1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
sched_rt_period_timer(struct hrtimer * timer)17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
21 int idle = 0;
22 int overrun;
23
24 raw_spin_lock(&rt_b->rt_runtime_lock);
25 for (;;) {
26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 if (!overrun)
28 break;
29
30 raw_spin_unlock(&rt_b->rt_runtime_lock);
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 raw_spin_lock(&rt_b->rt_runtime_lock);
33 }
34 if (idle)
35 rt_b->rt_period_active = 0;
36 raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
49 HRTIMER_MODE_REL_HARD);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
start_rt_bandwidth(struct rt_bandwidth * rt_b)53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
58 raw_spin_lock(&rt_b->rt_runtime_lock);
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
61 /*
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
68 */
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 hrtimer_start_expires(&rt_b->rt_period_timer,
71 HRTIMER_MODE_ABS_PINNED_HARD);
72 }
73 raw_spin_unlock(&rt_b->rt_runtime_lock);
74 }
75
init_rt_rq(struct rt_rq * rt_rq)76 void init_rt_rq(struct rt_rq *rt_rq)
77 {
78 struct rt_prio_array *array;
79 int i;
80
81 array = &rt_rq->active;
82 for (i = 0; i < MAX_RT_PRIO; i++) {
83 INIT_LIST_HEAD(array->queue + i);
84 __clear_bit(i, array->bitmap);
85 }
86 /* delimiter for bitsearch: */
87 __set_bit(MAX_RT_PRIO, array->bitmap);
88
89 #if defined CONFIG_SMP
90 rt_rq->highest_prio.curr = MAX_RT_PRIO;
91 rt_rq->highest_prio.next = MAX_RT_PRIO;
92 rt_rq->rt_nr_migratory = 0;
93 rt_rq->overloaded = 0;
94 plist_head_init(&rt_rq->pushable_tasks);
95 #endif /* CONFIG_SMP */
96 /* We start is dequeued state, because no RT tasks are queued */
97 rt_rq->rt_queued = 0;
98
99 rt_rq->rt_time = 0;
100 rt_rq->rt_throttled = 0;
101 rt_rq->rt_runtime = 0;
102 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
103 }
104
105 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108 hrtimer_cancel(&rt_b->rt_period_timer);
109 }
110
111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
112
rt_task_of(struct sched_rt_entity * rt_se)113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
114 {
115 #ifdef CONFIG_SCHED_DEBUG
116 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
117 #endif
118 return container_of(rt_se, struct task_struct, rt);
119 }
120
rq_of_rt_rq(struct rt_rq * rt_rq)121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
122 {
123 return rt_rq->rq;
124 }
125
rt_rq_of_se(struct sched_rt_entity * rt_se)126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
127 {
128 return rt_se->rt_rq;
129 }
130
rq_of_rt_se(struct sched_rt_entity * rt_se)131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
132 {
133 struct rt_rq *rt_rq = rt_se->rt_rq;
134
135 return rt_rq->rq;
136 }
137
free_rt_sched_group(struct task_group * tg)138 void free_rt_sched_group(struct task_group *tg)
139 {
140 int i;
141
142 if (tg->rt_se)
143 destroy_rt_bandwidth(&tg->rt_bandwidth);
144
145 for_each_possible_cpu(i) {
146 if (tg->rt_rq)
147 kfree(tg->rt_rq[i]);
148 if (tg->rt_se)
149 kfree(tg->rt_se[i]);
150 }
151
152 kfree(tg->rt_rq);
153 kfree(tg->rt_se);
154 }
155
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
157 struct sched_rt_entity *rt_se, int cpu,
158 struct sched_rt_entity *parent)
159 {
160 struct rq *rq = cpu_rq(cpu);
161
162 rt_rq->highest_prio.curr = MAX_RT_PRIO;
163 rt_rq->rt_nr_boosted = 0;
164 rt_rq->rq = rq;
165 rt_rq->tg = tg;
166
167 tg->rt_rq[cpu] = rt_rq;
168 tg->rt_se[cpu] = rt_se;
169
170 if (!rt_se)
171 return;
172
173 if (!parent)
174 rt_se->rt_rq = &rq->rt;
175 else
176 rt_se->rt_rq = parent->my_q;
177
178 rt_se->my_q = rt_rq;
179 rt_se->parent = parent;
180 INIT_LIST_HEAD(&rt_se->run_list);
181 }
182
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
184 {
185 struct rt_rq *rt_rq;
186 struct sched_rt_entity *rt_se;
187 int i;
188
189 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
190 if (!tg->rt_rq)
191 goto err;
192 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
193 if (!tg->rt_se)
194 goto err;
195
196 init_rt_bandwidth(&tg->rt_bandwidth,
197 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
198
199 for_each_possible_cpu(i) {
200 rt_rq = kzalloc_node(sizeof(struct rt_rq),
201 GFP_KERNEL, cpu_to_node(i));
202 if (!rt_rq)
203 goto err;
204
205 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
206 GFP_KERNEL, cpu_to_node(i));
207 if (!rt_se)
208 goto err_free_rq;
209
210 init_rt_rq(rt_rq);
211 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
212 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
213 }
214
215 return 1;
216
217 err_free_rq:
218 kfree(rt_rq);
219 err:
220 return 0;
221 }
222
223 #else /* CONFIG_RT_GROUP_SCHED */
224
225 #define rt_entity_is_task(rt_se) (1)
226
rt_task_of(struct sched_rt_entity * rt_se)227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
228 {
229 return container_of(rt_se, struct task_struct, rt);
230 }
231
rq_of_rt_rq(struct rt_rq * rt_rq)232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
233 {
234 return container_of(rt_rq, struct rq, rt);
235 }
236
rq_of_rt_se(struct sched_rt_entity * rt_se)237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
238 {
239 struct task_struct *p = rt_task_of(rt_se);
240
241 return task_rq(p);
242 }
243
rt_rq_of_se(struct sched_rt_entity * rt_se)244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
245 {
246 struct rq *rq = rq_of_rt_se(rt_se);
247
248 return &rq->rt;
249 }
250
free_rt_sched_group(struct task_group * tg)251 void free_rt_sched_group(struct task_group *tg) { }
252
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
254 {
255 return 1;
256 }
257 #endif /* CONFIG_RT_GROUP_SCHED */
258
259 #ifdef CONFIG_SMP
260
261 static void pull_rt_task(struct rq *this_rq);
262
need_pull_rt_task(struct rq * rq,struct task_struct * prev)263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
264 {
265 /* Try to pull RT tasks here if we lower this rq's prio */
266 return rq->rt.highest_prio.curr > prev->prio;
267 }
268
rt_overloaded(struct rq * rq)269 static inline int rt_overloaded(struct rq *rq)
270 {
271 return atomic_read(&rq->rd->rto_count);
272 }
273
rt_set_overload(struct rq * rq)274 static inline void rt_set_overload(struct rq *rq)
275 {
276 if (!rq->online)
277 return;
278
279 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
280 /*
281 * Make sure the mask is visible before we set
282 * the overload count. That is checked to determine
283 * if we should look at the mask. It would be a shame
284 * if we looked at the mask, but the mask was not
285 * updated yet.
286 *
287 * Matched by the barrier in pull_rt_task().
288 */
289 smp_wmb();
290 atomic_inc(&rq->rd->rto_count);
291 }
292
rt_clear_overload(struct rq * rq)293 static inline void rt_clear_overload(struct rq *rq)
294 {
295 if (!rq->online)
296 return;
297
298 /* the order here really doesn't matter */
299 atomic_dec(&rq->rd->rto_count);
300 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
301 }
302
update_rt_migration(struct rt_rq * rt_rq)303 static void update_rt_migration(struct rt_rq *rt_rq)
304 {
305 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
306 if (!rt_rq->overloaded) {
307 rt_set_overload(rq_of_rt_rq(rt_rq));
308 rt_rq->overloaded = 1;
309 }
310 } else if (rt_rq->overloaded) {
311 rt_clear_overload(rq_of_rt_rq(rt_rq));
312 rt_rq->overloaded = 0;
313 }
314 }
315
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
317 {
318 struct task_struct *p;
319
320 if (!rt_entity_is_task(rt_se))
321 return;
322
323 p = rt_task_of(rt_se);
324 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
325
326 rt_rq->rt_nr_total++;
327 if (p->nr_cpus_allowed > 1)
328 rt_rq->rt_nr_migratory++;
329
330 update_rt_migration(rt_rq);
331 }
332
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
334 {
335 struct task_struct *p;
336
337 if (!rt_entity_is_task(rt_se))
338 return;
339
340 p = rt_task_of(rt_se);
341 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
342
343 rt_rq->rt_nr_total--;
344 if (p->nr_cpus_allowed > 1)
345 rt_rq->rt_nr_migratory--;
346
347 update_rt_migration(rt_rq);
348 }
349
has_pushable_tasks(struct rq * rq)350 static inline int has_pushable_tasks(struct rq *rq)
351 {
352 return !plist_head_empty(&rq->rt.pushable_tasks);
353 }
354
355 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
357
358 static void push_rt_tasks(struct rq *);
359 static void pull_rt_task(struct rq *);
360
rt_queue_push_tasks(struct rq * rq)361 static inline void rt_queue_push_tasks(struct rq *rq)
362 {
363 if (!has_pushable_tasks(rq))
364 return;
365
366 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
367 }
368
rt_queue_pull_task(struct rq * rq)369 static inline void rt_queue_pull_task(struct rq *rq)
370 {
371 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
372 }
373
enqueue_pushable_task(struct rq * rq,struct task_struct * p)374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
375 {
376 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
377 plist_node_init(&p->pushable_tasks, p->prio);
378 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
379
380 /* Update the highest prio pushable task */
381 if (p->prio < rq->rt.highest_prio.next)
382 rq->rt.highest_prio.next = p->prio;
383 }
384
dequeue_pushable_task(struct rq * rq,struct task_struct * p)385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
386 {
387 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
388
389 /* Update the new highest prio pushable task */
390 if (has_pushable_tasks(rq)) {
391 p = plist_first_entry(&rq->rt.pushable_tasks,
392 struct task_struct, pushable_tasks);
393 rq->rt.highest_prio.next = p->prio;
394 } else
395 rq->rt.highest_prio.next = MAX_RT_PRIO;
396 }
397
398 #else
399
enqueue_pushable_task(struct rq * rq,struct task_struct * p)400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
401 {
402 }
403
dequeue_pushable_task(struct rq * rq,struct task_struct * p)404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407
408 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
410 {
411 }
412
413 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
415 {
416 }
417
need_pull_rt_task(struct rq * rq,struct task_struct * prev)418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
419 {
420 return false;
421 }
422
pull_rt_task(struct rq * this_rq)423 static inline void pull_rt_task(struct rq *this_rq)
424 {
425 }
426
rt_queue_push_tasks(struct rq * rq)427 static inline void rt_queue_push_tasks(struct rq *rq)
428 {
429 }
430 #endif /* CONFIG_SMP */
431
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
434
on_rt_rq(struct sched_rt_entity * rt_se)435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436 {
437 return rt_se->on_rq;
438 }
439
440 #ifdef CONFIG_UCLAMP_TASK
441 /*
442 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443 * settings.
444 *
445 * This check is only important for heterogeneous systems where uclamp_min value
446 * is higher than the capacity of a @cpu. For non-heterogeneous system this
447 * function will always return true.
448 *
449 * The function will return true if the capacity of the @cpu is >= the
450 * uclamp_min and false otherwise.
451 *
452 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453 * > uclamp_max.
454 */
rt_task_fits_capacity(struct task_struct * p,int cpu)455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
456 {
457 unsigned int min_cap;
458 unsigned int max_cap;
459 unsigned int cpu_cap;
460
461 /* Only heterogeneous systems can benefit from this check */
462 if (!static_branch_unlikely(&sched_asym_cpucapacity))
463 return true;
464
465 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
467
468 cpu_cap = capacity_orig_of(cpu);
469
470 return cpu_cap >= min(min_cap, max_cap);
471 }
472 #else
rt_task_fits_capacity(struct task_struct * p,int cpu)473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
474 {
475 return true;
476 }
477 #endif
478
479 #ifdef CONFIG_RT_GROUP_SCHED
480
sched_rt_runtime(struct rt_rq * rt_rq)481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
482 {
483 if (!rt_rq->tg)
484 return RUNTIME_INF;
485
486 return rt_rq->rt_runtime;
487 }
488
sched_rt_period(struct rt_rq * rt_rq)489 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
490 {
491 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
492 }
493
494 typedef struct task_group *rt_rq_iter_t;
495
next_task_group(struct task_group * tg)496 static inline struct task_group *next_task_group(struct task_group *tg)
497 {
498 do {
499 tg = list_entry_rcu(tg->list.next,
500 typeof(struct task_group), list);
501 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
502
503 if (&tg->list == &task_groups)
504 tg = NULL;
505
506 return tg;
507 }
508
509 #define for_each_rt_rq(rt_rq, iter, rq) \
510 for (iter = container_of(&task_groups, typeof(*iter), list); \
511 (iter = next_task_group(iter)) && \
512 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
513
514 #define for_each_sched_rt_entity(rt_se) \
515 for (; rt_se; rt_se = rt_se->parent)
516
group_rt_rq(struct sched_rt_entity * rt_se)517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
518 {
519 return rt_se->my_q;
520 }
521
522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
524
sched_rt_rq_enqueue(struct rt_rq * rt_rq)525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
526 {
527 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
528 struct rq *rq = rq_of_rt_rq(rt_rq);
529 struct sched_rt_entity *rt_se;
530
531 int cpu = cpu_of(rq);
532
533 rt_se = rt_rq->tg->rt_se[cpu];
534
535 if (rt_rq->rt_nr_running) {
536 if (!rt_se)
537 enqueue_top_rt_rq(rt_rq);
538 else if (!on_rt_rq(rt_se))
539 enqueue_rt_entity(rt_se, 0);
540
541 if (rt_rq->highest_prio.curr < curr->prio)
542 resched_curr(rq);
543 }
544 }
545
sched_rt_rq_dequeue(struct rt_rq * rt_rq)546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
547 {
548 struct sched_rt_entity *rt_se;
549 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
550
551 rt_se = rt_rq->tg->rt_se[cpu];
552
553 if (!rt_se) {
554 dequeue_top_rt_rq(rt_rq);
555 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
557 }
558 else if (on_rt_rq(rt_se))
559 dequeue_rt_entity(rt_se, 0);
560 }
561
rt_rq_throttled(struct rt_rq * rt_rq)562 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
563 {
564 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
565 }
566
rt_se_boosted(struct sched_rt_entity * rt_se)567 static int rt_se_boosted(struct sched_rt_entity *rt_se)
568 {
569 struct rt_rq *rt_rq = group_rt_rq(rt_se);
570 struct task_struct *p;
571
572 if (rt_rq)
573 return !!rt_rq->rt_nr_boosted;
574
575 p = rt_task_of(rt_se);
576 return p->prio != p->normal_prio;
577 }
578
579 #ifdef CONFIG_SMP
sched_rt_period_mask(void)580 static inline const struct cpumask *sched_rt_period_mask(void)
581 {
582 return this_rq()->rd->span;
583 }
584 #else
sched_rt_period_mask(void)585 static inline const struct cpumask *sched_rt_period_mask(void)
586 {
587 return cpu_online_mask;
588 }
589 #endif
590
591 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
593 {
594 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
595 }
596
sched_rt_bandwidth(struct rt_rq * rt_rq)597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
598 {
599 return &rt_rq->tg->rt_bandwidth;
600 }
601
602 #else /* !CONFIG_RT_GROUP_SCHED */
603
sched_rt_runtime(struct rt_rq * rt_rq)604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
605 {
606 return rt_rq->rt_runtime;
607 }
608
sched_rt_period(struct rt_rq * rt_rq)609 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
610 {
611 return ktime_to_ns(def_rt_bandwidth.rt_period);
612 }
613
614 typedef struct rt_rq *rt_rq_iter_t;
615
616 #define for_each_rt_rq(rt_rq, iter, rq) \
617 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
618
619 #define for_each_sched_rt_entity(rt_se) \
620 for (; rt_se; rt_se = NULL)
621
group_rt_rq(struct sched_rt_entity * rt_se)622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
623 {
624 return NULL;
625 }
626
sched_rt_rq_enqueue(struct rt_rq * rt_rq)627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
628 {
629 struct rq *rq = rq_of_rt_rq(rt_rq);
630
631 if (!rt_rq->rt_nr_running)
632 return;
633
634 enqueue_top_rt_rq(rt_rq);
635 resched_curr(rq);
636 }
637
sched_rt_rq_dequeue(struct rt_rq * rt_rq)638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
639 {
640 dequeue_top_rt_rq(rt_rq);
641 }
642
rt_rq_throttled(struct rt_rq * rt_rq)643 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
644 {
645 return rt_rq->rt_throttled;
646 }
647
sched_rt_period_mask(void)648 static inline const struct cpumask *sched_rt_period_mask(void)
649 {
650 return cpu_online_mask;
651 }
652
653 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
655 {
656 return &cpu_rq(cpu)->rt;
657 }
658
sched_rt_bandwidth(struct rt_rq * rt_rq)659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
660 {
661 return &def_rt_bandwidth;
662 }
663
664 #endif /* CONFIG_RT_GROUP_SCHED */
665
sched_rt_bandwidth_account(struct rt_rq * rt_rq)666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
667 {
668 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
669
670 return (hrtimer_active(&rt_b->rt_period_timer) ||
671 rt_rq->rt_time < rt_b->rt_runtime);
672 }
673
674 #ifdef CONFIG_SMP
675 /*
676 * We ran out of runtime, see if we can borrow some from our neighbours.
677 */
do_balance_runtime(struct rt_rq * rt_rq)678 static void do_balance_runtime(struct rt_rq *rt_rq)
679 {
680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
682 int i, weight;
683 u64 rt_period;
684
685 weight = cpumask_weight(rd->span);
686
687 raw_spin_lock(&rt_b->rt_runtime_lock);
688 rt_period = ktime_to_ns(rt_b->rt_period);
689 for_each_cpu(i, rd->span) {
690 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
691 s64 diff;
692
693 if (iter == rt_rq)
694 continue;
695
696 raw_spin_lock(&iter->rt_runtime_lock);
697 /*
698 * Either all rqs have inf runtime and there's nothing to steal
699 * or __disable_runtime() below sets a specific rq to inf to
700 * indicate its been disabled and disalow stealing.
701 */
702 if (iter->rt_runtime == RUNTIME_INF)
703 goto next;
704
705 /*
706 * From runqueues with spare time, take 1/n part of their
707 * spare time, but no more than our period.
708 */
709 diff = iter->rt_runtime - iter->rt_time;
710 if (diff > 0) {
711 diff = div_u64((u64)diff, weight);
712 if (rt_rq->rt_runtime + diff > rt_period)
713 diff = rt_period - rt_rq->rt_runtime;
714 iter->rt_runtime -= diff;
715 rt_rq->rt_runtime += diff;
716 if (rt_rq->rt_runtime == rt_period) {
717 raw_spin_unlock(&iter->rt_runtime_lock);
718 break;
719 }
720 }
721 next:
722 raw_spin_unlock(&iter->rt_runtime_lock);
723 }
724 raw_spin_unlock(&rt_b->rt_runtime_lock);
725 }
726
727 /*
728 * Ensure this RQ takes back all the runtime it lend to its neighbours.
729 */
__disable_runtime(struct rq * rq)730 static void __disable_runtime(struct rq *rq)
731 {
732 struct root_domain *rd = rq->rd;
733 rt_rq_iter_t iter;
734 struct rt_rq *rt_rq;
735
736 if (unlikely(!scheduler_running))
737 return;
738
739 for_each_rt_rq(rt_rq, iter, rq) {
740 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
741 s64 want;
742 int i;
743
744 raw_spin_lock(&rt_b->rt_runtime_lock);
745 raw_spin_lock(&rt_rq->rt_runtime_lock);
746 /*
747 * Either we're all inf and nobody needs to borrow, or we're
748 * already disabled and thus have nothing to do, or we have
749 * exactly the right amount of runtime to take out.
750 */
751 if (rt_rq->rt_runtime == RUNTIME_INF ||
752 rt_rq->rt_runtime == rt_b->rt_runtime)
753 goto balanced;
754 raw_spin_unlock(&rt_rq->rt_runtime_lock);
755
756 /*
757 * Calculate the difference between what we started out with
758 * and what we current have, that's the amount of runtime
759 * we lend and now have to reclaim.
760 */
761 want = rt_b->rt_runtime - rt_rq->rt_runtime;
762
763 /*
764 * Greedy reclaim, take back as much as we can.
765 */
766 for_each_cpu(i, rd->span) {
767 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
768 s64 diff;
769
770 /*
771 * Can't reclaim from ourselves or disabled runqueues.
772 */
773 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
774 continue;
775
776 raw_spin_lock(&iter->rt_runtime_lock);
777 if (want > 0) {
778 diff = min_t(s64, iter->rt_runtime, want);
779 iter->rt_runtime -= diff;
780 want -= diff;
781 } else {
782 iter->rt_runtime -= want;
783 want -= want;
784 }
785 raw_spin_unlock(&iter->rt_runtime_lock);
786
787 if (!want)
788 break;
789 }
790
791 raw_spin_lock(&rt_rq->rt_runtime_lock);
792 /*
793 * We cannot be left wanting - that would mean some runtime
794 * leaked out of the system.
795 */
796 BUG_ON(want);
797 balanced:
798 /*
799 * Disable all the borrow logic by pretending we have inf
800 * runtime - in which case borrowing doesn't make sense.
801 */
802 rt_rq->rt_runtime = RUNTIME_INF;
803 rt_rq->rt_throttled = 0;
804 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805 raw_spin_unlock(&rt_b->rt_runtime_lock);
806
807 /* Make rt_rq available for pick_next_task() */
808 sched_rt_rq_enqueue(rt_rq);
809 }
810 }
811
__enable_runtime(struct rq * rq)812 static void __enable_runtime(struct rq *rq)
813 {
814 rt_rq_iter_t iter;
815 struct rt_rq *rt_rq;
816
817 if (unlikely(!scheduler_running))
818 return;
819
820 /*
821 * Reset each runqueue's bandwidth settings
822 */
823 for_each_rt_rq(rt_rq, iter, rq) {
824 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
825
826 raw_spin_lock(&rt_b->rt_runtime_lock);
827 raw_spin_lock(&rt_rq->rt_runtime_lock);
828 rt_rq->rt_runtime = rt_b->rt_runtime;
829 rt_rq->rt_time = 0;
830 rt_rq->rt_throttled = 0;
831 raw_spin_unlock(&rt_rq->rt_runtime_lock);
832 raw_spin_unlock(&rt_b->rt_runtime_lock);
833 }
834 }
835
balance_runtime(struct rt_rq * rt_rq)836 static void balance_runtime(struct rt_rq *rt_rq)
837 {
838 if (!sched_feat(RT_RUNTIME_SHARE))
839 return;
840
841 if (rt_rq->rt_time > rt_rq->rt_runtime) {
842 raw_spin_unlock(&rt_rq->rt_runtime_lock);
843 do_balance_runtime(rt_rq);
844 raw_spin_lock(&rt_rq->rt_runtime_lock);
845 }
846 }
847 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)848 static inline void balance_runtime(struct rt_rq *rt_rq) {}
849 #endif /* CONFIG_SMP */
850
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
852 {
853 int i, idle = 1, throttled = 0;
854 const struct cpumask *span;
855
856 span = sched_rt_period_mask();
857 #ifdef CONFIG_RT_GROUP_SCHED
858 /*
859 * FIXME: isolated CPUs should really leave the root task group,
860 * whether they are isolcpus or were isolated via cpusets, lest
861 * the timer run on a CPU which does not service all runqueues,
862 * potentially leaving other CPUs indefinitely throttled. If
863 * isolation is really required, the user will turn the throttle
864 * off to kill the perturbations it causes anyway. Meanwhile,
865 * this maintains functionality for boot and/or troubleshooting.
866 */
867 if (rt_b == &root_task_group.rt_bandwidth)
868 span = cpu_online_mask;
869 #endif
870 for_each_cpu(i, span) {
871 int enqueue = 0;
872 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
873 struct rq *rq = rq_of_rt_rq(rt_rq);
874 int skip;
875
876 /*
877 * When span == cpu_online_mask, taking each rq->lock
878 * can be time-consuming. Try to avoid it when possible.
879 */
880 raw_spin_lock(&rt_rq->rt_runtime_lock);
881 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
882 rt_rq->rt_runtime = rt_b->rt_runtime;
883 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
884 raw_spin_unlock(&rt_rq->rt_runtime_lock);
885 if (skip)
886 continue;
887
888 raw_spin_lock(&rq->lock);
889 update_rq_clock(rq);
890
891 if (rt_rq->rt_time) {
892 u64 runtime;
893
894 raw_spin_lock(&rt_rq->rt_runtime_lock);
895 if (rt_rq->rt_throttled)
896 balance_runtime(rt_rq);
897 runtime = rt_rq->rt_runtime;
898 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
899 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
900 rt_rq->rt_throttled = 0;
901 enqueue = 1;
902
903 /*
904 * When we're idle and a woken (rt) task is
905 * throttled check_preempt_curr() will set
906 * skip_update and the time between the wakeup
907 * and this unthrottle will get accounted as
908 * 'runtime'.
909 */
910 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
911 rq_clock_cancel_skipupdate(rq);
912 }
913 if (rt_rq->rt_time || rt_rq->rt_nr_running)
914 idle = 0;
915 raw_spin_unlock(&rt_rq->rt_runtime_lock);
916 } else if (rt_rq->rt_nr_running) {
917 idle = 0;
918 if (!rt_rq_throttled(rt_rq))
919 enqueue = 1;
920 }
921 if (rt_rq->rt_throttled)
922 throttled = 1;
923
924 if (enqueue)
925 sched_rt_rq_enqueue(rt_rq);
926 raw_spin_unlock(&rq->lock);
927 }
928
929 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
930 return 1;
931
932 return idle;
933 }
934
rt_se_prio(struct sched_rt_entity * rt_se)935 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
936 {
937 #ifdef CONFIG_RT_GROUP_SCHED
938 struct rt_rq *rt_rq = group_rt_rq(rt_se);
939
940 if (rt_rq)
941 return rt_rq->highest_prio.curr;
942 #endif
943
944 return rt_task_of(rt_se)->prio;
945 }
946
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
948 {
949 u64 runtime = sched_rt_runtime(rt_rq);
950
951 if (rt_rq->rt_throttled)
952 return rt_rq_throttled(rt_rq);
953
954 if (runtime >= sched_rt_period(rt_rq))
955 return 0;
956
957 balance_runtime(rt_rq);
958 runtime = sched_rt_runtime(rt_rq);
959 if (runtime == RUNTIME_INF)
960 return 0;
961
962 if (rt_rq->rt_time > runtime) {
963 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
964
965 /*
966 * Don't actually throttle groups that have no runtime assigned
967 * but accrue some time due to boosting.
968 */
969 if (likely(rt_b->rt_runtime)) {
970 rt_rq->rt_throttled = 1;
971 printk_deferred_once("sched: RT throttling activated\n");
972 } else {
973 /*
974 * In case we did anyway, make it go away,
975 * replenishment is a joke, since it will replenish us
976 * with exactly 0 ns.
977 */
978 rt_rq->rt_time = 0;
979 }
980
981 if (rt_rq_throttled(rt_rq)) {
982 sched_rt_rq_dequeue(rt_rq);
983 return 1;
984 }
985 }
986
987 return 0;
988 }
989
990 /*
991 * Update the current task's runtime statistics. Skip current tasks that
992 * are not in our scheduling class.
993 */
update_curr_rt(struct rq * rq)994 static void update_curr_rt(struct rq *rq)
995 {
996 struct task_struct *curr = rq->curr;
997 struct sched_rt_entity *rt_se = &curr->rt;
998 u64 delta_exec;
999 u64 now;
1000
1001 if (curr->sched_class != &rt_sched_class)
1002 return;
1003
1004 now = rq_clock_task(rq);
1005 delta_exec = now - curr->se.exec_start;
1006 if (unlikely((s64)delta_exec <= 0))
1007 return;
1008
1009 schedstat_set(curr->se.statistics.exec_max,
1010 max(curr->se.statistics.exec_max, delta_exec));
1011
1012 curr->se.sum_exec_runtime += delta_exec;
1013 account_group_exec_runtime(curr, delta_exec);
1014
1015 curr->se.exec_start = now;
1016 cgroup_account_cputime(curr, delta_exec);
1017
1018 if (!rt_bandwidth_enabled())
1019 return;
1020
1021 for_each_sched_rt_entity(rt_se) {
1022 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1023
1024 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1025 raw_spin_lock(&rt_rq->rt_runtime_lock);
1026 rt_rq->rt_time += delta_exec;
1027 if (sched_rt_runtime_exceeded(rt_rq))
1028 resched_curr(rq);
1029 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1030 }
1031 }
1032 }
1033
1034 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq)1035 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1036 {
1037 struct rq *rq = rq_of_rt_rq(rt_rq);
1038
1039 BUG_ON(&rq->rt != rt_rq);
1040
1041 if (!rt_rq->rt_queued)
1042 return;
1043
1044 BUG_ON(!rq->nr_running);
1045
1046 sub_nr_running(rq, rt_rq->rt_nr_running);
1047 rt_rq->rt_queued = 0;
1048
1049 }
1050
1051 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1052 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053 {
1054 struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056 BUG_ON(&rq->rt != rt_rq);
1057
1058 if (rt_rq->rt_queued)
1059 return;
1060
1061 if (rt_rq_throttled(rt_rq))
1062 return;
1063
1064 if (rt_rq->rt_nr_running) {
1065 add_nr_running(rq, rt_rq->rt_nr_running);
1066 rt_rq->rt_queued = 1;
1067 }
1068
1069 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070 cpufreq_update_util(rq, 0);
1071 }
1072
1073 #if defined CONFIG_SMP
1074
1075 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077 {
1078 struct rq *rq = rq_of_rt_rq(rt_rq);
1079
1080 #ifdef CONFIG_RT_GROUP_SCHED
1081 /*
1082 * Change rq's cpupri only if rt_rq is the top queue.
1083 */
1084 if (&rq->rt != rt_rq)
1085 return;
1086 #endif
1087 if (rq->online && prio < prev_prio)
1088 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089 }
1090
1091 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093 {
1094 struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096 #ifdef CONFIG_RT_GROUP_SCHED
1097 /*
1098 * Change rq's cpupri only if rt_rq is the top queue.
1099 */
1100 if (&rq->rt != rt_rq)
1101 return;
1102 #endif
1103 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105 }
1106
1107 #else /* CONFIG_SMP */
1108
1109 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113
1114 #endif /* CONFIG_SMP */
1115
1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1118 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119 {
1120 int prev_prio = rt_rq->highest_prio.curr;
1121
1122 if (prio < prev_prio)
1123 rt_rq->highest_prio.curr = prio;
1124
1125 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126 }
1127
1128 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1129 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130 {
1131 int prev_prio = rt_rq->highest_prio.curr;
1132
1133 if (rt_rq->rt_nr_running) {
1134
1135 WARN_ON(prio < prev_prio);
1136
1137 /*
1138 * This may have been our highest task, and therefore
1139 * we may have some recomputation to do
1140 */
1141 if (prio == prev_prio) {
1142 struct rt_prio_array *array = &rt_rq->active;
1143
1144 rt_rq->highest_prio.curr =
1145 sched_find_first_bit(array->bitmap);
1146 }
1147
1148 } else
1149 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1150
1151 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1152 }
1153
1154 #else
1155
inc_rt_prio(struct rt_rq * rt_rq,int prio)1156 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1157 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158
1159 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1160
1161 #ifdef CONFIG_RT_GROUP_SCHED
1162
1163 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1164 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1165 {
1166 if (rt_se_boosted(rt_se))
1167 rt_rq->rt_nr_boosted++;
1168
1169 if (rt_rq->tg)
1170 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1171 }
1172
1173 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1174 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175 {
1176 if (rt_se_boosted(rt_se))
1177 rt_rq->rt_nr_boosted--;
1178
1179 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1180 }
1181
1182 #else /* CONFIG_RT_GROUP_SCHED */
1183
1184 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187 start_rt_bandwidth(&def_rt_bandwidth);
1188 }
1189
1190 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1191 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1192
1193 #endif /* CONFIG_RT_GROUP_SCHED */
1194
1195 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1196 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1197 {
1198 struct rt_rq *group_rq = group_rt_rq(rt_se);
1199
1200 if (group_rq)
1201 return group_rq->rt_nr_running;
1202 else
1203 return 1;
1204 }
1205
1206 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1207 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1208 {
1209 struct rt_rq *group_rq = group_rt_rq(rt_se);
1210 struct task_struct *tsk;
1211
1212 if (group_rq)
1213 return group_rq->rr_nr_running;
1214
1215 tsk = rt_task_of(rt_se);
1216
1217 return (tsk->policy == SCHED_RR) ? 1 : 0;
1218 }
1219
1220 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1221 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1222 {
1223 int prio = rt_se_prio(rt_se);
1224
1225 WARN_ON(!rt_prio(prio));
1226 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1227 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1228
1229 inc_rt_prio(rt_rq, prio);
1230 inc_rt_migration(rt_se, rt_rq);
1231 inc_rt_group(rt_se, rt_rq);
1232 }
1233
1234 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236 {
1237 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238 WARN_ON(!rt_rq->rt_nr_running);
1239 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241
1242 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243 dec_rt_migration(rt_se, rt_rq);
1244 dec_rt_group(rt_se, rt_rq);
1245 }
1246
1247 /*
1248 * Change rt_se->run_list location unless SAVE && !MOVE
1249 *
1250 * assumes ENQUEUE/DEQUEUE flags match
1251 */
move_entity(unsigned int flags)1252 static inline bool move_entity(unsigned int flags)
1253 {
1254 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1255 return false;
1256
1257 return true;
1258 }
1259
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1260 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1261 {
1262 list_del_init(&rt_se->run_list);
1263
1264 if (list_empty(array->queue + rt_se_prio(rt_se)))
1265 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1266
1267 rt_se->on_list = 0;
1268 }
1269
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1270 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1271 {
1272 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1273 struct rt_prio_array *array = &rt_rq->active;
1274 struct rt_rq *group_rq = group_rt_rq(rt_se);
1275 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1276
1277 /*
1278 * Don't enqueue the group if its throttled, or when empty.
1279 * The latter is a consequence of the former when a child group
1280 * get throttled and the current group doesn't have any other
1281 * active members.
1282 */
1283 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1284 if (rt_se->on_list)
1285 __delist_rt_entity(rt_se, array);
1286 return;
1287 }
1288
1289 if (move_entity(flags)) {
1290 WARN_ON_ONCE(rt_se->on_list);
1291 if (flags & ENQUEUE_HEAD)
1292 list_add(&rt_se->run_list, queue);
1293 else
1294 list_add_tail(&rt_se->run_list, queue);
1295
1296 __set_bit(rt_se_prio(rt_se), array->bitmap);
1297 rt_se->on_list = 1;
1298 }
1299 rt_se->on_rq = 1;
1300
1301 inc_rt_tasks(rt_se, rt_rq);
1302 }
1303
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1304 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1305 {
1306 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1307 struct rt_prio_array *array = &rt_rq->active;
1308
1309 if (move_entity(flags)) {
1310 WARN_ON_ONCE(!rt_se->on_list);
1311 __delist_rt_entity(rt_se, array);
1312 }
1313 rt_se->on_rq = 0;
1314
1315 dec_rt_tasks(rt_se, rt_rq);
1316 }
1317
1318 /*
1319 * Because the prio of an upper entry depends on the lower
1320 * entries, we must remove entries top - down.
1321 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1322 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1323 {
1324 struct sched_rt_entity *back = NULL;
1325
1326 for_each_sched_rt_entity(rt_se) {
1327 rt_se->back = back;
1328 back = rt_se;
1329 }
1330
1331 dequeue_top_rt_rq(rt_rq_of_se(back));
1332
1333 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1334 if (on_rt_rq(rt_se))
1335 __dequeue_rt_entity(rt_se, flags);
1336 }
1337 }
1338
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1339 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1340 {
1341 struct rq *rq = rq_of_rt_se(rt_se);
1342
1343 dequeue_rt_stack(rt_se, flags);
1344 for_each_sched_rt_entity(rt_se)
1345 __enqueue_rt_entity(rt_se, flags);
1346 enqueue_top_rt_rq(&rq->rt);
1347 }
1348
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1349 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1350 {
1351 struct rq *rq = rq_of_rt_se(rt_se);
1352
1353 dequeue_rt_stack(rt_se, flags);
1354
1355 for_each_sched_rt_entity(rt_se) {
1356 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1357
1358 if (rt_rq && rt_rq->rt_nr_running)
1359 __enqueue_rt_entity(rt_se, flags);
1360 }
1361 enqueue_top_rt_rq(&rq->rt);
1362 }
1363
1364 /*
1365 * Adding/removing a task to/from a priority array:
1366 */
1367 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1368 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1369 {
1370 struct sched_rt_entity *rt_se = &p->rt;
1371
1372 if (flags & ENQUEUE_WAKEUP)
1373 rt_se->timeout = 0;
1374
1375 enqueue_rt_entity(rt_se, flags);
1376
1377 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1378 enqueue_pushable_task(rq, p);
1379 }
1380
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1381 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1382 {
1383 struct sched_rt_entity *rt_se = &p->rt;
1384
1385 update_curr_rt(rq);
1386 dequeue_rt_entity(rt_se, flags);
1387
1388 dequeue_pushable_task(rq, p);
1389 }
1390
1391 /*
1392 * Put task to the head or the end of the run list without the overhead of
1393 * dequeue followed by enqueue.
1394 */
1395 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1396 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1397 {
1398 if (on_rt_rq(rt_se)) {
1399 struct rt_prio_array *array = &rt_rq->active;
1400 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1401
1402 if (head)
1403 list_move(&rt_se->run_list, queue);
1404 else
1405 list_move_tail(&rt_se->run_list, queue);
1406 }
1407 }
1408
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1409 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1410 {
1411 struct sched_rt_entity *rt_se = &p->rt;
1412 struct rt_rq *rt_rq;
1413
1414 for_each_sched_rt_entity(rt_se) {
1415 rt_rq = rt_rq_of_se(rt_se);
1416 requeue_rt_entity(rt_rq, rt_se, head);
1417 }
1418 }
1419
yield_task_rt(struct rq * rq)1420 static void yield_task_rt(struct rq *rq)
1421 {
1422 requeue_task_rt(rq, rq->curr, 0);
1423 }
1424
1425 #ifdef CONFIG_SMP
1426 static int find_lowest_rq(struct task_struct *task);
1427
1428 static int
select_task_rq_rt(struct task_struct * p,int cpu,int sd_flag,int flags)1429 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1430 {
1431 struct task_struct *curr;
1432 struct rq *rq;
1433 bool test;
1434
1435 /* For anything but wake ups, just return the task_cpu */
1436 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1437 goto out;
1438
1439 rq = cpu_rq(cpu);
1440
1441 rcu_read_lock();
1442 curr = READ_ONCE(rq->curr); /* unlocked access */
1443
1444 /*
1445 * If the current task on @p's runqueue is an RT task, then
1446 * try to see if we can wake this RT task up on another
1447 * runqueue. Otherwise simply start this RT task
1448 * on its current runqueue.
1449 *
1450 * We want to avoid overloading runqueues. If the woken
1451 * task is a higher priority, then it will stay on this CPU
1452 * and the lower prio task should be moved to another CPU.
1453 * Even though this will probably make the lower prio task
1454 * lose its cache, we do not want to bounce a higher task
1455 * around just because it gave up its CPU, perhaps for a
1456 * lock?
1457 *
1458 * For equal prio tasks, we just let the scheduler sort it out.
1459 *
1460 * Otherwise, just let it ride on the affined RQ and the
1461 * post-schedule router will push the preempted task away
1462 *
1463 * This test is optimistic, if we get it wrong the load-balancer
1464 * will have to sort it out.
1465 *
1466 * We take into account the capacity of the CPU to ensure it fits the
1467 * requirement of the task - which is only important on heterogeneous
1468 * systems like big.LITTLE.
1469 */
1470 test = curr &&
1471 unlikely(rt_task(curr)) &&
1472 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1473
1474 if (test || !rt_task_fits_capacity(p, cpu)) {
1475 int target = find_lowest_rq(p);
1476
1477 /*
1478 * Don't bother moving it if the destination CPU is
1479 * not running a lower priority task.
1480 */
1481 if (target != -1 &&
1482 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1483 cpu = target;
1484 }
1485 rcu_read_unlock();
1486
1487 out:
1488 return cpu;
1489 }
1490
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1491 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1492 {
1493 /*
1494 * Current can't be migrated, useless to reschedule,
1495 * let's hope p can move out.
1496 */
1497 if (rq->curr->nr_cpus_allowed == 1 ||
1498 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL, NULL))
1499 return;
1500
1501 /*
1502 * p is migratable, so let's not schedule it and
1503 * see if it is pushed or pulled somewhere else.
1504 */
1505 if (p->nr_cpus_allowed != 1 &&
1506 cpupri_find(&rq->rd->cpupri, p, NULL, NULL))
1507 return;
1508
1509 /*
1510 * There appear to be other CPUs that can accept
1511 * the current task but none can run 'p', so lets reschedule
1512 * to try and push the current task away:
1513 */
1514 requeue_task_rt(rq, p, 1);
1515 resched_curr(rq);
1516 }
1517
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1518 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1519 {
1520 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1521 /*
1522 * This is OK, because current is on_cpu, which avoids it being
1523 * picked for load-balance and preemption/IRQs are still
1524 * disabled avoiding further scheduler activity on it and we've
1525 * not yet started the picking loop.
1526 */
1527 rq_unpin_lock(rq, rf);
1528 pull_rt_task(rq);
1529 rq_repin_lock(rq, rf);
1530 }
1531
1532 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1533 }
1534 #endif /* CONFIG_SMP */
1535
1536 /*
1537 * Preempt the current task with a newly woken task if needed:
1538 */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1539 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1540 {
1541 if (p->prio < rq->curr->prio) {
1542 resched_curr(rq);
1543 return;
1544 }
1545
1546 #ifdef CONFIG_SMP
1547 /*
1548 * If:
1549 *
1550 * - the newly woken task is of equal priority to the current task
1551 * - the newly woken task is non-migratable while current is migratable
1552 * - current will be preempted on the next reschedule
1553 *
1554 * we should check to see if current can readily move to a different
1555 * cpu. If so, we will reschedule to allow the push logic to try
1556 * to move current somewhere else, making room for our non-migratable
1557 * task.
1558 */
1559 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1560 check_preempt_equal_prio(rq, p);
1561 #endif
1562 }
1563
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1564 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1565 {
1566 p->se.exec_start = rq_clock_task(rq);
1567
1568 /* The running task is never eligible for pushing */
1569 dequeue_pushable_task(rq, p);
1570
1571 if (!first)
1572 return;
1573
1574 /*
1575 * If prev task was rt, put_prev_task() has already updated the
1576 * utilization. We only care of the case where we start to schedule a
1577 * rt task
1578 */
1579 if (rq->curr->sched_class != &rt_sched_class)
1580 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1581
1582 rt_queue_push_tasks(rq);
1583 }
1584
pick_next_rt_entity(struct rq * rq,struct rt_rq * rt_rq)1585 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1586 struct rt_rq *rt_rq)
1587 {
1588 struct rt_prio_array *array = &rt_rq->active;
1589 struct sched_rt_entity *next = NULL;
1590 struct list_head *queue;
1591 int idx;
1592
1593 idx = sched_find_first_bit(array->bitmap);
1594 BUG_ON(idx >= MAX_RT_PRIO);
1595
1596 queue = array->queue + idx;
1597 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1598
1599 return next;
1600 }
1601
_pick_next_task_rt(struct rq * rq)1602 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1603 {
1604 struct sched_rt_entity *rt_se;
1605 struct rt_rq *rt_rq = &rq->rt;
1606
1607 do {
1608 rt_se = pick_next_rt_entity(rq, rt_rq);
1609 BUG_ON(!rt_se);
1610 rt_rq = group_rt_rq(rt_se);
1611 } while (rt_rq);
1612
1613 return rt_task_of(rt_se);
1614 }
1615
1616 static struct task_struct *
pick_next_task_rt(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)1617 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1618 {
1619 struct task_struct *p;
1620
1621 WARN_ON_ONCE(prev || rf);
1622
1623 if (!sched_rt_runnable(rq))
1624 return NULL;
1625
1626 p = _pick_next_task_rt(rq);
1627 set_next_task_rt(rq, p, true);
1628 return p;
1629 }
1630
put_prev_task_rt(struct rq * rq,struct task_struct * p)1631 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1632 {
1633 update_curr_rt(rq);
1634
1635 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1636
1637 /*
1638 * The previous task needs to be made eligible for pushing
1639 * if it is still active
1640 */
1641 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1642 enqueue_pushable_task(rq, p);
1643 }
1644
1645 #ifdef CONFIG_SMP
1646
1647 /* Only try algorithms three times */
1648 #define RT_MAX_TRIES 3
1649
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1650 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1651 {
1652 if (!task_running(rq, p) &&
1653 cpumask_test_cpu(cpu, p->cpus_ptr) &&
1654 rt_task_fits_capacity(p, cpu))
1655 return 1;
1656
1657 return 0;
1658 }
1659
1660 /*
1661 * Return the highest pushable rq's task, which is suitable to be executed
1662 * on the CPU, NULL otherwise
1663 */
pick_highest_pushable_task(struct rq * rq,int cpu)1664 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1665 {
1666 struct plist_head *head = &rq->rt.pushable_tasks;
1667 struct task_struct *p;
1668
1669 if (!has_pushable_tasks(rq))
1670 return NULL;
1671
1672 plist_for_each_entry(p, head, pushable_tasks) {
1673 if (pick_rt_task(rq, p, cpu))
1674 return p;
1675 }
1676
1677 return NULL;
1678 }
1679
1680 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1681
find_lowest_rq(struct task_struct * task)1682 static int find_lowest_rq(struct task_struct *task)
1683 {
1684 struct sched_domain *sd;
1685 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1686 int this_cpu = smp_processor_id();
1687 int cpu = task_cpu(task);
1688
1689 /* Make sure the mask is initialized first */
1690 if (unlikely(!lowest_mask))
1691 return -1;
1692
1693 if (task->nr_cpus_allowed == 1)
1694 return -1; /* No other targets possible */
1695
1696 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask,
1697 rt_task_fits_capacity))
1698 return -1; /* No targets found */
1699
1700 /*
1701 * At this point we have built a mask of CPUs representing the
1702 * lowest priority tasks in the system. Now we want to elect
1703 * the best one based on our affinity and topology.
1704 *
1705 * We prioritize the last CPU that the task executed on since
1706 * it is most likely cache-hot in that location.
1707 */
1708 if (cpumask_test_cpu(cpu, lowest_mask))
1709 return cpu;
1710
1711 /*
1712 * Otherwise, we consult the sched_domains span maps to figure
1713 * out which CPU is logically closest to our hot cache data.
1714 */
1715 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1716 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1717
1718 rcu_read_lock();
1719 for_each_domain(cpu, sd) {
1720 if (sd->flags & SD_WAKE_AFFINE) {
1721 int best_cpu;
1722
1723 /*
1724 * "this_cpu" is cheaper to preempt than a
1725 * remote processor.
1726 */
1727 if (this_cpu != -1 &&
1728 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1729 rcu_read_unlock();
1730 return this_cpu;
1731 }
1732
1733 best_cpu = cpumask_first_and(lowest_mask,
1734 sched_domain_span(sd));
1735 if (best_cpu < nr_cpu_ids) {
1736 rcu_read_unlock();
1737 return best_cpu;
1738 }
1739 }
1740 }
1741 rcu_read_unlock();
1742
1743 /*
1744 * And finally, if there were no matches within the domains
1745 * just give the caller *something* to work with from the compatible
1746 * locations.
1747 */
1748 if (this_cpu != -1)
1749 return this_cpu;
1750
1751 cpu = cpumask_any(lowest_mask);
1752 if (cpu < nr_cpu_ids)
1753 return cpu;
1754
1755 return -1;
1756 }
1757
1758 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1759 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1760 {
1761 struct rq *lowest_rq = NULL;
1762 int tries;
1763 int cpu;
1764
1765 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1766 cpu = find_lowest_rq(task);
1767
1768 if ((cpu == -1) || (cpu == rq->cpu))
1769 break;
1770
1771 lowest_rq = cpu_rq(cpu);
1772
1773 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1774 /*
1775 * Target rq has tasks of equal or higher priority,
1776 * retrying does not release any lock and is unlikely
1777 * to yield a different result.
1778 */
1779 lowest_rq = NULL;
1780 break;
1781 }
1782
1783 /* if the prio of this runqueue changed, try again */
1784 if (double_lock_balance(rq, lowest_rq)) {
1785 /*
1786 * We had to unlock the run queue. In
1787 * the mean time, task could have
1788 * migrated already or had its affinity changed.
1789 * Also make sure that it wasn't scheduled on its rq.
1790 */
1791 if (unlikely(task_rq(task) != rq ||
1792 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1793 task_running(rq, task) ||
1794 !rt_task(task) ||
1795 !task_on_rq_queued(task))) {
1796
1797 double_unlock_balance(rq, lowest_rq);
1798 lowest_rq = NULL;
1799 break;
1800 }
1801 }
1802
1803 /* If this rq is still suitable use it. */
1804 if (lowest_rq->rt.highest_prio.curr > task->prio)
1805 break;
1806
1807 /* try again */
1808 double_unlock_balance(rq, lowest_rq);
1809 lowest_rq = NULL;
1810 }
1811
1812 return lowest_rq;
1813 }
1814
pick_next_pushable_task(struct rq * rq)1815 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1816 {
1817 struct task_struct *p;
1818
1819 if (!has_pushable_tasks(rq))
1820 return NULL;
1821
1822 p = plist_first_entry(&rq->rt.pushable_tasks,
1823 struct task_struct, pushable_tasks);
1824
1825 BUG_ON(rq->cpu != task_cpu(p));
1826 BUG_ON(task_current(rq, p));
1827 BUG_ON(p->nr_cpus_allowed <= 1);
1828
1829 BUG_ON(!task_on_rq_queued(p));
1830 BUG_ON(!rt_task(p));
1831
1832 return p;
1833 }
1834
1835 /*
1836 * If the current CPU has more than one RT task, see if the non
1837 * running task can migrate over to a CPU that is running a task
1838 * of lesser priority.
1839 */
push_rt_task(struct rq * rq)1840 static int push_rt_task(struct rq *rq)
1841 {
1842 struct task_struct *next_task;
1843 struct rq *lowest_rq;
1844 int ret = 0;
1845
1846 if (!rq->rt.overloaded)
1847 return 0;
1848
1849 next_task = pick_next_pushable_task(rq);
1850 if (!next_task)
1851 return 0;
1852
1853 retry:
1854 if (WARN_ON(next_task == rq->curr))
1855 return 0;
1856
1857 /*
1858 * It's possible that the next_task slipped in of
1859 * higher priority than current. If that's the case
1860 * just reschedule current.
1861 */
1862 if (unlikely(next_task->prio < rq->curr->prio)) {
1863 resched_curr(rq);
1864 return 0;
1865 }
1866
1867 /* We might release rq lock */
1868 get_task_struct(next_task);
1869
1870 /* find_lock_lowest_rq locks the rq if found */
1871 lowest_rq = find_lock_lowest_rq(next_task, rq);
1872 if (!lowest_rq) {
1873 struct task_struct *task;
1874 /*
1875 * find_lock_lowest_rq releases rq->lock
1876 * so it is possible that next_task has migrated.
1877 *
1878 * We need to make sure that the task is still on the same
1879 * run-queue and is also still the next task eligible for
1880 * pushing.
1881 */
1882 task = pick_next_pushable_task(rq);
1883 if (task == next_task) {
1884 /*
1885 * The task hasn't migrated, and is still the next
1886 * eligible task, but we failed to find a run-queue
1887 * to push it to. Do not retry in this case, since
1888 * other CPUs will pull from us when ready.
1889 */
1890 goto out;
1891 }
1892
1893 if (!task)
1894 /* No more tasks, just exit */
1895 goto out;
1896
1897 /*
1898 * Something has shifted, try again.
1899 */
1900 put_task_struct(next_task);
1901 next_task = task;
1902 goto retry;
1903 }
1904
1905 deactivate_task(rq, next_task, 0);
1906 set_task_cpu(next_task, lowest_rq->cpu);
1907 activate_task(lowest_rq, next_task, 0);
1908 ret = 1;
1909
1910 resched_curr(lowest_rq);
1911
1912 double_unlock_balance(rq, lowest_rq);
1913
1914 out:
1915 put_task_struct(next_task);
1916
1917 return ret;
1918 }
1919
push_rt_tasks(struct rq * rq)1920 static void push_rt_tasks(struct rq *rq)
1921 {
1922 /* push_rt_task will return true if it moved an RT */
1923 while (push_rt_task(rq))
1924 ;
1925 }
1926
1927 #ifdef HAVE_RT_PUSH_IPI
1928
1929 /*
1930 * When a high priority task schedules out from a CPU and a lower priority
1931 * task is scheduled in, a check is made to see if there's any RT tasks
1932 * on other CPUs that are waiting to run because a higher priority RT task
1933 * is currently running on its CPU. In this case, the CPU with multiple RT
1934 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1935 * up that may be able to run one of its non-running queued RT tasks.
1936 *
1937 * All CPUs with overloaded RT tasks need to be notified as there is currently
1938 * no way to know which of these CPUs have the highest priority task waiting
1939 * to run. Instead of trying to take a spinlock on each of these CPUs,
1940 * which has shown to cause large latency when done on machines with many
1941 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1942 * RT tasks waiting to run.
1943 *
1944 * Just sending an IPI to each of the CPUs is also an issue, as on large
1945 * count CPU machines, this can cause an IPI storm on a CPU, especially
1946 * if its the only CPU with multiple RT tasks queued, and a large number
1947 * of CPUs scheduling a lower priority task at the same time.
1948 *
1949 * Each root domain has its own irq work function that can iterate over
1950 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1951 * tassk must be checked if there's one or many CPUs that are lowering
1952 * their priority, there's a single irq work iterator that will try to
1953 * push off RT tasks that are waiting to run.
1954 *
1955 * When a CPU schedules a lower priority task, it will kick off the
1956 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1957 * As it only takes the first CPU that schedules a lower priority task
1958 * to start the process, the rto_start variable is incremented and if
1959 * the atomic result is one, then that CPU will try to take the rto_lock.
1960 * This prevents high contention on the lock as the process handles all
1961 * CPUs scheduling lower priority tasks.
1962 *
1963 * All CPUs that are scheduling a lower priority task will increment the
1964 * rt_loop_next variable. This will make sure that the irq work iterator
1965 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1966 * priority task, even if the iterator is in the middle of a scan. Incrementing
1967 * the rt_loop_next will cause the iterator to perform another scan.
1968 *
1969 */
rto_next_cpu(struct root_domain * rd)1970 static int rto_next_cpu(struct root_domain *rd)
1971 {
1972 int next;
1973 int cpu;
1974
1975 /*
1976 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1977 * rt_next_cpu() will simply return the first CPU found in
1978 * the rto_mask.
1979 *
1980 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1981 * will return the next CPU found in the rto_mask.
1982 *
1983 * If there are no more CPUs left in the rto_mask, then a check is made
1984 * against rto_loop and rto_loop_next. rto_loop is only updated with
1985 * the rto_lock held, but any CPU may increment the rto_loop_next
1986 * without any locking.
1987 */
1988 for (;;) {
1989
1990 /* When rto_cpu is -1 this acts like cpumask_first() */
1991 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1992
1993 rd->rto_cpu = cpu;
1994
1995 if (cpu < nr_cpu_ids)
1996 return cpu;
1997
1998 rd->rto_cpu = -1;
1999
2000 /*
2001 * ACQUIRE ensures we see the @rto_mask changes
2002 * made prior to the @next value observed.
2003 *
2004 * Matches WMB in rt_set_overload().
2005 */
2006 next = atomic_read_acquire(&rd->rto_loop_next);
2007
2008 if (rd->rto_loop == next)
2009 break;
2010
2011 rd->rto_loop = next;
2012 }
2013
2014 return -1;
2015 }
2016
rto_start_trylock(atomic_t * v)2017 static inline bool rto_start_trylock(atomic_t *v)
2018 {
2019 return !atomic_cmpxchg_acquire(v, 0, 1);
2020 }
2021
rto_start_unlock(atomic_t * v)2022 static inline void rto_start_unlock(atomic_t *v)
2023 {
2024 atomic_set_release(v, 0);
2025 }
2026
tell_cpu_to_push(struct rq * rq)2027 static void tell_cpu_to_push(struct rq *rq)
2028 {
2029 int cpu = -1;
2030
2031 /* Keep the loop going if the IPI is currently active */
2032 atomic_inc(&rq->rd->rto_loop_next);
2033
2034 /* Only one CPU can initiate a loop at a time */
2035 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2036 return;
2037
2038 raw_spin_lock(&rq->rd->rto_lock);
2039
2040 /*
2041 * The rto_cpu is updated under the lock, if it has a valid CPU
2042 * then the IPI is still running and will continue due to the
2043 * update to loop_next, and nothing needs to be done here.
2044 * Otherwise it is finishing up and an ipi needs to be sent.
2045 */
2046 if (rq->rd->rto_cpu < 0)
2047 cpu = rto_next_cpu(rq->rd);
2048
2049 raw_spin_unlock(&rq->rd->rto_lock);
2050
2051 rto_start_unlock(&rq->rd->rto_loop_start);
2052
2053 if (cpu >= 0) {
2054 /* Make sure the rd does not get freed while pushing */
2055 sched_get_rd(rq->rd);
2056 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2057 }
2058 }
2059
2060 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2061 void rto_push_irq_work_func(struct irq_work *work)
2062 {
2063 struct root_domain *rd =
2064 container_of(work, struct root_domain, rto_push_work);
2065 struct rq *rq;
2066 int cpu;
2067
2068 rq = this_rq();
2069
2070 /*
2071 * We do not need to grab the lock to check for has_pushable_tasks.
2072 * When it gets updated, a check is made if a push is possible.
2073 */
2074 if (has_pushable_tasks(rq)) {
2075 raw_spin_lock(&rq->lock);
2076 push_rt_tasks(rq);
2077 raw_spin_unlock(&rq->lock);
2078 }
2079
2080 raw_spin_lock(&rd->rto_lock);
2081
2082 /* Pass the IPI to the next rt overloaded queue */
2083 cpu = rto_next_cpu(rd);
2084
2085 raw_spin_unlock(&rd->rto_lock);
2086
2087 if (cpu < 0) {
2088 sched_put_rd(rd);
2089 return;
2090 }
2091
2092 /* Try the next RT overloaded CPU */
2093 irq_work_queue_on(&rd->rto_push_work, cpu);
2094 }
2095 #endif /* HAVE_RT_PUSH_IPI */
2096
pull_rt_task(struct rq * this_rq)2097 static void pull_rt_task(struct rq *this_rq)
2098 {
2099 int this_cpu = this_rq->cpu, cpu;
2100 bool resched = false;
2101 struct task_struct *p;
2102 struct rq *src_rq;
2103 int rt_overload_count = rt_overloaded(this_rq);
2104
2105 if (likely(!rt_overload_count))
2106 return;
2107
2108 /*
2109 * Match the barrier from rt_set_overloaded; this guarantees that if we
2110 * see overloaded we must also see the rto_mask bit.
2111 */
2112 smp_rmb();
2113
2114 /* If we are the only overloaded CPU do nothing */
2115 if (rt_overload_count == 1 &&
2116 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2117 return;
2118
2119 #ifdef HAVE_RT_PUSH_IPI
2120 if (sched_feat(RT_PUSH_IPI)) {
2121 tell_cpu_to_push(this_rq);
2122 return;
2123 }
2124 #endif
2125
2126 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2127 if (this_cpu == cpu)
2128 continue;
2129
2130 src_rq = cpu_rq(cpu);
2131
2132 /*
2133 * Don't bother taking the src_rq->lock if the next highest
2134 * task is known to be lower-priority than our current task.
2135 * This may look racy, but if this value is about to go
2136 * logically higher, the src_rq will push this task away.
2137 * And if its going logically lower, we do not care
2138 */
2139 if (src_rq->rt.highest_prio.next >=
2140 this_rq->rt.highest_prio.curr)
2141 continue;
2142
2143 /*
2144 * We can potentially drop this_rq's lock in
2145 * double_lock_balance, and another CPU could
2146 * alter this_rq
2147 */
2148 double_lock_balance(this_rq, src_rq);
2149
2150 /*
2151 * We can pull only a task, which is pushable
2152 * on its rq, and no others.
2153 */
2154 p = pick_highest_pushable_task(src_rq, this_cpu);
2155
2156 /*
2157 * Do we have an RT task that preempts
2158 * the to-be-scheduled task?
2159 */
2160 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2161 WARN_ON(p == src_rq->curr);
2162 WARN_ON(!task_on_rq_queued(p));
2163
2164 /*
2165 * There's a chance that p is higher in priority
2166 * than what's currently running on its CPU.
2167 * This is just that p is wakeing up and hasn't
2168 * had a chance to schedule. We only pull
2169 * p if it is lower in priority than the
2170 * current task on the run queue
2171 */
2172 if (p->prio < src_rq->curr->prio)
2173 goto skip;
2174
2175 resched = true;
2176
2177 deactivate_task(src_rq, p, 0);
2178 set_task_cpu(p, this_cpu);
2179 activate_task(this_rq, p, 0);
2180 /*
2181 * We continue with the search, just in
2182 * case there's an even higher prio task
2183 * in another runqueue. (low likelihood
2184 * but possible)
2185 */
2186 }
2187 skip:
2188 double_unlock_balance(this_rq, src_rq);
2189 }
2190
2191 if (resched)
2192 resched_curr(this_rq);
2193 }
2194
2195 /*
2196 * If we are not running and we are not going to reschedule soon, we should
2197 * try to push tasks away now
2198 */
task_woken_rt(struct rq * rq,struct task_struct * p)2199 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2200 {
2201 bool need_to_push = !task_running(rq, p) &&
2202 !test_tsk_need_resched(rq->curr) &&
2203 p->nr_cpus_allowed > 1 &&
2204 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2205 (rq->curr->nr_cpus_allowed < 2 ||
2206 rq->curr->prio <= p->prio);
2207
2208 if (need_to_push || !rt_task_fits_capacity(p, cpu_of(rq)))
2209 push_rt_tasks(rq);
2210 }
2211
2212 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2213 static void rq_online_rt(struct rq *rq)
2214 {
2215 if (rq->rt.overloaded)
2216 rt_set_overload(rq);
2217
2218 __enable_runtime(rq);
2219
2220 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2221 }
2222
2223 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2224 static void rq_offline_rt(struct rq *rq)
2225 {
2226 if (rq->rt.overloaded)
2227 rt_clear_overload(rq);
2228
2229 __disable_runtime(rq);
2230
2231 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2232 }
2233
2234 /*
2235 * When switch from the rt queue, we bring ourselves to a position
2236 * that we might want to pull RT tasks from other runqueues.
2237 */
switched_from_rt(struct rq * rq,struct task_struct * p)2238 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2239 {
2240 /*
2241 * If there are other RT tasks then we will reschedule
2242 * and the scheduling of the other RT tasks will handle
2243 * the balancing. But if we are the last RT task
2244 * we may need to handle the pulling of RT tasks
2245 * now.
2246 */
2247 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2248 return;
2249
2250 rt_queue_pull_task(rq);
2251 }
2252
init_sched_rt_class(void)2253 void __init init_sched_rt_class(void)
2254 {
2255 unsigned int i;
2256
2257 for_each_possible_cpu(i) {
2258 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2259 GFP_KERNEL, cpu_to_node(i));
2260 }
2261 }
2262 #endif /* CONFIG_SMP */
2263
2264 /*
2265 * When switching a task to RT, we may overload the runqueue
2266 * with RT tasks. In this case we try to push them off to
2267 * other runqueues.
2268 */
switched_to_rt(struct rq * rq,struct task_struct * p)2269 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2270 {
2271 /*
2272 * If we are already running, then there's nothing
2273 * that needs to be done. But if we are not running
2274 * we may need to preempt the current running task.
2275 * If that current running task is also an RT task
2276 * then see if we can move to another run queue.
2277 */
2278 if (task_on_rq_queued(p) && rq->curr != p) {
2279 #ifdef CONFIG_SMP
2280 bool need_to_push = rq->rt.overloaded ||
2281 !rt_task_fits_capacity(p, cpu_of(rq));
2282
2283 if (p->nr_cpus_allowed > 1 && need_to_push)
2284 rt_queue_push_tasks(rq);
2285 #endif /* CONFIG_SMP */
2286 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2287 resched_curr(rq);
2288 }
2289 }
2290
2291 /*
2292 * Priority of the task has changed. This may cause
2293 * us to initiate a push or pull.
2294 */
2295 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2296 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2297 {
2298 if (!task_on_rq_queued(p))
2299 return;
2300
2301 if (rq->curr == p) {
2302 #ifdef CONFIG_SMP
2303 /*
2304 * If our priority decreases while running, we
2305 * may need to pull tasks to this runqueue.
2306 */
2307 if (oldprio < p->prio)
2308 rt_queue_pull_task(rq);
2309
2310 /*
2311 * If there's a higher priority task waiting to run
2312 * then reschedule.
2313 */
2314 if (p->prio > rq->rt.highest_prio.curr)
2315 resched_curr(rq);
2316 #else
2317 /* For UP simply resched on drop of prio */
2318 if (oldprio < p->prio)
2319 resched_curr(rq);
2320 #endif /* CONFIG_SMP */
2321 } else {
2322 /*
2323 * This task is not running, but if it is
2324 * greater than the current running task
2325 * then reschedule.
2326 */
2327 if (p->prio < rq->curr->prio)
2328 resched_curr(rq);
2329 }
2330 }
2331
2332 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2333 static void watchdog(struct rq *rq, struct task_struct *p)
2334 {
2335 unsigned long soft, hard;
2336
2337 /* max may change after cur was read, this will be fixed next tick */
2338 soft = task_rlimit(p, RLIMIT_RTTIME);
2339 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2340
2341 if (soft != RLIM_INFINITY) {
2342 unsigned long next;
2343
2344 if (p->rt.watchdog_stamp != jiffies) {
2345 p->rt.timeout++;
2346 p->rt.watchdog_stamp = jiffies;
2347 }
2348
2349 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2350 if (p->rt.timeout > next) {
2351 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2352 p->se.sum_exec_runtime);
2353 }
2354 }
2355 }
2356 #else
watchdog(struct rq * rq,struct task_struct * p)2357 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2358 #endif
2359
2360 /*
2361 * scheduler tick hitting a task of our scheduling class.
2362 *
2363 * NOTE: This function can be called remotely by the tick offload that
2364 * goes along full dynticks. Therefore no local assumption can be made
2365 * and everything must be accessed through the @rq and @curr passed in
2366 * parameters.
2367 */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2368 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2369 {
2370 struct sched_rt_entity *rt_se = &p->rt;
2371
2372 update_curr_rt(rq);
2373 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2374
2375 watchdog(rq, p);
2376
2377 /*
2378 * RR tasks need a special form of timeslice management.
2379 * FIFO tasks have no timeslices.
2380 */
2381 if (p->policy != SCHED_RR)
2382 return;
2383
2384 if (--p->rt.time_slice)
2385 return;
2386
2387 p->rt.time_slice = sched_rr_timeslice;
2388
2389 /*
2390 * Requeue to the end of queue if we (and all of our ancestors) are not
2391 * the only element on the queue
2392 */
2393 for_each_sched_rt_entity(rt_se) {
2394 if (rt_se->run_list.prev != rt_se->run_list.next) {
2395 requeue_task_rt(rq, p, 0);
2396 resched_curr(rq);
2397 return;
2398 }
2399 }
2400 }
2401
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2402 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2403 {
2404 /*
2405 * Time slice is 0 for SCHED_FIFO tasks
2406 */
2407 if (task->policy == SCHED_RR)
2408 return sched_rr_timeslice;
2409 else
2410 return 0;
2411 }
2412
2413 const struct sched_class rt_sched_class = {
2414 .next = &fair_sched_class,
2415 .enqueue_task = enqueue_task_rt,
2416 .dequeue_task = dequeue_task_rt,
2417 .yield_task = yield_task_rt,
2418
2419 .check_preempt_curr = check_preempt_curr_rt,
2420
2421 .pick_next_task = pick_next_task_rt,
2422 .put_prev_task = put_prev_task_rt,
2423 .set_next_task = set_next_task_rt,
2424
2425 #ifdef CONFIG_SMP
2426 .balance = balance_rt,
2427 .select_task_rq = select_task_rq_rt,
2428 .set_cpus_allowed = set_cpus_allowed_common,
2429 .rq_online = rq_online_rt,
2430 .rq_offline = rq_offline_rt,
2431 .task_woken = task_woken_rt,
2432 .switched_from = switched_from_rt,
2433 #endif
2434
2435 .task_tick = task_tick_rt,
2436
2437 .get_rr_interval = get_rr_interval_rt,
2438
2439 .prio_changed = prio_changed_rt,
2440 .switched_to = switched_to_rt,
2441
2442 .update_curr = update_curr_rt,
2443
2444 #ifdef CONFIG_UCLAMP_TASK
2445 .uclamp_enabled = 1,
2446 #endif
2447 };
2448
2449 #ifdef CONFIG_RT_GROUP_SCHED
2450 /*
2451 * Ensure that the real time constraints are schedulable.
2452 */
2453 static DEFINE_MUTEX(rt_constraints_mutex);
2454
2455 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)2456 static inline int tg_has_rt_tasks(struct task_group *tg)
2457 {
2458 struct task_struct *g, *p;
2459
2460 /*
2461 * Autogroups do not have RT tasks; see autogroup_create().
2462 */
2463 if (task_group_is_autogroup(tg))
2464 return 0;
2465
2466 for_each_process_thread(g, p) {
2467 if (rt_task(p) && task_group(p) == tg)
2468 return 1;
2469 }
2470
2471 return 0;
2472 }
2473
2474 struct rt_schedulable_data {
2475 struct task_group *tg;
2476 u64 rt_period;
2477 u64 rt_runtime;
2478 };
2479
tg_rt_schedulable(struct task_group * tg,void * data)2480 static int tg_rt_schedulable(struct task_group *tg, void *data)
2481 {
2482 struct rt_schedulable_data *d = data;
2483 struct task_group *child;
2484 unsigned long total, sum = 0;
2485 u64 period, runtime;
2486
2487 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2488 runtime = tg->rt_bandwidth.rt_runtime;
2489
2490 if (tg == d->tg) {
2491 period = d->rt_period;
2492 runtime = d->rt_runtime;
2493 }
2494
2495 /*
2496 * Cannot have more runtime than the period.
2497 */
2498 if (runtime > period && runtime != RUNTIME_INF)
2499 return -EINVAL;
2500
2501 /*
2502 * Ensure we don't starve existing RT tasks.
2503 */
2504 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2505 return -EBUSY;
2506
2507 total = to_ratio(period, runtime);
2508
2509 /*
2510 * Nobody can have more than the global setting allows.
2511 */
2512 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2513 return -EINVAL;
2514
2515 /*
2516 * The sum of our children's runtime should not exceed our own.
2517 */
2518 list_for_each_entry_rcu(child, &tg->children, siblings) {
2519 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2520 runtime = child->rt_bandwidth.rt_runtime;
2521
2522 if (child == d->tg) {
2523 period = d->rt_period;
2524 runtime = d->rt_runtime;
2525 }
2526
2527 sum += to_ratio(period, runtime);
2528 }
2529
2530 if (sum > total)
2531 return -EINVAL;
2532
2533 return 0;
2534 }
2535
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2536 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2537 {
2538 int ret;
2539
2540 struct rt_schedulable_data data = {
2541 .tg = tg,
2542 .rt_period = period,
2543 .rt_runtime = runtime,
2544 };
2545
2546 rcu_read_lock();
2547 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2548 rcu_read_unlock();
2549
2550 return ret;
2551 }
2552
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2553 static int tg_set_rt_bandwidth(struct task_group *tg,
2554 u64 rt_period, u64 rt_runtime)
2555 {
2556 int i, err = 0;
2557
2558 /*
2559 * Disallowing the root group RT runtime is BAD, it would disallow the
2560 * kernel creating (and or operating) RT threads.
2561 */
2562 if (tg == &root_task_group && rt_runtime == 0)
2563 return -EINVAL;
2564
2565 /* No period doesn't make any sense. */
2566 if (rt_period == 0)
2567 return -EINVAL;
2568
2569 mutex_lock(&rt_constraints_mutex);
2570 read_lock(&tasklist_lock);
2571 err = __rt_schedulable(tg, rt_period, rt_runtime);
2572 if (err)
2573 goto unlock;
2574
2575 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2576 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2577 tg->rt_bandwidth.rt_runtime = rt_runtime;
2578
2579 for_each_possible_cpu(i) {
2580 struct rt_rq *rt_rq = tg->rt_rq[i];
2581
2582 raw_spin_lock(&rt_rq->rt_runtime_lock);
2583 rt_rq->rt_runtime = rt_runtime;
2584 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2585 }
2586 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2587 unlock:
2588 read_unlock(&tasklist_lock);
2589 mutex_unlock(&rt_constraints_mutex);
2590
2591 return err;
2592 }
2593
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2594 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2595 {
2596 u64 rt_runtime, rt_period;
2597
2598 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2599 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2600 if (rt_runtime_us < 0)
2601 rt_runtime = RUNTIME_INF;
2602 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2603 return -EINVAL;
2604
2605 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2606 }
2607
sched_group_rt_runtime(struct task_group * tg)2608 long sched_group_rt_runtime(struct task_group *tg)
2609 {
2610 u64 rt_runtime_us;
2611
2612 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2613 return -1;
2614
2615 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2616 do_div(rt_runtime_us, NSEC_PER_USEC);
2617 return rt_runtime_us;
2618 }
2619
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2620 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2621 {
2622 u64 rt_runtime, rt_period;
2623
2624 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2625 return -EINVAL;
2626
2627 rt_period = rt_period_us * NSEC_PER_USEC;
2628 rt_runtime = tg->rt_bandwidth.rt_runtime;
2629
2630 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2631 }
2632
sched_group_rt_period(struct task_group * tg)2633 long sched_group_rt_period(struct task_group *tg)
2634 {
2635 u64 rt_period_us;
2636
2637 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2638 do_div(rt_period_us, NSEC_PER_USEC);
2639 return rt_period_us;
2640 }
2641
sched_rt_global_constraints(void)2642 static int sched_rt_global_constraints(void)
2643 {
2644 int ret = 0;
2645
2646 mutex_lock(&rt_constraints_mutex);
2647 read_lock(&tasklist_lock);
2648 ret = __rt_schedulable(NULL, 0, 0);
2649 read_unlock(&tasklist_lock);
2650 mutex_unlock(&rt_constraints_mutex);
2651
2652 return ret;
2653 }
2654
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2655 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2656 {
2657 /* Don't accept realtime tasks when there is no way for them to run */
2658 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2659 return 0;
2660
2661 return 1;
2662 }
2663
2664 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)2665 static int sched_rt_global_constraints(void)
2666 {
2667 unsigned long flags;
2668 int i;
2669
2670 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2671 for_each_possible_cpu(i) {
2672 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2673
2674 raw_spin_lock(&rt_rq->rt_runtime_lock);
2675 rt_rq->rt_runtime = global_rt_runtime();
2676 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2677 }
2678 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2679
2680 return 0;
2681 }
2682 #endif /* CONFIG_RT_GROUP_SCHED */
2683
sched_rt_global_validate(void)2684 static int sched_rt_global_validate(void)
2685 {
2686 if (sysctl_sched_rt_period <= 0)
2687 return -EINVAL;
2688
2689 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2690 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2691 return -EINVAL;
2692
2693 return 0;
2694 }
2695
sched_rt_do_global(void)2696 static void sched_rt_do_global(void)
2697 {
2698 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2699 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2700 }
2701
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2702 int sched_rt_handler(struct ctl_table *table, int write,
2703 void __user *buffer, size_t *lenp,
2704 loff_t *ppos)
2705 {
2706 int old_period, old_runtime;
2707 static DEFINE_MUTEX(mutex);
2708 int ret;
2709
2710 mutex_lock(&mutex);
2711 old_period = sysctl_sched_rt_period;
2712 old_runtime = sysctl_sched_rt_runtime;
2713
2714 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2715
2716 if (!ret && write) {
2717 ret = sched_rt_global_validate();
2718 if (ret)
2719 goto undo;
2720
2721 ret = sched_dl_global_validate();
2722 if (ret)
2723 goto undo;
2724
2725 ret = sched_rt_global_constraints();
2726 if (ret)
2727 goto undo;
2728
2729 sched_rt_do_global();
2730 sched_dl_do_global();
2731 }
2732 if (0) {
2733 undo:
2734 sysctl_sched_rt_period = old_period;
2735 sysctl_sched_rt_runtime = old_runtime;
2736 }
2737 mutex_unlock(&mutex);
2738
2739 return ret;
2740 }
2741
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2742 int sched_rr_handler(struct ctl_table *table, int write,
2743 void __user *buffer, size_t *lenp,
2744 loff_t *ppos)
2745 {
2746 int ret;
2747 static DEFINE_MUTEX(mutex);
2748
2749 mutex_lock(&mutex);
2750 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2751 /*
2752 * Make sure that internally we keep jiffies.
2753 * Also, writing zero resets the timeslice to default:
2754 */
2755 if (!ret && write) {
2756 sched_rr_timeslice =
2757 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2758 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2759 }
2760 mutex_unlock(&mutex);
2761
2762 return ret;
2763 }
2764
2765 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)2766 void print_rt_stats(struct seq_file *m, int cpu)
2767 {
2768 rt_rq_iter_t iter;
2769 struct rt_rq *rt_rq;
2770
2771 rcu_read_lock();
2772 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2773 print_rt_rq(m, cpu, rt_rq);
2774 rcu_read_unlock();
2775 }
2776 #endif /* CONFIG_SCHED_DEBUG */
2777