1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Broadcom Starfighter 2 DSA switch CFP support
4 *
5 * Copyright (C) 2016, Broadcom
6 */
7
8 #include <linux/list.h>
9 #include <linux/ethtool.h>
10 #include <linux/if_ether.h>
11 #include <linux/in.h>
12 #include <linux/netdevice.h>
13 #include <net/dsa.h>
14 #include <linux/bitmap.h>
15 #include <net/flow_offload.h>
16
17 #include "bcm_sf2.h"
18 #include "bcm_sf2_regs.h"
19
20 struct cfp_rule {
21 int port;
22 struct ethtool_rx_flow_spec fs;
23 struct list_head next;
24 };
25
26 struct cfp_udf_slice_layout {
27 u8 slices[UDFS_PER_SLICE];
28 u32 mask_value;
29 u32 base_offset;
30 };
31
32 struct cfp_udf_layout {
33 struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
34 };
35
36 static const u8 zero_slice[UDFS_PER_SLICE] = { };
37
38 /* UDF slices layout for a TCPv4/UDPv4 specification */
39 static const struct cfp_udf_layout udf_tcpip4_layout = {
40 .udfs = {
41 [1] = {
42 .slices = {
43 /* End of L2, byte offset 12, src IP[0:15] */
44 CFG_UDF_EOL2 | 6,
45 /* End of L2, byte offset 14, src IP[16:31] */
46 CFG_UDF_EOL2 | 7,
47 /* End of L2, byte offset 16, dst IP[0:15] */
48 CFG_UDF_EOL2 | 8,
49 /* End of L2, byte offset 18, dst IP[16:31] */
50 CFG_UDF_EOL2 | 9,
51 /* End of L3, byte offset 0, src port */
52 CFG_UDF_EOL3 | 0,
53 /* End of L3, byte offset 2, dst port */
54 CFG_UDF_EOL3 | 1,
55 0, 0, 0
56 },
57 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
58 .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
59 },
60 },
61 };
62
63 /* UDF slices layout for a TCPv6/UDPv6 specification */
64 static const struct cfp_udf_layout udf_tcpip6_layout = {
65 .udfs = {
66 [0] = {
67 .slices = {
68 /* End of L2, byte offset 8, src IP[0:15] */
69 CFG_UDF_EOL2 | 4,
70 /* End of L2, byte offset 10, src IP[16:31] */
71 CFG_UDF_EOL2 | 5,
72 /* End of L2, byte offset 12, src IP[32:47] */
73 CFG_UDF_EOL2 | 6,
74 /* End of L2, byte offset 14, src IP[48:63] */
75 CFG_UDF_EOL2 | 7,
76 /* End of L2, byte offset 16, src IP[64:79] */
77 CFG_UDF_EOL2 | 8,
78 /* End of L2, byte offset 18, src IP[80:95] */
79 CFG_UDF_EOL2 | 9,
80 /* End of L2, byte offset 20, src IP[96:111] */
81 CFG_UDF_EOL2 | 10,
82 /* End of L2, byte offset 22, src IP[112:127] */
83 CFG_UDF_EOL2 | 11,
84 /* End of L3, byte offset 0, src port */
85 CFG_UDF_EOL3 | 0,
86 },
87 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
88 .base_offset = CORE_UDF_0_B_0_8_PORT_0,
89 },
90 [3] = {
91 .slices = {
92 /* End of L2, byte offset 24, dst IP[0:15] */
93 CFG_UDF_EOL2 | 12,
94 /* End of L2, byte offset 26, dst IP[16:31] */
95 CFG_UDF_EOL2 | 13,
96 /* End of L2, byte offset 28, dst IP[32:47] */
97 CFG_UDF_EOL2 | 14,
98 /* End of L2, byte offset 30, dst IP[48:63] */
99 CFG_UDF_EOL2 | 15,
100 /* End of L2, byte offset 32, dst IP[64:79] */
101 CFG_UDF_EOL2 | 16,
102 /* End of L2, byte offset 34, dst IP[80:95] */
103 CFG_UDF_EOL2 | 17,
104 /* End of L2, byte offset 36, dst IP[96:111] */
105 CFG_UDF_EOL2 | 18,
106 /* End of L2, byte offset 38, dst IP[112:127] */
107 CFG_UDF_EOL2 | 19,
108 /* End of L3, byte offset 2, dst port */
109 CFG_UDF_EOL3 | 1,
110 },
111 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
112 .base_offset = CORE_UDF_0_D_0_11_PORT_0,
113 },
114 },
115 };
116
bcm_sf2_get_num_udf_slices(const u8 * layout)117 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
118 {
119 unsigned int i, count = 0;
120
121 for (i = 0; i < UDFS_PER_SLICE; i++) {
122 if (layout[i] != 0)
123 count++;
124 }
125
126 return count;
127 }
128
udf_upper_bits(unsigned int num_udf)129 static inline u32 udf_upper_bits(unsigned int num_udf)
130 {
131 return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
132 }
133
udf_lower_bits(unsigned int num_udf)134 static inline u32 udf_lower_bits(unsigned int num_udf)
135 {
136 return (u8)GENMASK(num_udf - 1, 0);
137 }
138
bcm_sf2_get_slice_number(const struct cfp_udf_layout * l,unsigned int start)139 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
140 unsigned int start)
141 {
142 const struct cfp_udf_slice_layout *slice_layout;
143 unsigned int slice_idx;
144
145 for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
146 slice_layout = &l->udfs[slice_idx];
147 if (memcmp(slice_layout->slices, zero_slice,
148 sizeof(zero_slice)))
149 break;
150 }
151
152 return slice_idx;
153 }
154
bcm_sf2_cfp_udf_set(struct bcm_sf2_priv * priv,const struct cfp_udf_layout * layout,unsigned int slice_num)155 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
156 const struct cfp_udf_layout *layout,
157 unsigned int slice_num)
158 {
159 u32 offset = layout->udfs[slice_num].base_offset;
160 unsigned int i;
161
162 for (i = 0; i < UDFS_PER_SLICE; i++)
163 core_writel(priv, layout->udfs[slice_num].slices[i],
164 offset + i * 4);
165 }
166
bcm_sf2_cfp_op(struct bcm_sf2_priv * priv,unsigned int op)167 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
168 {
169 unsigned int timeout = 1000;
170 u32 reg;
171
172 reg = core_readl(priv, CORE_CFP_ACC);
173 reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
174 reg |= OP_STR_DONE | op;
175 core_writel(priv, reg, CORE_CFP_ACC);
176
177 do {
178 reg = core_readl(priv, CORE_CFP_ACC);
179 if (!(reg & OP_STR_DONE))
180 break;
181
182 cpu_relax();
183 } while (timeout--);
184
185 if (!timeout)
186 return -ETIMEDOUT;
187
188 return 0;
189 }
190
bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv * priv,unsigned int addr)191 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
192 unsigned int addr)
193 {
194 u32 reg;
195
196 WARN_ON(addr >= priv->num_cfp_rules);
197
198 reg = core_readl(priv, CORE_CFP_ACC);
199 reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
200 reg |= addr << XCESS_ADDR_SHIFT;
201 core_writel(priv, reg, CORE_CFP_ACC);
202 }
203
bcm_sf2_cfp_rule_size(struct bcm_sf2_priv * priv)204 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
205 {
206 /* Entry #0 is reserved */
207 return priv->num_cfp_rules - 1;
208 }
209
bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv * priv,unsigned int rule_index,int src_port,unsigned int port_num,unsigned int queue_num,bool fwd_map_change)210 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
211 unsigned int rule_index,
212 int src_port,
213 unsigned int port_num,
214 unsigned int queue_num,
215 bool fwd_map_change)
216 {
217 int ret;
218 u32 reg;
219
220 /* Replace ARL derived destination with DST_MAP derived, define
221 * which port and queue this should be forwarded to.
222 */
223 if (fwd_map_change)
224 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
225 BIT(port_num + DST_MAP_IB_SHIFT) |
226 CHANGE_TC | queue_num << NEW_TC_SHIFT;
227 else
228 reg = 0;
229
230 /* Enable looping back to the original port */
231 if (src_port == port_num)
232 reg |= LOOP_BK_EN;
233
234 core_writel(priv, reg, CORE_ACT_POL_DATA0);
235
236 /* Set classification ID that needs to be put in Broadcom tag */
237 core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
238
239 core_writel(priv, 0, CORE_ACT_POL_DATA2);
240
241 /* Configure policer RAM now */
242 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
243 if (ret) {
244 pr_err("Policer entry at %d failed\n", rule_index);
245 return ret;
246 }
247
248 /* Disable the policer */
249 core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
250
251 /* Now the rate meter */
252 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
253 if (ret) {
254 pr_err("Meter entry at %d failed\n", rule_index);
255 return ret;
256 }
257
258 return 0;
259 }
260
bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv * priv,struct flow_dissector_key_ipv4_addrs * addrs,struct flow_dissector_key_ports * ports,unsigned int slice_num,bool mask)261 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
262 struct flow_dissector_key_ipv4_addrs *addrs,
263 struct flow_dissector_key_ports *ports,
264 unsigned int slice_num,
265 bool mask)
266 {
267 u32 reg, offset;
268
269 /* C-Tag [31:24]
270 * UDF_n_A8 [23:8]
271 * UDF_n_A7 [7:0]
272 */
273 reg = 0;
274 if (mask)
275 offset = CORE_CFP_MASK_PORT(4);
276 else
277 offset = CORE_CFP_DATA_PORT(4);
278 core_writel(priv, reg, offset);
279
280 /* UDF_n_A7 [31:24]
281 * UDF_n_A6 [23:8]
282 * UDF_n_A5 [7:0]
283 */
284 reg = be16_to_cpu(ports->dst) >> 8;
285 if (mask)
286 offset = CORE_CFP_MASK_PORT(3);
287 else
288 offset = CORE_CFP_DATA_PORT(3);
289 core_writel(priv, reg, offset);
290
291 /* UDF_n_A5 [31:24]
292 * UDF_n_A4 [23:8]
293 * UDF_n_A3 [7:0]
294 */
295 reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
296 (u32)be16_to_cpu(ports->src) << 8 |
297 (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
298 if (mask)
299 offset = CORE_CFP_MASK_PORT(2);
300 else
301 offset = CORE_CFP_DATA_PORT(2);
302 core_writel(priv, reg, offset);
303
304 /* UDF_n_A3 [31:24]
305 * UDF_n_A2 [23:8]
306 * UDF_n_A1 [7:0]
307 */
308 reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
309 (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
310 (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
311 if (mask)
312 offset = CORE_CFP_MASK_PORT(1);
313 else
314 offset = CORE_CFP_DATA_PORT(1);
315 core_writel(priv, reg, offset);
316
317 /* UDF_n_A1 [31:24]
318 * UDF_n_A0 [23:8]
319 * Reserved [7:4]
320 * Slice ID [3:2]
321 * Slice valid [1:0]
322 */
323 reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
324 (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
325 SLICE_NUM(slice_num) | SLICE_VALID;
326 if (mask)
327 offset = CORE_CFP_MASK_PORT(0);
328 else
329 offset = CORE_CFP_DATA_PORT(0);
330 core_writel(priv, reg, offset);
331 }
332
bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv * priv,int port,unsigned int port_num,unsigned int queue_num,struct ethtool_rx_flow_spec * fs)333 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
334 unsigned int port_num,
335 unsigned int queue_num,
336 struct ethtool_rx_flow_spec *fs)
337 {
338 struct ethtool_rx_flow_spec_input input = {};
339 const struct cfp_udf_layout *layout;
340 unsigned int slice_num, rule_index;
341 struct ethtool_rx_flow_rule *flow;
342 struct flow_match_ipv4_addrs ipv4;
343 struct flow_match_ports ports;
344 struct flow_match_ip ip;
345 u8 ip_proto, ip_frag;
346 u8 num_udf;
347 u32 reg;
348 int ret;
349
350 switch (fs->flow_type & ~FLOW_EXT) {
351 case TCP_V4_FLOW:
352 ip_proto = IPPROTO_TCP;
353 break;
354 case UDP_V4_FLOW:
355 ip_proto = IPPROTO_UDP;
356 break;
357 default:
358 return -EINVAL;
359 }
360
361 ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
362
363 /* Locate the first rule available */
364 if (fs->location == RX_CLS_LOC_ANY)
365 rule_index = find_first_zero_bit(priv->cfp.used,
366 priv->num_cfp_rules);
367 else
368 rule_index = fs->location;
369
370 if (rule_index > bcm_sf2_cfp_rule_size(priv))
371 return -ENOSPC;
372
373 input.fs = fs;
374 flow = ethtool_rx_flow_rule_create(&input);
375 if (IS_ERR(flow))
376 return PTR_ERR(flow);
377
378 flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
379 flow_rule_match_ports(flow->rule, &ports);
380 flow_rule_match_ip(flow->rule, &ip);
381
382 layout = &udf_tcpip4_layout;
383 /* We only use one UDF slice for now */
384 slice_num = bcm_sf2_get_slice_number(layout, 0);
385 if (slice_num == UDF_NUM_SLICES) {
386 ret = -EINVAL;
387 goto out_err_flow_rule;
388 }
389
390 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
391
392 /* Apply the UDF layout for this filter */
393 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
394
395 /* Apply to all packets received through this port */
396 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
397
398 /* Source port map match */
399 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
400
401 /* S-Tag status [31:30]
402 * C-Tag status [29:28]
403 * L2 framing [27:26]
404 * L3 framing [25:24]
405 * IP ToS [23:16]
406 * IP proto [15:08]
407 * IP Fragm [7]
408 * Non 1st frag [6]
409 * IP Authen [5]
410 * TTL range [4:3]
411 * PPPoE session [2]
412 * Reserved [1]
413 * UDF_Valid[8] [0]
414 */
415 core_writel(priv, ip.key->tos << IPTOS_SHIFT |
416 ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
417 udf_upper_bits(num_udf),
418 CORE_CFP_DATA_PORT(6));
419
420 /* Mask with the specific layout for IPv4 packets */
421 core_writel(priv, layout->udfs[slice_num].mask_value |
422 udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
423
424 /* UDF_Valid[7:0] [31:24]
425 * S-Tag [23:8]
426 * C-Tag [7:0]
427 */
428 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
429
430 /* Mask all but valid UDFs */
431 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
432
433 /* Program the match and the mask */
434 bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, slice_num, false);
435 bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, SLICE_NUM_MASK, true);
436
437 /* Insert into TCAM now */
438 bcm_sf2_cfp_rule_addr_set(priv, rule_index);
439
440 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
441 if (ret) {
442 pr_err("TCAM entry at addr %d failed\n", rule_index);
443 goto out_err_flow_rule;
444 }
445
446 /* Insert into Action and policer RAMs now */
447 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
448 queue_num, true);
449 if (ret)
450 goto out_err_flow_rule;
451
452 /* Turn on CFP for this rule now */
453 reg = core_readl(priv, CORE_CFP_CTL_REG);
454 reg |= BIT(port);
455 core_writel(priv, reg, CORE_CFP_CTL_REG);
456
457 /* Flag the rule as being used and return it */
458 set_bit(rule_index, priv->cfp.used);
459 set_bit(rule_index, priv->cfp.unique);
460 fs->location = rule_index;
461
462 return 0;
463
464 out_err_flow_rule:
465 ethtool_rx_flow_rule_destroy(flow);
466 return ret;
467 }
468
bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv * priv,const __be32 * ip6_addr,const __be16 port,unsigned int slice_num,bool mask)469 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
470 const __be32 *ip6_addr, const __be16 port,
471 unsigned int slice_num,
472 bool mask)
473 {
474 u32 reg, tmp, val, offset;
475
476 /* C-Tag [31:24]
477 * UDF_n_B8 [23:8] (port)
478 * UDF_n_B7 (upper) [7:0] (addr[15:8])
479 */
480 reg = be32_to_cpu(ip6_addr[3]);
481 val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
482 if (mask)
483 offset = CORE_CFP_MASK_PORT(4);
484 else
485 offset = CORE_CFP_DATA_PORT(4);
486 core_writel(priv, val, offset);
487
488 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
489 * UDF_n_B6 [23:8] (addr[31:16])
490 * UDF_n_B5 (upper) [7:0] (addr[47:40])
491 */
492 tmp = be32_to_cpu(ip6_addr[2]);
493 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
494 ((tmp >> 8) & 0xff);
495 if (mask)
496 offset = CORE_CFP_MASK_PORT(3);
497 else
498 offset = CORE_CFP_DATA_PORT(3);
499 core_writel(priv, val, offset);
500
501 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
502 * UDF_n_B4 [23:8] (addr[63:48])
503 * UDF_n_B3 (upper) [7:0] (addr[79:72])
504 */
505 reg = be32_to_cpu(ip6_addr[1]);
506 val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
507 ((reg >> 8) & 0xff);
508 if (mask)
509 offset = CORE_CFP_MASK_PORT(2);
510 else
511 offset = CORE_CFP_DATA_PORT(2);
512 core_writel(priv, val, offset);
513
514 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
515 * UDF_n_B2 [23:8] (addr[95:80])
516 * UDF_n_B1 (upper) [7:0] (addr[111:104])
517 */
518 tmp = be32_to_cpu(ip6_addr[0]);
519 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
520 ((tmp >> 8) & 0xff);
521 if (mask)
522 offset = CORE_CFP_MASK_PORT(1);
523 else
524 offset = CORE_CFP_DATA_PORT(1);
525 core_writel(priv, val, offset);
526
527 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
528 * UDF_n_B0 [23:8] (addr[127:112])
529 * Reserved [7:4]
530 * Slice ID [3:2]
531 * Slice valid [1:0]
532 */
533 reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
534 SLICE_NUM(slice_num) | SLICE_VALID;
535 if (mask)
536 offset = CORE_CFP_MASK_PORT(0);
537 else
538 offset = CORE_CFP_DATA_PORT(0);
539 core_writel(priv, reg, offset);
540 }
541
bcm_sf2_cfp_rule_find(struct bcm_sf2_priv * priv,int port,u32 location)542 static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
543 int port, u32 location)
544 {
545 struct cfp_rule *rule = NULL;
546
547 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
548 if (rule->port == port && rule->fs.location == location)
549 break;
550 }
551
552 return rule;
553 }
554
bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv * priv,int port,struct ethtool_rx_flow_spec * fs)555 static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
556 struct ethtool_rx_flow_spec *fs)
557 {
558 struct cfp_rule *rule = NULL;
559 size_t fs_size = 0;
560 int ret = 1;
561
562 if (list_empty(&priv->cfp.rules_list))
563 return ret;
564
565 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
566 ret = 1;
567 if (rule->port != port)
568 continue;
569
570 if (rule->fs.flow_type != fs->flow_type ||
571 rule->fs.ring_cookie != fs->ring_cookie ||
572 rule->fs.h_ext.data[0] != fs->h_ext.data[0])
573 continue;
574
575 switch (fs->flow_type & ~FLOW_EXT) {
576 case TCP_V6_FLOW:
577 case UDP_V6_FLOW:
578 fs_size = sizeof(struct ethtool_tcpip6_spec);
579 break;
580 case TCP_V4_FLOW:
581 case UDP_V4_FLOW:
582 fs_size = sizeof(struct ethtool_tcpip4_spec);
583 break;
584 default:
585 continue;
586 }
587
588 ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
589 ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
590 if (ret == 0)
591 break;
592 }
593
594 return ret;
595 }
596
bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv * priv,int port,unsigned int port_num,unsigned int queue_num,struct ethtool_rx_flow_spec * fs)597 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
598 unsigned int port_num,
599 unsigned int queue_num,
600 struct ethtool_rx_flow_spec *fs)
601 {
602 struct ethtool_rx_flow_spec_input input = {};
603 unsigned int slice_num, rule_index[2];
604 const struct cfp_udf_layout *layout;
605 struct ethtool_rx_flow_rule *flow;
606 struct flow_match_ipv6_addrs ipv6;
607 struct flow_match_ports ports;
608 u8 ip_proto, ip_frag;
609 int ret = 0;
610 u8 num_udf;
611 u32 reg;
612
613 switch (fs->flow_type & ~FLOW_EXT) {
614 case TCP_V6_FLOW:
615 ip_proto = IPPROTO_TCP;
616 break;
617 case UDP_V6_FLOW:
618 ip_proto = IPPROTO_UDP;
619 break;
620 default:
621 return -EINVAL;
622 }
623
624 ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
625
626 layout = &udf_tcpip6_layout;
627 slice_num = bcm_sf2_get_slice_number(layout, 0);
628 if (slice_num == UDF_NUM_SLICES)
629 return -EINVAL;
630
631 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
632
633 /* Negotiate two indexes, one for the second half which we are chained
634 * from, which is what we will return to user-space, and a second one
635 * which is used to store its first half. That first half does not
636 * allow any choice of placement, so it just needs to find the next
637 * available bit. We return the second half as fs->location because
638 * that helps with the rule lookup later on since the second half is
639 * chained from its first half, we can easily identify IPv6 CFP rules
640 * by looking whether they carry a CHAIN_ID.
641 *
642 * We also want the second half to have a lower rule_index than its
643 * first half because the HW search is by incrementing addresses.
644 */
645 if (fs->location == RX_CLS_LOC_ANY)
646 rule_index[1] = find_first_zero_bit(priv->cfp.used,
647 priv->num_cfp_rules);
648 else
649 rule_index[1] = fs->location;
650 if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
651 return -ENOSPC;
652
653 /* Flag it as used (cleared on error path) such that we can immediately
654 * obtain a second one to chain from.
655 */
656 set_bit(rule_index[1], priv->cfp.used);
657
658 rule_index[0] = find_first_zero_bit(priv->cfp.used,
659 priv->num_cfp_rules);
660 if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
661 ret = -ENOSPC;
662 goto out_err;
663 }
664
665 input.fs = fs;
666 flow = ethtool_rx_flow_rule_create(&input);
667 if (IS_ERR(flow)) {
668 ret = PTR_ERR(flow);
669 goto out_err;
670 }
671 flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
672 flow_rule_match_ports(flow->rule, &ports);
673
674 /* Apply the UDF layout for this filter */
675 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
676
677 /* Apply to all packets received through this port */
678 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
679
680 /* Source port map match */
681 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
682
683 /* S-Tag status [31:30]
684 * C-Tag status [29:28]
685 * L2 framing [27:26]
686 * L3 framing [25:24]
687 * IP ToS [23:16]
688 * IP proto [15:08]
689 * IP Fragm [7]
690 * Non 1st frag [6]
691 * IP Authen [5]
692 * TTL range [4:3]
693 * PPPoE session [2]
694 * Reserved [1]
695 * UDF_Valid[8] [0]
696 */
697 reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
698 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
699 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
700
701 /* Mask with the specific layout for IPv6 packets including
702 * UDF_Valid[8]
703 */
704 reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
705 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
706
707 /* UDF_Valid[7:0] [31:24]
708 * S-Tag [23:8]
709 * C-Tag [7:0]
710 */
711 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
712
713 /* Mask all but valid UDFs */
714 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
715
716 /* Slice the IPv6 source address and port */
717 bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
718 ports.key->src, slice_num, false);
719 bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
720 ports.mask->src, SLICE_NUM_MASK, true);
721
722 /* Insert into TCAM now because we need to insert a second rule */
723 bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
724
725 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
726 if (ret) {
727 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
728 goto out_err_flow_rule;
729 }
730
731 /* Insert into Action and policer RAMs now */
732 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
733 queue_num, false);
734 if (ret)
735 goto out_err_flow_rule;
736
737 /* Now deal with the second slice to chain this rule */
738 slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
739 if (slice_num == UDF_NUM_SLICES) {
740 ret = -EINVAL;
741 goto out_err_flow_rule;
742 }
743
744 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
745
746 /* Apply the UDF layout for this filter */
747 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
748
749 /* Chained rule, source port match is coming from the rule we are
750 * chained from.
751 */
752 core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
753 core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
754
755 /*
756 * CHAIN ID [31:24] chain to previous slice
757 * Reserved [23:20]
758 * UDF_Valid[11:8] [19:16]
759 * UDF_Valid[7:0] [15:8]
760 * UDF_n_D11 [7:0]
761 */
762 reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
763 udf_lower_bits(num_udf) << 8;
764 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
765
766 /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
767 reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
768 udf_lower_bits(num_udf) << 8;
769 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
770
771 /* Don't care */
772 core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
773
774 /* Mask all */
775 core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
776
777 bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
778 ports.key->dst, slice_num, false);
779 bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
780 ports.key->dst, SLICE_NUM_MASK, true);
781
782 /* Insert into TCAM now */
783 bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
784
785 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
786 if (ret) {
787 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
788 goto out_err_flow_rule;
789 }
790
791 /* Insert into Action and policer RAMs now, set chain ID to
792 * the one we are chained to
793 */
794 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
795 queue_num, true);
796 if (ret)
797 goto out_err_flow_rule;
798
799 /* Turn on CFP for this rule now */
800 reg = core_readl(priv, CORE_CFP_CTL_REG);
801 reg |= BIT(port);
802 core_writel(priv, reg, CORE_CFP_CTL_REG);
803
804 /* Flag the second half rule as being used now, return it as the
805 * location, and flag it as unique while dumping rules
806 */
807 set_bit(rule_index[0], priv->cfp.used);
808 set_bit(rule_index[1], priv->cfp.unique);
809 fs->location = rule_index[1];
810
811 return ret;
812
813 out_err_flow_rule:
814 ethtool_rx_flow_rule_destroy(flow);
815 out_err:
816 clear_bit(rule_index[1], priv->cfp.used);
817 return ret;
818 }
819
bcm_sf2_cfp_rule_insert(struct dsa_switch * ds,int port,struct ethtool_rx_flow_spec * fs)820 static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
821 struct ethtool_rx_flow_spec *fs)
822 {
823 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
824 s8 cpu_port = ds->ports[port].cpu_dp->index;
825 __u64 ring_cookie = fs->ring_cookie;
826 unsigned int queue_num, port_num;
827 int ret;
828
829 /* This rule is a Wake-on-LAN filter and we must specifically
830 * target the CPU port in order for it to be working.
831 */
832 if (ring_cookie == RX_CLS_FLOW_WAKE)
833 ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
834
835 /* We do not support discarding packets, check that the
836 * destination port is enabled and that we are within the
837 * number of ports supported by the switch
838 */
839 port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
840
841 if (ring_cookie == RX_CLS_FLOW_DISC ||
842 !(dsa_is_user_port(ds, port_num) ||
843 dsa_is_cpu_port(ds, port_num)) ||
844 port_num >= priv->hw_params.num_ports)
845 return -EINVAL;
846 /*
847 * We have a small oddity where Port 6 just does not have a
848 * valid bit here (so we substract by one).
849 */
850 queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
851 if (port_num >= 7)
852 port_num -= 1;
853
854 switch (fs->flow_type & ~FLOW_EXT) {
855 case TCP_V4_FLOW:
856 case UDP_V4_FLOW:
857 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
858 queue_num, fs);
859 break;
860 case TCP_V6_FLOW:
861 case UDP_V6_FLOW:
862 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
863 queue_num, fs);
864 break;
865 default:
866 ret = -EINVAL;
867 break;
868 }
869
870 return ret;
871 }
872
bcm_sf2_cfp_rule_set(struct dsa_switch * ds,int port,struct ethtool_rx_flow_spec * fs)873 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
874 struct ethtool_rx_flow_spec *fs)
875 {
876 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
877 struct cfp_rule *rule = NULL;
878 int ret = -EINVAL;
879
880 /* Check for unsupported extensions */
881 if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
882 fs->m_ext.data[1]))
883 return -EINVAL;
884
885 if (fs->location != RX_CLS_LOC_ANY && fs->location >= CFP_NUM_RULES)
886 return -EINVAL;
887
888 if (fs->location != RX_CLS_LOC_ANY &&
889 test_bit(fs->location, priv->cfp.used))
890 return -EBUSY;
891
892 if (fs->location != RX_CLS_LOC_ANY &&
893 fs->location > bcm_sf2_cfp_rule_size(priv))
894 return -EINVAL;
895
896 ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
897 if (ret == 0)
898 return -EEXIST;
899
900 rule = kzalloc(sizeof(*rule), GFP_KERNEL);
901 if (!rule)
902 return -ENOMEM;
903
904 ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
905 if (ret) {
906 kfree(rule);
907 return ret;
908 }
909
910 rule->port = port;
911 memcpy(&rule->fs, fs, sizeof(*fs));
912 list_add_tail(&rule->next, &priv->cfp.rules_list);
913
914 return ret;
915 }
916
bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv * priv,int port,u32 loc,u32 * next_loc)917 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
918 u32 loc, u32 *next_loc)
919 {
920 int ret;
921 u32 reg;
922
923 /* Indicate which rule we want to read */
924 bcm_sf2_cfp_rule_addr_set(priv, loc);
925
926 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
927 if (ret)
928 return ret;
929
930 /* Check if this is possibly an IPv6 rule that would
931 * indicate we need to delete its companion rule
932 * as well
933 */
934 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
935 if (next_loc)
936 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
937
938 /* Clear its valid bits */
939 reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
940 reg &= ~SLICE_VALID;
941 core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
942
943 /* Write back this entry into the TCAM now */
944 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
945 if (ret)
946 return ret;
947
948 clear_bit(loc, priv->cfp.used);
949 clear_bit(loc, priv->cfp.unique);
950
951 return 0;
952 }
953
bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv * priv,int port,u32 loc)954 static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
955 u32 loc)
956 {
957 u32 next_loc = 0;
958 int ret;
959
960 ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
961 if (ret)
962 return ret;
963
964 /* If this was an IPv6 rule, delete is companion rule too */
965 if (next_loc)
966 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
967
968 return ret;
969 }
970
bcm_sf2_cfp_rule_del(struct bcm_sf2_priv * priv,int port,u32 loc)971 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
972 {
973 struct cfp_rule *rule;
974 int ret;
975
976 if (loc >= CFP_NUM_RULES)
977 return -EINVAL;
978
979 /* Refuse deleting unused rules, and those that are not unique since
980 * that could leave IPv6 rules with one of the chained rule in the
981 * table.
982 */
983 if (!test_bit(loc, priv->cfp.unique) || loc == 0)
984 return -EINVAL;
985
986 rule = bcm_sf2_cfp_rule_find(priv, port, loc);
987 if (!rule)
988 return -EINVAL;
989
990 ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
991
992 list_del(&rule->next);
993 kfree(rule);
994
995 return ret;
996 }
997
bcm_sf2_invert_masks(struct ethtool_rx_flow_spec * flow)998 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
999 {
1000 unsigned int i;
1001
1002 for (i = 0; i < sizeof(flow->m_u); i++)
1003 flow->m_u.hdata[i] ^= 0xff;
1004
1005 flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1006 flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1007 flow->m_ext.data[0] ^= cpu_to_be32(~0);
1008 flow->m_ext.data[1] ^= cpu_to_be32(~0);
1009 }
1010
bcm_sf2_cfp_rule_get(struct bcm_sf2_priv * priv,int port,struct ethtool_rxnfc * nfc)1011 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1012 struct ethtool_rxnfc *nfc)
1013 {
1014 struct cfp_rule *rule;
1015
1016 rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1017 if (!rule)
1018 return -EINVAL;
1019
1020 memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1021
1022 bcm_sf2_invert_masks(&nfc->fs);
1023
1024 /* Put the TCAM size here */
1025 nfc->data = bcm_sf2_cfp_rule_size(priv);
1026
1027 return 0;
1028 }
1029
1030 /* We implement the search doing a TCAM search operation */
bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv * priv,int port,struct ethtool_rxnfc * nfc,u32 * rule_locs)1031 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1032 int port, struct ethtool_rxnfc *nfc,
1033 u32 *rule_locs)
1034 {
1035 unsigned int index = 1, rules_cnt = 0;
1036
1037 for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1038 rule_locs[rules_cnt] = index;
1039 rules_cnt++;
1040 }
1041
1042 /* Put the TCAM size here */
1043 nfc->data = bcm_sf2_cfp_rule_size(priv);
1044 nfc->rule_cnt = rules_cnt;
1045
1046 return 0;
1047 }
1048
bcm_sf2_get_rxnfc(struct dsa_switch * ds,int port,struct ethtool_rxnfc * nfc,u32 * rule_locs)1049 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1050 struct ethtool_rxnfc *nfc, u32 *rule_locs)
1051 {
1052 struct net_device *p = ds->ports[port].cpu_dp->master;
1053 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1054 int ret = 0;
1055
1056 mutex_lock(&priv->cfp.lock);
1057
1058 switch (nfc->cmd) {
1059 case ETHTOOL_GRXCLSRLCNT:
1060 /* Subtract the default, unusable rule */
1061 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1062 priv->num_cfp_rules) - 1;
1063 /* We support specifying rule locations */
1064 nfc->data |= RX_CLS_LOC_SPECIAL;
1065 break;
1066 case ETHTOOL_GRXCLSRULE:
1067 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1068 break;
1069 case ETHTOOL_GRXCLSRLALL:
1070 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1071 break;
1072 default:
1073 ret = -EOPNOTSUPP;
1074 break;
1075 }
1076
1077 mutex_unlock(&priv->cfp.lock);
1078
1079 if (ret)
1080 return ret;
1081
1082 /* Pass up the commands to the attached master network device */
1083 if (p->ethtool_ops->get_rxnfc) {
1084 ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1085 if (ret == -EOPNOTSUPP)
1086 ret = 0;
1087 }
1088
1089 return ret;
1090 }
1091
bcm_sf2_set_rxnfc(struct dsa_switch * ds,int port,struct ethtool_rxnfc * nfc)1092 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1093 struct ethtool_rxnfc *nfc)
1094 {
1095 struct net_device *p = ds->ports[port].cpu_dp->master;
1096 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1097 int ret = 0;
1098
1099 mutex_lock(&priv->cfp.lock);
1100
1101 switch (nfc->cmd) {
1102 case ETHTOOL_SRXCLSRLINS:
1103 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1104 break;
1105
1106 case ETHTOOL_SRXCLSRLDEL:
1107 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1108 break;
1109 default:
1110 ret = -EOPNOTSUPP;
1111 break;
1112 }
1113
1114 mutex_unlock(&priv->cfp.lock);
1115
1116 if (ret)
1117 return ret;
1118
1119 /* Pass up the commands to the attached master network device.
1120 * This can fail, so rollback the operation if we need to.
1121 */
1122 if (p->ethtool_ops->set_rxnfc) {
1123 ret = p->ethtool_ops->set_rxnfc(p, nfc);
1124 if (ret && ret != -EOPNOTSUPP) {
1125 mutex_lock(&priv->cfp.lock);
1126 bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1127 mutex_unlock(&priv->cfp.lock);
1128 } else {
1129 ret = 0;
1130 }
1131 }
1132
1133 return ret;
1134 }
1135
bcm_sf2_cfp_rst(struct bcm_sf2_priv * priv)1136 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1137 {
1138 unsigned int timeout = 1000;
1139 u32 reg;
1140
1141 reg = core_readl(priv, CORE_CFP_ACC);
1142 reg |= TCAM_RESET;
1143 core_writel(priv, reg, CORE_CFP_ACC);
1144
1145 do {
1146 reg = core_readl(priv, CORE_CFP_ACC);
1147 if (!(reg & TCAM_RESET))
1148 break;
1149
1150 cpu_relax();
1151 } while (timeout--);
1152
1153 if (!timeout)
1154 return -ETIMEDOUT;
1155
1156 return 0;
1157 }
1158
bcm_sf2_cfp_exit(struct dsa_switch * ds)1159 void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1160 {
1161 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1162 struct cfp_rule *rule, *n;
1163
1164 if (list_empty(&priv->cfp.rules_list))
1165 return;
1166
1167 list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1168 bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1169 }
1170
bcm_sf2_cfp_resume(struct dsa_switch * ds)1171 int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1172 {
1173 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1174 struct cfp_rule *rule;
1175 int ret = 0;
1176 u32 reg;
1177
1178 if (list_empty(&priv->cfp.rules_list))
1179 return ret;
1180
1181 reg = core_readl(priv, CORE_CFP_CTL_REG);
1182 reg &= ~CFP_EN_MAP_MASK;
1183 core_writel(priv, reg, CORE_CFP_CTL_REG);
1184
1185 ret = bcm_sf2_cfp_rst(priv);
1186 if (ret)
1187 return ret;
1188
1189 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1190 ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1191 rule->fs.location);
1192 if (ret) {
1193 dev_err(ds->dev, "failed to remove rule\n");
1194 return ret;
1195 }
1196
1197 ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1198 if (ret) {
1199 dev_err(ds->dev, "failed to restore rule\n");
1200 return ret;
1201 }
1202 }
1203
1204 return ret;
1205 }
1206
1207 static const struct bcm_sf2_cfp_stat {
1208 unsigned int offset;
1209 unsigned int ram_loc;
1210 const char *name;
1211 } bcm_sf2_cfp_stats[] = {
1212 {
1213 .offset = CORE_STAT_GREEN_CNTR,
1214 .ram_loc = GREEN_STAT_RAM,
1215 .name = "Green"
1216 },
1217 {
1218 .offset = CORE_STAT_YELLOW_CNTR,
1219 .ram_loc = YELLOW_STAT_RAM,
1220 .name = "Yellow"
1221 },
1222 {
1223 .offset = CORE_STAT_RED_CNTR,
1224 .ram_loc = RED_STAT_RAM,
1225 .name = "Red"
1226 },
1227 };
1228
bcm_sf2_cfp_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)1229 void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1230 u32 stringset, uint8_t *data)
1231 {
1232 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1233 unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1234 char buf[ETH_GSTRING_LEN];
1235 unsigned int i, j, iter;
1236
1237 if (stringset != ETH_SS_STATS)
1238 return;
1239
1240 for (i = 1; i < priv->num_cfp_rules; i++) {
1241 for (j = 0; j < s; j++) {
1242 snprintf(buf, sizeof(buf),
1243 "CFP%03d_%sCntr",
1244 i, bcm_sf2_cfp_stats[j].name);
1245 iter = (i - 1) * s + j;
1246 strlcpy(data + iter * ETH_GSTRING_LEN,
1247 buf, ETH_GSTRING_LEN);
1248 }
1249 }
1250 }
1251
bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)1252 void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1253 uint64_t *data)
1254 {
1255 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1256 unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1257 const struct bcm_sf2_cfp_stat *stat;
1258 unsigned int i, j, iter;
1259 struct cfp_rule *rule;
1260 int ret;
1261
1262 mutex_lock(&priv->cfp.lock);
1263 for (i = 1; i < priv->num_cfp_rules; i++) {
1264 rule = bcm_sf2_cfp_rule_find(priv, port, i);
1265 if (!rule)
1266 continue;
1267
1268 for (j = 0; j < s; j++) {
1269 stat = &bcm_sf2_cfp_stats[j];
1270
1271 bcm_sf2_cfp_rule_addr_set(priv, i);
1272 ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1273 if (ret)
1274 continue;
1275
1276 iter = (i - 1) * s + j;
1277 data[iter] = core_readl(priv, stat->offset);
1278 }
1279
1280 }
1281 mutex_unlock(&priv->cfp.lock);
1282 }
1283
bcm_sf2_cfp_get_sset_count(struct dsa_switch * ds,int port,int sset)1284 int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1285 {
1286 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1287
1288 if (sset != ETH_SS_STATS)
1289 return 0;
1290
1291 /* 3 counters per CFP rules */
1292 return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1293 }
1294