = IRQ_HANDLED;
635 } else
636 retval = IRQ_NONE;
637
638 return retval;
639 }
640
641
korina_check_media(struct net_device * dev,unsigned int init_media)642 static void korina_check_media(struct net_device *dev, unsigned int init_media)
643 {
644 struct korina_private *lp = netdev_priv(dev);
645
646 mii_check_media(&lp->mii_if, 0, init_media);
647
648 if (lp->mii_if.full_duplex)
649 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
650 &lp->eth_regs->ethmac2);
651 else
652 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
653 &lp->eth_regs->ethmac2);
654 }
655
korina_poll_media(struct timer_list * t)656 static void korina_poll_media(struct timer_list *t)
657 {
658 struct korina_private *lp = from_timer(lp, t, media_check_timer);
659 struct net_device *dev = lp->dev;
660
661 korina_check_media(dev, 0);
662 mod_timer(&lp->media_check_timer, jiffies + HZ);
663 }
664
korina_set_carrier(struct mii_if_info * mii)665 static void korina_set_carrier(struct mii_if_info *mii)
666 {
667 if (mii->force_media) {
668 /* autoneg is off: Link is always assumed to be up */
669 if (!netif_carrier_ok(mii->dev))
670 netif_carrier_on(mii->dev);
671 } else /* Let MMI library update carrier status */
672 korina_check_media(mii->dev, 0);
673 }
674
korina_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)675 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
676 {
677 struct korina_private *lp = netdev_priv(dev);
678 struct mii_ioctl_data *data = if_mii(rq);
679 int rc;
680
681 if (!netif_running(dev))
682 return -EINVAL;
683 spin_lock_irq(&lp->lock);
684 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
685 spin_unlock_irq(&lp->lock);
686 korina_set_carrier(&lp->mii_if);
687
688 return rc;
689 }
690
691 /* ethtool helpers */
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)692 static void netdev_get_drvinfo(struct net_device *dev,
693 struct ethtool_drvinfo *info)
694 {
695 struct korina_private *lp = netdev_priv(dev);
696
697 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
698 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
699 strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
700 }
701
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)702 static int netdev_get_link_ksettings(struct net_device *dev,
703 struct ethtool_link_ksettings *cmd)
704 {
705 struct korina_private *lp = netdev_priv(dev);
706
707 spin_lock_irq(&lp->lock);
708 mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
709 spin_unlock_irq(&lp->lock);
710
711 return 0;
712 }
713
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)714 static int netdev_set_link_ksettings(struct net_device *dev,
715 const struct ethtool_link_ksettings *cmd)
716 {
717 struct korina_private *lp = netdev_priv(dev);
718 int rc;
719
720 spin_lock_irq(&lp->lock);
721 rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
722 spin_unlock_irq(&lp->lock);
723 korina_set_carrier(&lp->mii_if);
724
725 return rc;
726 }
727
netdev_get_link(struct net_device * dev)728 static u32 netdev_get_link(struct net_device *dev)
729 {
730 struct korina_private *lp = netdev_priv(dev);
731
732 return mii_link_ok(&lp->mii_if);
733 }
734
735 static const struct ethtool_ops netdev_ethtool_ops = {
736 .get_drvinfo = netdev_get_drvinfo,
737 .get_link = netdev_get_link,
738 .get_link_ksettings = netdev_get_link_ksettings,
739 .set_link_ksettings = netdev_set_link_ksettings,
740 };
741
korina_alloc_ring(struct net_device * dev)742 static int korina_alloc_ring(struct net_device *dev)
743 {
744 struct korina_private *lp = netdev_priv(dev);
745 struct sk_buff *skb;
746 int i;
747
748 /* Initialize the transmit descriptors */
749 for (i = 0; i < KORINA_NUM_TDS; i++) {
750 lp->td_ring[i].control = DMA_DESC_IOF;
751 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
752 lp->td_ring[i].ca = 0;
753 lp->td_ring[i].link = 0;
754 }
755 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
756 lp->tx_full = lp->tx_count = 0;
757 lp->tx_chain_status = desc_empty;
758
759 /* Initialize the receive descriptors */
760 for (i = 0; i < KORINA_NUM_RDS; i++) {
761 skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
762 if (!skb)
763 return -ENOMEM;
764 lp->rx_skb[i] = skb;
765 lp->rd_ring[i].control = DMA_DESC_IOD |
766 DMA_COUNT(KORINA_RBSIZE);
767 lp->rd_ring[i].devcs = 0;
768 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
769 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
770 }
771
772 /* loop back receive descriptors, so the last
773 * descriptor points to the first one */
774 lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
775 lp->rd_ring[i - 1].control |= DMA_DESC_COD;
776
777 lp->rx_next_done = 0;
778 lp->rx_chain_head = 0;
779 lp->rx_chain_tail = 0;
780 lp->rx_chain_status = desc_empty;
781
782 return 0;
783 }
784
korina_free_ring(struct net_device * dev)785 static void korina_free_ring(struct net_device *dev)
786 {
787 struct korina_private *lp = netdev_priv(dev);
788 int i;
789
790 for (i = 0; i < KORINA_NUM_RDS; i++) {
791 lp->rd_ring[i].control = 0;
792 if (lp->rx_skb[i])
793 dev_kfree_skb_any(lp->rx_skb[i]);
794 lp->rx_skb[i] = NULL;
795 }
796
797 for (i = 0; i < KORINA_NUM_TDS; i++) {
798 lp->td_ring[i].control = 0;
799 if (lp->tx_skb[i])
800 dev_kfree_skb_any(lp->tx_skb[i]);
801 lp->tx_skb[i] = NULL;
802 }
803 }
804
805 /*
806 * Initialize the RC32434 ethernet controller.
807 */
korina_init(struct net_device * dev)808 static int korina_init(struct net_device *dev)
809 {
810 struct korina_private *lp = netdev_priv(dev);
811
812 /* Disable DMA */
813 korina_abort_tx(dev);
814 korina_abort_rx(dev);
815
816 /* reset ethernet logic */
817 writel(0, &lp->eth_regs->ethintfc);
818 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
819 netif_trans_update(dev);
820
821 /* Enable Ethernet Interface */
822 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
823
824 /* Allocate rings */
825 if (korina_alloc_ring(dev)) {
826 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
827 korina_free_ring(dev);
828 return -ENOMEM;
829 }
830
831 writel(0, &lp->rx_dma_regs->dmas);
832 /* Start Rx DMA */
833 korina_start_rx(lp, &lp->rd_ring[0]);
834
835 writel(readl(&lp->tx_dma_regs->dmasm) &
836 ~(DMA_STAT_FINI | DMA_STAT_ERR),
837 &lp->tx_dma_regs->dmasm);
838 writel(readl(&lp->rx_dma_regs->dmasm) &
839 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
840 &lp->rx_dma_regs->dmasm);
841
842 /* Accept only packets destined for this Ethernet device address */
843 writel(ETH_ARC_AB, &lp->eth_regs->etharc);
844
845 /* Set all Ether station address registers to their initial values */
846 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
847 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
848
849 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
850 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
851
852 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
853 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
854
855 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
856 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
857
858
859 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
860 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
861 &lp->eth_regs->ethmac2);
862
863 /* Back to back inter-packet-gap */
864 writel(0x15, &lp->eth_regs->ethipgt);
865 /* Non - Back to back inter-packet-gap */
866 writel(0x12, &lp->eth_regs->ethipgr);
867
868 /* Management Clock Prescaler Divisor
869 * Clock independent setting */
870 writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
871 &lp->eth_regs->ethmcp);
872
873 /* don't transmit until fifo contains 48b */
874 writel(48, &lp->eth_regs->ethfifott);
875
876 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
877
878 napi_enable(&lp->napi);
879 netif_start_queue(dev);
880
881 return 0;
882 }
883
884 /*
885 * Restart the RC32434 ethernet controller.
886 */
korina_restart_task(struct work_struct * work)887 static void korina_restart_task(struct work_struct *work)
888 {
889 struct korina_private *lp = container_of(work,
890 struct korina_private, restart_task);
891 struct net_device *dev = lp->dev;
892
893 /*
894 * Disable interrupts
895 */
896 disable_irq(lp->rx_irq);
897 disable_irq(lp->tx_irq);
898
899 writel(readl(&lp->tx_dma_regs->dmasm) |
900 DMA_STAT_FINI | DMA_STAT_ERR,
901 &lp->tx_dma_regs->dmasm);
902 writel(readl(&lp->rx_dma_regs->dmasm) |
903 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
904 &lp->rx_dma_regs->dmasm);
905
906 napi_disable(&lp->napi);
907
908 korina_free_ring(dev);
909
910 if (korina_init(dev) < 0) {
911 printk(KERN_ERR "%s: cannot restart device\n", dev->name);
912 return;
913 }
914 korina_multicast_list(dev);
915
916 enable_irq(lp->tx_irq);
917 enable_irq(lp->rx_irq);
918 }
919
korina_tx_timeout(struct net_device * dev)920 static void korina_tx_timeout(struct net_device *dev)
921 {
922 struct korina_private *lp = netdev_priv(dev);
923
924 schedule_work(&lp->restart_task);
925 }
926
927 #ifdef CONFIG_NET_POLL_CONTROLLER
korina_poll_controller(struct net_device * dev)928 static void korina_poll_controller(struct net_device *dev)
929 {
930 disable_irq(dev->irq);
931 korina_tx_dma_interrupt(dev->irq, dev);
932 enable_irq(dev->irq);
933 }
934 #endif
935
korina_open(struct net_device * dev)936 static int korina_open(struct net_device *dev)
937 {
938 struct korina_private *lp = netdev_priv(dev);
939 int ret;
940
941 /* Initialize */
942 ret = korina_init(dev);
943 if (ret < 0) {
944 printk(KERN_ERR "%s: cannot open device\n", dev->name);
945 goto out;
946 }
947
948 /* Install the interrupt handler
949 * that handles the Done Finished */
950 ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
951 0, "Korina ethernet Rx", dev);
952 if (ret < 0) {
953 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
954 dev->name, lp->rx_irq);
955 goto err_release;
956 }
957 ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
958 0, "Korina ethernet Tx", dev);
959 if (ret < 0) {
960 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
961 dev->name, lp->tx_irq);
962 goto err_free_rx_irq;
963 }
964
965 mod_timer(&lp->media_check_timer, jiffies + 1);
966 out:
967 return ret;
968
969 err_free_rx_irq:
970 free_irq(lp->rx_irq, dev);
971 err_release:
972 korina_free_ring(dev);
973 goto out;
974 }
975
korina_close(struct net_device * dev)976 static int korina_close(struct net_device *dev)
977 {
978 struct korina_private *lp = netdev_priv(dev);
979 u32 tmp;
980
981 del_timer(&lp->media_check_timer);
982
983 /* Disable interrupts */
984 disable_irq(lp->rx_irq);
985 disable_irq(lp->tx_irq);
986
987 korina_abort_tx(dev);
988 tmp = readl(&lp->tx_dma_regs->dmasm);
989 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
990 writel(tmp, &lp->tx_dma_regs->dmasm);
991
992 korina_abort_rx(dev);
993 tmp = readl(&lp->rx_dma_regs->dmasm);
994 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
995 writel(tmp, &lp->rx_dma_regs->dmasm);
996
997 napi_disable(&lp->napi);
998
999 cancel_work_sync(&lp->restart_task);
1000
1001 korina_free_ring(dev);
1002
1003 free_irq(lp->rx_irq, dev);
1004 free_irq(lp->tx_irq, dev);
1005
1006 return 0;
1007 }
1008
1009 static const struct net_device_ops korina_netdev_ops = {
1010 .ndo_open = korina_open,
1011 .ndo_stop = korina_close,
1012 .ndo_start_xmit = korina_send_packet,
1013 .ndo_set_rx_mode = korina_multicast_list,
1014 .ndo_tx_timeout = korina_tx_timeout,
1015 .ndo_do_ioctl = korina_ioctl,
1016 .ndo_validate_addr = eth_validate_addr,
1017 .ndo_set_mac_address = eth_mac_addr,
1018 #ifdef CONFIG_NET_POLL_CONTROLLER
1019 .ndo_poll_controller = korina_poll_controller,
1020 #endif
1021 };
1022
korina_probe(struct platform_device * pdev)1023 static int korina_probe(struct platform_device *pdev)
1024 {
1025 struct korina_device *bif = platform_get_drvdata(pdev);
1026 struct korina_private *lp;
1027 struct net_device *dev;
1028 struct resource *r;
1029 int rc;
1030
1031 dev = alloc_etherdev(sizeof(struct korina_private));
1032 if (!dev)
1033 return -ENOMEM;
1034
1035 SET_NETDEV_DEV(dev, &pdev->dev);
1036 lp = netdev_priv(dev);
1037
1038 bif->dev = dev;
1039 memcpy(dev->dev_addr, bif->mac, ETH_ALEN);
1040
1041 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1042 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1043
1044 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1045 dev->base_addr = r->start;
1046 lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
1047 if (!lp->eth_regs) {
1048 printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1049 rc = -ENXIO;
1050 goto probe_err_out;
1051 }
1052
1053 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1054 lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1055 if (!lp->rx_dma_regs) {
1056 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1057 rc = -ENXIO;
1058 goto probe_err_dma_rx;
1059 }
1060
1061 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1062 lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1063 if (!lp->tx_dma_regs) {
1064 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1065 rc = -ENXIO;
1066 goto probe_err_dma_tx;
1067 }
1068
1069 lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1070 if (!lp->td_ring) {
1071 rc = -ENXIO;
1072 goto probe_err_td_ring;
1073 }
1074
1075 dma_cache_inv((unsigned long)(lp->td_ring),
1076 TD_RING_SIZE + RD_RING_SIZE);
1077
1078 /* now convert TD_RING pointer to KSEG1 */
1079 lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1080 lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1081
1082 spin_lock_init(&lp->lock);
1083 /* just use the rx dma irq */
1084 dev->irq = lp->rx_irq;
1085 lp->dev = dev;
1086
1087 dev->netdev_ops = &korina_netdev_ops;
1088 dev->ethtool_ops = &netdev_ethtool_ops;
1089 dev->watchdog_timeo = TX_TIMEOUT;
1090 netif_napi_add(dev, &lp->napi, korina_poll, NAPI_POLL_WEIGHT);
1091
1092 lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1093 lp->mii_if.dev = dev;
1094 lp->mii_if.mdio_read = mdio_read;
1095 lp->mii_if.mdio_write = mdio_write;
1096 lp->mii_if.phy_id = lp->phy_addr;
1097 lp->mii_if.phy_id_mask = 0x1f;
1098 lp->mii_if.reg_num_mask = 0x1f;
1099
1100 rc = register_netdev(dev);
1101 if (rc < 0) {
1102 printk(KERN_ERR DRV_NAME
1103 ": cannot register net device: %d\n", rc);
1104 goto probe_err_register;
1105 }
1106 timer_setup(&lp->media_check_timer, korina_poll_media, 0);
1107
1108 INIT_WORK(&lp->restart_task, korina_restart_task);
1109
1110 printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1111 dev->name);
1112 out:
1113 return rc;
1114
1115 probe_err_register:
1116 kfree(lp->td_ring);
1117 probe_err_td_ring:
1118 iounmap(lp->tx_dma_regs);
1119 probe_err_dma_tx:
1120 iounmap(lp->rx_dma_regs);
1121 probe_err_dma_rx:
1122 iounmap(lp->eth_regs);
1123 probe_err_out:
1124 free_netdev(dev);
1125 goto out;
1126 }
1127
korina_remove(struct platform_device * pdev)1128 static int korina_remove(struct platform_device *pdev)
1129 {
1130 struct korina_device *bif = platform_get_drvdata(pdev);
1131 struct korina_private *lp = netdev_priv(bif->dev);
1132
1133 iounmap(lp->eth_regs);
1134 iounmap(lp->rx_dma_regs);
1135 iounmap(lp->tx_dma_regs);
1136
1137 unregister_netdev(bif->dev);
1138 free_netdev(bif->dev);
1139
1140 return 0;
1141 }
1142
1143 static struct platform_driver korina_driver = {
1144 .driver.name = "korina",
1145 .probe = korina_probe,
1146 .remove = korina_remove,
1147 };
1148
1149 module_platform_driver(korina_driver);
1150
1151 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1152 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1153 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1154 MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>");
1155 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1156 MODULE_LICENSE("GPL");
1157