• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 
13 struct phy_cfg_pair {
14 	u32 addr;
15 	u32 data;
16 };
17 
18 union phy_table_tile {
19 	struct rtw_phy_cond cond;
20 	struct phy_cfg_pair cfg;
21 };
22 
23 struct phy_pg_cfg_pair {
24 	u32 band;
25 	u32 rf_path;
26 	u32 tx_num;
27 	u32 addr;
28 	u32 bitmask;
29 	u32 data;
30 };
31 
32 static const u32 db_invert_table[12][8] = {
33 	{10,		13,		16,		20,
34 	 25,		32,		40,		50},
35 	{64,		80,		101,		128,
36 	 160,		201,		256,		318},
37 	{401,		505,		635,		800,
38 	 1007,		1268,		1596,		2010},
39 	{316,		398,		501,		631,
40 	 794,		1000,		1259,		1585},
41 	{1995,		2512,		3162,		3981,
42 	 5012,		6310,		7943,		10000},
43 	{12589,		15849,		19953,		25119,
44 	 31623,		39811,		50119,		63098},
45 	{79433,		100000,		125893,		158489,
46 	 199526,	251189,		316228,		398107},
47 	{501187,	630957,		794328,		1000000,
48 	 1258925,	1584893,	1995262,	2511886},
49 	{3162278,	3981072,	5011872,	6309573,
50 	 7943282,	1000000,	12589254,	15848932},
51 	{19952623,	25118864,	31622777,	39810717,
52 	 50118723,	63095734,	79432823,	100000000},
53 	{125892541,	158489319,	199526232,	251188643,
54 	 316227766,	398107171,	501187234,	630957345},
55 	{794328235,	1000000000,	1258925412,	1584893192,
56 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
57 };
58 
59 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
60 u8 rtw_ofdm_rates[] = {
61 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
62 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
63 	DESC_RATE48M, DESC_RATE54M
64 };
65 u8 rtw_ht_1s_rates[] = {
66 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
67 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
68 	DESC_RATEMCS6, DESC_RATEMCS7
69 };
70 u8 rtw_ht_2s_rates[] = {
71 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
72 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
73 	DESC_RATEMCS14, DESC_RATEMCS15
74 };
75 u8 rtw_vht_1s_rates[] = {
76 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
77 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
78 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
79 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
80 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
81 };
82 u8 rtw_vht_2s_rates[] = {
83 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
84 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
85 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
86 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
87 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
88 };
89 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
90 	rtw_cck_rates, rtw_ofdm_rates,
91 	rtw_ht_1s_rates, rtw_ht_2s_rates,
92 	rtw_vht_1s_rates, rtw_vht_2s_rates
93 };
94 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
95 	ARRAY_SIZE(rtw_cck_rates),
96 	ARRAY_SIZE(rtw_ofdm_rates),
97 	ARRAY_SIZE(rtw_ht_1s_rates),
98 	ARRAY_SIZE(rtw_ht_2s_rates),
99 	ARRAY_SIZE(rtw_vht_1s_rates),
100 	ARRAY_SIZE(rtw_vht_2s_rates)
101 };
102 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
103 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
104 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
105 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
106 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
107 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
108 
109 enum rtw_phy_band_type {
110 	PHY_BAND_2G	= 0,
111 	PHY_BAND_5G	= 1,
112 };
113 
rtw_phy_cck_pd_init(struct rtw_dev * rtwdev)114 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
115 {
116 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
117 	u8 i, j;
118 
119 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
120 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
121 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
122 	}
123 
124 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
125 }
126 
rtw_phy_init(struct rtw_dev * rtwdev)127 void rtw_phy_init(struct rtw_dev *rtwdev)
128 {
129 	struct rtw_chip_info *chip = rtwdev->chip;
130 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
131 	u32 addr, mask;
132 
133 	dm_info->fa_history[3] = 0;
134 	dm_info->fa_history[2] = 0;
135 	dm_info->fa_history[1] = 0;
136 	dm_info->fa_history[0] = 0;
137 	dm_info->igi_bitmap = 0;
138 	dm_info->igi_history[3] = 0;
139 	dm_info->igi_history[2] = 0;
140 	dm_info->igi_history[1] = 0;
141 
142 	addr = chip->dig[0].addr;
143 	mask = chip->dig[0].mask;
144 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
145 	rtw_phy_cck_pd_init(rtwdev);
146 }
147 
rtw_phy_dig_write(struct rtw_dev * rtwdev,u8 igi)148 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
149 {
150 	struct rtw_chip_info *chip = rtwdev->chip;
151 	struct rtw_hal *hal = &rtwdev->hal;
152 	u32 addr, mask;
153 	u8 path;
154 
155 	for (path = 0; path < hal->rf_path_num; path++) {
156 		addr = chip->dig[path].addr;
157 		mask = chip->dig[path].mask;
158 		rtw_write32_mask(rtwdev, addr, mask, igi);
159 	}
160 }
161 
rtw_phy_stat_false_alarm(struct rtw_dev * rtwdev)162 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
163 {
164 	struct rtw_chip_info *chip = rtwdev->chip;
165 
166 	chip->ops->false_alarm_statistics(rtwdev);
167 }
168 
169 #define RA_FLOOR_TABLE_SIZE	7
170 #define RA_FLOOR_UP_GAP		3
171 
rtw_phy_get_rssi_level(u8 old_level,u8 rssi)172 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
173 {
174 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
175 	u8 new_level = 0;
176 	int i;
177 
178 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
179 		if (i >= old_level)
180 			table[i] += RA_FLOOR_UP_GAP;
181 
182 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
183 		if (rssi < table[i]) {
184 			new_level = i;
185 			break;
186 		}
187 	}
188 
189 	return new_level;
190 }
191 
192 struct rtw_phy_stat_iter_data {
193 	struct rtw_dev *rtwdev;
194 	u8 min_rssi;
195 };
196 
rtw_phy_stat_rssi_iter(void * data,struct ieee80211_sta * sta)197 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
198 {
199 	struct rtw_phy_stat_iter_data *iter_data = data;
200 	struct rtw_dev *rtwdev = iter_data->rtwdev;
201 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
202 	u8 rssi;
203 
204 	rssi = ewma_rssi_read(&si->avg_rssi);
205 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
206 
207 	rtw_fw_send_rssi_info(rtwdev, si);
208 
209 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
210 }
211 
rtw_phy_stat_rssi(struct rtw_dev * rtwdev)212 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
213 {
214 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
215 	struct rtw_phy_stat_iter_data data = {};
216 
217 	data.rtwdev = rtwdev;
218 	data.min_rssi = U8_MAX;
219 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
220 
221 	dm_info->pre_min_rssi = dm_info->min_rssi;
222 	dm_info->min_rssi = data.min_rssi;
223 }
224 
rtw_phy_statistics(struct rtw_dev * rtwdev)225 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
226 {
227 	rtw_phy_stat_rssi(rtwdev);
228 	rtw_phy_stat_false_alarm(rtwdev);
229 }
230 
231 #define DIG_PERF_FA_TH_LOW			250
232 #define DIG_PERF_FA_TH_HIGH			500
233 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
234 #define DIG_PERF_MAX				0x5a
235 #define DIG_PERF_MID				0x40
236 #define DIG_CVRG_FA_TH_LOW			2000
237 #define DIG_CVRG_FA_TH_HIGH			4000
238 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
239 #define DIG_CVRG_MAX				0x2a
240 #define DIG_CVRG_MID				0x26
241 #define DIG_CVRG_MIN				0x1c
242 #define DIG_RSSI_GAIN_OFFSET			15
243 
244 static bool
rtw_phy_dig_check_damping(struct rtw_dm_info * dm_info)245 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
246 {
247 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
248 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
249 	u16 *fa_history;
250 	u8 *igi_history;
251 	u8 damping_rssi;
252 	u8 min_rssi;
253 	u8 diff;
254 	u8 igi_bitmap;
255 	bool damping = false;
256 
257 	min_rssi = dm_info->min_rssi;
258 	if (dm_info->damping) {
259 		damping_rssi = dm_info->damping_rssi;
260 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
261 						 damping_rssi - min_rssi;
262 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
263 			dm_info->damping = false;
264 			return false;
265 		}
266 
267 		return true;
268 	}
269 
270 	igi_history = dm_info->igi_history;
271 	fa_history = dm_info->fa_history;
272 	igi_bitmap = dm_info->igi_bitmap & 0xf;
273 	switch (igi_bitmap) {
274 	case 5:
275 		/* down -> up -> down -> up */
276 		if (igi_history[0] > igi_history[1] &&
277 		    igi_history[2] > igi_history[3] &&
278 		    igi_history[0] - igi_history[1] >= 2 &&
279 		    igi_history[2] - igi_history[3] >= 2 &&
280 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
281 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
282 			damping = true;
283 		break;
284 	case 9:
285 		/* up -> down -> down -> up */
286 		if (igi_history[0] > igi_history[1] &&
287 		    igi_history[3] > igi_history[2] &&
288 		    igi_history[0] - igi_history[1] >= 4 &&
289 		    igi_history[3] - igi_history[2] >= 2 &&
290 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
291 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
292 			damping = true;
293 		break;
294 	default:
295 		return false;
296 	}
297 
298 	if (damping) {
299 		dm_info->damping = true;
300 		dm_info->damping_cnt = 0;
301 		dm_info->damping_rssi = min_rssi;
302 	}
303 
304 	return damping;
305 }
306 
rtw_phy_dig_get_boundary(struct rtw_dm_info * dm_info,u8 * upper,u8 * lower,bool linked)307 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
308 				     u8 *upper, u8 *lower, bool linked)
309 {
310 	u8 dig_max, dig_min, dig_mid;
311 	u8 min_rssi;
312 
313 	if (linked) {
314 		dig_max = DIG_PERF_MAX;
315 		dig_mid = DIG_PERF_MID;
316 		/* 22B=0x1c, 22C=0x20 */
317 		dig_min = 0x1c;
318 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
319 	} else {
320 		dig_max = DIG_CVRG_MAX;
321 		dig_mid = DIG_CVRG_MID;
322 		dig_min = DIG_CVRG_MIN;
323 		min_rssi = dig_min;
324 	}
325 
326 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
327 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
328 
329 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
330 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
331 }
332 
rtw_phy_dig_get_threshold(struct rtw_dm_info * dm_info,u16 * fa_th,u8 * step,bool linked)333 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
334 				      u16 *fa_th, u8 *step, bool linked)
335 {
336 	u8 min_rssi, pre_min_rssi;
337 
338 	min_rssi = dm_info->min_rssi;
339 	pre_min_rssi = dm_info->pre_min_rssi;
340 	step[0] = 4;
341 	step[1] = 3;
342 	step[2] = 2;
343 
344 	if (linked) {
345 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
346 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
347 		fa_th[2] = DIG_PERF_FA_TH_LOW;
348 		if (pre_min_rssi > min_rssi) {
349 			step[0] = 6;
350 			step[1] = 4;
351 			step[2] = 2;
352 		}
353 	} else {
354 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
355 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
356 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
357 	}
358 }
359 
rtw_phy_dig_recorder(struct rtw_dm_info * dm_info,u8 igi,u16 fa)360 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
361 {
362 	u8 *igi_history;
363 	u16 *fa_history;
364 	u8 igi_bitmap;
365 	bool up;
366 
367 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
368 	igi_history = dm_info->igi_history;
369 	fa_history = dm_info->fa_history;
370 
371 	up = igi > igi_history[0];
372 	igi_bitmap |= up;
373 
374 	igi_history[3] = igi_history[2];
375 	igi_history[2] = igi_history[1];
376 	igi_history[1] = igi_history[0];
377 	igi_history[0] = igi;
378 
379 	fa_history[3] = fa_history[2];
380 	fa_history[2] = fa_history[1];
381 	fa_history[1] = fa_history[0];
382 	fa_history[0] = fa;
383 
384 	dm_info->igi_bitmap = igi_bitmap;
385 }
386 
rtw_phy_dig(struct rtw_dev * rtwdev)387 static void rtw_phy_dig(struct rtw_dev *rtwdev)
388 {
389 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
390 	u8 upper_bound, lower_bound;
391 	u8 pre_igi, cur_igi;
392 	u16 fa_th[3], fa_cnt;
393 	u8 level;
394 	u8 step[3];
395 	bool linked;
396 
397 	if (rtw_flag_check(rtwdev, RTW_FLAG_DIG_DISABLE))
398 		return;
399 
400 	if (rtw_phy_dig_check_damping(dm_info))
401 		return;
402 
403 	linked = !!rtwdev->sta_cnt;
404 
405 	fa_cnt = dm_info->total_fa_cnt;
406 	pre_igi = dm_info->igi_history[0];
407 
408 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
409 
410 	/* test the false alarm count from the highest threshold level first,
411 	 * and increase it by corresponding step size
412 	 *
413 	 * note that the step size is offset by -2, compensate it afterall
414 	 */
415 	cur_igi = pre_igi;
416 	for (level = 0; level < 3; level++) {
417 		if (fa_cnt > fa_th[level]) {
418 			cur_igi += step[level];
419 			break;
420 		}
421 	}
422 	cur_igi -= 2;
423 
424 	/* calculate the upper/lower bound by the minimum rssi we have among
425 	 * the peers connected with us, meanwhile make sure the igi value does
426 	 * not beyond the hardware limitation
427 	 */
428 	rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
429 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
430 
431 	/* record current igi value and false alarm statistics for further
432 	 * damping checks, and record the trend of igi values
433 	 */
434 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
435 
436 	if (cur_igi != pre_igi)
437 		rtw_phy_dig_write(rtwdev, cur_igi);
438 }
439 
rtw_phy_ra_info_update_iter(void * data,struct ieee80211_sta * sta)440 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
441 {
442 	struct rtw_dev *rtwdev = data;
443 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
444 
445 	rtw_update_sta_info(rtwdev, si);
446 }
447 
rtw_phy_ra_info_update(struct rtw_dev * rtwdev)448 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
449 {
450 	if (rtwdev->watch_dog_cnt & 0x3)
451 		return;
452 
453 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
454 }
455 
rtw_phy_dpk_track(struct rtw_dev * rtwdev)456 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
457 {
458 	struct rtw_chip_info *chip = rtwdev->chip;
459 
460 	if (chip->ops->dpk_track)
461 		chip->ops->dpk_track(rtwdev);
462 }
463 
464 #define CCK_PD_FA_LV1_MIN	1000
465 #define CCK_PD_FA_LV0_MAX	500
466 
rtw_phy_cck_pd_lv_unlink(struct rtw_dev * rtwdev)467 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
468 {
469 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
470 	u32 cck_fa_avg = dm_info->cck_fa_avg;
471 
472 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
473 		return CCK_PD_LV1;
474 
475 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
476 		return CCK_PD_LV0;
477 
478 	return CCK_PD_LV_MAX;
479 }
480 
481 #define CCK_PD_IGI_LV4_VAL 0x38
482 #define CCK_PD_IGI_LV3_VAL 0x2a
483 #define CCK_PD_IGI_LV2_VAL 0x24
484 #define CCK_PD_RSSI_LV4_VAL 32
485 #define CCK_PD_RSSI_LV3_VAL 32
486 #define CCK_PD_RSSI_LV2_VAL 24
487 
rtw_phy_cck_pd_lv_link(struct rtw_dev * rtwdev)488 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
489 {
490 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
491 	u8 igi = dm_info->igi_history[0];
492 	u8 rssi = dm_info->min_rssi;
493 	u32 cck_fa_avg = dm_info->cck_fa_avg;
494 
495 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
496 		return CCK_PD_LV4;
497 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
498 		return CCK_PD_LV3;
499 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
500 		return CCK_PD_LV2;
501 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
502 		return CCK_PD_LV1;
503 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
504 		return CCK_PD_LV0;
505 
506 	return CCK_PD_LV_MAX;
507 }
508 
rtw_phy_cck_pd_lv(struct rtw_dev * rtwdev)509 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
510 {
511 	if (!rtw_is_assoc(rtwdev))
512 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
513 	else
514 		return rtw_phy_cck_pd_lv_link(rtwdev);
515 }
516 
rtw_phy_cck_pd(struct rtw_dev * rtwdev)517 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
518 {
519 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
520 	struct rtw_chip_info *chip = rtwdev->chip;
521 	u32 cck_fa = dm_info->cck_fa_cnt;
522 	u8 level;
523 
524 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
525 		return;
526 
527 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
528 		dm_info->cck_fa_avg = cck_fa;
529 	else
530 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
531 
532 	level = rtw_phy_cck_pd_lv(rtwdev);
533 
534 	if (level >= CCK_PD_LV_MAX)
535 		return;
536 
537 	if (chip->ops->cck_pd_set)
538 		chip->ops->cck_pd_set(rtwdev, level);
539 }
540 
rtw_phy_dynamic_mechanism(struct rtw_dev * rtwdev)541 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
542 {
543 	/* for further calculation */
544 	rtw_phy_statistics(rtwdev);
545 	rtw_phy_dig(rtwdev);
546 	rtw_phy_cck_pd(rtwdev);
547 	rtw_phy_ra_info_update(rtwdev);
548 	rtw_phy_dpk_track(rtwdev);
549 }
550 
551 #define FRAC_BITS 3
552 
rtw_phy_power_2_db(s8 power)553 static u8 rtw_phy_power_2_db(s8 power)
554 {
555 	if (power <= -100 || power >= 20)
556 		return 0;
557 	else if (power >= 0)
558 		return 100;
559 	else
560 		return 100 + power;
561 }
562 
rtw_phy_db_2_linear(u8 power_db)563 static u64 rtw_phy_db_2_linear(u8 power_db)
564 {
565 	u8 i, j;
566 	u64 linear;
567 
568 	if (power_db > 96)
569 		power_db = 96;
570 	else if (power_db < 1)
571 		return 1;
572 
573 	/* 1dB ~ 96dB */
574 	i = (power_db - 1) >> 3;
575 	j = (power_db - 1) - (i << 3);
576 
577 	linear = db_invert_table[i][j];
578 	linear = i > 2 ? linear << FRAC_BITS : linear;
579 
580 	return linear;
581 }
582 
rtw_phy_linear_2_db(u64 linear)583 static u8 rtw_phy_linear_2_db(u64 linear)
584 {
585 	u8 i;
586 	u8 j;
587 	u32 dB;
588 
589 	if (linear >= db_invert_table[11][7])
590 		return 96; /* maximum 96 dB */
591 
592 	for (i = 0; i < 12; i++) {
593 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
594 			break;
595 		else if (i > 2 && linear <= db_invert_table[i][7])
596 			break;
597 	}
598 
599 	for (j = 0; j < 8; j++) {
600 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
601 			break;
602 		else if (i > 2 && linear <= db_invert_table[i][j])
603 			break;
604 	}
605 
606 	if (j == 0 && i == 0)
607 		goto end;
608 
609 	if (j == 0) {
610 		if (i != 3) {
611 			if (db_invert_table[i][0] - linear >
612 			    linear - db_invert_table[i - 1][7]) {
613 				i = i - 1;
614 				j = 7;
615 			}
616 		} else {
617 			if (db_invert_table[3][0] - linear >
618 			    linear - db_invert_table[2][7]) {
619 				i = 2;
620 				j = 7;
621 			}
622 		}
623 	} else {
624 		if (db_invert_table[i][j] - linear >
625 		    linear - db_invert_table[i][j - 1]) {
626 			j = j - 1;
627 		}
628 	}
629 end:
630 	dB = (i << 3) + j + 1;
631 
632 	return dB;
633 }
634 
rtw_phy_rf_power_2_rssi(s8 * rf_power,u8 path_num)635 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
636 {
637 	s8 power;
638 	u8 power_db;
639 	u64 linear;
640 	u64 sum = 0;
641 	u8 path;
642 
643 	for (path = 0; path < path_num; path++) {
644 		power = rf_power[path];
645 		power_db = rtw_phy_power_2_db(power);
646 		linear = rtw_phy_db_2_linear(power_db);
647 		sum += linear;
648 	}
649 
650 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
651 	switch (path_num) {
652 	case 2:
653 		sum >>= 1;
654 		break;
655 	case 3:
656 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
657 		break;
658 	case 4:
659 		sum >>= 2;
660 		break;
661 	default:
662 		break;
663 	}
664 
665 	return rtw_phy_linear_2_db(sum);
666 }
667 
rtw_phy_read_rf(struct rtw_dev * rtwdev,enum rtw_rf_path rf_path,u32 addr,u32 mask)668 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
669 		    u32 addr, u32 mask)
670 {
671 	struct rtw_hal *hal = &rtwdev->hal;
672 	struct rtw_chip_info *chip = rtwdev->chip;
673 	const u32 *base_addr = chip->rf_base_addr;
674 	u32 val, direct_addr;
675 
676 	if (rf_path >= hal->rf_path_num) {
677 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
678 		return INV_RF_DATA;
679 	}
680 
681 	addr &= 0xff;
682 	direct_addr = base_addr[rf_path] + (addr << 2);
683 	mask &= RFREG_MASK;
684 
685 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
686 
687 	return val;
688 }
689 
rtw_phy_write_rf_reg_sipi(struct rtw_dev * rtwdev,enum rtw_rf_path rf_path,u32 addr,u32 mask,u32 data)690 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
691 			       u32 addr, u32 mask, u32 data)
692 {
693 	struct rtw_hal *hal = &rtwdev->hal;
694 	struct rtw_chip_info *chip = rtwdev->chip;
695 	u32 *sipi_addr = chip->rf_sipi_addr;
696 	u32 data_and_addr;
697 	u32 old_data = 0;
698 	u32 shift;
699 
700 	if (rf_path >= hal->rf_path_num) {
701 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
702 		return false;
703 	}
704 
705 	addr &= 0xff;
706 	mask &= RFREG_MASK;
707 
708 	if (mask != RFREG_MASK) {
709 		old_data = rtw_phy_read_rf(rtwdev, rf_path, addr, RFREG_MASK);
710 
711 		if (old_data == INV_RF_DATA) {
712 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
713 			return false;
714 		}
715 
716 		shift = __ffs(mask);
717 		data = ((old_data) & (~mask)) | (data << shift);
718 	}
719 
720 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
721 
722 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
723 
724 	udelay(13);
725 
726 	return true;
727 }
728 
rtw_phy_write_rf_reg(struct rtw_dev * rtwdev,enum rtw_rf_path rf_path,u32 addr,u32 mask,u32 data)729 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
730 			  u32 addr, u32 mask, u32 data)
731 {
732 	struct rtw_hal *hal = &rtwdev->hal;
733 	struct rtw_chip_info *chip = rtwdev->chip;
734 	const u32 *base_addr = chip->rf_base_addr;
735 	u32 direct_addr;
736 
737 	if (rf_path >= hal->rf_path_num) {
738 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
739 		return false;
740 	}
741 
742 	addr &= 0xff;
743 	direct_addr = base_addr[rf_path] + (addr << 2);
744 	mask &= RFREG_MASK;
745 
746 	if (addr == RF_CFGCH) {
747 		rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, DISABLE_PI);
748 		rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, DISABLE_PI);
749 	}
750 
751 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
752 
753 	udelay(1);
754 
755 	if (addr == RF_CFGCH) {
756 		rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, ENABLE_PI);
757 		rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, ENABLE_PI);
758 	}
759 
760 	return true;
761 }
762 
rtw_phy_write_rf_reg_mix(struct rtw_dev * rtwdev,enum rtw_rf_path rf_path,u32 addr,u32 mask,u32 data)763 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
764 			      u32 addr, u32 mask, u32 data)
765 {
766 	if (addr != 0x00)
767 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
768 
769 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
770 }
771 
rtw_phy_setup_phy_cond(struct rtw_dev * rtwdev,u32 pkg)772 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
773 {
774 	struct rtw_hal *hal = &rtwdev->hal;
775 	struct rtw_efuse *efuse = &rtwdev->efuse;
776 	struct rtw_phy_cond cond = {0};
777 
778 	cond.cut = hal->cut_version ? hal->cut_version : 15;
779 	cond.pkg = pkg ? pkg : 15;
780 	cond.plat = 0x04;
781 	cond.rfe = efuse->rfe_option;
782 
783 	switch (rtw_hci_type(rtwdev)) {
784 	case RTW_HCI_TYPE_USB:
785 		cond.intf = INTF_USB;
786 		break;
787 	case RTW_HCI_TYPE_SDIO:
788 		cond.intf = INTF_SDIO;
789 		break;
790 	case RTW_HCI_TYPE_PCIE:
791 	default:
792 		cond.intf = INTF_PCIE;
793 		break;
794 	}
795 
796 	hal->phy_cond = cond;
797 
798 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
799 }
800 
check_positive(struct rtw_dev * rtwdev,struct rtw_phy_cond cond)801 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
802 {
803 	struct rtw_hal *hal = &rtwdev->hal;
804 	struct rtw_phy_cond drv_cond = hal->phy_cond;
805 
806 	if (cond.cut && cond.cut != drv_cond.cut)
807 		return false;
808 
809 	if (cond.pkg && cond.pkg != drv_cond.pkg)
810 		return false;
811 
812 	if (cond.intf && cond.intf != drv_cond.intf)
813 		return false;
814 
815 	if (cond.rfe != drv_cond.rfe)
816 		return false;
817 
818 	return true;
819 }
820 
rtw_parse_tbl_phy_cond(struct rtw_dev * rtwdev,const struct rtw_table * tbl)821 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
822 {
823 	const union phy_table_tile *p = tbl->data;
824 	const union phy_table_tile *end = p + tbl->size / 2;
825 	struct rtw_phy_cond pos_cond = {0};
826 	bool is_matched = true, is_skipped = false;
827 
828 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
829 
830 	for (; p < end; p++) {
831 		if (p->cond.pos) {
832 			switch (p->cond.branch) {
833 			case BRANCH_ENDIF:
834 				is_matched = true;
835 				is_skipped = false;
836 				break;
837 			case BRANCH_ELSE:
838 				is_matched = is_skipped ? false : true;
839 				break;
840 			case BRANCH_IF:
841 			case BRANCH_ELIF:
842 			default:
843 				pos_cond = p->cond;
844 				break;
845 			}
846 		} else if (p->cond.neg) {
847 			if (!is_skipped) {
848 				if (check_positive(rtwdev, pos_cond)) {
849 					is_matched = true;
850 					is_skipped = true;
851 				} else {
852 					is_matched = false;
853 					is_skipped = false;
854 				}
855 			} else {
856 				is_matched = false;
857 			}
858 		} else if (is_matched) {
859 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
860 		}
861 	}
862 }
863 
864 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
865 
tbl_to_dec_pwr_by_rate(struct rtw_dev * rtwdev,u32 hex,u8 i)866 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
867 {
868 	if (rtwdev->chip->is_pwr_by_rate_dec)
869 		return bcd_to_dec_pwr_by_rate(hex, i);
870 
871 	return (hex >> (i * 8)) & 0xFF;
872 }
873 
874 static void
rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev * rtwdev,u32 addr,u32 mask,u32 val,u8 * rate,u8 * pwr_by_rate,u8 * rate_num)875 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
876 					 u32 addr, u32 mask, u32 val, u8 *rate,
877 					 u8 *pwr_by_rate, u8 *rate_num)
878 {
879 	int i;
880 
881 	switch (addr) {
882 	case 0xE00:
883 	case 0x830:
884 		rate[0] = DESC_RATE6M;
885 		rate[1] = DESC_RATE9M;
886 		rate[2] = DESC_RATE12M;
887 		rate[3] = DESC_RATE18M;
888 		for (i = 0; i < 4; ++i)
889 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
890 		*rate_num = 4;
891 		break;
892 	case 0xE04:
893 	case 0x834:
894 		rate[0] = DESC_RATE24M;
895 		rate[1] = DESC_RATE36M;
896 		rate[2] = DESC_RATE48M;
897 		rate[3] = DESC_RATE54M;
898 		for (i = 0; i < 4; ++i)
899 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
900 		*rate_num = 4;
901 		break;
902 	case 0xE08:
903 		rate[0] = DESC_RATE1M;
904 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
905 		*rate_num = 1;
906 		break;
907 	case 0x86C:
908 		if (mask == 0xffffff00) {
909 			rate[0] = DESC_RATE2M;
910 			rate[1] = DESC_RATE5_5M;
911 			rate[2] = DESC_RATE11M;
912 			for (i = 1; i < 4; ++i)
913 				pwr_by_rate[i - 1] =
914 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
915 			*rate_num = 3;
916 		} else if (mask == 0x000000ff) {
917 			rate[0] = DESC_RATE11M;
918 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
919 			*rate_num = 1;
920 		}
921 		break;
922 	case 0xE10:
923 	case 0x83C:
924 		rate[0] = DESC_RATEMCS0;
925 		rate[1] = DESC_RATEMCS1;
926 		rate[2] = DESC_RATEMCS2;
927 		rate[3] = DESC_RATEMCS3;
928 		for (i = 0; i < 4; ++i)
929 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
930 		*rate_num = 4;
931 		break;
932 	case 0xE14:
933 	case 0x848:
934 		rate[0] = DESC_RATEMCS4;
935 		rate[1] = DESC_RATEMCS5;
936 		rate[2] = DESC_RATEMCS6;
937 		rate[3] = DESC_RATEMCS7;
938 		for (i = 0; i < 4; ++i)
939 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
940 		*rate_num = 4;
941 		break;
942 	case 0xE18:
943 	case 0x84C:
944 		rate[0] = DESC_RATEMCS8;
945 		rate[1] = DESC_RATEMCS9;
946 		rate[2] = DESC_RATEMCS10;
947 		rate[3] = DESC_RATEMCS11;
948 		for (i = 0; i < 4; ++i)
949 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
950 		*rate_num = 4;
951 		break;
952 	case 0xE1C:
953 	case 0x868:
954 		rate[0] = DESC_RATEMCS12;
955 		rate[1] = DESC_RATEMCS13;
956 		rate[2] = DESC_RATEMCS14;
957 		rate[3] = DESC_RATEMCS15;
958 		for (i = 0; i < 4; ++i)
959 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
960 		*rate_num = 4;
961 		break;
962 	case 0x838:
963 		rate[0] = DESC_RATE1M;
964 		rate[1] = DESC_RATE2M;
965 		rate[2] = DESC_RATE5_5M;
966 		for (i = 1; i < 4; ++i)
967 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
968 								    val, i);
969 		*rate_num = 3;
970 		break;
971 	case 0xC20:
972 	case 0xE20:
973 	case 0x1820:
974 	case 0x1A20:
975 		rate[0] = DESC_RATE1M;
976 		rate[1] = DESC_RATE2M;
977 		rate[2] = DESC_RATE5_5M;
978 		rate[3] = DESC_RATE11M;
979 		for (i = 0; i < 4; ++i)
980 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
981 		*rate_num = 4;
982 		break;
983 	case 0xC24:
984 	case 0xE24:
985 	case 0x1824:
986 	case 0x1A24:
987 		rate[0] = DESC_RATE6M;
988 		rate[1] = DESC_RATE9M;
989 		rate[2] = DESC_RATE12M;
990 		rate[3] = DESC_RATE18M;
991 		for (i = 0; i < 4; ++i)
992 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
993 		*rate_num = 4;
994 		break;
995 	case 0xC28:
996 	case 0xE28:
997 	case 0x1828:
998 	case 0x1A28:
999 		rate[0] = DESC_RATE24M;
1000 		rate[1] = DESC_RATE36M;
1001 		rate[2] = DESC_RATE48M;
1002 		rate[3] = DESC_RATE54M;
1003 		for (i = 0; i < 4; ++i)
1004 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1005 		*rate_num = 4;
1006 		break;
1007 	case 0xC2C:
1008 	case 0xE2C:
1009 	case 0x182C:
1010 	case 0x1A2C:
1011 		rate[0] = DESC_RATEMCS0;
1012 		rate[1] = DESC_RATEMCS1;
1013 		rate[2] = DESC_RATEMCS2;
1014 		rate[3] = DESC_RATEMCS3;
1015 		for (i = 0; i < 4; ++i)
1016 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1017 		*rate_num = 4;
1018 		break;
1019 	case 0xC30:
1020 	case 0xE30:
1021 	case 0x1830:
1022 	case 0x1A30:
1023 		rate[0] = DESC_RATEMCS4;
1024 		rate[1] = DESC_RATEMCS5;
1025 		rate[2] = DESC_RATEMCS6;
1026 		rate[3] = DESC_RATEMCS7;
1027 		for (i = 0; i < 4; ++i)
1028 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1029 		*rate_num = 4;
1030 		break;
1031 	case 0xC34:
1032 	case 0xE34:
1033 	case 0x1834:
1034 	case 0x1A34:
1035 		rate[0] = DESC_RATEMCS8;
1036 		rate[1] = DESC_RATEMCS9;
1037 		rate[2] = DESC_RATEMCS10;
1038 		rate[3] = DESC_RATEMCS11;
1039 		for (i = 0; i < 4; ++i)
1040 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1041 		*rate_num = 4;
1042 		break;
1043 	case 0xC38:
1044 	case 0xE38:
1045 	case 0x1838:
1046 	case 0x1A38:
1047 		rate[0] = DESC_RATEMCS12;
1048 		rate[1] = DESC_RATEMCS13;
1049 		rate[2] = DESC_RATEMCS14;
1050 		rate[3] = DESC_RATEMCS15;
1051 		for (i = 0; i < 4; ++i)
1052 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1053 		*rate_num = 4;
1054 		break;
1055 	case 0xC3C:
1056 	case 0xE3C:
1057 	case 0x183C:
1058 	case 0x1A3C:
1059 		rate[0] = DESC_RATEVHT1SS_MCS0;
1060 		rate[1] = DESC_RATEVHT1SS_MCS1;
1061 		rate[2] = DESC_RATEVHT1SS_MCS2;
1062 		rate[3] = DESC_RATEVHT1SS_MCS3;
1063 		for (i = 0; i < 4; ++i)
1064 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1065 		*rate_num = 4;
1066 		break;
1067 	case 0xC40:
1068 	case 0xE40:
1069 	case 0x1840:
1070 	case 0x1A40:
1071 		rate[0] = DESC_RATEVHT1SS_MCS4;
1072 		rate[1] = DESC_RATEVHT1SS_MCS5;
1073 		rate[2] = DESC_RATEVHT1SS_MCS6;
1074 		rate[3] = DESC_RATEVHT1SS_MCS7;
1075 		for (i = 0; i < 4; ++i)
1076 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1077 		*rate_num = 4;
1078 		break;
1079 	case 0xC44:
1080 	case 0xE44:
1081 	case 0x1844:
1082 	case 0x1A44:
1083 		rate[0] = DESC_RATEVHT1SS_MCS8;
1084 		rate[1] = DESC_RATEVHT1SS_MCS9;
1085 		rate[2] = DESC_RATEVHT2SS_MCS0;
1086 		rate[3] = DESC_RATEVHT2SS_MCS1;
1087 		for (i = 0; i < 4; ++i)
1088 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1089 		*rate_num = 4;
1090 		break;
1091 	case 0xC48:
1092 	case 0xE48:
1093 	case 0x1848:
1094 	case 0x1A48:
1095 		rate[0] = DESC_RATEVHT2SS_MCS2;
1096 		rate[1] = DESC_RATEVHT2SS_MCS3;
1097 		rate[2] = DESC_RATEVHT2SS_MCS4;
1098 		rate[3] = DESC_RATEVHT2SS_MCS5;
1099 		for (i = 0; i < 4; ++i)
1100 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1101 		*rate_num = 4;
1102 		break;
1103 	case 0xC4C:
1104 	case 0xE4C:
1105 	case 0x184C:
1106 	case 0x1A4C:
1107 		rate[0] = DESC_RATEVHT2SS_MCS6;
1108 		rate[1] = DESC_RATEVHT2SS_MCS7;
1109 		rate[2] = DESC_RATEVHT2SS_MCS8;
1110 		rate[3] = DESC_RATEVHT2SS_MCS9;
1111 		for (i = 0; i < 4; ++i)
1112 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1113 		*rate_num = 4;
1114 		break;
1115 	case 0xCD8:
1116 	case 0xED8:
1117 	case 0x18D8:
1118 	case 0x1AD8:
1119 		rate[0] = DESC_RATEMCS16;
1120 		rate[1] = DESC_RATEMCS17;
1121 		rate[2] = DESC_RATEMCS18;
1122 		rate[3] = DESC_RATEMCS19;
1123 		for (i = 0; i < 4; ++i)
1124 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1125 		*rate_num = 4;
1126 		break;
1127 	case 0xCDC:
1128 	case 0xEDC:
1129 	case 0x18DC:
1130 	case 0x1ADC:
1131 		rate[0] = DESC_RATEMCS20;
1132 		rate[1] = DESC_RATEMCS21;
1133 		rate[2] = DESC_RATEMCS22;
1134 		rate[3] = DESC_RATEMCS23;
1135 		for (i = 0; i < 4; ++i)
1136 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1137 		*rate_num = 4;
1138 		break;
1139 	case 0xCE0:
1140 	case 0xEE0:
1141 	case 0x18E0:
1142 	case 0x1AE0:
1143 		rate[0] = DESC_RATEVHT3SS_MCS0;
1144 		rate[1] = DESC_RATEVHT3SS_MCS1;
1145 		rate[2] = DESC_RATEVHT3SS_MCS2;
1146 		rate[3] = DESC_RATEVHT3SS_MCS3;
1147 		for (i = 0; i < 4; ++i)
1148 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1149 		*rate_num = 4;
1150 		break;
1151 	case 0xCE4:
1152 	case 0xEE4:
1153 	case 0x18E4:
1154 	case 0x1AE4:
1155 		rate[0] = DESC_RATEVHT3SS_MCS4;
1156 		rate[1] = DESC_RATEVHT3SS_MCS5;
1157 		rate[2] = DESC_RATEVHT3SS_MCS6;
1158 		rate[3] = DESC_RATEVHT3SS_MCS7;
1159 		for (i = 0; i < 4; ++i)
1160 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1161 		*rate_num = 4;
1162 		break;
1163 	case 0xCE8:
1164 	case 0xEE8:
1165 	case 0x18E8:
1166 	case 0x1AE8:
1167 		rate[0] = DESC_RATEVHT3SS_MCS8;
1168 		rate[1] = DESC_RATEVHT3SS_MCS9;
1169 		for (i = 0; i < 2; ++i)
1170 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1171 		*rate_num = 2;
1172 		break;
1173 	default:
1174 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1175 		break;
1176 	}
1177 }
1178 
rtw_phy_store_tx_power_by_rate(struct rtw_dev * rtwdev,u32 band,u32 rfpath,u32 txnum,u32 regaddr,u32 bitmask,u32 data)1179 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1180 					   u32 band, u32 rfpath, u32 txnum,
1181 					   u32 regaddr, u32 bitmask, u32 data)
1182 {
1183 	struct rtw_hal *hal = &rtwdev->hal;
1184 	u8 rate_num = 0;
1185 	u8 rate;
1186 	u8 rates[RTW_RF_PATH_MAX] = {0};
1187 	s8 offset;
1188 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1189 	int i;
1190 
1191 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1192 						 rates, pwr_by_rate, &rate_num);
1193 
1194 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1195 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1196 		    rate_num > RTW_RF_PATH_MAX))
1197 		return;
1198 
1199 	for (i = 0; i < rate_num; i++) {
1200 		offset = pwr_by_rate[i];
1201 		rate = rates[i];
1202 		if (band == PHY_BAND_2G)
1203 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1204 		else if (band == PHY_BAND_5G)
1205 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1206 		else
1207 			continue;
1208 	}
1209 }
1210 
rtw_parse_tbl_bb_pg(struct rtw_dev * rtwdev,const struct rtw_table * tbl)1211 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1212 {
1213 	const struct phy_pg_cfg_pair *p = tbl->data;
1214 	const struct phy_pg_cfg_pair *end = p + tbl->size / 6;
1215 
1216 	BUILD_BUG_ON(sizeof(struct phy_pg_cfg_pair) != sizeof(u32) * 6);
1217 
1218 	for (; p < end; p++) {
1219 		if (p->addr == 0xfe || p->addr == 0xffe) {
1220 			msleep(50);
1221 			continue;
1222 		}
1223 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1224 					       p->tx_num, p->addr, p->bitmask,
1225 					       p->data);
1226 	}
1227 }
1228 
1229 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1230 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1231 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1232 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1233 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1234 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1235 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1236 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1237 
rtw_channel_to_idx(u8 band,u8 channel)1238 static int rtw_channel_to_idx(u8 band, u8 channel)
1239 {
1240 	int ch_idx;
1241 	u8 n_channel;
1242 
1243 	if (band == PHY_BAND_2G) {
1244 		ch_idx = channel - 1;
1245 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1246 	} else if (band == PHY_BAND_5G) {
1247 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1248 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1249 			if (rtw_channel_idx_5g[ch_idx] == channel)
1250 				break;
1251 	} else {
1252 		return -1;
1253 	}
1254 
1255 	if (ch_idx >= n_channel)
1256 		return -1;
1257 
1258 	return ch_idx;
1259 }
1260 
rtw_phy_set_tx_power_limit(struct rtw_dev * rtwdev,u8 regd,u8 band,u8 bw,u8 rs,u8 ch,s8 pwr_limit)1261 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1262 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1263 {
1264 	struct rtw_hal *hal = &rtwdev->hal;
1265 	u8 max_power_index = rtwdev->chip->max_power_index;
1266 	s8 ww;
1267 	int ch_idx;
1268 
1269 	pwr_limit = clamp_t(s8, pwr_limit,
1270 			    -max_power_index, max_power_index);
1271 	ch_idx = rtw_channel_to_idx(band, ch);
1272 
1273 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1274 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1275 		WARN(1,
1276 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1277 		     regd, band, bw, rs, ch_idx, pwr_limit);
1278 		return;
1279 	}
1280 
1281 	if (band == PHY_BAND_2G) {
1282 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1283 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1284 		ww = min_t(s8, ww, pwr_limit);
1285 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1286 	} else if (band == PHY_BAND_5G) {
1287 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1288 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1289 		ww = min_t(s8, ww, pwr_limit);
1290 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1291 	}
1292 }
1293 
1294 /* cross-reference 5G power limits if values are not assigned */
1295 static void
rtw_xref_5g_txpwr_lmt(struct rtw_dev * rtwdev,u8 regd,u8 bw,u8 ch_idx,u8 rs_ht,u8 rs_vht)1296 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1297 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1298 {
1299 	struct rtw_hal *hal = &rtwdev->hal;
1300 	u8 max_power_index = rtwdev->chip->max_power_index;
1301 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1302 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1303 
1304 	if (lmt_ht == lmt_vht)
1305 		return;
1306 
1307 	if (lmt_ht == max_power_index)
1308 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1309 
1310 	else if (lmt_vht == max_power_index)
1311 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1312 }
1313 
1314 /* cross-reference power limits for ht and vht */
1315 static void
rtw_xref_txpwr_lmt_by_rs(struct rtw_dev * rtwdev,u8 regd,u8 bw,u8 ch_idx)1316 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1317 {
1318 	u8 rs_idx, rs_ht, rs_vht;
1319 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1320 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1321 
1322 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1323 		rs_ht = rs_cmp[rs_idx][0];
1324 		rs_vht = rs_cmp[rs_idx][1];
1325 
1326 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1327 	}
1328 }
1329 
1330 /* cross-reference power limits for 5G channels */
1331 static void
rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev * rtwdev,u8 regd,u8 bw)1332 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1333 {
1334 	u8 ch_idx;
1335 
1336 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1337 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1338 }
1339 
1340 /* cross-reference power limits for 20/40M bandwidth */
1341 static void
rtw_xref_txpwr_lmt_by_bw(struct rtw_dev * rtwdev,u8 regd)1342 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1343 {
1344 	u8 bw;
1345 
1346 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1347 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1348 }
1349 
1350 /* cross-reference power limits */
rtw_xref_txpwr_lmt(struct rtw_dev * rtwdev)1351 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1352 {
1353 	u8 regd;
1354 
1355 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1356 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1357 }
1358 
rtw_parse_tbl_txpwr_lmt(struct rtw_dev * rtwdev,const struct rtw_table * tbl)1359 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1360 			     const struct rtw_table *tbl)
1361 {
1362 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1363 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1364 
1365 	for (; p < end; p++) {
1366 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1367 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1368 	}
1369 
1370 	rtw_xref_txpwr_lmt(rtwdev);
1371 }
1372 
rtw_phy_cfg_mac(struct rtw_dev * rtwdev,const struct rtw_table * tbl,u32 addr,u32 data)1373 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1374 		     u32 addr, u32 data)
1375 {
1376 	rtw_write8(rtwdev, addr, data);
1377 }
1378 
rtw_phy_cfg_agc(struct rtw_dev * rtwdev,const struct rtw_table * tbl,u32 addr,u32 data)1379 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1380 		     u32 addr, u32 data)
1381 {
1382 	rtw_write32(rtwdev, addr, data);
1383 }
1384 
rtw_phy_cfg_bb(struct rtw_dev * rtwdev,const struct rtw_table * tbl,u32 addr,u32 data)1385 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1386 		    u32 addr, u32 data)
1387 {
1388 	if (addr == 0xfe)
1389 		msleep(50);
1390 	else if (addr == 0xfd)
1391 		mdelay(5);
1392 	else if (addr == 0xfc)
1393 		mdelay(1);
1394 	else if (addr == 0xfb)
1395 		usleep_range(50, 60);
1396 	else if (addr == 0xfa)
1397 		udelay(5);
1398 	else if (addr == 0xf9)
1399 		udelay(1);
1400 	else
1401 		rtw_write32(rtwdev, addr, data);
1402 }
1403 
rtw_phy_cfg_rf(struct rtw_dev * rtwdev,const struct rtw_table * tbl,u32 addr,u32 data)1404 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1405 		    u32 addr, u32 data)
1406 {
1407 	if (addr == 0xffe) {
1408 		msleep(50);
1409 	} else if (addr == 0xfe) {
1410 		usleep_range(100, 110);
1411 	} else {
1412 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1413 		udelay(1);
1414 	}
1415 }
1416 
rtw_load_rfk_table(struct rtw_dev * rtwdev)1417 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1418 {
1419 	struct rtw_chip_info *chip = rtwdev->chip;
1420 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1421 
1422 	if (!chip->rfk_init_tbl)
1423 		return;
1424 
1425 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1426 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1427 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1428 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1429 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1430 
1431 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1432 
1433 	dpk_info->is_dpk_pwr_on = 1;
1434 }
1435 
rtw_phy_load_tables(struct rtw_dev * rtwdev)1436 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1437 {
1438 	struct rtw_chip_info *chip = rtwdev->chip;
1439 	u8 rf_path;
1440 
1441 	rtw_load_table(rtwdev, chip->mac_tbl);
1442 	rtw_load_table(rtwdev, chip->bb_tbl);
1443 	rtw_load_table(rtwdev, chip->agc_tbl);
1444 	rtw_load_rfk_table(rtwdev);
1445 
1446 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1447 		const struct rtw_table *tbl;
1448 
1449 		tbl = chip->rf_tbl[rf_path];
1450 		rtw_load_table(rtwdev, tbl);
1451 	}
1452 }
1453 
rtw_get_channel_group(u8 channel)1454 static u8 rtw_get_channel_group(u8 channel)
1455 {
1456 	switch (channel) {
1457 	default:
1458 		WARN_ON(1);
1459 		/* fall through */
1460 	case 1:
1461 	case 2:
1462 	case 36:
1463 	case 38:
1464 	case 40:
1465 	case 42:
1466 		return 0;
1467 	case 3:
1468 	case 4:
1469 	case 5:
1470 	case 44:
1471 	case 46:
1472 	case 48:
1473 	case 50:
1474 		return 1;
1475 	case 6:
1476 	case 7:
1477 	case 8:
1478 	case 52:
1479 	case 54:
1480 	case 56:
1481 	case 58:
1482 		return 2;
1483 	case 9:
1484 	case 10:
1485 	case 11:
1486 	case 60:
1487 	case 62:
1488 	case 64:
1489 		return 3;
1490 	case 12:
1491 	case 13:
1492 	case 100:
1493 	case 102:
1494 	case 104:
1495 	case 106:
1496 		return 4;
1497 	case 14:
1498 	case 108:
1499 	case 110:
1500 	case 112:
1501 	case 114:
1502 		return 5;
1503 	case 116:
1504 	case 118:
1505 	case 120:
1506 	case 122:
1507 		return 6;
1508 	case 124:
1509 	case 126:
1510 	case 128:
1511 	case 130:
1512 		return 7;
1513 	case 132:
1514 	case 134:
1515 	case 136:
1516 	case 138:
1517 		return 8;
1518 	case 140:
1519 	case 142:
1520 	case 144:
1521 		return 9;
1522 	case 149:
1523 	case 151:
1524 	case 153:
1525 	case 155:
1526 		return 10;
1527 	case 157:
1528 	case 159:
1529 	case 161:
1530 		return 11;
1531 	case 165:
1532 	case 167:
1533 	case 169:
1534 	case 171:
1535 		return 12;
1536 	case 173:
1537 	case 175:
1538 	case 177:
1539 		return 13;
1540 	}
1541 }
1542 
rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev * rtwdev,u16 rate)1543 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1544 {
1545 	struct rtw_chip_info *chip = rtwdev->chip;
1546 	s8 dpd_diff = 0;
1547 
1548 	if (!chip->en_dis_dpd)
1549 		return 0;
1550 
1551 #define RTW_DPD_RATE_CHECK(_rate)					\
1552 	case DESC_RATE ## _rate:					\
1553 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1554 		dpd_diff = -6 * chip->txgi_factor;			\
1555 	break
1556 
1557 	switch (rate) {
1558 	RTW_DPD_RATE_CHECK(6M);
1559 	RTW_DPD_RATE_CHECK(9M);
1560 	RTW_DPD_RATE_CHECK(MCS0);
1561 	RTW_DPD_RATE_CHECK(MCS1);
1562 	RTW_DPD_RATE_CHECK(MCS8);
1563 	RTW_DPD_RATE_CHECK(MCS9);
1564 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1565 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1566 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1567 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1568 	}
1569 #undef RTW_DPD_RATE_CHECK
1570 
1571 	return dpd_diff;
1572 }
1573 
rtw_phy_get_2g_tx_power_index(struct rtw_dev * rtwdev,struct rtw_2g_txpwr_idx * pwr_idx_2g,enum rtw_bandwidth bandwidth,u8 rate,u8 group)1574 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1575 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1576 					enum rtw_bandwidth bandwidth,
1577 					u8 rate, u8 group)
1578 {
1579 	struct rtw_chip_info *chip = rtwdev->chip;
1580 	u8 tx_power;
1581 	bool mcs_rate;
1582 	bool above_2ss;
1583 	u8 factor = chip->txgi_factor;
1584 
1585 	if (rate <= DESC_RATE11M)
1586 		tx_power = pwr_idx_2g->cck_base[group];
1587 	else
1588 		tx_power = pwr_idx_2g->bw40_base[group];
1589 
1590 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1591 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1592 
1593 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1594 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1595 		    rate <= DESC_RATEVHT2SS_MCS9);
1596 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1597 		    (rate >= DESC_RATEVHT2SS_MCS0);
1598 
1599 	if (!mcs_rate)
1600 		return tx_power;
1601 
1602 	switch (bandwidth) {
1603 	default:
1604 		WARN_ON(1);
1605 		/* fall through */
1606 	case RTW_CHANNEL_WIDTH_20:
1607 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1608 		if (above_2ss)
1609 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1610 		break;
1611 	case RTW_CHANNEL_WIDTH_40:
1612 		/* bw40 is the base power */
1613 		if (above_2ss)
1614 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1615 		break;
1616 	}
1617 
1618 	return tx_power;
1619 }
1620 
rtw_phy_get_5g_tx_power_index(struct rtw_dev * rtwdev,struct rtw_5g_txpwr_idx * pwr_idx_5g,enum rtw_bandwidth bandwidth,u8 rate,u8 group)1621 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1622 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1623 					enum rtw_bandwidth bandwidth,
1624 					u8 rate, u8 group)
1625 {
1626 	struct rtw_chip_info *chip = rtwdev->chip;
1627 	u8 tx_power;
1628 	u8 upper, lower;
1629 	bool mcs_rate;
1630 	bool above_2ss;
1631 	u8 factor = chip->txgi_factor;
1632 
1633 	tx_power = pwr_idx_5g->bw40_base[group];
1634 
1635 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1636 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1637 		    rate <= DESC_RATEVHT2SS_MCS9);
1638 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1639 		    (rate >= DESC_RATEVHT2SS_MCS0);
1640 
1641 	if (!mcs_rate) {
1642 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1643 		return tx_power;
1644 	}
1645 
1646 	switch (bandwidth) {
1647 	default:
1648 		WARN_ON(1);
1649 		/* fall through */
1650 	case RTW_CHANNEL_WIDTH_20:
1651 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1652 		if (above_2ss)
1653 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1654 		break;
1655 	case RTW_CHANNEL_WIDTH_40:
1656 		/* bw40 is the base power */
1657 		if (above_2ss)
1658 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1659 		break;
1660 	case RTW_CHANNEL_WIDTH_80:
1661 		/* the base idx of bw80 is the average of bw40+/bw40- */
1662 		lower = pwr_idx_5g->bw40_base[group];
1663 		upper = pwr_idx_5g->bw40_base[group + 1];
1664 
1665 		tx_power = (lower + upper) / 2;
1666 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1667 		if (above_2ss)
1668 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1669 		break;
1670 	}
1671 
1672 	return tx_power;
1673 }
1674 
rtw_phy_get_tx_power_limit(struct rtw_dev * rtwdev,u8 band,enum rtw_bandwidth bw,u8 rf_path,u8 rate,u8 channel,u8 regd)1675 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1676 				     enum rtw_bandwidth bw, u8 rf_path,
1677 				     u8 rate, u8 channel, u8 regd)
1678 {
1679 	struct rtw_hal *hal = &rtwdev->hal;
1680 	u8 *cch_by_bw = hal->cch_by_bw;
1681 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1682 	u8 rs;
1683 	int ch_idx;
1684 	u8 cur_bw, cur_ch;
1685 	s8 cur_lmt;
1686 
1687 	if (regd > RTW_REGD_WW)
1688 		return power_limit;
1689 
1690 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1691 		rs = RTW_RATE_SECTION_CCK;
1692 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1693 		rs = RTW_RATE_SECTION_OFDM;
1694 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1695 		rs = RTW_RATE_SECTION_HT_1S;
1696 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1697 		rs = RTW_RATE_SECTION_HT_2S;
1698 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1699 		rs = RTW_RATE_SECTION_VHT_1S;
1700 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1701 		rs = RTW_RATE_SECTION_VHT_2S;
1702 	else
1703 		goto err;
1704 
1705 	/* only 20M BW with cck and ofdm */
1706 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1707 		bw = RTW_CHANNEL_WIDTH_20;
1708 
1709 	/* only 20/40M BW with ht */
1710 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1711 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1712 
1713 	/* select min power limit among [20M BW ~ current BW] */
1714 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1715 		cur_ch = cch_by_bw[cur_bw];
1716 
1717 		ch_idx = rtw_channel_to_idx(band, cur_ch);
1718 		if (ch_idx < 0)
1719 			goto err;
1720 
1721 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1722 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1723 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1724 
1725 		power_limit = min_t(s8, cur_lmt, power_limit);
1726 	}
1727 
1728 	return power_limit;
1729 
1730 err:
1731 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1732 	     band, bw, rf_path, rate, channel);
1733 	return (s8)rtwdev->chip->max_power_index;
1734 }
1735 
rtw_get_tx_power_params(struct rtw_dev * rtwdev,u8 path,u8 rate,u8 bw,u8 ch,u8 regd,struct rtw_power_params * pwr_param)1736 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1737 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1738 {
1739 	struct rtw_hal *hal = &rtwdev->hal;
1740 	struct rtw_txpwr_idx *pwr_idx;
1741 	u8 group, band;
1742 	u8 *base = &pwr_param->pwr_base;
1743 	s8 *offset = &pwr_param->pwr_offset;
1744 	s8 *limit = &pwr_param->pwr_limit;
1745 
1746 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1747 	group = rtw_get_channel_group(ch);
1748 
1749 	/* base power index for 2.4G/5G */
1750 	if (ch <= 14) {
1751 		band = PHY_BAND_2G;
1752 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1753 						      &pwr_idx->pwr_idx_2g,
1754 						      bw, rate, group);
1755 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1756 	} else {
1757 		band = PHY_BAND_5G;
1758 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1759 						      &pwr_idx->pwr_idx_5g,
1760 						      bw, rate, group);
1761 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1762 	}
1763 
1764 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1765 					    rate, ch, regd);
1766 }
1767 
1768 u8
rtw_phy_get_tx_power_index(struct rtw_dev * rtwdev,u8 rf_path,u8 rate,enum rtw_bandwidth bandwidth,u8 channel,u8 regd)1769 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1770 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1771 {
1772 	struct rtw_power_params pwr_param = {0};
1773 	u8 tx_power;
1774 	s8 offset;
1775 
1776 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1777 				channel, regd, &pwr_param);
1778 
1779 	tx_power = pwr_param.pwr_base;
1780 	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1781 
1782 	if (rtwdev->chip->en_dis_dpd)
1783 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1784 
1785 	tx_power += offset;
1786 
1787 	if (tx_power > rtwdev->chip->max_power_index)
1788 		tx_power = rtwdev->chip->max_power_index;
1789 
1790 	return tx_power;
1791 }
1792 
rtw_phy_set_tx_power_index_by_rs(struct rtw_dev * rtwdev,u8 ch,u8 path,u8 rs)1793 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1794 					     u8 ch, u8 path, u8 rs)
1795 {
1796 	struct rtw_hal *hal = &rtwdev->hal;
1797 	u8 regd = rtwdev->regd.txpwr_regd;
1798 	u8 *rates;
1799 	u8 size;
1800 	u8 rate;
1801 	u8 pwr_idx;
1802 	u8 bw;
1803 	int i;
1804 
1805 	if (rs >= RTW_RATE_SECTION_MAX)
1806 		return;
1807 
1808 	rates = rtw_rate_section[rs];
1809 	size = rtw_rate_size[rs];
1810 	bw = hal->current_band_width;
1811 	for (i = 0; i < size; i++) {
1812 		rate = rates[i];
1813 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1814 						     bw, ch, regd);
1815 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
1816 	}
1817 }
1818 
1819 /* set tx power level by path for each rates, note that the order of the rates
1820  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1821  * power index into a four-byte power index register, and calls set_tx_agc to
1822  * write these values into hardware
1823  */
rtw_phy_set_tx_power_level_by_path(struct rtw_dev * rtwdev,u8 ch,u8 path)1824 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1825 					       u8 ch, u8 path)
1826 {
1827 	struct rtw_hal *hal = &rtwdev->hal;
1828 	u8 rs;
1829 
1830 	/* do not need cck rates if we are not in 2.4G */
1831 	if (hal->current_band_type == RTW_BAND_2G)
1832 		rs = RTW_RATE_SECTION_CCK;
1833 	else
1834 		rs = RTW_RATE_SECTION_OFDM;
1835 
1836 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
1837 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1838 }
1839 
rtw_phy_set_tx_power_level(struct rtw_dev * rtwdev,u8 channel)1840 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1841 {
1842 	struct rtw_chip_info *chip = rtwdev->chip;
1843 	struct rtw_hal *hal = &rtwdev->hal;
1844 	u8 path;
1845 
1846 	mutex_lock(&hal->tx_power_mutex);
1847 
1848 	for (path = 0; path < hal->rf_path_num; path++)
1849 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1850 
1851 	chip->ops->set_tx_power_index(rtwdev);
1852 	mutex_unlock(&hal->tx_power_mutex);
1853 }
1854 
1855 static void
rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal * hal,u8 path,u8 rs,u8 size,u8 * rates)1856 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1857 					u8 rs, u8 size, u8 *rates)
1858 {
1859 	u8 rate;
1860 	u8 base_idx, rate_idx;
1861 	s8 base_2g, base_5g;
1862 
1863 	if (rs >= RTW_RATE_SECTION_VHT_1S)
1864 		base_idx = rates[size - 3];
1865 	else
1866 		base_idx = rates[size - 1];
1867 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1868 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1869 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1870 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1871 	for (rate = 0; rate < size; rate++) {
1872 		rate_idx = rates[rate];
1873 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1874 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1875 	}
1876 }
1877 
rtw_phy_tx_power_by_rate_config(struct rtw_hal * hal)1878 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1879 {
1880 	u8 path;
1881 
1882 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1883 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1884 				RTW_RATE_SECTION_CCK,
1885 				rtw_cck_size, rtw_cck_rates);
1886 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1887 				RTW_RATE_SECTION_OFDM,
1888 				rtw_ofdm_size, rtw_ofdm_rates);
1889 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1890 				RTW_RATE_SECTION_HT_1S,
1891 				rtw_ht_1s_size, rtw_ht_1s_rates);
1892 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1893 				RTW_RATE_SECTION_HT_2S,
1894 				rtw_ht_2s_size, rtw_ht_2s_rates);
1895 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1896 				RTW_RATE_SECTION_VHT_1S,
1897 				rtw_vht_1s_size, rtw_vht_1s_rates);
1898 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1899 				RTW_RATE_SECTION_VHT_2S,
1900 				rtw_vht_2s_size, rtw_vht_2s_rates);
1901 	}
1902 }
1903 
1904 static void
__rtw_phy_tx_power_limit_config(struct rtw_hal * hal,u8 regd,u8 bw,u8 rs)1905 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1906 {
1907 	s8 base;
1908 	u8 ch;
1909 
1910 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1911 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
1912 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1913 	}
1914 
1915 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1916 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
1917 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1918 	}
1919 }
1920 
rtw_phy_tx_power_limit_config(struct rtw_hal * hal)1921 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1922 {
1923 	u8 regd, bw, rs;
1924 
1925 	/* default at channel 1 */
1926 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
1927 
1928 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1929 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1930 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1931 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
1932 }
1933 
rtw_phy_init_tx_power_limit(struct rtw_dev * rtwdev,u8 regd,u8 bw,u8 rs)1934 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
1935 					u8 regd, u8 bw, u8 rs)
1936 {
1937 	struct rtw_hal *hal = &rtwdev->hal;
1938 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
1939 	u8 ch;
1940 
1941 	/* 2.4G channels */
1942 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1943 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
1944 
1945 	/* 5G channels */
1946 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1947 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
1948 }
1949 
rtw_phy_init_tx_power(struct rtw_dev * rtwdev)1950 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
1951 {
1952 	struct rtw_hal *hal = &rtwdev->hal;
1953 	u8 regd, path, rate, rs, bw;
1954 
1955 	/* init tx power by rate offset */
1956 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1957 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
1958 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
1959 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
1960 		}
1961 	}
1962 
1963 	/* init tx power limit */
1964 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1965 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1966 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1967 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
1968 							    rs);
1969 }
1970