1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PNI RM3100 3-axis geomagnetic sensor driver core.
4 *
5 * Copyright (C) 2018 Song Qiang <songqiang1304521@gmail.com>
6 *
7 * User Manual available at
8 * <https://www.pnicorp.com/download/rm3100-user-manual/>
9 *
10 * TODO: event generation, pm.
11 */
12
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/iio/trigger_consumer.h>
24
25 #include "rm3100.h"
26
27 /* Cycle Count Registers. */
28 #define RM3100_REG_CC_X 0x05
29 #define RM3100_REG_CC_Y 0x07
30 #define RM3100_REG_CC_Z 0x09
31
32 /* Poll Measurement Mode register. */
33 #define RM3100_REG_POLL 0x00
34 #define RM3100_POLL_X BIT(4)
35 #define RM3100_POLL_Y BIT(5)
36 #define RM3100_POLL_Z BIT(6)
37
38 /* Continuous Measurement Mode register. */
39 #define RM3100_REG_CMM 0x01
40 #define RM3100_CMM_START BIT(0)
41 #define RM3100_CMM_X BIT(4)
42 #define RM3100_CMM_Y BIT(5)
43 #define RM3100_CMM_Z BIT(6)
44
45 /* TiMe Rate Configuration register. */
46 #define RM3100_REG_TMRC 0x0B
47 #define RM3100_TMRC_OFFSET 0x92
48
49 /* Result Status register. */
50 #define RM3100_REG_STATUS 0x34
51 #define RM3100_STATUS_DRDY BIT(7)
52
53 /* Measurement result registers. */
54 #define RM3100_REG_MX2 0x24
55 #define RM3100_REG_MY2 0x27
56 #define RM3100_REG_MZ2 0x2a
57
58 #define RM3100_W_REG_START RM3100_REG_POLL
59 #define RM3100_W_REG_END RM3100_REG_TMRC
60 #define RM3100_R_REG_START RM3100_REG_POLL
61 #define RM3100_R_REG_END RM3100_REG_STATUS
62 #define RM3100_V_REG_START RM3100_REG_POLL
63 #define RM3100_V_REG_END RM3100_REG_STATUS
64
65 /*
66 * This is computed by hand, is the sum of channel storage bits and padding
67 * bits, which is 4+4+4+12=24 in here.
68 */
69 #define RM3100_SCAN_BYTES 24
70
71 #define RM3100_CMM_AXIS_SHIFT 4
72
73 struct rm3100_data {
74 struct regmap *regmap;
75 struct completion measuring_done;
76 bool use_interrupt;
77 int conversion_time;
78 int scale;
79 u8 buffer[RM3100_SCAN_BYTES];
80 struct iio_trigger *drdy_trig;
81
82 /*
83 * This lock is for protecting the consistency of series of i2c
84 * operations, that is, to make sure a measurement process will
85 * not be interrupted by a set frequency operation, which should
86 * be taken where a series of i2c operation starts, released where
87 * the operation ends.
88 */
89 struct mutex lock;
90 };
91
92 static const struct regmap_range rm3100_readable_ranges[] = {
93 regmap_reg_range(RM3100_R_REG_START, RM3100_R_REG_END),
94 };
95
96 const struct regmap_access_table rm3100_readable_table = {
97 .yes_ranges = rm3100_readable_ranges,
98 .n_yes_ranges = ARRAY_SIZE(rm3100_readable_ranges),
99 };
100 EXPORT_SYMBOL_GPL(rm3100_readable_table);
101
102 static const struct regmap_range rm3100_writable_ranges[] = {
103 regmap_reg_range(RM3100_W_REG_START, RM3100_W_REG_END),
104 };
105
106 const struct regmap_access_table rm3100_writable_table = {
107 .yes_ranges = rm3100_writable_ranges,
108 .n_yes_ranges = ARRAY_SIZE(rm3100_writable_ranges),
109 };
110 EXPORT_SYMBOL_GPL(rm3100_writable_table);
111
112 static const struct regmap_range rm3100_volatile_ranges[] = {
113 regmap_reg_range(RM3100_V_REG_START, RM3100_V_REG_END),
114 };
115
116 const struct regmap_access_table rm3100_volatile_table = {
117 .yes_ranges = rm3100_volatile_ranges,
118 .n_yes_ranges = ARRAY_SIZE(rm3100_volatile_ranges),
119 };
120 EXPORT_SYMBOL_GPL(rm3100_volatile_table);
121
rm3100_thread_fn(int irq,void * d)122 static irqreturn_t rm3100_thread_fn(int irq, void *d)
123 {
124 struct iio_dev *indio_dev = d;
125 struct rm3100_data *data = iio_priv(indio_dev);
126
127 /*
128 * Write operation to any register or read operation
129 * to first byte of results will clear the interrupt.
130 */
131 regmap_write(data->regmap, RM3100_REG_POLL, 0);
132
133 return IRQ_HANDLED;
134 }
135
rm3100_irq_handler(int irq,void * d)136 static irqreturn_t rm3100_irq_handler(int irq, void *d)
137 {
138 struct iio_dev *indio_dev = d;
139 struct rm3100_data *data = iio_priv(indio_dev);
140
141 switch (indio_dev->currentmode) {
142 case INDIO_DIRECT_MODE:
143 complete(&data->measuring_done);
144 break;
145 case INDIO_BUFFER_TRIGGERED:
146 iio_trigger_poll(data->drdy_trig);
147 break;
148 default:
149 dev_err(indio_dev->dev.parent,
150 "device mode out of control, current mode: %d",
151 indio_dev->currentmode);
152 }
153
154 return IRQ_WAKE_THREAD;
155 }
156
rm3100_wait_measurement(struct rm3100_data * data)157 static int rm3100_wait_measurement(struct rm3100_data *data)
158 {
159 struct regmap *regmap = data->regmap;
160 unsigned int val;
161 int tries = 20;
162 int ret;
163
164 /*
165 * A read cycle of 400kbits i2c bus is about 20us, plus the time
166 * used for scheduling, a read cycle of fast mode of this device
167 * can reach 1.7ms, it may be possible for data to arrive just
168 * after we check the RM3100_REG_STATUS. In this case, irq_handler is
169 * called before measuring_done is reinitialized, it will wait
170 * forever for data that has already been ready.
171 * Reinitialize measuring_done before looking up makes sure we
172 * will always capture interrupt no matter when it happens.
173 */
174 if (data->use_interrupt)
175 reinit_completion(&data->measuring_done);
176
177 ret = regmap_read(regmap, RM3100_REG_STATUS, &val);
178 if (ret < 0)
179 return ret;
180
181 if ((val & RM3100_STATUS_DRDY) != RM3100_STATUS_DRDY) {
182 if (data->use_interrupt) {
183 ret = wait_for_completion_timeout(&data->measuring_done,
184 msecs_to_jiffies(data->conversion_time));
185 if (!ret)
186 return -ETIMEDOUT;
187 } else {
188 do {
189 usleep_range(1000, 5000);
190
191 ret = regmap_read(regmap, RM3100_REG_STATUS,
192 &val);
193 if (ret < 0)
194 return ret;
195
196 if (val & RM3100_STATUS_DRDY)
197 break;
198 } while (--tries);
199 if (!tries)
200 return -ETIMEDOUT;
201 }
202 }
203 return 0;
204 }
205
rm3100_read_mag(struct rm3100_data * data,int idx,int * val)206 static int rm3100_read_mag(struct rm3100_data *data, int idx, int *val)
207 {
208 struct regmap *regmap = data->regmap;
209 u8 buffer[3];
210 int ret;
211
212 mutex_lock(&data->lock);
213 ret = regmap_write(regmap, RM3100_REG_POLL, BIT(4 + idx));
214 if (ret < 0)
215 goto unlock_return;
216
217 ret = rm3100_wait_measurement(data);
218 if (ret < 0)
219 goto unlock_return;
220
221 ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * idx, buffer, 3);
222 if (ret < 0)
223 goto unlock_return;
224 mutex_unlock(&data->lock);
225
226 *val = sign_extend32((buffer[0] << 16) | (buffer[1] << 8) | buffer[2],
227 23);
228
229 return IIO_VAL_INT;
230
231 unlock_return:
232 mutex_unlock(&data->lock);
233 return ret;
234 }
235
236 #define RM3100_CHANNEL(axis, idx) \
237 { \
238 .type = IIO_MAGN, \
239 .modified = 1, \
240 .channel2 = IIO_MOD_##axis, \
241 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
242 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
243 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
244 .scan_index = idx, \
245 .scan_type = { \
246 .sign = 's', \
247 .realbits = 24, \
248 .storagebits = 32, \
249 .shift = 8, \
250 .endianness = IIO_BE, \
251 }, \
252 }
253
254 static const struct iio_chan_spec rm3100_channels[] = {
255 RM3100_CHANNEL(X, 0),
256 RM3100_CHANNEL(Y, 1),
257 RM3100_CHANNEL(Z, 2),
258 IIO_CHAN_SOFT_TIMESTAMP(3),
259 };
260
261 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
262 "600 300 150 75 37 18 9 4.5 2.3 1.2 0.6 0.3 0.015 0.075"
263 );
264
265 static struct attribute *rm3100_attributes[] = {
266 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
267 NULL,
268 };
269
270 static const struct attribute_group rm3100_attribute_group = {
271 .attrs = rm3100_attributes,
272 };
273
274 #define RM3100_SAMP_NUM 14
275
276 /*
277 * Frequency : rm3100_samp_rates[][0].rm3100_samp_rates[][1]Hz.
278 * Time between reading: rm3100_sam_rates[][2]ms.
279 * The first one is actually 1.7ms.
280 */
281 static const int rm3100_samp_rates[RM3100_SAMP_NUM][3] = {
282 {600, 0, 2}, {300, 0, 3}, {150, 0, 7}, {75, 0, 13}, {37, 0, 27},
283 {18, 0, 55}, {9, 0, 110}, {4, 500000, 220}, {2, 300000, 440},
284 {1, 200000, 800}, {0, 600000, 1600}, {0, 300000, 3300},
285 {0, 15000, 6700}, {0, 75000, 13000}
286 };
287
rm3100_get_samp_freq(struct rm3100_data * data,int * val,int * val2)288 static int rm3100_get_samp_freq(struct rm3100_data *data, int *val, int *val2)
289 {
290 unsigned int tmp;
291 int ret;
292
293 mutex_lock(&data->lock);
294 ret = regmap_read(data->regmap, RM3100_REG_TMRC, &tmp);
295 mutex_unlock(&data->lock);
296 if (ret < 0)
297 return ret;
298 *val = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][0];
299 *val2 = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][1];
300
301 return IIO_VAL_INT_PLUS_MICRO;
302 }
303
rm3100_set_cycle_count(struct rm3100_data * data,int val)304 static int rm3100_set_cycle_count(struct rm3100_data *data, int val)
305 {
306 int ret;
307 u8 i;
308
309 for (i = 0; i < 3; i++) {
310 ret = regmap_write(data->regmap, RM3100_REG_CC_X + 2 * i, val);
311 if (ret < 0)
312 return ret;
313 }
314
315 /*
316 * The scale of this sensor depends on the cycle count value, these
317 * three values are corresponding to the cycle count value 50, 100,
318 * 200. scale = output / gain * 10^4.
319 */
320 switch (val) {
321 case 50:
322 data->scale = 500;
323 break;
324 case 100:
325 data->scale = 263;
326 break;
327 /*
328 * case 200:
329 * This function will never be called by users' code, so here we
330 * assume that it will never get a wrong parameter.
331 */
332 default:
333 data->scale = 133;
334 }
335
336 return 0;
337 }
338
rm3100_set_samp_freq(struct iio_dev * indio_dev,int val,int val2)339 static int rm3100_set_samp_freq(struct iio_dev *indio_dev, int val, int val2)
340 {
341 struct rm3100_data *data = iio_priv(indio_dev);
342 struct regmap *regmap = data->regmap;
343 unsigned int cycle_count;
344 int ret;
345 int i;
346
347 mutex_lock(&data->lock);
348 /* All cycle count registers use the same value. */
349 ret = regmap_read(regmap, RM3100_REG_CC_X, &cycle_count);
350 if (ret < 0)
351 goto unlock_return;
352
353 for (i = 0; i < RM3100_SAMP_NUM; i++) {
354 if (val == rm3100_samp_rates[i][0] &&
355 val2 == rm3100_samp_rates[i][1])
356 break;
357 }
358 if (i == RM3100_SAMP_NUM) {
359 ret = -EINVAL;
360 goto unlock_return;
361 }
362
363 ret = regmap_write(regmap, RM3100_REG_TMRC, i + RM3100_TMRC_OFFSET);
364 if (ret < 0)
365 goto unlock_return;
366
367 /* Checking if cycle count registers need changing. */
368 if (val == 600 && cycle_count == 200) {
369 ret = rm3100_set_cycle_count(data, 100);
370 if (ret < 0)
371 goto unlock_return;
372 } else if (val != 600 && cycle_count == 100) {
373 ret = rm3100_set_cycle_count(data, 200);
374 if (ret < 0)
375 goto unlock_return;
376 }
377
378 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
379 /* Writing TMRC registers requires CMM reset. */
380 ret = regmap_write(regmap, RM3100_REG_CMM, 0);
381 if (ret < 0)
382 goto unlock_return;
383 ret = regmap_write(data->regmap, RM3100_REG_CMM,
384 (*indio_dev->active_scan_mask & 0x7) <<
385 RM3100_CMM_AXIS_SHIFT | RM3100_CMM_START);
386 if (ret < 0)
387 goto unlock_return;
388 }
389 mutex_unlock(&data->lock);
390
391 data->conversion_time = rm3100_samp_rates[i][2] * 2;
392 return 0;
393
394 unlock_return:
395 mutex_unlock(&data->lock);
396 return ret;
397 }
398
rm3100_read_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long mask)399 static int rm3100_read_raw(struct iio_dev *indio_dev,
400 const struct iio_chan_spec *chan,
401 int *val, int *val2, long mask)
402 {
403 struct rm3100_data *data = iio_priv(indio_dev);
404 int ret;
405
406 switch (mask) {
407 case IIO_CHAN_INFO_RAW:
408 ret = iio_device_claim_direct_mode(indio_dev);
409 if (ret < 0)
410 return ret;
411
412 ret = rm3100_read_mag(data, chan->scan_index, val);
413 iio_device_release_direct_mode(indio_dev);
414
415 return ret;
416 case IIO_CHAN_INFO_SCALE:
417 *val = 0;
418 *val2 = data->scale;
419
420 return IIO_VAL_INT_PLUS_MICRO;
421 case IIO_CHAN_INFO_SAMP_FREQ:
422 return rm3100_get_samp_freq(data, val, val2);
423 default:
424 return -EINVAL;
425 }
426 }
427
rm3100_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)428 static int rm3100_write_raw(struct iio_dev *indio_dev,
429 struct iio_chan_spec const *chan,
430 int val, int val2, long mask)
431 {
432 switch (mask) {
433 case IIO_CHAN_INFO_SAMP_FREQ:
434 return rm3100_set_samp_freq(indio_dev, val, val2);
435 default:
436 return -EINVAL;
437 }
438 }
439
440 static const struct iio_info rm3100_info = {
441 .attrs = &rm3100_attribute_group,
442 .read_raw = rm3100_read_raw,
443 .write_raw = rm3100_write_raw,
444 };
445
rm3100_buffer_preenable(struct iio_dev * indio_dev)446 static int rm3100_buffer_preenable(struct iio_dev *indio_dev)
447 {
448 struct rm3100_data *data = iio_priv(indio_dev);
449
450 /* Starting channels enabled. */
451 return regmap_write(data->regmap, RM3100_REG_CMM,
452 (*indio_dev->active_scan_mask & 0x7) << RM3100_CMM_AXIS_SHIFT |
453 RM3100_CMM_START);
454 }
455
rm3100_buffer_postdisable(struct iio_dev * indio_dev)456 static int rm3100_buffer_postdisable(struct iio_dev *indio_dev)
457 {
458 struct rm3100_data *data = iio_priv(indio_dev);
459
460 return regmap_write(data->regmap, RM3100_REG_CMM, 0);
461 }
462
463 static const struct iio_buffer_setup_ops rm3100_buffer_ops = {
464 .preenable = rm3100_buffer_preenable,
465 .postenable = iio_triggered_buffer_postenable,
466 .predisable = iio_triggered_buffer_predisable,
467 .postdisable = rm3100_buffer_postdisable,
468 };
469
rm3100_trigger_handler(int irq,void * p)470 static irqreturn_t rm3100_trigger_handler(int irq, void *p)
471 {
472 struct iio_poll_func *pf = p;
473 struct iio_dev *indio_dev = pf->indio_dev;
474 unsigned long scan_mask = *indio_dev->active_scan_mask;
475 unsigned int mask_len = indio_dev->masklength;
476 struct rm3100_data *data = iio_priv(indio_dev);
477 struct regmap *regmap = data->regmap;
478 int ret, i, bit;
479
480 mutex_lock(&data->lock);
481 switch (scan_mask) {
482 case BIT(0) | BIT(1) | BIT(2):
483 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
484 mutex_unlock(&data->lock);
485 if (ret < 0)
486 goto done;
487 /* Convert XXXYYYZZZxxx to XXXxYYYxZZZx. x for paddings. */
488 for (i = 2; i > 0; i--)
489 memmove(data->buffer + i * 4, data->buffer + i * 3, 3);
490 break;
491 case BIT(0) | BIT(1):
492 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 6);
493 mutex_unlock(&data->lock);
494 if (ret < 0)
495 goto done;
496 memmove(data->buffer + 4, data->buffer + 3, 3);
497 break;
498 case BIT(1) | BIT(2):
499 ret = regmap_bulk_read(regmap, RM3100_REG_MY2, data->buffer, 6);
500 mutex_unlock(&data->lock);
501 if (ret < 0)
502 goto done;
503 memmove(data->buffer + 4, data->buffer + 3, 3);
504 break;
505 case BIT(0) | BIT(2):
506 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
507 mutex_unlock(&data->lock);
508 if (ret < 0)
509 goto done;
510 memmove(data->buffer + 4, data->buffer + 6, 3);
511 break;
512 default:
513 for_each_set_bit(bit, &scan_mask, mask_len) {
514 ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * bit,
515 data->buffer, 3);
516 if (ret < 0) {
517 mutex_unlock(&data->lock);
518 goto done;
519 }
520 }
521 mutex_unlock(&data->lock);
522 }
523 /*
524 * Always using the same buffer so that we wouldn't need to set the
525 * paddings to 0 in case of leaking any data.
526 */
527 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
528 pf->timestamp);
529 done:
530 iio_trigger_notify_done(indio_dev->trig);
531
532 return IRQ_HANDLED;
533 }
534
rm3100_common_probe(struct device * dev,struct regmap * regmap,int irq)535 int rm3100_common_probe(struct device *dev, struct regmap *regmap, int irq)
536 {
537 struct iio_dev *indio_dev;
538 struct rm3100_data *data;
539 unsigned int tmp;
540 int ret;
541
542 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
543 if (!indio_dev)
544 return -ENOMEM;
545
546 data = iio_priv(indio_dev);
547 data->regmap = regmap;
548
549 mutex_init(&data->lock);
550
551 indio_dev->dev.parent = dev;
552 indio_dev->name = "rm3100";
553 indio_dev->info = &rm3100_info;
554 indio_dev->channels = rm3100_channels;
555 indio_dev->num_channels = ARRAY_SIZE(rm3100_channels);
556 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED;
557 indio_dev->currentmode = INDIO_DIRECT_MODE;
558
559 if (!irq)
560 data->use_interrupt = false;
561 else {
562 data->use_interrupt = true;
563
564 init_completion(&data->measuring_done);
565 ret = devm_request_threaded_irq(dev,
566 irq,
567 rm3100_irq_handler,
568 rm3100_thread_fn,
569 IRQF_TRIGGER_HIGH |
570 IRQF_ONESHOT,
571 indio_dev->name,
572 indio_dev);
573 if (ret < 0) {
574 dev_err(dev, "request irq line failed.\n");
575 return ret;
576 }
577
578 data->drdy_trig = devm_iio_trigger_alloc(dev, "%s-drdy%d",
579 indio_dev->name,
580 indio_dev->id);
581 if (!data->drdy_trig)
582 return -ENOMEM;
583
584 data->drdy_trig->dev.parent = dev;
585 ret = devm_iio_trigger_register(dev, data->drdy_trig);
586 if (ret < 0)
587 return ret;
588 }
589
590 ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
591 &iio_pollfunc_store_time,
592 rm3100_trigger_handler,
593 &rm3100_buffer_ops);
594 if (ret < 0)
595 return ret;
596
597 ret = regmap_read(regmap, RM3100_REG_TMRC, &tmp);
598 if (ret < 0)
599 return ret;
600 /* Initializing max wait time, which is double conversion time. */
601 data->conversion_time = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][2]
602 * 2;
603
604 /* Cycle count values may not be what we want. */
605 if ((tmp - RM3100_TMRC_OFFSET) == 0)
606 rm3100_set_cycle_count(data, 100);
607 else
608 rm3100_set_cycle_count(data, 200);
609
610 return devm_iio_device_register(dev, indio_dev);
611 }
612 EXPORT_SYMBOL_GPL(rm3100_common_probe);
613
614 MODULE_AUTHOR("Song Qiang <songqiang1304521@gmail.com>");
615 MODULE_DESCRIPTION("PNI RM3100 3-axis magnetometer i2c driver");
616 MODULE_LICENSE("GPL v2");
617